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Landmark Image Retrieval by Jointing Feature
Refinement and Multimodal Classifier Learning

Xiaoming Zhang, Senzhang Wang, Zhoujun Li, and Shuai Ma

Abstract—Landmark retrieval is to return a set of images with
their landmarks similar to those of the query images. Existing
studies on landmark retrieval focus on exploiting the geome-
tries of landmarks for visual similarity matches. However, the
visual content of social images is of large diversity in many
landmarks, and also some images share common patterns over
different landmarks. On the other side, it has been observed that
social images usually contain multimodal contents, i.e., visual
content and text tags, and each landmark has the unique char-
acteristic of both visual content and text content. Therefore, the
approaches based on similarity matching may not be effective
in this environment. In this paper, we investigate whether the
geographical correlation among the visual content and the text
content could be exploited for landmark retrieval. In particu-
lar, we propose an effective multimodal landmark classification
paradigm to leverage the multimodal contents of social image
for landmark retrieval, which integrates feature refinement and
landmark classifier with multimodal contents by a joint model.
The geo-tagged images are automatically labeled for classifier
learning. Visual features are refined based on low rank matrix
recovery, and multimodal classification combined with group
sparse is learned from the automatically labeled images. Finally,
candidate images are ranked by combining classification result
and semantic consistence measuring between the visual content
and text content. Experiments on real-world datasets demon-
strate the superiority of the proposed approach as compared to
existing methods.

Index Terms—Image classification, image geo-tagging, land-
mark retrieval.

I. INTRODUCTION

W ITH the rising popularity of camera devices and mobile
terminals, the amount of user-contributed social images

with rich content like textual tags, description, and visual con-
tent is increasing rapidly. Many of these images are geo-tagged
and related to landmarks, e.g., flickr.com and Picasa Web
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Fig. 1. Illustration of landmark images. (a) Two group of visually similar
images taken at Eiffel Tower and Forbidden City. (b) Two visually similar
images corresponding to different landmark but tagged with different tags.

Album. It is challenging and promising to leverage the over-
whelming amount of context data and geometry information
for social image applications [1], such as landmark retrieval
which returns a set of images with their landmarks highly
similar to that of the query image.

Comparing to the image data in traditional content-based
image retrieval (CBIR) systems, landmark images have a few
distinguishing characteristics. In particular, though each land-
mark has its own characteristics, many landmarks have similar
visual content as shown in Fig. 1(b). Landmark retrieval is dif-
ferent from conventional image retrieval: while we can retrieve
a set of similar image within the low-level feature spaces
(e.g., color and texture), it is very difficult to retrieve the
images with similar landmark due to the high diversity of the
low-level features of each landmark. Therefore, the geometry
information of landmarks is usually exploited to conduct land-
mark retrieval. A number of works [7], [8], [9], [59] have been
proposed to conduct landmark retrieval, including data-driven
or instance-based methods [7], [21], [39], and model-based
methods [9], [18]. Data-driven methods propose to retrieve
the most visually similar images in the landmark database.
Although simple and effective, the performance of these meth-
ods depends on the similarity measure and the quality of
the database. The model-based methods learn the discrimi-
native features or intrinsic geographical patterns for landmark
retrieval. Compared with data-driven methods, model-based
methods has better generalization. However, they also suf-
fer from some problems. First, most of existing methods
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retrieve the landmark images based on the visual content,
which requires images to contain highly discriminative visual
patterns of landmarks. Although it is well recognized that
images from one landmark share some similar patterns, such as
the two groups of images taken at Eiffel Tower and Forbidden
City in Fig. 1(a), there are also many visually similar images
taken at different landmarks as shown in Fig. 1(b). Second,
many methods need a well-labeled landmark dataset to train-
ing the model. Usually, the geo-tagged images are tagged with
GPS coordinates which are related to the location of the land-
mark, since the geographically adjacent images may cover the
same landmark or viewpoint. Therefore, it is desirable to auto-
matically learning the inherent and discriminative correlation
between landmarks and images with the geo-tagging informa-
tion, which can largely overcomes the limitations of existing
methods.

Meanwhile, the distribution of images across geographical
landmarks presents unique characteristics which can contribute
to landmark retrieval. First, geo-tagged images contain visual
content and textual description. Both of the two types of
content are related to the landmark. For example, the visual
content of the images taken in landmarks of Eiffel Tower
and Forbidden City present distinctive patterns as shown in
Fig. 1(a). Though the visual content of the images taken in
Menara KL and Beijing CCTV are similar, their image tags
of these two landmarks present distinctive patterns as shown in
Fig. 1(b). It has been found that language modeling approaches
are particularly suitable for location recognition [2], [3].
Therefore, the combination of visual content and text con-
tent could potentially improve the performance of landmark
retrieval. Second, there are many spatial-aware terms that are
most indicative of geographical locations from a given text
collection [4]. Many geo-tagged images are annotated with
the landmark-specific tags, such as landmark name. These
tags can be utilized to recognize landmark, which can then
contribute to learn the latent relation between images and
landmarks.

To learn the geographical relation from multimodal data for
landmark image retrieval, it is quite challenging due to the fol-
lowing reasons. First, the multimodal contents of geo-tagged
images are represented in different spaces with inherently dif-
ferent structures. Second, the images are freely produced by
users, which results in redundant or noisy visual contents of
many images. Third, image tags are also annotated manually.
Not all the geo-tagged images are annotated with the unique
tags of the associated landmark.

To tackle these challenges, we propose to take full advantage
of the inherent relation between landmarks and the multimodal
content for landmark retrieval. In particular, we investigate:
1) how to automatically label landmark images with geo-
tagging information and the landmark-specific tags and 2) how
to seamlessly combine both text content and visual content
for the problem we are studying. Our solutions to these ques-
tions result in a new approach for landmark retrieval based
on multimodal landmark classification (MMLC). In particular,
the approach includes three components: 1) image labeling;
2) MMLC learning; and 3) image ranking. The spatial-aware
language model and geo-based clustering method are used

to automatically label the images. To learn the latent rela-
tion between landmarks and images, a multimodal classifier
is learned from the multimodal contents of images for land-
mark recognition. Then, the retrieval results are ranked based
on the classification result and consistence measure on the text
content and visual content of the candidate images. The main
contributions of this paper are summarized as follows.

1) We explore the intrinsic nature of the geographical dis-
tribution of social images. A novel landmark retrieval
method is proposed to exploit the latent relation between
landmarks and multimodal content of social images,
based on an effective MMLC paradigm.

2) A novel feature refinement module based on low-rank
matrix recovery is proposed to refine visual features.
An effective image landmark recognition module is pro-
posed to learn the reliable image classifiers by exploring
the latent correlation between multimodal contents of
social image.

3) A unified model is proposed to explore the in-depth rein-
forcement between the two modules. Then, the landmark
retrieval result is ranked based on classification result
and consistence measure between visual features and
text features.

The rest of this paper is structured as follows. We review
the related work in Section II. Then, the problem is formally
defined in Section III, and image retrieval with images con-
taining multimodal contents is presented in Section IV. We
experimentally validate the performance of our approach in
Section V and conclude this paper in Section VI.

II. RELATED WORKS

With the explosive growth of geo-tagged images, land-
mark retrieval is an emerging research topic in multimedia
application and computer vision. The related works includes
geographic referencing of images, CBIR [5], [42], [43], and
ensemble learning [62].

A. Geographic Referencing of Images

Geographic referencing of images include data-driven meth-
ods and model-based methods. Data-driven method determines
the landmark or geographical location of the query image
by retrieving the nearest neighbors from a prebuilt database.
Some works construct the image databases with tree-based
structure [21] or a 3-D model [19], [22] to preserve retrieval
efficiency. Hays and Efros [7] presented a feature matching
approach to return the K nearest neighbors with respect to
the query landmark image, which represents the query images
and images in database by aggregating a set of low-level fea-
tures to perform landmark retrieval. Li et al. [11] retrieved
the visually similar candidates by considering their geo-visual
neighbors which are both geographically nearby and visu-
ally similar. There are some methods which estimate image
location at city-scale or global scale [14], and the search
method is also used for landmark recognition or classifica-
tion [15], [16], [18]–[20]. Serdyukov et al. [2] estimated the
location of Flickr image by using a language model purely
based on the tags assigned by users. There are also location
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estimation on videos [41], in which the videos are assigned to
different cities by matching the embedded audio against the
typical sounds of ambulance sirens. However, textual tags were
not used in this method. Usually, these data-driven methods
suffer from huge storage cost, and the performance is affected
by the quality of database.

Model-based methods attempt to build models to extract the
geographical patterns or discriminative features for location
recognition [12], [13], [17]. In [8], a region-based recogni-
tion method is proposed to detect discriminative landmark
regions at patch level, such as a set of stylistic of visual ele-
ments to characterize a city such as windows, street signs,
etc., which are seen as the features for landmark retrieval.
Fang et al. [9] presented an approach, namely GIANT,
to discover both discriminative and representative mid-level
attributes for landmark retrieval. Wang et al. [10] proposed
a multiquery expansions method to retrieve landmark, which
learns the discriminative patterns from the query expansion
images. The multimodal hypergraph (MMHG) is proposed to
combine different types of visual features for landmark image
retrieval. However, these methods learn the landmark model
mainly based on the visual content, which neglect the plentiful
source of textual information of social images. Li et al. [17]
and Crandall et al. [23] proposed to classify landmark images
by linearly combining the visual features and textual tags.
Cao et al. [24] proposed a ranking method to fuse the multiple
evidences derived from textual features and visual features
for image location estimation. These approaches consider dif-
ferent types of features independently, which cannot exploit
the inherent correlation between different types of features
effectively.

B. Classical Technologies Related to Image Retrieval

Traditional image retrieval techniques include text-based
image retrieval and CBIR which is most related to this paper.
CBIR is used to find images based on the visual content of
the images such as color, texture, and shape, and the retrieved
images will have visually similar appearance to the query
image. The most important problem of CBIR is how to bridge
the gap between low-level feature layout and high-level seman-
tic concepts. Feature extraction and image ranking are the
bases of CBIR.

Different CBIR techniques have adopted different feature
extraction methods. Some CBIR technologies are mainly
based on global features (e.g., color, texture, edges, and
spatial information), in which color and texture can be ulti-
mately combined together, such as texton co-occurrences
matrix [42], micro-structure descriptor [45], color difference
histogram [44], etc. Some other CBIR technologies are mainly
based on local features. There are many famous keypoints
detectors and descriptors, where SIFT is the most popular
local feature representation [46]. SURF [47] or ORB [48] can
be considered as an efficient alternative to SIFT. Recently,
bag-of-visual words model has been used for object-based
image retrieval [49]. As opposite to the classical approach
that extracts an image descriptor from the original image,
some approaches employ image features derived from the

compressed data stream [50], [51]. There are some studies
in utilizing both visual features and text features for image
retrieval. For example, the kernelized version of canonical
correlation analysis (CCA) is proposed to learn a common rep-
resentation for the multimodal content of image, and then the
similarity-based method is used to retrieve images. However,
developing an efficient method to learn the geographically dis-
criminative information of features within CBIR framework
needs to be further studied.

Unlike the extensive researches in text information retrieval,
image ranking has been seldom explored in CBIR. Some
approaches apply the classical batch learning [52], [53] and
online learning [54] to image ranking algorithm. Some other
approaches [55]–[57] propose to apply machine learning tech-
niques (supervised or unsupervised learning) to learn a good
ranking function on a single type of features or some combined
features. In this paper, we propose to combine multiple types
of image features and geographic referencing information to
rank images.

C. Ensemble Learning

With the popular of multimodal data, classifier ensem-
ble methods, such as bagging [63], boosting [64], random
forest [66], and random subspace [65] have attracted more
and more research attention. These methods have achieved
good performances in areas of image and video process-
ing [67], [68]. As compared with a single classifier, the
classifier ensemble approach aims to integrate the predicted
results from multiple classifiers into a unified predicted result.
The classifier ensemble approaches mainly can be categorized
into three classes [62].

The first class aims to design a new ensemble of clas-
sifier. For example, Garcia-Pedrajas [69] constructed a new
ensemble of classifiers by means of weighted instance selec-
tion and also uses a nonlinear projection technique to construct
an ensemble. A graph-based transductive multilabel ensemble
classifier is proposed by Yu et al. [70]. To address the prob-
lems raised from the special datasets, Yu et al. [71] proposed
a random subspace ensemble framework based on hybrid
k-nearest neighbor classification to perform classification on
the datasets with noisy attributes in the high-dimensional
space, and Yu et al. [75] designed a noise immune cluster
ensemble framework to tackle the challenges raised by noisy
datasets. The second class of approaches try to theoretically
exploring the properties of a classifier ensemble [72]. For
example, Yu et al. [73] investigated the problem of how to
select the suitable cluster structures in the ensemble which
will be summarized to a more representative cluster structure.
Kuncheva [74] studied how to use a kappa-error diagram to
analyze the performance of classifier ensemble approaches.
Yu et al. [62] designed a general hybrid adaptive ensemble
learning framework, and applied it to address the limitations of
random subspace-based classifier ensemble. It consists of two
adaptive processes, i.e., base classifier competition and classi-
fier ensemble interaction, which adjusts the weights of the base
classifiers in each ensemble and to explore the optimal ran-
dom subspace set simultaneously. The approaches in the third
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Fig. 2. Framework of our approach, which contains three main components: 1) landmark labeling for the training images; 2) a joint model to learn the
landmark classifier and refine the feature of image based on the multimodal contents of images; and 3) with the predicted label information, ranking the image
result list by exploiting the textual information of images. The first two components are trained offline, and the third component retrieves landmark images
for the query image online.

class focus on how to apply the classifier ensemble approaches
to different domains. For example, Song et al. [67] proposed
a localized multiple kernel learning algorithm for realistic
human action recognition in videos. Kuncheva et al. [68]
investigated the suitability of the random subspace ensem-
ble method for classification of brain images obtained through
functional magnetic resonance imaging. Our approach is sim-
ilar to the second class of methods, which adopts a joint
model to reinforce the classifiers of visual features and textual
features with each other through the correlation.

III. PROBLEM FORMULATION

In this section, we first introduce the notations used in this
paper and then formally define the problem which we study.

A. Notation

The following notations are used. Matrices are denoted
by boldface uppercase letters, vectors by boldface lower-
case letters, and scalars by lowercase letters. For a matrix
‖A‖ ∈ Rn×m, AT denotes its transpose, Ai and Aj denote its
ith row and jth column, respectively, ‖A‖2,1 denotes the l2,1-

norm regularization [28], i.e., ‖A‖2,1 = ∑n
i=1

√∑m
j=1(Aij)2,

and ‖A‖∗ denotes the nuclear norm (i.e., the sum of the
singular values of A).

Let I denotes the training dataset with n geo-tagged images.
Each geo-tagged image Ii = {xi, yi, gi}Ii∈I consists of three

atoms: xi ∈ Rd is the visual feature vector of the visual con-
tent; yi ∈ {0, 1}v×1 is the tag indicator vector, where v is the
size of tag vocabulary and yij = 1 if the ith image is tagged
with the jth tag, and yij = 0 otherwise; gi is a real-valued
2-D vector containing the latitude and longitude where the
image is taken. Specifically, let X = [x1, x2, . . . , xn] denotes
the visual feature matrix, G = [g1, g2, . . . , gn] denotes the
location matrix, and Y = [y1, y2, . . . , yn] denotes the tag label
matrix.

With the above given notations, we formally define the
problem of landmark retrieval as follows.

Given a set of geo-tagged social images I in which each
image contains visual features, tags, and geo-coordinate, we
aim to retrieve a set of images that describe the same land-
mark as that of the query image Iq which contains only visual
content, by exploring the geographical relation among the
multimodal features.

The framework of the proposed approach is illustrated in
Fig. 2, which contains three components: 1) landmark label-
ing; 2) multimodal classifier learning; and 3) image ranking.
The first step is to automatically label each training image with
the corresponding landmark based on the geo-tagging informa-
tion and image tag lists. Based on the labeling information, an
MMLC is learned with the low rank matrix recovery and group
sparse coding. Then, for a query image, the candidate images
are ranked based on the classification result and semantic con-
sistence measure between different types of features. Note that
the first two steps are offline and the third step is online.
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IV. MMLC FOR LANDMARK RETRIEVAL

In this section, we give a detailed description on the
proposed landmark retrieval framework, including its three
components: landmark labeling, MMLC learning, and image
ranking.

A. Landmark Labeling

To retrieve landmark images, we should recognize the land-
mark of the query image first. Therefore, we first label the
images in the dataset I with the corresponding landmark for
landmark classifier learning. To correctly label the images, it is
important to avoid potential biases and incompletely labeling.
For instance, the methods [10], [16] which search for images
tagged with manually selected keywords are prone to bias
because one might inadvertently choose keywords correspond-
ing to objects that are amenable to a particular image task.
Also problematic is using geo-tagging information to clus-
tering images with mean shift algorithm directly [26], where
each cluster represents a landmark [23]. This is because that
not all the images are geo-tagged in the same spatial scale.
For example, many images are geo-tagged in the city scale
while others are geo-tagged in a much smaller scale. We thus
advocate an automatic technique for landmark labeling based
on both textual information and geo-tagged coordinates.

First, we use mean shift algorithm to cluster the images
for which the precision of the geotags is better than about
a city block. In particular, we consider the latitude–longitude
coordinates as a point in the plane, and then conduct a mean
shift clustering on the points to identify local peaks in the
image density distribution, as in [23]. The radius of the dis-
tance used in mean shift is about 100 m. Then, we select the
landmark-specific tags from each landmark cluster to label
other geo-tagged images which are not included in the clus-
tering procedure. Given a landmark cluster s, for each tag t
in s, the weight of t is calculated as

w(t, s) = Nt,s · log
Nc

Nt + 1
(1)

where Nt,s is the number of occurrences of tag t in cluster s,
Nt is the number of clusters in which tag t appear, and Nc is
the total number of clusters. The weight w(t, s) is calculated in
the way similar to “tf-idf” [60]. This is, the landmark-specific
tags appear frequently in the landmark cluster and occur rarely
in other clusters. We rank all the tags for each cluster based
on the weight values, and top-ranked tags are selected as the
landmark-specific tags. Then, a vector is constructed based
on the selected tags for each cluster, where each element is
represented by the weight value. To label the images which
are not clustered, the cosine similarity is calculated on the
textual features and each image is assigned to the most similar
landmark cluster if the corresponding similarity is larger than
a threshold value.

B. Multimodal Landmark Classification

With the landmark label information, we can then learn a
classifier for landmark recognition. Note that each geo-tagged
social image contains multiple types of content, i.e., visual

content and text description. Besides, there exist many near-
duplicate or duplicate images on the social sites, and thus a
more effective feature representation is needed. Therefore, we
first refine the visual features, and then a landmark classifier
on the multimodal content is proposed.

1) Refining Image Features: Usually, the near-duplicate or
duplicate images have identical semantics, and their visual
content should be represented by similar features. In other
words, the rank of the corresponding feature matrix should
be low enough. In many previous works [10], [18], [25],
the landmark recognition is conducted on the raw feature
matrix directly, which ignores the low-rank property of the
feature matrix. One drawback of this method is that latent
relation between image and landmark cannot be well explored.
Based on this analysis, we propose a feature space transfor-
mation module which simultaneously explores and preserves
the endowed low-rank nature of visual feature matrix

min
P,M,E

‖P‖∗ + α‖E‖1

s.t. X = PX + E, M = PX (2)

where M is the transformed feature matrix, P is the transfor-
mation matrix, and E is a matrix of the error on M and α is
a tradeoff parameter. ‖ · ‖∗ denotes the nuclear norm which
helps to explore the low-rank property of the transformed fea-
ture matrix. With this transformation module, we can refine the
feature matrix and cleanse the noisy features for the training
images. Next, we will detail an effective classification method
for landmark recognition with the refined training data.

2) Landmark Recognition: To retrieve landmark images, an
essential prerequisite is that the landmark where the query
image is taken can be recognized. Therefore, in this section we
focus on introducing how to learn an effective image classifier
for landmark recognition. Due to the multimodal contents of
social image, it may become more difficulty to learn an effec-
tive landmark classifier with the multimodal features. Many of
the existing landmark retrieval approaches learn a multiclass
classifier based on the visual features [9], [14], [16] or lin-
ear combination of different types of feature [17], [23], which
is ineffective to exploit the geographical correlation between
different types of feature.

In order to effectively explore the latent correlation among
different types of features for landmark classification, we
expect the learning of classifier can capture the correlation
information. First, we adopt a linear model to predict the
landmark label of image Ij as follows:

fi
(
Ij
) = wT

i Pxj = wT
i Mj (3)

where wi ∈ Rd is the weight vector. W = [w1, w2, . . . , wc],
where c is the number of landmark labels which are con-
structed with the mean shift algorithm as discussed above.
W is used to denote the weight matrix which also indicates
the importance of each feature to different landmarks. Let the
ground truth label matrix be L ∈ {0, 1}n×c. Then, the classifier
based on the visual features is formulated as follows:

min
W

‖MTW − L‖2
F + β‖W‖2,1 (4)
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where the least square loss is used for the landmark label
prediction, as the project matrix W is used for feature selec-
tion, a sophisticated regularizer is needed to make W able to
reflect the importance of different features. Thus, the ‖W‖2,1
is adopted to guarantee that W is sparse in rows [28], [40],
which constrains the number of features to be selected since
some features are unhelpful.

Besides, the textual features are also used to complement
landmark recognition. A similar classifier based on textual
feature matrix Y is defined as follows:

min
W′ ‖YTW′ − L‖2

F + β‖W′‖2,1 (5)

where W′ is the weight matrix for the textual features.
Meanwhile, the classification results based on both types of

these features should be equal to each other. We propose to
use ‖MTW − YTW′‖2

F to penalize the diversity of the labels
predicted based on different types of feature. Next, we build
up the connection between the predicted labels on different
features. To this end, we propose the following object function
for landmark recognition with discriminative feature learning
based on both visual and textual features:

min
W,W′ ‖MTW − L‖2

F + η‖YTW′ − L‖2
F

+ β
(‖W‖2,1 + ‖W′‖2,1

) + δ‖MTW − YTW′‖2
F (6)

where η is a tradeoff parameter. In this way, the module in (6)
provides us a powerful and flexible tool for training an effec-
tive classifier to recognize the landmark. Once W is learned,
the discriminative information of each visual feature can also
be reflected by ‖Wi‖2. In the next part, we will elaborate
a joint model which effectively combines the visual feature
refinement module and the landmark classifier learning module
by exploring their correlation.

3) Joint Model: As discussed above, we have proposed two
independent modules to undertake the tasks of refining visual
feature matrix as well as learning the landmark classifier,
respectively. In order to perform effective image classifica-
tion, a straightforward two-step approach can be used, i.e., first
refine the visual features of image and then feed it together
with the textual features into the learning module for landmark
classification. One limitation of this approach is that the intrin-
sic correlation between the two modules is not well explored
to reinforce the performance of each other.

Therefore, we propose a novel joint landmark classifica-
tion model, termed MMLC, which simultaneously conducts
the feature refinement and landmark classifier learning by
exploring their intrinsic correlations. The fundamental design
principle of MMLC lies in that the feature refinement mod-
ule and landmark classifier learning module should form a
mutually reinforcing learning loop. The refined features should
be well explored to better embedded and help the learn-
ing of the landmark classifier, while the classifier learning
process with both types of feature is supposed to guide a
better feature refinement in return. Based on the analysis,
we formulate the landmark classifier under the social image

circumstance as follows:

min
P,M,E,W,W′ ‖P‖∗ + α‖E‖1

+ γ

2

(
‖MTW − L‖2

F + η‖YTW′ − L‖2
F

+ β
(‖W‖2,1 + ‖W′‖2,1

)

+ δ‖MTW − YTW′‖2
F

)

s.t. X = PX + E, M = PX (7)

where γ is a tradeoff parameter which controls the balance
between the two modules. The objectives of the two modules
are simultaneously obtained under the joint model with their
correlation substantially explored. In the next part, we will
present an effective solution for the optimization of MMLC.

4) Optimization: It is difficulty to solve (7) directly since
it is nonconvex with respect to all the variables at the same
time, and the nonsmooth property of regularization makes it
nontrivial to optimize the problem as a whole. To address these
challenges, we devise an iterative optimization algorithm to
optimize the model.

We first need to introduce a variational formulation for
the l2,1 norm. If we define φ(x) = √

x2 + ε, the l2,1 norm
‖W‖2,1 and ‖W′‖2,1 can be replaced with

∑d
i φ(‖Wi‖2) and∑v

i φ(‖W′
i‖2), respectively, where d and v denote the number

of rows of W and W′, respectively, according to the analysis
for l2,1 in [29]. ε is a smoothing term which is usually set to
be a small value. It can be proved that φ(x) satisfies all the
conditions as follows:

x −→ φ(x) is convex on R
x −→ φ(

√
x) is concave on R+

φ(x) = φ(−x), ∀x ∈ R
φ(x) is C1 on R
φ′′(x) > 0, lim

x→∞ φ(x)/x2 = 0 (8)

where C1 indicates that φ(x) is a first-order differentiable func-
tion. Then φ(·) can be optimized in a half-quadratic way [30]
according to the following lemma [29].

Lemma 1: Let φ(·) be a function satisfying all the conditions
in (8), for a fixed ‖x‖2, there exists a dual potential function
ϕ(·), such that

φ(‖x‖2) = inf
e∈R

{
e‖x‖2

2 + ϕ(p)
}

(9)

where e is determined by the minimizer function ϕ(·) with
respect to φ(·), and inf{.} denotes the inferior function.

According to Lemma 1, the object function (7) can be
reformulated as follows:

min
P,M,E,W,W′ ‖P‖∗ + α‖E‖1

+ γ

2

(
‖MTW − L‖2

F + η‖YTW′ − L‖2
F

+ β
(
tr
(
WTDW

) + tr
(
W′TD′W′))

+ δ‖MTW − YTW′‖2
F

)

s.t. X = PX + E, M = PX (10)
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where D = Diag(d) and D′ = Diag(d′). d and d′ are auxiliary
vectors of the two l2,1 norms, respectively. The elements of d
and d′ are computed, respectively, as follows:

⎧
⎪⎨

⎪⎩

di = 1

2
√

‖Wi‖2
2+ε

d′
i = 1

2
√

‖W′
i‖2

2+ε

(11)

where ε is a smoothing term, which is usually set to be a small
constant value. We further rewrite (10) as follows:

min
F,P,M,E,W,W′ ‖F‖∗ + α‖E‖1

+ γ

2

(
‖MTW − L‖2

F + η‖YTW′ − L‖2
F

+ β
(
tr
(
WTDW

) + tr
(
W′TD′W′))

+ δ‖MTW − YTW′‖2
F

)

s.t. X = PX + E, M = PX, F = P. (12)

Note that D and D′ are actually depended on W and W′,
respectively. To handle this problem, we design an iterative
algorithm, which updates D and D′ in each iteration with W
and W′ of the previous iteration. Then, the problem in (12) can
be solved via exact or inexact augmented Lagrange multiplier
method [31]

min
F,P,M,E,W,W′,G1,G2,G3

‖F‖∗ + α‖E‖1

+ γ

2

(∥
∥MTW − L

∥
∥2

F + η
∥
∥YTW′ − L

∥
∥2

F

+ β
(
tr
(
WTDW

) + tr
(
W′TD′W′))

+ δ
∥
∥MTW − YTW′∥∥2

F

)

+ Tr
(
GT

1 (X − PX − E) + GT
2 (M − PX) + GT

3 (F − P)
)

+ θ

2

(
‖X − PX − E‖2

F + ‖M − PX‖2
F + ‖F − P‖2

F

)
(13)

where G1, G2, and G3 are the Lagrange multipliers and θ is a
tradeoff parameter. That is, we update a matrix by fixing other
matrices at each step.

1) Update W and W′ by Fixing Others: When we fix
all others except W and W′, we have the following
subproblem:

min
W,W′ ‖MTW − L‖2

F + η
∥
∥YTW′ − L

∥
∥2

F

+ β
(
tr
(
WTDW

) + tr
(
W′TD′W′))

+ δ
∥
∥MTW − YTW′∥∥2

F. (14)

By setting the derivative of the above object function
with respect to W and W′ to zero, respectively, we have

W = (
(1 + δ)MMT + βD

)−1(
ML + δMYTW′) (15)

W′ = (
(η + δ)YYT + βD′)−1(

ηYL + δYMTW
)
. (16)

2) Update M by Fixing Others: When we fix all others
except M, the problem becomes

min
M

γ

2

∥
∥MTW − L

∥
∥2

F + γ δ

2

∥
∥MTW − YTW′∥∥2

F

+ Tr
(
GT

2 (M − PX)
) + θ

2
‖M − PX‖2

F. (17)

Then, we can update M with the following closed-form
solution:

M = (
γ (1 + δ)WWT + θId

)−1(
γ WLT + γ δWW′TY

+ θPX − G2
)

(18)

where Id is a d × d identity matrix.
3) Update P by Fixing Others: When updating P, we need

to solve the following subproblem:

min
P

Tr
(
GT

1 (X − PX − E) + GT
2 (M − PX) + GT

3 (F − P)
)

+ θ

2

(
‖X − PX − E‖2

F + ‖M − PX‖2
F + ‖F − P‖2

F

)
.

(19)

Then, we can update P with the following closed-form
solution:

P = (
�XT + θF + G3

)(
θXXT + θId

)−1
(20)

where � = θX + θM − θE + G1 + G2.
4) Update F by Fixing Others: When we update F with

other variables fixed, the problem reduces to

min
F

‖F‖∗ + θ

2

∥
∥
∥
∥F −

(

P − G3

θ

)∥
∥
∥
∥

2

F
(21)

which can be solved by the singular value thresholding
algorithm [32] as follows:

F = U� 1
2θ


VT (22)

where U
VT is the singularly valuable decomposi-
tion of P − (G3/θ) and �τ(·) is the singular value
thresholding (SVT) operator defined by

�τ(
) = diag(sgn(
ii)(|
ii| − τ)). (23)

5) Update E by Fixing Others: When updating E, we have
to solve the following subproblem:

min
E

α‖E‖1 + θ

2

∥
∥
∥
∥E −

(

X − PX + G1

θ

)∥
∥
∥
∥

2

F
. (24)

The solution to the above problem can be obtained by
the soft-thresholding (shrinkage) operator [33].

Finally, we summarized the algorithm for solving the prob-
lem in Algorithm 1. Similar to the works in [31] and [34],
it can be proven that the algorithm converges to the problem
in (7) by iteratively solving the problem in (10). The complex-
ity of the proposed algorithm is briefly discussed as follows.
The complexity of calculating the inverse of a few matrices
for W, W′, M, and P are O(d3)(d � n) or O(v3)(v � n). In
each iteration, SVT is applied to update the low rank matrices
whose complexity is O(rd2), where r is the ranks for P. The
soft-thresholding operator to update the sparse error matrix
has a complexity of O(dn). The complexity of matrix mul-
tiplication is O(cdn)(c � n) for W, W′, and O(d2n) for
M and P. Therefore, the overall computational complexity is
O(d2n + cdn + d3 + v3 + rd2).



ZHANG et al.: LANDMARK IMAGE RETRIEVAL BY JOINTING FEATURE REFINEMENT AND MULTIMODAL CLASSIFIER LEARNING 1689

Algorithm 1 MMLC
Input: Matrices X and Y of the geo-tagged images;

Parameters α, γ , β, δ, η.
Output: W, P.

1: Initialize M, P, F, E, W, W′, G1, G2, G3;
2: Initialize θ = 10−6, θmax = 1010, ρ = 1.1;
3: Repeat
4: Update D and D′ according to Eq. (11);
5: Update W according to Eq. (15);
6: Update W′ according to Eq. (16);
7: Update M according to Eq. (18);
8: Update P according to Eq. (20);
9: Update F according to Eq. (22);

10: Update E by solving the sub-problem Eq. (24) with the
soft-thresholding operator;

11: Update the multipliers G1, G2, and G3:
⎧
⎨

⎩

G1 = G1 + θ(X − PX − E)

G2 = G2 + θ(M − PX)

G3 = G3 + θ(F − P)

12: Update θ = min(ρθ, θmax)

13: until Convergence
14: return W, P

C. Image Ranking

Once the landmark classifier with the discriminative infor-
mation of image feature has been learned, we next calculate
the ranking score for the candidate images. A straightforward
method is to return the most similar images within the land-
mark cluster to which the query image is classified. However,
there are usually some images that do not describe the same
object even they are located near to each other. For example,
some images are about the photographer, while some oth-
ers are about the landmark. Moreover, some images may be
misclassified due to the large diversity of vision patterns.

To address these problems, we combine both classification
information and similarity measure to further refine the can-
didate images. Given a query image Iq with visual feature
vector xq, its landmark classification result is a vector lq over
the landmark clusters

lq = PxqW. (25)

The value of each element in the vector lq can be consid-
ered as how likely the query image relates to the landmark
corresponding to the element, which can be considered as a
factor for image ranking. Then, we select l landmark clusters
which have the largest classification values as the candidate
landmarks.

For each candidate cluster, we then rank the images within
it based on similarity measure. Due to the “semantic gap”
problem [35], the visually similar images may be semanti-
cally dissimilar. We combine both textual similarity and visual
similarity for ranking. It is assumed that, if two images are
similar on both visual content and text content, they are more
semantically consistent, which indicates that they are likely
to reflect the same semantic object [35], [36]. Therefore, we

prefer the visual neighbors which are also textually similar
with the query image. Since the query image does not contain
textual content, we expand it with the textual content derived
from its visually nearest neighbors. Then, the images which
are more textually similar with the visually nearest neighbors
of the query image should have priority in ranking. The seman-
tic consistency between the candidate image Ii and the query
image Iq is measured as follows:

Cs(Ii) = 1

K

∑

Ij∈Nei(Iq)

simtext
(
Ii, Ij

) · simvis
(
Iq, Ii

)
(26)

where Nei(Iq) denotes the set of the K nearest neighbors of
Iq in the visual space, simtext(·) denotes the textual similarity,
and simvis(·) denotes the visual similarity. To compute the
visual similarity, the visual features are weighted by ‖Wi‖2
which represents the importance of the corresponding features
on landmark recognition. Finally, the classification result and
semantic consistency information are combined to rank the
images in the candidate landmark clusters as follows:

score
(
Ii, Iq

) = exp
(−plqk

) · Cs(Ii) (27)

where lqk denotes the kth element of lq, k denotes the indicator
of the landmark cluster that contains Ii, and p (p > 0) is a
parameter to control the impact of the classification value to
the ranking. The output of landmark retrieval is the top-ranked
images according to (27).

V. EXPERIMENTS

In this section, we first present the experimental set-
tings, and then report the experimental results to analyze the
effectiveness and efficiency of our approach.

A. Datasets and Features

We use the datasets MediaEval2012 [58] and NUS-
WIDE [76] to evaluate our model. Since MediaEval2012 does
not include the raw images and some images were removed
after the dataset was collected, we download about one million
of raw images from Flickr according to the URL randomly.
For each image, we download the visual content, the tag list,
and the geo-coordinate. We use the latitude–longitude coordi-
nates as a point in the plane, and then cluster the images to
train MMLC as discussed in Section IV-A. Since our goal is
to analyze the impact of large diversity of images to the per-
formance of landmark retrieval, we remove the clusters whose
size are smaller than 100. As a result, there are 378 clusters
and about 580 K images remained. Some of the popular clus-
ters have a large number of images and some clusters have
a small number of images. The image numbers of most clus-
ters are between the two cases. Fig. 3 shows some examples
of images with their landmark label information. The second
dataset NUS-WIDE is created by the lab for media search in
National University of Singapore. It contains about 50 thou-
sands of geo-tagged images. For this dataset, we select the 50
greatest clusters obtained by the labeling method proposed in
Section IV-A to evaluate the approach.

For the visual features, we adopted the 4096-D DeCAF
generic visual features [37], which is the activations of the



1690 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 6, JUNE 2018

Fig. 3. Examples of landmark images from our collected dataset MediaEval2012.

sixth layer of a deep CNN trained in a fully supervised fash-
ion on ImageNet [38]. This feature representation has been
demonstrated to be effective on image benchmark datasets.
For the images of our dataset, we normalized the visual fea-
tures into a zero-mean unit-variance Gaussian distribution. For
the textual content, we remove the noisy and misspelt image
tags, e.g., the tags which are assigned to less than ten images
or more than 5% of the total images. As the raw tag list is
very sparse, the textual feature vector is high-dimensional and
many of the element entries are zero, which may affects the
effectiveness of classification on text features as shown in (5).
We include a new representation for text content by combin-
ing the geographical information. First, Word2Vec [27] is used
to represent each tag with a 500-D vector, which is trained
on Wikipedia articles and Web news of about 100 million
words. Then, all the image tag lists are clustered into 2000
groups based on the geographical information, and a 2000-D
geographical dictionary is obtained. Finally, each tag is repre-
sented by a 2000-D sparse codes learned from the geographical
dictionary, and the tag list of each image is represented by a
2000-D feature vector by max pooling all the tags in the list.

B. Experimental Settings

We randomly sample 80% images to form the training set,
and 20% for test. Precision-recall is chosen as the metrics to
evaluate both our model and state-of-the-art methods over top-
100 retrieval ranked list based on each query landmark. For
each landmark, we issue 20 queries and an average precision
score is computed for all queries, and they are averaged to

obtain a mean average precision (mAP) for the each land-
mark category. Given one query image and first R top-ranked
retrieved data, the average precision is defined as follows:

1

M

R∑

r=1

p(r) · rel(r) (28)

where M is the number of relevant data in the retrieved
result, p(r) is the precision at r, and rel(r) presents the rel-
evance of a given rank (one if relevant and zero otherwise).
mAP is obtained by averaging average precision (AP) of all
the queries. For our learning model MMLC, all the trade-
off parameters are turned in the range {0.001, 0.01, 0.1, 1,
10, 100, 1000} by a “grid-search” strategy. To evaluate the
performance, we compare our approach with the following
competitors.

1) im2gps [7]: It applies a feature matching method to
return the K nearest neighbors based on visual features
with respect to the query landmark image, where the
query image and images in database are represented by
aggregating a set of visual features to conduct landmark
retrieval.

2) GIANT [9]: It proposes to discover a set of geo-
informative attributes that are discriminative and useful
for location recognition.

3) DRLR [8]: It mines a set of stylistic of visual elements
to characterize a landmark, where the whole process is
at the patch-level of visual content.

4) MQE [10]: It expands the query image with a
multiquery image set from which a compact pattern
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Fig. 4. Average precision at top-n images on MediaEval2012.

set is generated. Then the ranking score is calculate
based on the matching information of pattern set in the
candidate images.

5) MMHG [59]: Images are modeled as independent ver-
tices and hyperedges contain several vertices. Multiple
hypergraphs are constructed independently based on dif-
ferent visual modalities. The retrieved images are ranked
based on the similarity scores.

6) KCCA [61]: It uses kernel CCA to discover the correla-
tion between tags and visual content. The visual feature
of a query image is projected onto the semantic space,
and all the database images are sorted based on their
correlation in that space.

C. Performance Evaluation

We evaluate the average precision and mAP for our
approach and competitors. In our experiment, the AP is cal-
culated by averaging the precision values of all the queries of
each landmark over the top-n images of the retrieval list, with
n varying from 10 to 100. The average precisions of different
approaches on the two datasets are shown in Figs. 4 and 5,
respectively. It shows that our approach outperforms others
consistently on the average precision. When the number of
returned images increases, the precision values of all the
approaches decrease. This is probably because that more
returned images can also lead to more noisy images returned.

Next, we compare the performance by the metric of mAP
as shown in Fig. 6. The mAP of some example landmarks
in MediaEval2012 is shown in Table I, and the following
conclusions can be made. First, our approach outperforms
all competitors on the metric of mAP, since we explore the
latent correlation between landmarks and the multimodal con-
tent of images, and learn the important features for landmark
recognition. Second, the large intraclass variance affects the
performance of im2gps which is mainly based on visual
similarity measuring. Both DRLR and GIANT detect discrimi-
native visual regions from images. Though GIANT exploits the
relations among the regions at the photo-level, only the visual
content is insufficient to model each landmark since the images
from different landmarks may share the common patterns of

Fig. 5. Average precision at top-n images on NUS-WIDE.

Fig. 6. mAP comparison of all approaches on two datasets.

visual content. MMHG uses hyperedges which contain sev-
eral images to capture different visual views of landmarks,
and landmark images are retrieved using a graph-based search
on the hypergraph. Their performance is better than im2gps,
but the improvement is limited. MQE expands the query by
the images selected from other users. However, the expanded
images are expected to be similar with the query image in
a coarse grained topic, where the mined pattern may be
common to many landmarks. Moreover, the constructed user-
image matrix does not contain the co-occurrence information
of users, which may affects the performance of non-negative
matrix factorization and hence affect the query expansion by
introducing noisy images. KCCA combines both visual and
text features for image retrieval. However, it assumes that
images are identically distributed, which ignores the geograph-
ical correlation between images. This result also demonstrates
the benefit of integrating textual information into landmark
retrieval for the query image with only visual content.

For the visual-content-based retrieval approaches, it is
important that there are many similar images in the landmark
where the query image is taken. Therefore, these approaches
suffer from the queries with relatively few visually similar
images [7]. Usually, many users may upload a large number
of similar images for the same landmark. Although we wish
our approach to leverage patterns in the image dataset, we
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TABLE I
COMPARISON OF mAP OF THE OVERALL QUERIES AND SOME EXAMPLE LANDMARKS IN MEDIAEVAL2012

TABLE II
COMPARISON OF mAP OF THE OVERALL QUERIES AND SOME EXAMPLE LANDMARKS

IN MEDIAEVAL2012, WITH THE OTHER IMAGES OF QUERY USERS REMOVED

Fig. 7. Results on mAP scores by removing different component of MMLC.

also consider it important that the approach can make a reli-
able retrieval of the landmark images, without requiring that
there are other many similar images taken by the same user in
the collection. In order to delve deeper into the impact of visu-
ally similar images associated with the landmark of the query
image, we next conduct an experiment to analyze that, for each
query, the images from the same uploader of the query image
are removed from the dataset MediaEval2012. The result of
this experiment is depicted in Table II. It reveals that the per-
formance degradation of the visual-content-based approaches
is greater than that of our approach, which indicates that these
approaches have a relatively stronger dependence on the pres-
ence of similar images in the dataset. However, our approach
can exploits the textual content as the complementary informa-
tion to model the patterns of landmarks more effectively. Thus,
it is less affected by the absence of similar images uploaded
by the query user.

Besides, our approach utilizes multimodal features in
the learning process. We further investigate the help from
individual components (e.g., visual, textual, and transformed
features). We conduct experiments to analyze the performance
of MMLC without the textual feature (Y, named MMLC-Y),

without the transformation feature (PX, named MMLC-PX),
and without both textual features and transformed features
(named MMLC-PX-Y), respectively. Fig. 7 shows the per-
formance of these implementations based on all the training
images and removing the images from the same uploader of
the query image, respectively. It indicates that both of the fea-
ture transformation and text feature contribute to landmark
retrieval.

D. Parameter Analysis

There are some tradeoff parameters to be set in the model
MMLC, i.e., α, γ , η, β, and δ. We tune these parameters
besides η in the range {0.001, 0.01, 0.1, 1, 10, 100} by cross
validation. We further analyze four important parameters in
our retrieval approach on the dataset MediaEval2012.

1) η: The parameter to balance the importance between
visual feature and textual feature of images as shown
by (6).

2) l: The number of top ranked landmark clusters returned
by the landmark classifier MMLC as shown by (25).

3) K: The number of nearest neighbors in the visual space
used to measure the semantic consistency between a
candidate image and the query image as shown in (26).

4) p: The value to control the impact of the classification
result to image ranking as shown in (27).

We tune the parameters via the following strategy: we vary one
parameter at a time while fixing the others. mAP is adopted
as the evaluation metric. Then, several observations are made
from the experiment results.

First, we analyze the importance of different features to
landmark retrieval. Fig. 8 shows the mAP values against a
variety of η values. From this figure, we can conclude that the
textual features are more important than the visual features to
landmark retrieval. This is because that the textual description
is usually more efficient in reflecting the semantics of images
than the visual content.

Fig. 9 shows the mAP values against a variety of values l.
The result indicates that the performance of the approach is
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Fig. 8. Results on mAP scores by varying the importance weight of textual
feature.

Fig. 9. Results on mAP scores by varying the l.

not proportionate to the number of selected landmark clusters,
and the optimal choice of l is 2. When l is too small, the
risk of the false classification increases. When l is too large,
the chance of selecting more false landmark clusters increases,
which results in more noisy images included in the retrieval
result. Therefore, there is a tradeoff between the number of
selected landmark clusters and the retrieval performance.

Then, Fig. 10 depicts the mAP values against varied val-
ues of K. It indicates that, when the value of K is relatively
small, the increase of K can also lead to the increase of mAP,
since a larger K will enrich the textual description and visual
patterns of the landmark. Usually, many landmarks may have
a large diversity in both text representation and visual views.
Meanwhile, the bias influence of the visually similar images
that are semantically dissimilar to the query image will be
reduced. However, when the value of K keeps increasing, the
performance will degrade gradually. A too large set of visu-
ally similar images result in that many noisy tags as well as
unrelated visual pattern will be included, which means that
the semantic consistence is gradually similar to be measured
on a randomly sampled collection. Thus, a large value of K
degrades the effectiveness of semantic consistence measure
with a large probability.

Finally, the mAP values against varied values of p is
reported in Fig. 11. Interestingly, one can see that the mAP
value increases when the value of p increases within a relative
small beginning point, since it will reduce the effect of false

Fig. 10. Results on mAP scores by varying the K.

Fig. 11. Results on mAP scores by varying the p.

classification of landmark. However, when p keeps increasing,
the performance will be downgraded. That is because that a
large value of p means a small impact of landmark classifi-
cation to image retrieval, which results in that the retrieval is
similar to similarity-based search.

VI. CONCLUSION

In this paper, we motivate the problem of landmark retrieval
with the geo-tagged images containing multimodal content.
For this purpose, we propose an effective MMLC paradigm
to leverage the multimodal content of images for landmark
retrieval. We mainly address the following challenges, i.e.,
redundant and noisy visual content of images, and heteroge-
neous features corresponding to the visual content and text
content of image. In particular, visual features are refined
based on low rank matrix recovery, and multimodal classi-
fication combined with group sparse is learned from the auto-
matically labeled images to recognize landmarks. Extensive
experiments on real-world social image datasets demonstrate
the superiority of the proposed approach as compared to
existing methods. The novelty of this paper is to tackle the
landmark retrieval with multimodal classifier automatically
learned from geographically structural analysis and group
sparse model. This improves the current research of image
retrieval which mainly focuses on learning the retrieval model
from raw features directly and ignores the latent correlation
among multimodal contents.
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There are some potential future extensions of this paper. It
would be interesting to investigate other social information,
like uploader’s interests, social activities, and travel routes,
for landmark retrieval. Also, conducting local culture and
linguistic analysis across social media sites to better under-
stand motivations and characteristics of image geo-tagging and
landmark retrieval is a promising direction.
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