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Abstract
Most recent storage devices, such as NAND flash-based
solid state drives (SSDs), provide low access latency and
high degree of parallelism. However, conventional file
systems, which are designed for slow hard disk drives,
often encounter severe scalability bottlenecks in exploit-
ing the advances of these fast storage devices on many-
core architectures. To scale file systems to many cores,
we propose SpanFS, a novel file system which consists
of a collection of micro file system services called do-
mains. SpanFS distributes files and directories among
the domains, provides a global file system view on top of
the domains and maintains consistency in case of system
crashes.

SpanFS is implemented based on the Ext4 file sys-
tem. Experimental results evaluating SpanFS against
Ext4 on a modern PCI-E SSD show that SpanFS scales
much better than Ext4 on a 32-core machine. In micro-
benchmarks SpanFS outperforms Ext4 by up to 1226%.
In application-level benchmarks SpanFS improves the
performance by up to 73% relative to Ext4.

1 Introduction
Compared to hard disk drives (HDDs), SSDs provide the
opportunities to enable high parallelism on many-core
processors [9, 15, 29]. However, the advances achieved
in hardware performance have posed challenges to tradi-
tional software [9, 27]. Especially, the poor scalability
of file systems on many-core often underutilizes the high
performance of SSDs [27].

Almost all existing journaling file systems maintain
consistency through a centralized journaling design. In
this paper we focus on the scalability issues introduced
by such design: (1) The use of the centralized journaling
could cause severe contention on in-memory shared data
structures. (2) The transaction model of the centralized
journaling serializes its internal I/O actions on devices to
ensure correctness, such as committing and checkpoint-
ing. These issues will sacrifice the high parallelism pro-
vided by SSDs. An exhaustive analysis of the scalability
bottlenecks of existing file systems is presented in Sec-
tion 2 as the motivation of our work.

Parallelizing the file system service is one solution to
file system scalability. In this paper, we propose SpanFS,
a novel journaling file system that replaces the central-

ized file system service with a collection of independent
micro file system services, called domains, to achieve
scalability on many-core. Each domain performs its file
system service such as data allocation and journaling
independently. Concurrent access to different domains
will not contend for shared data structures. As a re-
sult, SpanFS allows multiple I/O tasks to work in parallel
without performance interference between each other.

Apart from performance, consistency is another key
aspect of modern file systems. Since each domain is ca-
pable of ensuring the consistency of the on-disk struc-
tures that belong to it, the key challenge to SpanFS is to
maintain crash consistency on top of multiple domains.
SpanFS proposes a set of techniques to distribute files
and directories among the domains, to provide a global
file system view on top of the domains and to maintain
consistency in case of system crashes.

We have implemented SpanFS based on the Ext4 file
system in Linux kernel 3.18.0 and would demonstrate
that SpanFS scales much better than Ext4 on 32 cores,
thus bringing significant performance improvements. In
micro-benchmarks, SpanFS outperforms Ext4 by up to
1226%. In application-level benchmarks SpanFS im-
proves the performance by up to 73% relative to Ext4.

The rest of the paper is organized as follows. Sec-
tion 2 analyzes the scalability issues of existing file sys-
tems. Section 3 presents the design and implementation
of SpanFS. Section 4 shows the performance result of
SpanFS. We relate SpanFS to previous work in Section 5
and present the conclusion and future work in Section 6.

2 Background and Motivation
Most modern file systems scale poorly on many-core
processors mainly due to the contention on shard data
structures in memory and serialization of I/O actions on
device. Our previous work [27] has identified some lock
bottlenecks in modern file systems. We now provide an
in-depth analysis of the root causes of the poor scalabil-
ity. We first introduce the file system journaling mecha-
nism to facilitate the scalability analysis. Then, through a
set of experiments we will 1) show the scalability issues
in existing modern file systems, 2) identify the scalabil-
ity bottlenecks and 3) analyze which bottlenecks can be
eliminated and which are inherent in the centralized file
system design.
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Figure 1: Scalability Evaluation. We carry out this experiment in Linux 3.18.0 kernel on a RAM disk. We preallocate all the pages of the

RAM disk to avoid contention within the RAM disk for the baselines and SpanFS. The total journaling sizes of SpanFS, Ext4, XFS and the ideal file

systems based on Ext4 and XFS are all set to 1024 MB, respectively. For ZFS, we compile the recently released version (0.6.3) on Linux. This test

is performed on a 32-core machine. For some lines the better than linear speedup is probably due to the Intel EIST technology.

Ext4 XFS

Lock Name Bounces
Total Wait Time

(Avg. Wait Time) Percent Lock Name Bounces
Total Wait Time

(Avg. Wait Time) Percent

journal->j wait done commit 11845 k 1293 s (103.15 µs) 27% cil->xc push lock 8019 k 329 s (37.26 µs) 13.8%
journal->j list lock 12713 k 154 s (11.34 µs) 3.2% iclog->ic force wait 2188 k 87.4 s (39.94 µs) 3.7%

journal->j state lock-R 1223 k 7.1 s (5.19 µs) 0.1% cil->xc ctx lock-R 1136 k 80.1 s (70.02 µs) 3.4%
journal->j state lock-W 956 k 4.3 s (4.29 µs) 0.09% pool->lock 3673 k 34.1 s (9.28 µs) 1.4%

zone->wait table 925 k 3.1 s (3.36 µs) 0.06% log->l icloglock 1555 k 25.8 s (16.18 µs) 1%

Table 1: The top 5 hottest locks. We show the top 5 hottest locks in the I/O stack when running 32 Sysbench instances. These numbers

are collected in a separated kernel with lock stat compiled. As lock stat introduces some overhead, the numbers does not accurately represent the

lock contention overhead in Figure 1. ”Bounces” represents the number of lock bounces among CPU cores. We calculate the percent of the lock

wait time in the total execution time by dividing the lock wait time divided by the number of instances (32) by the total execution time.

2.1 File System Journaling
Our discussion is based on the Ext3/4 journaling mech-
anism [39], which adopts the group commit mechanism
[23] for performance improvements. Specifically, there
is only one running transaction that absorbs all updates
and at most one committing transaction at any time [39].
As a result, one block that is to be modified in the OS
buffer does not need to be copied out to the journaling
layer unless that block has already resided within the
committing transaction, which largely reduces the jour-
naling overhead caused by dependency tracking [39].

Ext4 [13] adopts JBD2 for journaling. For each update
operation Ext4 starts a JBD2 handle to the current run-
ning transaction to achieve atomicity. Specifically, Ext4
passes the blocks (refer to metadata blocks in ordered
journaling mode) to be modified associated with the han-
dle to the JBD2 journaling layer. After modifying these
blocks, Ext4 stops the handle and then the running trans-
action is free to be committed by the JBD2 journaling
thread. These modified block buffers will not be written
back to the file system by the OS until the running trans-
action has been committed to the log [39]. For simplicity,
we refer to the above process as wrapping the blocks to
be modified in a JBD2 handle in the rest of the paper.

2.2 Scalability Issue Analysis
We use Sysbench [1] to generate update-intensive work-
loads to illustrate the scalability bottlenecks. Multi-

ple single-threaded benchmark instances run in parallel,
each of which issues 4KB sequential writes and invokes
fsync() after each write. Each instance operates over 128
files with a total write traffic of 512MB. We vary the
number of running instances from 1 to 32 and the num-
ber of used cores is euqal to the number of instances. We
measure the total throughput.

Four file systems are chosen as baseline for analysis:
Ext4, XFS [38], Btrfs [35] and OpenZFS [2], of which
Ext4 and XFS are journaling file systems while Btrfs and
ZFS are copy-on-write file systems. An ideal file system
is set up by running each benchmark instance in a sepa-
rated partition (a separated RAM disk in this test) man-
aged by the baseline file system, which is similar to the
disk partition scenario in [31]. It is expected to achieve
linear scalability since each partition can perform its file
system service independently.

Figure 1 shows that all the four baseline file systems
scale very poorly on many-core, resulting in nearly hori-
zontal lines. The ”ideal” file systems exhibit near-linear
scalability. We add the result of SpanFS with 16 domains
in Figure 1(a), which brings a performance improvement
of 4.29X in comparison with the stock Ext4 at 32 cores.

2.3 Scalability Bottleneck Analysis
To understand the sources of the scalability bottlenecks,
we collect the lock contention statistics using lock stat
[7]. Due to space limitation, we show the statistics on top
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Lock Name Bounces
Total Wait Time

(Avg. Wait Time)
journal->j wait done commit 3333 k 38.5 s (11.13 µs)

journal->j state lock-R 4259 k 16.6 s (3.70 µs)
journal->j state lock-W 2637 k 10.5 s (3.84 µs)

journal->j list lock 5042 k 10.2 s (2.00 µs)
zone->wait table 226 k 0.5 s (2.06 µs)

Table 2: The top 5 hottest locks. The top 5 hottest locks in

the I/O stack when running the sysbench benchmark on SpanFS.

hottest locks of Ext4 and XFS in Table 1. Table 2 shows
the top 5 hottest locks when running the same benchmark
on SpanFS at 32 cores. Ext4 and XFS spend substantial
wait time acquiring hot locks and the average wait time
for these hot locks is high. In contrast, SpanFS reduces
the total wait time of the hot locks by around 18X (76 s
vs 1461 s).

Btrfs also has a few severely contended locks, namely
eb->write lock wq, btrfs-log-02 and eb->read lock wq.
The total wait time of these hot locks can reach as much
as 14476 s, 5098 s and 2661 s respectively. We cannot
collect the lock statistics for ZFS using lock stat due to
the license compatible issue.
2.3.1 Contention on shared data structures

Now we look into Ext4 and discuss the causes of scala-
bility bottlenecks in depth, some of which are also gen-
eral to other file systems. As is well known, shared data
structures can limit the scalability on many-core [10, 11].
JBD2 contains many shared data structures, such as the
journaling states, shared counters, shared on-disk struc-
tures, journaling lists, and wait queues, which can lead
to severe scalability issues.
(a) Contention on the journaling states. The journaling
states are frequently accessed and updated, and protected
by read-write lock (i.e., j state lock). The states may in-
clude the log tail and head, the sequence numbers of the
next transaction and the most recently committed trans-
action, and the current running transaction’s state. The
lock can introduce severe contention. The RCU lock [33]
and Prwlock [30] are scalable for read-mostly workloads
while JBD2 have many writes to these shared data struc-
tures in general as shown in Table 1. Hence, they are not
effective to JBD2.
(b) Contention on the shared counters. The running
transaction in JBD2 employs atomic operations to seri-
alize concurrent access to shared counters, such as the
number of current updates and the number of buffers on
this transaction, which can limit the scalability. Some-
times, JBD2 needs to access the journaling states and
these shared counters simultaneously, which can cause
even more severe contention. For instance, to add up-
dates to the running transaction, JBD2 needs to check
whether there is enough log free space to hold the run-
ning transaction by reading the number of the buffers on

the running transaction and on the committing transac-
tion and reading the log free space. We have confirmed
the contention on shared counters using perf, which will
partly cause the JBD2 function start this handle to ac-
count for 17% of the total execution time when running
32 Filebench Fileserver instances. Adopting per-core
counters such as sloppy counter [11] and Refcache [18]
will introduce expensive overhead when reading the true
values of these counters [18].
(c) Contention on the shared on-disk structures. Al-
though the on-disk structures of Ext4 are organized in the
form of block groups, there is also contention on shared
on-disk structures such as block bitmap, inode bitmap
and other metadata blocks during logging these blocks.
These were not manifested in Table 1 since lock stat does
not track the bit-based spin locks JBD2 uses.
(d) Contention on the journaling lists. JBD2 uses
a spin lock (i.e., j list lock) to protect the transaction
buffer lists and the checkpoint transaction list that links
the committed transactions for checkpointing, which can
sabotage scalability. Replacing each transaction buffer
list with per-core lists may be useful to relieve the con-
tention. However, using per-core lists is not suitable for
the checkpoint transaction list as JBD2 needs to check-
point the transactions on the list in the order that the
transactions are committed to the log.
(e) Contention on the wait queues. JBD2 uses wait
queues for multi-thread cooperation among client threads
and the journaling thread, which will cause severe con-
tention when a wait queue is accessed simultaneously.
The wait queue is the most contended point in Ext4 dur-
ing our benchmarking. Simply removing this bottleneck,
i.e. per-core wait queue [30], cannot totally scale Ext4 as
other contention points will rise to become the main bot-
tlenecks, such as j state lock and shared counters. The
most contended point in XFS is not the wait queue as
shown in Table 1. Hence, we need a more thorough so-
lution to address the scalability issues.

2.3.2 Serialization of internal actions

The centralized journaling service usually needs to seri-
alize its internal actions in right order, which also limits
the scalability. Here we give two examples.

Parallel commit requests are processed sequentially in
transaction order by the journaling thread [39], which
largely sacrifices the high parallelism provided by SSDs.
Enforcing this order is necessary for correctness when
recovering the file system with the log after a crash due
to the dependencies between transactions [16].

Another example is when the free space in the log is
not enough to hold incoming update blocks. JBD2 per-
forms a checkpoint of the first committed transaction on
the checkpoint transaction list to make free space. Paral-
lel checkpoints also have to be serialized in the order that
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Figure 2: SpanFS Architecture.

transactions are committed to the log.

2.3.3 Summary

We analyzed the scalability bottlenecks of Ext4, which
are mainly caused by the contention on the shared data
structures in memory and the serialization of internal ac-
tions on devices. The use of shared data structures are
inherent in the centralized journaling design. The serial-
ization of journaling would also need to access and up-
date the shared data structures, such as log head and tail.

To address the scalability bottlenecks, file systems
should be restructured to reduce the contention on shared
data structures and to parallelize the file system service.

3 Design and Implementation
We present the design and implementation of SpanFS
and introduce the key techniques to provide a global file
system view and crash consistency.

3.1 SpanFS Architecture
Figure 2 shows the architecture of SpanFS, which con-
sists of multiple micro file system services called do-
mains. SpanFS distributes files and directories among
multiple domains to reduce contention and increase par-
allelism within the file system. Each domain has its in-
dependent on-disk structures, in-memory data structures
and kernel services (e.g., the journaling instance JBD2)
at runtime. As there is no overlap among the domains’
on-disk blocks, we allocate a dedicated buffer cache ad-
dress space for each domain to avoid the contention on
the single device buffer cache. As a result, concurrent
access to different domains will not cause contention on
shared data structures. Each domain can do its journaling
without the need of dependency tracking between trans-
actions and journaled buffers that belong to different do-
mains, enabling high parallelism for logging, committing
and checkpointing.

SpanFS provides a global file system view on top of
the domains by building global hierarchical file system
namespace and also maintains global consistency in case
of system crashes.

3.2 Domain
The domain is the basic independent function unit in
SpanFS to perform the file system service such as data al-
location and journaling. During mounting, each domain
will build its own in-memory data structures from its on-
disk structures and start its kernel services such as the
JBD2 journaling thread. In the current prototype SpanFS
builds the domains in sequence. However, the domains
can be built in parallel by using multiple threads.

3.2.1 SpanFS on-disk layout

In order to enable parallel journaling without the need
of dependency tracking, we partition the device blocks
among the domains. SpanFS creates the on-disk struc-
tures of each domain on the device blocks that are allo-
cated to the domain. The on-disk layout design of each
domain is based on the Ext4 disk layout [5]: each do-
main mainly has a super block, a set of block groups, a
root inode and a JBD2 journaling inode (i.e., log file).

Initially, the device blocks are evenly allocated to the
domains. Our architecture allows to adjust the size of
each domain online on demand in the unit of block
groups. Specifically, the block groups in one domain can
be reallocated to other domains on demand. To this end,
we should store a block group allocation table (BAT) and
a block group bitmap (BGB) on disk for each domain.
The BGB is maintained by its domain and is used to track
which block group is free by the file system. When the
free storage space in one domain drops to a predefined
threshold, the file system should reallocate the free block
groups in other domains to this domain. To avoid block
group low utilization each domain should allocate inodes
and blocks from the block groups that have been used
as far as possible. As the global block group realloca-
tion can cause inconsistent states in case of crashes, we
should create a dedicated journaling instance to main-
tain the consistency of the BATs. Each domain should
first force the dedicated journaling to commit the run-
ning transaction before using the newly allocated block
groups. This ensures the reallocation of block groups to
be persisted on disk and enables the block groups to be
correctly allocated to domains after recovery in case of
crashes. We leave the implementation of online adjust-
ing of each domain’s size on demand as our future work.

In our current implementation SpanFS only supports
static allocation of block groups. Specifically, we stati-
cally allocate a set of contiguous blocks to each domain
when creating the on-disk structures by simply storing
the first data block address and the last data block ad-
dress in each domain’s super block. Each domain’s super
block is stored in its first block group. In order to load all
the domains’ super blocks SpanFS stores the next super
block address in the previous super block. Each domain
adopts the same policy as Ext4 for inode and block allo-



cation among its block groups.

3.2.2 Dedicated buffer cache address space
The Linux operating system (OS) adopts a buffer cache
organized as an address space radix tree for each block
device to cache recently accessed blocks and use a spin
lock to protect the radix tree from concurrent inserts.
Meanwhile, the OS uses another spin lock to serialize
concurrent access to each cache page’s buffer list. As a
result, when multiple domains access the single underly-
ing device simultaneously, the above two locks will be
contended within the buffer cache layer .

The device block range of each domain does not over-
lap with those of other domains and the block size is the
same with the page size in our prototype. Concurrent
accesses to different domains should not be serialized in
the buffer cache layer as they can commute [19, 18].

We leverage the Linux OS block device architecture to
provide a dedicated buffer cache address space for each
domain to avoid lock contention. The OS block layer
manages I/O access to the underlying device through the
block device structure, which can store the inode that
points to its address space radix tree and pointers to the
underlying device structures such as the device I/O re-
quest queue and partition information if it is a partition.
SpanFS clones multiple block device structures from the
original OS block device structure and maps them to
the same underlying block device. SpanFS assigns a
dedicated block device structure to each domain during
mounting so that each domain can have its own buffer
cache address space.

Under the block group reallocation strategy, the device
block range of each domain may be changed over time.
We should remove the pages in the domain’s buffer cache
address space corresponding to the block groups that are
to be reallocated to other domains. This process can be
implemented with the help of the OS interface (invali-
date mapping pages()). We leave the implementation of
buffer cache address space adjusting as our future work.

3.3 Global Hierarchical Namespace
In order to distribute the global namespace, SpanFS
chooses a domain as the root domain to place the global
root directory and then scatters the objects under each
directory among the domains. Specifically, SpanFS dis-
tributes the objects (files and directories) under each di-
rectory using a round-robin counter for the directory. The
use of per directory counter can avoid global contention.

To support this distribution, SpanFS introduces three
types of directory entries (dentries): normal dentry,
shadow dentry and remote dentry, as illustrated in Fig-
ure 3. We call an object placed in the same domain with
its parent directory a normal object. The domain where
the parent directory lies is referred to as the local domain.
SpanFS creates an inode and a normal dentry pointing
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illustrates how SpanFS distributes a object to a remote domain.

to this inode under the parent directory in the local do-
main. We call an object placed in the different domain
from its local domain a distributed object, the different
domain is referred to as remote domain. SpanFS creates
an inode and a remote dentry pointing this inode in the
remote domain and then creates a shadow dentry under
its parent directory in the local domain for look up. The
reason why SpanFS creates a remote dentry and an in-
ode rather than only an inode is due to consideration of
maintaining global consistency, which will be described
in Section 3.4. In this paper, the dentry and inode refer
to the on-disk structures rather than the VFS structures.

To store remote dentries from other domains, each do-
main creates a set of special directories called span direc-
tories which are invisible to users. The number of span
directories in each domain is set to 128 by default and the
span directories are evenly allocated to each CPU core.
When a thread is to create a remote dentry, SpanFS se-
lects a span directory randomly from the ones allocated
to the CPU core.

SpanFS constitutes the bidirectional index by embed-
ding enough information in both the shadow dentry and
remote dentry to make them point to each other. For each
shadow dentry, SpanFS stores in the shadow dentry fields
the remote dentry’s domain ID, the inode number of the
span directory where the remote dentry stays, the remote
inode number and the name. For each remote dentry,
SpanFS stores the shadow dentry’s domain ID, the inode
number of the parent directory where the shadow dentry
lies, the remote inode number and the name.

3.4 Crash Consistency Model
As each domain is capable of ensuring the consistency of
its on-disk structures in case of system crashes through
journaling, the most critical challenge to SpanFS is how
to maintain global consistency across multiple domains.

The following example will demonstrate the consis-
tency challenges. To create a distributed object, one ap-
proach is to create an inode in the remote domain, and to
add a dentry in the local domain which points to the re-
mote inode, which can result in two possible inconsistent
states in case of crashes. The first case is that the inode



reaches the device but the dentry is lost. Then the newly
created inode becomes storage garbage silently, which
cannot be reclaimed easily. Another case is that the den-
try reaches the device but the inode fails. As a result the
dentry points to a non-existent inode.

Another approach to address the above problem is
adding dependency information to the running transac-
tions of the two domains. However, this approach will
end up with many dependencies between multiple do-
mains, with the cost of dependency tracking and serial-
izing the journaling actions among the domains.

Based on bidirectional index, SpanFS adopts two
mechanisms stale object deletion and garbage collec-
tion to address the problem. As discussed in Section 3.3,
SpanFS creates a remote dentry and inode in the remote
domain and then adds a shadow dentry under the parent
directory in the local domain. SpanFS wraps the blocks
to be modified in two JBD2 handles of the remote do-
main and local domain to achieve atomicity in the two
domains respectively.

The consistency of a distributed object is equivalent
to the integrity of the bidirectional index: (1) A shadow
dentry is valid only if the remote dentry it points to exists
and points back to it too. (2) A remote object (the remote
dentry and inode) is valid only if its shadow dentry exists
and points to it.

3.4.1 Stale object deletion.
The stale object deletion will validate any shadow den-
try by checking whether its remote dentry exists when
performing lookup and readdir. Specifically, for a dis-
tributed object SpanFS first locks the span directory via
the mutex lock, then looks up the remote dentry under
the span directory using the embedded index information
and unlocks the span directory in the end. If the remote
dentry does not exist, SpanFS deletes the shadow den-
try. Note that the parent directory would be locked by
the VFS during the above process.

3.4.2 Garbage collection (GC)
The GC mechanism deals with the scenario when the re-
mote dentry and inode exist while the shadow dentry is
lost. Under this circumstance, the file system consistency
is not impaired since the remote object can never be seen
by applications. But the remote dentry and inode will
occupy storage space silently and should be collected.

During mounting if SpanFS finds out that it has just
gone through a system crash, SpanFS will generate a
background garbage collection thread to scan the span
directories. The GC thread verifies the integrity of each
remote dentry in each span directory at runtime silently,
and removes the remote objects without shadow dentries.
Two-phase validation. In order to avoid contention
with the normal operations, the GC thread performs two-
phase validation: the scan phase and the integrity vali-

dation phase. During the scan phase the background GC
thread locks the span directory via the mutex lock, reads
the dentries under it and then unlocks the span directory.
Then the GC thread validates each scanned remote den-
try’s integrity. To avoid locking the span directory for a
long time, the GC thread reads a small number of remote
dentries (4 KB by default) each time until all the remote
dentries have been scanned and validated.

3.4.3 Avoiding deadlocks and conflicts
To avoid deadlocks and conflicts, for all operations that
involve the creation or deletion of a distributed object we
should first lock the parent directory of the shadow den-
try and then lock the span directory of the remote den-
try. By doing so, SpanFS can guarantee that new remote
objects created by the normal operations will not be re-
moved by the background GC thread by mistake and can
avoid any deadlocks.

During the integrity validation phase, the GC thread
first locks the parent directory (read from the bidirec-
tional index on the remote dentry) and then looks up the
shadow dentry under it. If the shadow dentry is found
and points to the remote dentry, the GC thread does noth-
ing and unlocks the parent directory. Otherwise, the GC
thread locks the span directory and then tries to delete
the remote object. If the remote object does not exist, it
might be deleted by the normal operation before the in-
tegrity validation phase. For such case, the GC thread
does nothing. The GC thread unlocks the span directory
and the parent directory in the end.

For normal operations such as create() and unlink(),
SpanFS first locks the span directory of the remote den-
try, then creates or deletes the remote object and the
shadow dentry, and unlocks the span directory in the end.
Note that the parent directory would be locked by the
VFS during the above process. For unlink() the inode
will not be deleted until its link count drops to zero.

3.4.4 Parallel two-phase synchronization
The VFS invokes fsync() to flush the dirty data and cor-
responding metadata of a target object to disk. As the
dentry and its corresponding inode may be scattered on
two domains, SpanFS should persist the target object and
its ancestor directory objects, their shadow/remote den-
tries if distributed, along the file path.

In order to reduce the distributed fsync() latency, we
propose a parallel two-phase synchronization mecha-
nism: the committing phase and the validating phase.
During the committing phase SpanFS traverses the target
object and its ancestor directories except for the SpanFS
root directory. For each traversed object, SpanFS wakes
up the journaling thread in its parent directory’s domain
to commit the running transaction and then records the
committing transaction id in its VFS inode’s field. Note
that if there does not exist a running transaction, SpanFS



does nothing. This situation may occur when the running
transaction has been committed to disk by other syn-
chronization actions such as periodic transaction com-
mits in JBD2. Then, SpanFS starts to commit the tar-
get object. In the end SpanFS traverses the target object
and its ancestor directories again to validate whether the
recorded transaction commits have completed. If some
of the commits have not completed, SpanFS should wait
on the wait queues for their completion.

The synchronization mechanism utilizes JBD2 client-
server transaction commit architecture. In JBD2, the
client thread wakes up the journaling thread to commit
the running transaction and then waits for its completion.
In SpanFS, we leverage the journaling thread in each do-
main to commit the running transactions in parallel.

In order to avoid redundant transaction commits, we
use flags (ENTRY NEW, ENTRY COMMIT and EN-
TRY PERSISTENT) for each object to record its state.
Ext4 with no journaling has the counterpart of our com-
mitting phase but does not have validating phase, which
could potentially lead to inconsistencies.

During the committing phase SpanFS will clear
the ENTRY NEW flag of each traversed object. If
cleared, SpanFS stops the committing phase. The EN-
TRY COMMIT flag of the object would be set after the
transaction has been committed. If not set, SpanFS
would commit the transaction in its parent directory’s
domain and wait for the completion during the validat-
ing phase. During the validating phase, SpanFS will set
the ENTRY PERSISTENT flags of the traversed objects
when all the recorded transaction commits have been
completed. If set, SpanFS stops the validating phase.

3.4.5 Rename

The rename operation in Linux file systems tries to move
a source object under the source directory to the desti-
nation object with the new name under the destination
directory. SpanFS achieves atomicity of the rename op-
eration through the proposed ordered transaction commit
mechanism, which controls the commit sequence of the
JBD2 handles on multiple domains for the rename op-
eration. SpanFS ensures the commit order by marking
each handle with h sync flag, which would force JBD2 to
commit the corresponding running transaction and wait
for its completion when the handle is stopped.

For the case that the destination object does not ex-
ist, three steps are needed to complete a rename opera-
tion. Due to space limitation, we only demonstrate the
case where the source object is a distributed object. The
shadow dentry of the source object resides in Domain
A. The inode of the source directory that contains the
shadow dentry of the source object also resides in Do-
main A. The remote dentry and the inode of the source
object resides in Domain B. The inode of the destina-

tion directory resides in Domain C. SpanFS starts a JBD2
handle for each step.
Step 1: SpanFS adds a new shadow dentry, which points
to the remote dentry of the source object, to the des-
tination directory in Domain C. If system crashes after
this handle reaches the disk, the bidirectional index be-
tween the old shadow dentry and the remote dentry of the
source object is still complete. The newly added dentry
will be identified as stale under the destination directory
and be removed at next mount.
Step 2: The remote dentry of the source object is al-
tered to point to the newly added shadow dentry in Step
1. Then the bidirectional index between the old shadow
dentry and the remote dentry of the source object be-
comes unidirectional while the bidirectional index be-
tween the new shadow dentry and the remote dentry is
built. As long as the handle reaches disk, the old shadow
dentry of the source object in Domain A is turned stale
and the rename operation is essentially done.
Step 3: Remove the old shadow dentry of the source
object under the source directory.

During the above process, JBD2 handles could be
merged if they operate on the same domain. If the step
needs to lock the span directory, it must start a new han-
dle to avoid deadlocks, esp. step 2.

For the case that the destination object already ex-
ists, SpanFS first has the existing shadow dentry of
the destination object tagged with TAG COMMON, then
adds another new shadow dentry tagged with both
TAG NEWENT and TAG COMMON in the destination
directory in Step 1. Moreover, two extra steps are needed
to complete the rename: Step 4 to remove the inode and
the remote dentry of the destination object and step 5 to
delete the existing shadow dentry of the destination ob-
ject and untag the newly added shadow dentry under the
destination directory. As the existing shadow dentry has
the same name as the newly added dentry under the des-
tination directory, we use the tags to resolve conflicts in
case of system crashes. Specifically, a dentry tagged with
TAG COMMON should be checked during lookup(). If
there exist two tagged dentries with the same name under
a directory, SpanFS will remove the one without integral
bidirectional index. If their bidirectional indices are both
integral, the one with TAG NEWENT takes precedence
and the other is judged as stale and should be removed.

3.5 Discussion
The approach introduced in this paper is not the only way
to scale file systems. Another way to providing parallel
file system services is running multiple file system in-
stances by using disk partitions (virtual block devices in
[26]), stacking a unified namespace on top of them and
maintaining crash consistency across them, which is sim-
ilar to Unionfs [42] in the architecture. We previously



adopt this approach as an extension to MultiLanes [27]
to reduce contention inside each container [26]. How-
ever, this approach has several drawbacks: First, manag-
ing a number of file systems would induce administra-
tion costs [31]. Second, adjusting storage space among
multiple file systems and partitions on demand also in-
troduces management cost. Although we can leverage
the virtual block device of MultiLanes to support stor-
age space overcommitment, it comes with a little cost of
lightweight virtualization [27]. Third, the cost of names-
pace unification will increase with the increasing number
of partitions [42].

4 Evaluation
We evaluate the performance and scalability of SpanFS
against Ext4 using a set of micro and application-level
benchmarks.

4.1 Test Setup
All experiments were carried out on an Intel 32-core ma-
chine with four Intel(R) Xeon(R) E5-4650 processors
(with the hyperthreading capability disabled) and 512
GB memory. Each processor has eight physical cores
running at 2.70 GHZ. All the experiments are carried out
on a Fusion-IO SSD (785 GB MLC Fusion-IO ioDrive).
The experimental machine runs a Linux 3.18.0 kernel.
We compile a separated kernel with lock stat enabled to
collect the lock contention statistics.

We use 256 GB of the SSD for evaluation. We evaluate
SpanFS with 16 domains and 4 domains in turn. We stat-
ically allocate 16 GB storage space to each domain for
the 16 domain configuration and 64 GB storage space to
each domain for the 4 domain configuration. For SpanFS
with 16 domains, each domain has 64 MB journaling
size, yielding a total journaling size of 1024 MB. To rule
out the effects of different journaling sizes, the journal-
ing sizes of both SpanFS with 4 domains and Ext4 are
all set to 1024 MB, respectively. Both SpanFS and Ext4
are mounted in ordered journal mode unless otherwise
specified.
Kernel Patch. The VFS uses a global lock to pro-
tect each super block’s inode list, which can cause con-
tention. We replace the super block’s inode list with per-
core lists and use per-core locks to protect them. We
apply this patch to both the baseline and SpanFS.

4.2 Performance Results
4.2.1 Metadata-Intensive Performance

We create the micro-benchmark suite called catd, which
consists of four benchmarks: create, append, truncate
and delete. Each benchmark creates a number of threads
performing the corresponding operation in parallel and
we vary the number of threads from 1 to 32.
Create: Each thread creates 10000 files under its private

directory.
Append: Each thread performs a 4 KB buffered write
and a fsync() to each file under its private directory.
Truncate: Each thread truncates the appended 4 KB files
to zero-size.
Delete: Each thread removes the 10000 truncated files.

We run the benchmark in the order of create-append-
truncate-delete in a single thread and multiple threads
concurrently. Figure 4 shows that SpanFS performs
much better than Ext4 except for the create benchmark.

For the create benchmark SpanFS performs worse
than Ext4 for two reasons: Ext4 has not encountered
severe scalability bottlenecks under this workload, and
SpanFS introduces considerable overhead as it needs to
create two dentries for each distributed object. Ext4 is
113% and 42% faster than SpanFS with 16 domains at
one core and at 32 cores, respectively. Note that the 4
domain configuration performs better than the 16 domain
configuration mainly due to that the percentage of the
distributed objects in SpanFS with 4 domains is lower.

Ext4

Lock Name Bounces
Total Wait Time

(Avg. Wait Time)
sbi->s orphan lock 478 k 534 s (1117.32 µs)

journal->j wait done commit 845 k 100.4 s (112.10 µs)
journal->j checkpoint mutex 71 k 56.5 s (789.70 µs)

journal->j list lock 694 k 10.5 s (14.64 µs)
journal->j state lock-R 319 k 9.8 s (28.58 µs)

SpanFS-16

Lock Name Bounces
Total Wait Time

(Avg. Wait Time)
journal->j checkpoint mutex 27 k 15.1 s (557.96 µs)

inode hash lock 323 k 8.1 s (25.07 µs)
sbi->s orphan lock 124 k 4.3 s (34.51 µs)

journal->j wait done commit 287 k 3.4 s (11.07 µs)
ps->lock (Fusionio driver) 789 k 2.4 s (2.87 µs)

Table 3: The top 5 hottest locks
As shown in Figure 4, for the append, truncate, delete

benchmark, SpanFS significantly outperforms Ext4 be-
yond a number of cores due to the reduced contention
and better parallelism. As the fsync() in append may span
several domains to persist the objects along the path and
the delete benchmark involves the deletion of two den-
tries for each distributed object, there exists some over-
head for these two benchmarks. Specifically, SpanFS is
113% and 33% slower than Ext4 for these two bench-
marks at one single core. However, due to the reduced
contention, SpanFS with 16 domains outperforms Ext4
by 1.15X, 7.53X and 4.13X at 32 cores on the append,
truncate and delete benchmark, respectively.

To understand the performance gains yielded by
SpanFS, we run the catd benchmark at 32 cores in a sep-
arated kernel with lock stat enabled. Table 3 shows that
Ext4 spends substantial time acquiring the hottest locks
during the benchmarking. In contrast, the total wait time
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Figure 4: Catd. This figure depicts the overall throughput (operations per second) with the benchmark create, append, truncate and delete,

respectively.
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Figure 5: IOzone. This figure shows the total throughput of IOzone on SpanFS against Ext4 under sequential buffered writes, random buffered

writes, sequential direct writes and sequential synchronous writes (open with O SYNC), respectively.

of the hot locks in SpanFS has been reduced by 20X.

4.2.2 Data-Intensive Performance

IOzone. The IOzone [3] benchmark creates a number
of threads, each of which performs 4KB writes to a sin-
gle file which ends up with 512 MB. Figure 5 shows that
SpanFS scales much better than Ext4, leading to signif-
icant performance improvements. Specifically, SpanFS
with 16 domains outperforms Ext4 by 1226%, 408%,
96% and 60% under the four I/O patterns at 32 cores,
respectively. For direct I/O, Ext4 scales poorly due to
the contention when logging the block allocation.
Sysbench. We run multiple single-threaded sysbench in-
stances in parallel, each of which issues 4 KB writes.
Each instance operates over 128 files with a total write
traffic of 512 MB. Figure 6 shows that SpanFS scales
well to 32 cores, bringing significant performance im-
provements. Specifically, SpanFS with 16 domains is
4.38X, 5.19X, 1.21X and 1.28X faster than Ext4 in the
four I/O patterns at 32 cores, respectively.

4.2.3 Application-Level Performance

Filebench. We use Filebench [6] to generate application-
level I/O workloads: the Fileserver and Varmail work-
loads. The Varmail workload adopts the parameter of
1000 files, 1000000 average directory width, 16 KB av-
erage file size, 1 MB I/O size and 16 KB average append
size. The Fileserver workload adopts the parameter of
10000 files, 20 average directory width, 128 KB average
file size, 1 MB I/O size and 16 KB average append size.
We run multiple single-threaded Filebench instances in
parallel and vary the number of instances from 1 to 32.
Each workload runs for 60 s.

As shown in Figure 7(a) and Figure 7(b) , for the File-
server and Varmail workloads SpanFS in all the two con-
figurations scales much better than Ext4. SpanFS with
16 domains outperforms Ext4 by 51% and 73% under
the Fileserver and Varmail workloads at 32 cores, re-
spectively. We have also evaluated the performance of
SpanFS against Ext4 in data journal mode under the Var-
mail workload. Figure 7(c) shows that SpanFS with 16
domains outperforms Ext4 by 88.7% at 32 cores.
Dbench. We use Dbench [4] to generate I/O workloads
that mainly consist of creates, renames, deletes, stats,
finds, writes, getdents and flushes. We choose Dbench
to evaluate SpanFS as it allows us to illuminate per-
formance impact of the rename operation overhead on
a realistic workload. We run multiple single-threaded
Dbench instances in parallel.

Due to the overhead, SpanFS with 16 domains is 55%
slower than Ext4 at one single core. However, as shown
in Figure 7(d), due to the reduced contention and better
parallelism SpanFS with 16 domains outperforms Ext4
by 16% at 32 cores.

4.2.4 Comparison with other file systems
We make a comparison of SpanFS with other file systems
on scalability using the Fileserver workload. Figure 8
(a) shows that SpanFS with 16 domains achieves much
better scalability than XFS, Btrfs and ZFS.

We also make a comparison with MultiLanes+ [26],
an extended version of our previous work [27]. As Multi-
Lanes+ stacks a unified namespace on top of multiple vir-
tual block devices, it comes at the cost of namespace uni-
fication. We evaluate SpanFS with 32 domains against
MultiLanes+ with 32 disk partitions using the create
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Figure 6: Sysbench. This figure depicts the total throughput of sysbench on SpanFS against Ext4 under sequential buffered writes, random

buffered writes, sequential synchronous writes and random synchronous writes, respectively. The first two buffered I/O patterns do not issue any

fsync() while the synchronous I/O patterns issue a fsync() after each write.
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Figure 7: Filebench and Dbench. This figure depicts the total throughput of Filebench (Fileserver and Varmail) and Dbench on SpanFS
against Ext4, respectively.
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Figure 8: Comparison with other major file systems.
The throughput of Filebench Fileserver on SpanFS against other three

major file systems: XFS, Btrfs and ZFS and the throughput of the create
benchmark on SpanFS against MultiLanes+.

benchmark. The journaling size of each domain/partition
is set to 128 MB. Figure 8 (b) shows the lines generated
by SpanFS against MultiLanes+. As the create operation
need to perform namespace unification which is expen-
sive in MultiLanes+, SpanFS performs much better than
MultiLanes+ from 1 to 28 cores. Especially, SpanFS is
faster than MultiLanes+ between 72% and 185% from 1
core to 20 cores. Due to the increased contention, the
performance improvement shrinks from 24 cores to 32
cores.

4.2.5 Garbage Collection Performance

We evaluate the time the GC takes to scan different num-
bers of files. We use the create benchmark to prepare
a set of files in parallel using 32 threads under 32 di-
rectories and then remount the file system with the GC
thread running at the background. As the GC thread only
needs to run when SpanFS finds out that it has just gone
through a crash we manually enable the GC thread. Ta-

ble 4 shows that the GC thread only needs 2.4 seconds
to scan and validate all the remote objects when there
are 320000 files in the file system, and the time only in-
creases to 20 seconds when there exist 3.2 millions of
files. The cost the GC thread incurred is relatively small
thanks to the high performance provided by the SSD.

# of files 32000 320000 3200000
# of remote dentries 30032 300030 3000030
Time 1071 ms 2403 ms 20725 ms

Table 4: Garbage collection performance. The time taken

to scan the span directories to perform garbage collection. As there ex-

ist normal objects, the number of remote dentries represents the actual

number of dentries that the GC thread has scanned and validated.

Then we measure the overhead that the background
GC activities contribute to the foreground I/O workloads.
Specifically, we prepare 3.2 millions of files as the above
does, remount the file system with the GC thread run-
ning and then immediately run 32 Varmail instances in
parallel. The Varmail workload runs for 60 s.

We measure the aggregative throughput of the 32 Var-
mail instances. Compared with the normal case without
the GC thread running, the total throughput of the Var-
mail workload has been degraded by 12% (357 MB vs
313 MB), and the GC thread has taken 21950 ms to val-
idate 3024296 remote objects. The number of the vali-
dated remote objects is higher than the number in Table 4
as the GC has scanned the remote objects created by the
running Varmail workload. Meanwhile, during the above
process, the GC thread has found four false invalid re-
mote objects. These false invalid objects are created by



the Varmail workload and are deleted before the GC in-
tegrity validation phase. This test also demonstrates that
SpanFS can correctly deal with the conflicts between the
GC thread and the normal I/O operations.

Ext4 SpanFS-16
Open without VFS cache 13.9 µs 24.7 µs
Open with VFS cache 3.4 µs 3.5 µs
Rename (1 core) 24 µs 609 µs
Rename (32 cores) 65 µs 2591 µs
unmount 4.323 s 5.272 s
mount 0.021 s 0.086 s

Table 5: The operation latency.

4.2.6 Overhead Analysis
We use the average operation latency reported by the
above Dbench running in Section 4.2.3 to show the re-
name overhead. As shown in Table 5, SpanFS with 16
domains is 24X and 39X slower than Ext4 at one core
and at 32 cores for the rename operation in Dbench, re-
spectively. We also create a micro-benchmark to evaluate
the rename overhead. The rename benchmark renames
10000 files to new empty locations and renames 10000
files to overwrite 10000 existing files. The result shows
that SpanFS is 25X and 84X slower than Ext4 for the
rename and overwritten rename.

We construct a benchmark open to evaluate the over-
head of validating the distributed object’s integrity dur-
ing lookup() in SpanFS. The benchmark creates 10000
files, remounts the file system to clean the cache and then
opens the 10000 files successively. We measure the aver-
age latency of each operation. As shown in Table 5, the
average latency in Ext4 is around 13.9 µs. In contrast,
the average latency is around 24.7 µs in SpanFS with 16
domains. We then open the 10000 files again without
remounting the file system. The results show that with
the VFS cache SpanFS exhibits almost the same perfor-
mance with Ext4.

We create a benchmark mount to evaluate the perfor-
mance of the mount and unmount operation in SpanFS.
The mount benchmark untars the compressed Linux
3.18.0 kernel source, then unmounts the file system and
mounts it again. Table 5 shows the time taken for SpanFS
and Ext4 to unmount and mount the file system. As
SpanFS builds the domains in sequence, SpanFS with 16
domains performs significantly worse than Ext4 for the
mount operation. Nevertheless, the time taken to mount
SpanFS only costs 86 ms.

5 Related Work
Scalable I/O stacks. Zheng et al. [43] mainly focus on
addressing the scalability issues within the page cache
layer, and try to sidestep the kernel file system bottle-
necks by creating one I/O service thread for each SSD.
However, their approach comes at the cost of communi-

cation between application threads and the I/O threads.
Some work that tries to scale in-memory file systems

has emerged. ScaleFS [21] uses per core operation logs
to achieve scalability of in-memory file system opera-
tions that can commute [19]. Hare [25, 24] tries to build
a scalable in-memory file system for multi-kernel OS.
However, these work does not focus on the scalability
issues of the on-disk file systems that need to provide
durability and crash consistency.

Wang et al. [40] leverage emerging non-volatile mem-
ories (NVMs) to build scalable logging for databases,
which uses a global sequence number (GSN) for depen-
dency tracking between update records and transactions
across multiple logs. However, due to the need of com-
plex dependency tracking, applying their approach to the
file systems needs to copy the updates to the journaling
layer, which will introduce copying overhead that has al-
most been eliminated in the file system journaling [39].
Meanwhile, their work needs the support of emerging
NVMs.
Isolated I/O stacks. Some work that tries to build iso-
lated I/O stacks shares some similarities with the domain
abstraction in our work in functionality. MultiLanes [27]
builds an isolated I/O stack for each OS-level container
to eliminate contention. Vanguard [36] and its relative
Jericho [32] build isolated I/O stacks called slices and
place independent workloads among the slices to elimi-
nate performance interference by assigning the top-level
directories under the root directory to the slices in a
round-robin manner. IceFS [31] partitions the on-disk
resources among containers called cubes to provide iso-
lated I/O stacks mainly for fault tolerant and provides a
dedicated running transaction for each container to en-
able parallel transaction commits. However, these work
cannot reduce the contention within each single work-
load that runs multiple threads/processes as it is hosted
inside one single isolated I/O stack.

In contrast with the above work, our work distributes
all files and directories among the domains to achieve
scalability and proposes a set of techniques to build a
global namespace and to provide crash consistency.

Although the domain abstraction in our work shares
some similarities with the cube abstraction of IceFS [31],
they differ in the following aspects. First, the cubes of
IceFS still share the same journaling instance, which can
cause contention when multiple cubes allocate log space
for new transactions simultaneously. Meanwhile, their
approach may still need to serialize parallel checkpoints
to make free space due to the single log shared by mul-
tiple cubes. In contrast, each domain in SpanFS has its
own journaling instance. Second, IceFS does not focus
on the lock contention within the block buffer cache layer
while SpanFS provides a dedicated buffer cache address
space for each domain to avoid such contention. Third,



although IceFS supports dynamic block group allocation,
their paper does not describe how to provide crash con-
sistency during allocation. In contrast, our work provides
a detailed design of the block group reallocation mecha-
nism as well as how to maintain crash consistency during
reallocation.

The online adjusting of each domain’s size in the unit
of block groups shares some similarities with the Ext2/3
online resizing [20]. However, the Ext2/3 online resiz-
ing only focuses on adjusting one file system’s size. Our
work provides a design on online adjusting of the storage
space among multiple domains on demand and maintain-
ing crash consistency during reallocation.

RadixVM [18] implements a scalable virtual mem-
ory address space for non-overlapping operations in their
research OS. However, applying their approach to the
buffer cache address space needs to modify the Linux
kernel. In contrast, we leverage the Linux OS block ar-
chitecture to provide a dedicated buffer cache address
space for each domain to avoid the lock contention.
Scalable kernels. Disco [12] and Cerberus [37] run
multiple operating systems through virtualization to pro-
vide scalability. Cerberus [37] provides a consistent clus-
tered file system view on top of the virtual machines
(VMs). However, their approach comes with the cost
of inter-VM communication. Moreover, their paper does
not explicitly discuss how to maintain consistency of the
clustered file system in case of system crashes. Hive
[14] and Barrelfish [8] achieve scalability on many-core
through the multikernel model. Some work proposes
new OS structures to achieve scalability on many-core,
such as Corey [10], K42 [28] and Tornado [22]. SpanFS
is influenced and inspired by these work but focuses on
scaling file systems on fast storage as well as providing
crash consistency.
File system consistency check. NoFS [17] stores the
backpointers in data blocks, files and directories to ver-
ify the file system inconsistencies online, avoiding the
journaling overhead. However, as NoFS cannot verify
the inconsistencies of allocation structures such as in-
ode bitmap, it needs to scan all the blocks and inodes
to build the allocation information at mount time [17]. In
contrast, SpanFS only needs to perform GC when it has
gone through a crash and only needs to scan the remote
dentries under the span directories rather than the whole
device in case of a system crash.
Distributed file system. Some distributed file systems,
such as Ceph [41] and IndexFS [34], partition the global
namespace across computer nodes to provide parallel
metadata service. These work relies on the intercon-
nected network in a cluster to maintain a consistent view
across machines. In contrast, SpanFS relies on the CPU
cache coherence prototype to maintain consistency on
data structures within a single many-core machine.

6 Conclusion and Future Work
In this paper, we first make an exhaustive analysis of
the scalability bottlenecks of existing file systems, and
attribute the scalability issues to their centralized de-
sign, especially the contention on shared in-memory data
structures and the serialization of internal actions on de-
vices. Then we propose a novel file system SpanFS to
achieve scalability on many cores. Experiments show
that SpanFS scales much better than Ext4, bringing sig-
nificant performance improvements.

In our future work, we will implement the online ad-
justing of each domain’s size, explore the adjusting poli-
cies and evaluate their performance. In our current pro-
totype, the number of domains is fixed. We will explore
the dynamic domain creation strategy.
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