Virtual Network Mapping: A Graph Pattern
Matching Approach

Yang Cao ? Wenfei Fan "> Shuai Ma *

'RCBD&SKLSDE Lab, Beihang University, China
2University of Edinburgh, UK
{caoyang, mashuai}@act.buaa.edu.cn wenfei@inf.ed.ac.uk

Abstract. Virtual network mapping (VNM) is to build a network on
demand by deploying virtual machines in a substrate network, subject
to constraints on capacity, bandwidth and latency. It is critical to da-
ta centers for coping with dynamic cloud workloads. This paper shows
that VNM can be approached by graph pattern matching, a well-studied
database topic. (1) We propose to model a virtual network request as
a graph pattern carrying various constraints, and treat a substrate net-
work as a graph in which nodes and edges bear attributes specifying
their capacity. (2) We show that a variety of mapping requirements
can be expressed in this model, such as virtual machine placement, net-
work embedding and priority mapping. (3) In this model, we formulate
VNM and its optimization problem with a mapping cost function. We
establish complexity bounds of these problems for various mapping con-
straints, ranging from PTIME to NP-complete. For intractable optimiza-
tion problems, we further show that these problems are approximation-
hard, i.e., NPO-complete in general and APX-hard even for special cases.

1 Introduction

Virtual network mapping (VNM) is also known as virtual network embedding or
assignment. It takes as input (1) a substrate network (SN, a physical network),
and (2) a wvirtual network (VN) specified in terms of a set of virtual nodes
(machines or routers, denoted as VMs) and their virtual links, along with
constraints imposed on the capacities of the nodes (e.g., CPU and storage) and
on the links (e.g., bandwidth and latency). VNM is to deploy the VN in the
SN such that virtual nodes are hosted on substrate nodes, virtual links are
instantiated with physical paths in the SN, and the constraints on the virtual
nodes and links are satisfied.

VNM is critical to managing big data. Big data is often distributed to data
centers [23,26]. However, data center networks become the bottleneck for dynamic
cloud workloads of querying and managing the data. In traditional networking
platforms, network resources are manually configured with static policies, and
new workload provisioning often takes days or weeks [1]. This highlights the need
for VNM, to automatically deploy virtual networks in a data center network in

357 \20
. .‘\.
Vi NN
20 M3

(a) VN Request
Fig. 1. VN requests found in practice

response to real-time requests. Indeed, VNM is increasingly employed in industry,
e.g., Amazon’s EC2 [2], VMware Data Center [3] and Big Switch Networks
[1]. Tt has proven effective in increasing server utilization and reducing server
provisioning time (from days or weeks to minutes), server capital expenditures
and operating expenses [1]. There has also been a host of work on virtualization
techniques for big data [23] and database systems [7,24].

Several models have been proposed to specify VNM in various settings:

(1) Virtual machine placement (VMP): it is to find a mapping f from virtual ma-
chines in a VN to substrate nodes in an SN such that for each VM v, its capacity
is no greater than that of f(v), i.e., f(v) is able to conduct the computation of
the VM v that it hosts [12].

(2) Single-path VN embedding (VNEgp): it is to find

(a) an injective mapping f, that maps nodes in VN to nodes in SN, subject to

node capacity constraints; and
(b) a function that maps a virtual link (v,v") in VN to a path from f,(v) to f,(v")

in SN that satisfies a bandwidth constraint, i.e., the bandwidth of each link
in the SN is no smaller than the sum of the bandwidth requirements of all
those virtual links that are mapped to a path containing it [20].

(3) Multi-path VN embedding (VNEyp): it is to find a node mapping f, as in
VNEsp and a function that maps each virtual link (v,v’) to a set of paths from
fu(v) to fu(v") in SN, subject to bandwidth constraints [14,25].

However, there are a number of VN requests commonly found in practice,
which cannot be expressed in any of these models, as illustrated by the following.

Ezample 1. Consider a VN request and an SN, depicted in Figures 1(a) and 1(b),
respectively. The VN has three virtual nodes VM1, VM, and VM3, each specifying
a capacity constraint, along with a constraint on each virtual link. In the SN,
each substrate node bears a resource capacity and each connection (edge) has an
attribute, indicating either bandwidth or latency. Consider the following cases.
(1) Mapping with latency constraints (VNML). Assume that the numbers at-
tached to the virtual nodes and links in Fig. 1(a) denote requirements on CPUs
and latencies for SN, respectively. Then the VNM problem, denoted by VNM,
aims to map each virtual node to a substrate node with sufficient computational
power, and to map each virtual link (v,v’) in the VN to a path in the SN such
that its latency, i.e., the sum of the latencies of the edges on the path, does not
exceed the latency specified for (v,v’). The need for studying VNM, arises from

latency sensitive applications such as multimedia transmitting networks [21],
which concern latency rather than bandwidth.

(2) Priority mapping (VNMp). Assume that the constraints on the nodes in
Fig. 1(a) are CPU capacities, and constraints imposed on edges are bandwidth
capacities. Here the VNM problem, denoted by VNMp, is to map each virtual
node to a node in SN with sufficient CPU capacity, and each virtual link (v,v")
in the VN to a path in SN such that the minimum bandwidth of all edges on
the path is no less than the bandwidth specified for (v,v’). The need for this is
evident in many applications [4], we want to give different priorities at run time
to virtual links that share some physical links, and require the mapping only to

provide bandwidth guarantee for the connection with the highest priority.
(3) Mapping with node sharing (VNEsp(ns)). Assume that the numbers attached

to the virtual nodes and links in Fig. 1(a) denote requirements on CPUs and band-
widths for SN, respectively. Then VNEsp(ns) is an extension of the single-path
VN embedding (VNEsp) by supporting node sharing, i.e., by allowing mapping
multiple virtual nodes to the same substrate node, as needed by X-Bone [6].

There is also practical need for extending other mappings with node sharing,
such as virtual machine placement (VMP), latency mapping (VNM,), priority
mapping VNMp and multi-path VN embedding (VNEup). We denote such an
extension by adding a subscript NS.

Observe that (a) VNM varies from practical requirements, e.g., when latency,
high-priority connections and node sharing are concerned; (b) Existing models
are not capable of expressing such requirements; indeed, none of them is able to
specify VNM(, VNMp or VNEgsp(ns); And (c) it would be an overkill to develop a
model for each of the large variety of requirements, and to study it individually.

As suggested by the example, we need a generic model to express virtual
network mappings in various practical settings, including both those already s-
tudied (e.g.,VMP, VNEsp and VNEmp) and those being overlooked (e.g., VNM_,
VNMp and VNEsp(ns)). The uniform model allows us to characterize and com-
pare VNMs in different settings, and better still, to study generic properties that
pertain to all the variants. Among these are the complexity and approxima-
tion analyses of VNMs, which are obviously important but have not yet been
systematically studied by and large.

Contributions & Roadmap. This work takes a step toward providing a uni-
form model to characterize VNMs. We show that VNMs, an important problem
for managing big data, can actually be tackled by graph pattern matching tech-
niques, a database topic that has been well studied. We also provide complexity
and approximation bounds for VNMs. Moreover, for intractable VNM cases, we
develop effective heuristic methods to find high-quality mappings.

(1) We propose a generic model to express VNMs in terms of graph pattern
matching [18] (Section 2). In this model a VN request is specified as a graph
pattern, bearing various constraints on nodes and links defined with aggregation
functions, and an SN is simply treated as a graph with attributes associated
with its nodes and edges. The decision and optimization problems for VNMs are
then simply graph pattern matching problems. We also show that the model is

able to express VNMs commonly found in practice, including all the mappings
we have seen so far (Section 3).

(2) We establish complexity and approximation bounds for VNMs (Section 4).
We give a uniform upper bound for the VNM problems expressed in this model,
by showing that all these problems are in NP. We also show that VNM is poly-
nomial time (PTIME) solvable if only node constraints are present (VMP), but
it becomes NP-complete when either node sharing is allowed or constraints on
edges are imposed. Moreover, we propose a VNM cost function and study opti-
mization problems for VNM based on the metric. We show that the optimization
problems are intractable in most cases and worse still, are NPO-complete in gen-
eral and APX-hard [10] for special cases. To the best of our knowledge, these are
among the first complexity and approximation results on VNMs.

We contend that these results are useful for developing virtualized cloud data
centers for querying and managing big data, among other things. By modeling
VNM as graph pattern matching, we are able to characterize various VN requests
with different classes of graph patterns, and study the expressive power and
complexity of these graph pattern languages. The techniques developed for graph
pattern matching can be leveraged to study VNMs. Indeed, the proofs of some of
the results in this work capitalize on graph pattern techniques. Furthermore, the
results of this work are also of interest to the study of graph pattern matching [18].

2 Graph Pattern Matching Model

Below we first represent virtual networks (VNs) and substrate networks (SNs) as
weighted directed graphs. We then introduce a generic model to express virtual
network mapping (VNM) in terms of graph pattern matching [18].

2.1 Substrate and Virtual Networks

An SN consists of a set of substrate nodes connected with physical links, in which
the nodes and links are associated with resources of a certain capacity, e.g., CPU
and storage capacity for nodes, and bandwidth and latency for links. A VN is
specified in terms of a set of virtual nodes and a set of virtual links, along with
requirements on the capacities of the nodes and the capacities of the links. Both
VNs and SNs can be naturally modeled as weighted directed graphs.

Weighted directed graphs. A weighted directed graph is defined as G =
(V,E, fv, fg), where (1) V is a finite set of nodes; (2) E C V x V is a set
of edges, in which (v, v') denotes an edge from v to v’; (3) fy is a function
defined on V such that for each node v € V', f/(v) is a positive rational number;
and similarly, (4) fg is a function defined on E.

Substrate networks. A substrate network (SN) is a weighted directed graph
Gs = (Vs, Es, fvs, fEs), where (1) Vg and Es denote sets of substrate nodes
and physical links (directly connected), respectively; and (2) the functions fy,
and fg, denote resource capacities on the nodes (e.g., cPU) and links (e.g.,
bandwidth and latency), respectively.

Virtual networks. A wvirtual network (VN) is specified as a weighted directed
graph Gp = (Vp, Ep, fve, fEp), where (1) Vp and Ep denote virtual nodes
and links, and (2) fy, and fg, are functions defined on Vp and Ep in the same
way as in substrate networks, respectively.

Ezample 2. The SN depicted in Fig. 1(b) is a weighted graph Gg, where (1) the
node set is {a, b, ...,f}; (2) the edges include the directed edges in the graph; (3)
the weights associated with nodes indicate CPU capacities; and (4) the weights of
edges denote bandwidth or latency capacities. Figure 1(a) shows a VN, where (1)
the node set is {VM1, VMy, VM3}; (2) the edge set is {(VM;, VM) | i,j =1,2,3};
(3) fvp(VMy1) = 66, fy,.(VM2) = 20, fy,(VM3) = 30; and (4) the function fg,
is defined on the edge labels. As will be seen when we define the notion of VN
requests, the labels indicate requirements on deploying the VN in an SN.

Paths. A path p from node ug to u, in an SN Gg is denoted as (ug,uy, ..., uy),
where (a) u; € Vg for each i € [0,n], (b) there exists an edge e; = (u;—1,u;)
in Eg for each ¢ € [1,n], and moreover, (c) for all i, j € [0,n], if i # j, then
u; # u;. We write e € p if e is an edge on p. When it is clear from the context,
we also use p to denote the set of edges on the path, i.e., {e; | i € [1,n]}.

2.2 Virtual Network Mapping

Virtual network mapping (VNM) from a VN G p to an SN G is specified in terms
of a node mapping, an edge mapping and a VN request. The VN request imposes
constraints on the node mapping and edge mapping, defining their semantics.
We next define these notions.

A node mapping from Gp to G is a pair (gy,ry) of functions, where gy maps
the set Vp of virtual nodes in Gp to the set Vs of substrate nodes in G, and for
each v in Vp, if gy (v) = u, ry(v,u) is a positive number. Intuitively, function
rv specifies the amount of resource of the substrate node u that is allocated to
the node v.

For each edge (v,v") in Gp, we use P(v,v’) to denote the set of paths from
gv(v) to gy (V') in Gg. An edge mapping from Gp to Gg is a pair (gg, rg) of
functions such that for each edge (v,v") € Ep, gg(v,v’) is a subset of P(v,v’),
and rg attaches a positive number to each pair (e, p) if e € Ep and p € gg(e).
Intuitively, rg(e, p) is the amount of resource of the physical path p allocated to
the virtual link e.

VN requests. A VN request to an SN Gg is a pair (Gp,C), where Gp is a VN,

and C is a set of constraints such that for a pair ((gv,rv), (9, 7r)) of node and

edge mappings from Gp to Gg, each constraint in C has one of the forms below:
1) for each v € Vp, fy,.(v) < ry(v,g9v(v));

EQ; for each v € Vg, fy, 2u) > sum(N(uS), where N(u) is {rv(v,u) | v €
Vp, gv(v) = ul}, a bag (an unordered collection of elements with repetitions)
determined by virtual nodes in Gp hosted by u;

(3) for each e € Ep, fgr,(e) op agg(Q(e)), where Q(e) is {Ire(e,p) | p € ge(e)]},
a bag collecting physical paths p that instantiate e; here op is either the
comparison operator < or >, and agg() is one of the aggregation functions
min, max and sum;

(4) for each ¢’ € Eg, frq(e') > sum(M(e')), where M (e') is {lre(e,p) | e € Ep,
p € gr(e), ¢ € p[}, a bag collecting those virtual links that are instantiated
by a physical link p containing €’; and

(5) foreach e € Ep and p € gg(e), re(e, p) op agg(U(p)) where U(p) is { fr, (€¢')
| ¢’ € pl}), a bag of all edges on a physical path that instantiate e.

Constraints in a VN request are classified as follows.
Node _constraints: Constraints of form (1) or (2). Intuitively, a constraint of form

(1) assures that when a virtual node v is hosted by a substrate node w, u must
provide adequate resource. A constraint of form (2) asserts that when a substrate
node u hosts (possibly multiple) virtual nodes, u must have sufficient capacity
to accommodate all those virtual nodes. When u hosts at most one virtual node,
i.e., if node sharing is not allowed, then |N(u)| < 1, where we use |N(u)| to
denote the number of virtual nodes hosted by u.

Edge constraints: Constraints of form (3), (4) or (5). Constraints of form (3)
assure that when a virtual link e is mapped to a set of physical paths in the
SN, those physical paths together satisfy the requirements (on bandwidths or
latencies) of e. We denote by |Q(e)| the number of physical paths to which
e is mapped. Those of form (4) assert that for each physical link ¢, it must
have sufficient bandwidth to accommodate those of all the virtual links that are
mapped to some physical path containing e’. Those of form (5) assure that when
a virtual link e is mapped to a set of paths, for each p in the set, the resource of
p allocated to e must be consistent with the capacities of the physical links on
p, €.g., may not exceed the minimum bandwidth of the physical links on p.

VNM. We say that a VN request (Gp,C) can be mapped to an SN Gg, denoted
by Gpt>¢Gg, if there exists a pair ((gv,7v), (98, rE)) of node and edge mappings
from Gp to Gg such that all the constraints of C are satisfied, i.e., the functions
gy and gg satisfy all the inequalities in C.

The VNM problem is to determine, given a VN request (Gp,C) and an SN
Gs, whether Gp >¢ Gg.

3 Case study

All the VNM requirements in the Introduction (Section 1) can be expressed in
our model, by treating VN request as a pattern and SN as a graph. Below we
present a case study.

Case 1: Virtual machine placement. VMP can be expressed as a VN request in
which only node constraints are present. It is to find an injective mapping
(9v,ry) from virtual nodes to substrate nodes (hence |N| < 1) that satisfies
the node constraints, while imposing no constraints on edge mapping.

Case 2: Priority mapping. VNMp can be captured as a VN request specified as
(Gp,C), where C consists of (a) node constraints of forms (1) and (2), and (b)
edge constraints of form (3) when op is < and agg is max, and form (5) when op
is < and agg is min. It is to find an injective node mapping (gy, rv) and an edge
mapping (gg,rg) such that for each virtual link e, gg(e) is a single path (hence
|Q(e)| = 1). Moreover, it requires that the capacity of each virtual node v does

(a) VN Request
Fig. 2. VN request and SN for case study

not exceed the capacity of the substrate node that hosts v. When a virtual link
e is mapped to a physical path p, the bandwidth of each edge on p is no less than
that of e, i.e., p suffices to serve any connection individually, including the one
with the highest priority when p is allocated to the connection.

Ezample 3. Consider the VN given in Fig. 1(a) and the SN of Fig. 1(b). Con-
straints for priority mapping can be defined as described above, using the node
and edge labels (on bandwidths) in Fig. 1(a). There exists a priority mapping
from the VN to the SN. Indeed, one can map VM7, VM, and VM3 to b,a and d,
respectively, and map the virtual links to the shortest physical paths uniquely
determined by the node mapping, e.g., (VM1,VM;) is mapped to (b, a).

Case 3: Single-path VN embedding. A VNEgp request can be specified as (Gp,C),
where C consists of (a) node constraints of forms (1) and (2), and (b) edge
constraints of form (3) when op is < and agg is sum, and edge constraints of
forms (4) and (5) when op is < and agg is min. It differs from VNMp in that
for each physical link €', it requires the bandwidth of €’ to be no less than the
sum of bandwidths of all those virtual links that are instantiated via e’. In
contrast to VNMp that aims to serve the connection with the highest priority
at a time, VNEgp requires that each physical link has enough capacity to serve
all connections sharing the physical link at the same time.

Similarly, multi-path VN embedding (denoted by VNEmp) can be expressed
as a VN request. It is the same as VNEsp except that a virtual link e can be
mapped to a set gg(e) of physical paths. When taken together, the paths in
gr(e) provide sufficient bandwidth required by e.

When node sharing is allowed in VNEgp, i.e., for single-path embedding with
node sharing (VNEsp(ns)), a VN request is specified similarly. Here a substrate
node u can host multiple virtual nodes (hence |N(u)| > 0) such that the sum of
the capacities of all the virtual nodes does not exceed the capacity of u. Similarly,
one can also specify multi-path VN embedding with node sharing (VNEwpns))-

Ezample 4. Consider the VN of Fig. 2(a), and the SN of Fig. 2(b). There is a
VNEsp from the VN to the SN, by mapping VM1, VM,, VM3 to a, b, e, respectively,
and mapping the VN edges to the shortest paths in the SN determined by the
node mapping. There is also a multi-path embedding VNEyp from the VN to the
SN, by mapping VM1, VM, and VM3 to a,c and e, respectively. For the virtual
links, (VM1,VM;) can be mapped to the physical path (a,b,c), (VM, VM3)
to (a,e), and (VM3,VM,) to two paths p; = (e,b,c) and py = (e,d,c) with

re((VM3,VM,), p1) = 5 and rg((VM3,VM,), p2) = 15; similarly for the other
virtual links.

One can verify that the VN of Fig. 2(a) allows no more than one virtual node
to be mapped to the same substrate node in Fig. 2(b). However, if we change the
bandwidths of the edges connecting a and e in SN from 30 to fy,(a,e) = 40 and
fvs(e,a) = 50, then there exists a mapping from the VN to the SN that supports
node sharing. Indeed, in this setting, one can map both VM1, VM, to e and map
VM3 to a; and map the virtual edges to the shortest physical paths determined
by the node mapping; for instance, both (VMy,VM3) and (VM,, VM3) can be
mapped to (e, a).

Case 4: Latency constrained mapping. A VNM| request is expressed as (Gp,(C),
where C consists of (a) node constraints of forms (1) and (2), and (b) edge
constraints of form (3) when op is > and agg is min, and of form (5) when op
is > and agg is sum. It is similar to VNEsp except that when a virtual link e is
mapped to a physical path p, it requires p to satisfy the latency requirement of
e, i.e., the sum of the latencies of the edges on p does not exceed that of e.

Ezample 5. One can verify that there is no latency mapping of the VN shown
in Fig. 1(a) to the SN in Fig. 1(b). However, if we change the constraints on
the virtual links of the VN request to: (VMy,VMy) = 50, (VM2,VM;) = 55,
(VMl,VM3) = (VM3,VM1) = 120 and (VMQ,VM3) = (VM3,VM2) = 60, then
there is a mapping from the VN to the SN. We can map VM1, VM5, VM3 to ¢, b,
a, respectively, and map the edges to the shortest physical paths determined by
the node mapping.

4 Complexity and Approximation

We next study fundamental issues associated with virtual network mapping. We
first establish the complexity bounds of the VNM problem in various settings,
from PTIME to NP-complete. We then introduce a cost metric for virtual network
mapping, formulate optimization problems based on the function, and finally,
give the complexity bounds and approximation hardness of the optimization
problems. Due to the space constraint, we defer the detailed proofs to [5].

4.1 The Complexity of VNM

We provide an upper bound for the VNM problem in the general setting, by
showing it is in NP. We also show that the problem is in PTIME when only node
constraints are present. However, when node sharing or edge constraints are
imposed, it becomes NP-hard, even when both virtual and substrate networks
are directed acyclic graphs (DAGs). That is, node sharing and edge constraints
make our lives harder.

Theorem 1. The virtual network mapping problem is
(1) in NP regardless of what constraints are present;

(2) in PTIME when only node constraints are present, without node sharing,
i.e.,VMP is in PTIME; However,

(8) it becomes NP-complete when node sharing is requested, i.e., VMP ys),
VNMP(NS), VNML(NS), VNESP(NS) and VNEMP(NS) are NP—complete; and

(4) it is NP-complete in the presence of edge constraints; i.e., VNMp, VNM|,
VNEsp and VNEmp are intractable.

All the results hold when both VNs and SNs are DAGs.

4.2 Approximation of Optimization Problems

In practice, one typically wants to find a VNM mapping with “the lowest cost”.
This highlights the need for introducing a function to measure the cost of a
mapping and studying its corresponding optimization problems.

A Cost Function. Consider an SN Gs = (Vs, Eg, fvs, frs), and a VN request
(Gp,C), where Gp = (Vp, Ep, fv., fEs). Assume a positive number associated
with all nodes v and links e in Gg, denoted by w(v) and w(e), respectively, that
indicates the price of the resources in the SN.

Given a pair ((gv,7rv), (9g,7E)) of node and edge mappings from (Gp,C) to
Gs, its cost ¢((gv,rv), (ge,TE)) is defined as

c((gv,mv), (98,78)) = 3 cvy bv(gv,rv,v) - wlgv (v) + X, cp, helge, re,e’) - w(e),

where (1) hv (gv, v, v) = rv (v, gv(v))/ fvs(gv (v)),
(2) he(ge, rv, €)= > re(e, p)/fes (') when the resource of physical
e€Ep,pEgp(e),e’€p

links is bandwidth, and
(3) when latency is concerned, hg(gg,rv,e’) is 1 if there exists e € Ep such that
e’ € gg(e), and 0 otherwise.

Intuitively, hy indicates that the more CPU resource is allocated, the higher
the cost it incurs; similarly for hg when bandwidth is concerned. When latency
is considered, the cost of the edge mapping is determined only by gg, whereas
the resource allocation function rg is irrelevant.

The cost function is motivated by economic models of network virtualiza-
tion [13]. It is justified by Web hosting and cloud storage [11], which mainly sell
CPU power or storage services of nodes, and by virtual network mapping, which
also sells bandwidth of links [14]. It is also to serve cloud provision in virtual-
ized data center networks [19], for which dynamic routing strategy (latency) is
critical while routing congestion (bandwidth allocation) is considered secondary.

Minimum Cost Mapping. We now introduce optimization problems for vir-
tual network mapping.

The minimum cost mapping problem is to find, given a VN request and an
SN, a mapping ((9v,rv), (9g,7E)) from the VN to the SN such that its cost
based on the function above is minimum among all such mappings.

The decision problem for minimum cost mapping is to decide, given a number
(bound) K, a VN request and an SN, whether there is a mapping ((gv,rv),
(9E,7E)) from the VN to the SN such that its cost is no larger than K.

We shall refer to the minimum cost mapping problem and its decision problem
interchangeably in the sequel.

Complexity and Approximation. We next study the minimum cost mapping
problem for all cases given before. Having seen Theorem 1, it is not surprising
that the optimization problem is intractable in most cases. This motivates us to
study their efficient approximation algorithms with performance guarantees.
Unfortunately, the problem is hard to approximate in most cases. The results
below tell us that when node sharing is requested or edge constraints are present,
minimum cost mapping is beyond reach in practice for approximation.

Theorem 2. The minimum cost mapping problem is
(1) in PTIME for VMP without node sharing; however, when node sharing is
requested, i.e., for VMP s), it becomes NP-complete and is APX-hard;
(2) NP-complete and NPO-complete for VNMp, VNEsp, VNEup, VNMy,
VNMpnsy, VNEspns), VNEwmp(ns), VNM(nsy; And
(8) APX-hard when there is a unique node mapping in the presence of edge
constraints. In particular, VNMp does not admit ln(|Vp|)-approzimation, unless
P = NP.

The NPO-hardness results remain intact even when both VNs and SNs are
DAGS.

Here NPO is the class of all NP optimization problems (cf. [10]). An NPO-
complete problem is NP-hard to optimize, and is among the hardest optimization
problems. APX is the class of problems that allow PTIME approximation algo-
rithms with a constant approximation ratio (cf. [10]).

Heuristic algorithms. These above results tell us that it is beyond reach in
practice to find PTIME algorithms for VNMs with edge constraints such as VNMp
and VNEsp, or to find efficient approximation algorithms with decent perfor-
mance guarantees. In light of these, we study heuristic algorithms.

We develop heuristic algorithms for priority mapping VNMp, with node shar-
ing or not [5]. We focus on VNMp since it is needed in, e.g., internet-based vir-
tualized infrastructure computing platform (iVIC [4]). Our algorithm reduces
unnecessary computation by minimizing VNs requests and utilizing auxiliary
graphs of SNs [5]. While several algorithms are available for VN embedding
(e.g., [20]), no previous work has studied algorithms for VNMp. We encourage
interested readers to look into [5] for the detailed introduction and experimental
study of these algorithms.

5 Related Work

Virtualization techniques have been investigated for big data processing [23] and
database applications [7,8,24]. However, none of these has provided a systematic
study of VNM, by modeling VNM as graph pattern matching. The only exception
s [20], which adopted subgraph isomorphism for VNM, a special case of the
generic model proposed in this work. Moreover, complexity and approximation

10

analyses associated with VNM have not been studied for cloud computing in
database applications.

Several models have been developed for VNM. (a) The VM placement prob-
lem (VMP, [12]) is to map a set of VMs onto an SN with constraints on node
capacities. (b) Single-path VN embedding (VNEsp, [22]) is to map a VN to an SN
by a node-to-node injection and an edge-to-path function, subject to constraints
on the CPU capacities of nodes and constraints on the bandwidths of physical
connections. (c¢) Different from VNEsp, multi-path embedding (VNEwp, [14,25])
allows an edge of a VN to be mapped to multiple parallel paths of an SN such
that the sum of the bandwidth capacities of those paths is no smaller than the
bandwidth of that edge. (d) While graph layout problems are similar to VN
mapping, they do not have bandwidth constraints on edges but instead, impose
certain topological constraints (see [15] for a survey). In contrast to our work,
these models are studied for specific domains, and no previous work has studied
generic models to support various VN requests that commonly arise in practice.

Very few complexity results are known for VNM. The only work we are aware
of is [9], which claimed that the testbed mapping problem is NP-hard in the pres-
ence of node types and some links with infinite capacity. Several complexity and
approximation results are established for graph pattern matching (see [18] for
a survey). However, those results are for edge-to-edge mappings, whereas VNM
typically needs to map virtual links to physical paths. There have been recent
extensions to support edge-to-path mappings for graph pattern matching [16,17],
with several intractability and approximation bounds established there. Those
differ from this work in that either no constraints on links are considered [17], or
graph simulation is adopted [16], which does not work for VNM. The complexity
and approximation bounds developed in this work are among the first results
that have been developed for VNM in cloud computing.

6 Conclusion

We have proposed a model to express various VN requests found in practice,
based on graph pattern matching, and we have shown that that the model is
able to express VNMs commonly found in practice. We have also established a
number of intractability and approximation hardness results in various practical
VNM settings. These are among the first efforts to settle fundamental problems
for virtual network mapping. A few topics are targeted for future work. We
are developing practical heuristic algorithms and optimization techniques for
VNM. We are also exploring techniques for processing VN requests for different
applications, as well as their use in graph pattern matching.

Acknowledgments. Fan and Cao are supported in part by NS-
FC 61133002, 973 Program 2014CB340302, Shenzhen Peacock Program
1105100030834361, Guangdong Innovative Research Team Program 2011D005,
EPSRC EP/J015377/1 and EP/M025268/1, and a Google Faculty Research
Award. Ma is supported in part by 973 Program 2014CB340304, NSFC 61322207
and the Fundamental Research Funds for the Central Universities.

11

References

NO Ok

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

http://www.bigswitch.com/.

http://aws.amazon.com/ec2/.

http://www.vmware.com/solutions/datacenter/.

http://frenzy.ivic.org.cn/.

http://homepages.inf.ed.ac.uk/s1165433 /papers/vnm-full.pdf.
http://www.isi.edu/xbone/.

A. Aboulnaga, C. Amza, and K. Salem. Virtualization and databases: state of the
art and research challenges. In EDBT, 2008.

A. Aboulnaga, K. Salem, A. Soror, U. Minhas, P. Kokosielis, and S. Kamath.
Deploying database appliances in the cloud. IFEE Data Eng. Bull, 32(1):13-20,
20009.

D. Andersen. Theoretical approaches to node assignment. Unpublished Manuscript,
2002.

G. Ausiello. Complexity and approzimation: Combinatorial optimization problems
and their approzimability properties. Springer Verlag, 1999.

A. C. Bavier, N. Feamster, M. Huang, L. L. Peterson, and J. Rexford. In VINI
veritas: realistic and controlled network experimentation. In SIGCOMM, 2006.
N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual machines for
managing sla violations. In IM, 2007.

N. Chowdhury and R. Boutaba. A survey of network virtualization. Computer
Networks, 54(5):862-876, 2010.

N. Chowdhury, M. Rahman, and R. Boutaba. Virtual network embedding with
coordinated node and link mapping. In INFOCOM, 2009.

J. Diaz, J. Petit, and M. Serna. A survey of graph layout problems. CSUR,
34(3):313-356, 2002.

W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern matching: From
intractable to polynomial time. In VLDB, 2010.

W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph homomorphism revisited for
graph matching. VLDB, 2010.

B. Gallagher. Matching structure and semantics: A survey on graph-based pattern
matching. AAAI F'S., 2006.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu.
Bcube: A high performance, server-centric network architecture for modular data
centers. In SIGCOMM, 2009.

J. Lischka and H. Karl. A virtual network mapping algorithm based on subgraph
isomorphism detection. In SIGCOMM workshop VISA, 2009.

W. Reinhardt. Advance reservation of network resources for multimedia applica-
tions. In IWACA, 1994.

R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network testbed mapping
problem. SIGCOMM CCR, 33:81, 2003.

O. Trelles, P. Prins, M. Snir, and R. C. Jansen. Big data, but are we ready? Nature
reviews Genetics, 12(3), 2011.

P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and H. Hacigiimiis. Intelligent
management of virtualized resources for database systems in cloud environment.
In ICDE, 2011.

M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network embedding;:
Substrate support for path splitting and migration. SIGCOMM CCR, 38(2):17-29,
2008.

B. Zong, R. Raghavendra, M. Srivatsa, X. Yan, A. K. Singh, and K. Lee. Cloud
service placement via subgraph matching. In ICDE, 2014.

12

