
TGraph: A Temporal Graph Data Management System

Haixing Huang Jinghe Song Xuelian Lin Shuai Ma∗ Jinpeng Huai
SKLSDE Lab, Beihang University, China

Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing, China
{huanghx, songjh, linxl}@act.buaa.edu.cn {mashuai, huaijp}@buaa.edu.cn

ABSTRACT
Temporal graphs are a class of graphs whose nodes and
edges, together with the associated properties, continuously
change over time. Recently, systems have been developed to
support snapshot queries over temporal graphs. However,
these systems barely support aggregate time range queries.
Moreover, these systems cannot guarantee ACID transac-
tions, an important feature for data management systems
as long as concurrent processing is involved. To solve these
issues, we design and develop TGraph, a temporal graph data
management system, that assures the ACID transaction fea-
ture, and supports fast temporal graph queries.

1. INTRODUCTION
Graph databases have attracted attention from both academia

and industry. Numerous applications, from social media
analysis and traffic navigation to recommendation systems,
handle a vast collection of entities with their relationships
[5], which can be naturally represented by graphs. Some
commercialized graph database products, such as Neo4j [6]
and Titan [9], have also been developed to manage graph
data and to support graph-oriented applications, which usu-
ally provide update and read operations over the latest state
of graphs, and support ACID transactions, a key feature of
traditional DBMS [8].
Temporal graphs (see a recent survey [2]) are a class of

graphs whose nodes, edges and their properties continuously
change over time. For example, traffic conditions in a road
network vary from morning to evening, friendships between
people in a social network evolve with time. Temporal graph
databases manage temporal graph data by storing all snap-
shots of graphs, as user queries may focus on historical states
and changing patterns of graphs.
Temporal data management started from the 80’s of last

century, which mainly focused on the temporal query lan-
guage on temporal relational databases [7]. Temporal graph
data management has recently been initiated, and several
temporal graph management systems have been developed.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CIKM’16 October 24 - November 28, 2016, Indianapolis, IN, USA
c⃝ 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4073-1/16/10.

DOI: http://dx.doi.org/10.1145/2983323.2983335

DeltaGraph [3] stores temporal graphs using a log-based
storage approach and provides snapshot queries; And G* [4]
provides a distributed storage of temporal graph data. Fur-
ther, how to analyze temporal graphs is also a hot research
topic in database and data mining fields [10].

However, these existing temporal graph data management
systems have certain limitations. First, most of them mainly
support snapshot queries. For a temporal range query, Delt-
aGraph needs to load all the relevant data falling into the
time interval from all snapshots, which makes it very inef-
ficient. Indeed, this is typically unnecessary as many such
queries only need a small part of nodes and relationships
(edges). Second, these systems cannot guarantee the ACID
transaction feature, which potentially leads the systems to
inconsistent states when concurrent data processing is in-
volved. Finally, we find that there is an important type of
temporal graphs in real-life, whose nodes and relationships
barely change while the properties of nodes and relation-
ships change frequently. For example, roads are associated
with certain properties, such as the length and the direction
of the roads, and a road network topology keeps static for a
long time, but the traffic condition changes frequently.
Contributions. To this end, we develop TGraph for man-
aging temporal graphs, whose structures barely change, but
associated properties change frequently. To the best of our
knowledge, this is among the first temporal graph manage-
ment system that is able to handle such temporal graphs
and to support ACID transactions.
(1) We develop a fast and effective storage called DPS de-
signed to maintain the frequent changing properties of nodes/relationships
in temporal graph data.
(2) We also provide a transaction manager to ensure the
ACID transaction feature of temporal graph data.
(3) We finally build a prototype temporal graph data man-
agement system that supports various temporal queries.
Organization. We first describe the data model in Section
2. We then introduce the architecture and key mechanism of
TGraph in Section 3. Finally, we demonstrate TGraph with
an experiment study and two use cases in Section 4.

2. TEMPORAL GRAPH MODEL
A temporal graph is G = (V,E), where V is a set of nodes,

and E is a set of relationships. A node v = (id, P,DynP ) ∈
V , where id is the identity of v in V, P is a set of static
properties, and DynP is a set of dynamic properties.

A static property (a concept borrowed from Neo4j) is p =
(name, value) ∈ P , where name is the unique name of p,
and value is the value of p, respectively.



Figure 1: TGraph architecture.

A dynamic property is dp = (name, vlist) ∈ DynP , where
vlist is a list of (t, value), which means that value v is valid
from time t. A vlist=⟨(t1, value1), (t2, value2), (t3, value3),
. . ., (tn, valuen)⟩, satisfying ti < ti+1 for 1 ≤ i < n. A
tuple (ti, valuei) represents that the value of dp in [ti, ti+1)
is valuei. For the last tuple (tn, valuen), its value of dp from
tn to now is valuen.
A relationship is e = (id, vs, ve, ty, P,DynP ) ∈ E, where

id is the identity of e, vs and ve are the start node and end
node of e, and ty is the type of e, respectively.

3. ARCHITECTURE
TGraph is an extension of Neo4j [6], a popular, open source

graph database. TGraph uses Neo4j to store nodes, relation-
ships and static properties of nodes/relatinships, while dy-
namic properties of nodes/relationships is stored in another
component, referred to as DPS (Dynamic Properties Stor-
age). TGraph integrates Neo4j and DPS together to provide
a complete temporal graph data management system, and
its architecture is shown in Figure 1.
The Read/Write Manager detects read and write requests,

and passes them to the Transaction Manager with the ACID
transaction feature. The Store Manager manages the stor-
age of nodes, relationships, static and dynamic properties,
and the node and relationship dynamic properties are sep-
arately stored as two different DPS instances. We next ex-
plain the details of DPS and the transaction manager.

3.1 Dynamic Property Storage
In DPS (right side of Fig. 1), all data is first written into an

in-memory data structure MemTable. It is dumped to disks
when MemTable is full. DPS has three types of local files:
UnStableFile, StableFile and MetaFile. Both UnStableFile
and StableFile are data files to store dynamic properties.
MetaFile stores the metadata of DPS, including the names
of data files, and the valid time ranges of data files, which
is loaded into memory when the system is started.
UnStableFiles are used to save the most recent data. When

a MemTable is dumped to disks, a level 0 UnStableFile is
created. Then they can be merged into a level 1 UnSta-
bleFile, and so on. Level 4 UnStableFiles can be merged
into a StableFile. Each StableFile/UnStableFile covers a
valid time interval. Any two valid time intervals of Stable-
Files/UnStableFiles have no overlaps with each other. Dy-
namic properties stored in a file have their time fall into the
time interval of the file. The MetaFile is used to maintain
the name and valid time interval of each data file.
Data Format. StableFile and UnStableFile files have the
same format, and are divided into data and index segments.

(1) The data segment has a number of data blocks whose
sizes are set to 4KB by default, and are configurable. All
data of dynamic properties is stored in data blocks. The
system allocates a proid for a dynamic property when it is
created, to identify the dynamic property within a node or
a relationship. Logically, dynamic property data is stored
in a list of records. A record is a tuple (id, proid, t, value),
where id is the id of a node or a relationship, t is the valid
time and value is the value. Each record uses (id, proid, t)
as its key. As all records are stored in the ascending order
of their keys, each data block is associated with a range
of record keys. (2) The index segment stores the indexing
information of all data blocks.
Writes and Reads on Dynamic Properties. All write
operations (create, update and delete) must be logged in
the MemTable first. When the MemTable is full, its data
is dumped to disks, and TGraph decides whether to write a
data record into a newly created UnStableFile, or to insert
it into an existing StableFile or an UnStableFile, depending
on the valid time of the data record.

(1) The insert operation could cost lots of IOs as records
are ordered by their keys in a data file. Consider there is
an insertion to a StableFile sf . To reduce the insertion IO
cost, the system allocates a Buffer in memory for sf , and
all subsequent insertions to sf are inserted into the Buffer.
When the Buffer reaches 4MB (configurable), the system
merges it with sf . When an UnStableFile is merged with
another UnStableFile, their Buffers is merged as well. The
system also creates a BufferFile for each Buffer as its backup
in case the system crashes.

(2) For the update operation, consider a record to be up-
dated in MemTable. The system updates it in MemTable
directly. However, if it is in disks, the system transforms it
into an insert operation, and adds it to MemTable. When
MemTable is dumped to disks, it is added to the Buffer of
the target file, and the corresponding record is finally up-
dated during the merging process.

(3) The delete operation is similar to the update opera-
tion. The system does not delete the target record directly,
but labels the record with a deletion mark and adds it to the
Buffer of the target file, and the records with deletion marks
in the Buffer do not participate in any merging process.

(4) All user queries first read from MemTable, then from
a StableFile (or an UnStableFile) and its Buffer, and the
system itself chooses and returns the right answers.

3.2 Transaction Manager
TGraph uses Neo4j’s mechanism to ensure ACID guaran-

tee with one major improvement. First, Neo4j ensures the
ACID feature by the following. (1) Binding a transaction
with a thread and making uncommitted data as a private
member of the thread so that uncommitted data cannot be
accessed by other transactions. (2) Using read-write locks
on nodes/relationships to control concurrent accesses. So
writes on the same data are serialized. (3) Writing all the
modified data to the disk only at the commit stage of a trans-
action. So there will not be half-committed transaction. (4)
Using the write–ahead logging technique [8] to record all
operations in a transaction in case crash occurs.

Second, TGraph extends the resource lock of Neo4j to two
types of resource locks: one for nodes, relationships and
static properties, and the other for dynamic properties. The
former is the common read-write lock that uses a node or



relationship as the unit of a lock. The latter uses a dynamic
property as the unit of a lock. Unlike common read-write
locks, not all read operations are blocked by the write lock
on the same resource. For example, if a transaction updates
a dynamic property p at time t and holds a write lock of p,
and another transaction needs to read the value of p at time
t’, then the read transaction is not blocked if t’ < t.

4. DEMONSTRATION
We demonstrate TGraph by comparing its performance

with Neo4j and by introducing two use cases with details in
the Appendix. We use a real-life traffic dataset recording the
traffic of Beijing road network’s conditions within a period
of six months. The data contains nearly 110,000 roads such
that joints of roads are graph nodes, and roads are relation-
ships between nodes, which have four dynamic properties
(travel time, vehicle count, traffic condition, jammed seg-
ment count) whose values are updated every 5 minutes and
some static properties such as length and direction.
All experiments were conducted on a machine with 2 Intel

Xeon E5-2630 2.4GHz CPUs and 64 GB of Memory, running
a 64 bit Windows 7 Ultimate system.
(1) Performance Evaluation. We compare the perfor-
mance between TGraph and Neo4j to show the advantages
of TGraph’s performance in Figure 2. The reasons why we
chose Neo4j are its popularity and support of ACID trans-
actions, while other temporal graph management systems
rarely do. In Neo4j, we encode a dynamic property into an
integer array whose size is around 5MB, and store it as a
static property of a relationship since Neo4j supports the
array as the value type of a property.
Figure 2(a) shows the result of write operations. TGraph

makes 52,551 write operations per second on average, which
is 20 times faster than Neo4j (2,621/s). The write speed of
TGraph does not slow down as the write operation continues
while Neo4j decreases significantly.
Figures 2(b) and 2(c) show the results of time point and

time range queries. TGraph can finish more read operations
than Neo4j (12,500/s vs. 439/s and 10,858/s vs. 403/s for
time point and time range queries, respectively). That is
because Neo4j needs to load the entire array from disks for
any query covering this property. Note that the length of
an array becomes very large when the value of the dynamic
property changes frequently. However TGraph stores dy-
namic properties in DPS which is designed for storing fre-
quent changing properties.
Figure 2(d) shows the result of concurrent capacities. We

use a different number of threads to read or write randomly
from/to both systems. Every transaction only contains a
single operation, either read or write. We let each trans-
action sleep for 10ms to replace the cost of system IO to
see the improvement of the transaction manager in TGraph
without the disturbance of the differences between the stor-
age methods of the two systems. The concurrent capacity
of TGraph transaction manager is 1.13 times better than the
one of Neo4j, mainly because the resources lock of TGraph
is optimized for read/write operations of temporal graphs.
(2) Use Cases. We further demonstrate TGraph by build-
ing a traffic data management system on top of TGraph, by
making use of TGraph APIs. The system supports historical
traffic condition queries, historical traffic condition aggre-
gate queries, and temporal shortest path queries. All these
capacities are supported by TGraph’s time point and time

Figure 2: Performance comparison: TGraph vs. Neo4j.

range query abilities. The interface of TGraph is shown in
the Appendix, with an example on how to use its APIs.

5. CONCLUSIONS
We have introduced TGraph for managing temporal graphs

whose structures barely change, but the associated prop-
erties change frequently. TGraph has been equipped with
DPS, a fast and effective storage to maintain the dynamic
properties of temporal graph data, and a transaction man-
ager to ensure the ACID transaction feature for temporal
graph data. Experiments on real traffic data have shown
that TGraph is more suitable to manage temporal graph
data than Neo4j, and, moreover, we have also illustrated
use cases on how to utilize TGraph to develop applications.
Acknowledgment This work is supported in part by 973
program (2014CB340300), NSFC (61322207&61421003), Spe-
cial Funds of Beijing Municipal Science & Technology Com-
mission, and MSRA Collaborative Research Program. For
any correspondence, please refer to Shuai Ma.

6. REFERENCES
[1] S. E. Dreyfus. An appraisal of some shortest-path

algorithms. Operations Research, 17(3):395–412, 1969.
[2] P. Holme and J. Saramäki. Temporal networks. Physics

reports, 519(3):97–125, 2012.
[3] U. Khurana and A. Deshpande. Efficient snapshot retrieval

over historical graph data. In ICDE, 2013.
[4] A. G. Labouseur, P. W. Olsen, and J.-H. Hwang. Scalable

and robust management of dynamic graph data. In
BD3@VLDB, 2013.

[5] S. Ma, J. Li, C. Hu, X. Lin, and J. Huai. Big graph search:
challenges and techniques. FCS, 10(3):387–397, 2016.

[6] Neo4j. http://neo4j.com/.

[7] G. Özsoyoğlu and R. T. Snodgrass. Temporal and real-time
databases: A survey. TKDE, 7(4):513–532, 1995.

[8] R. Ramakrishnan and J. Gehrke. Database management
systems. Osborne/McGraw-Hill, 2000.

[9] Titan. http://thinkaurelius.github.io/titan/.
[10] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. Path

problems in temporal graphs. PVLDB, 7(9):721–732, 2014.



APPENDIX
A. TRAFFIC DATA MANAGEMENT SYSTEM

Figure 3: User interface of a traffic data management system

An Example Program of TGraph
1. GraphService service = new GraphService(...);
2. Transaction tx = service.beginTx();
3. Node tom = service.getNodes(“name”, “tom”).get(0);
4. tom.setDynProperty(“work place”,

“2016/1/01”, “Google”);
5. tom.setDynProperty(“salary”, “2016/1/01”, 20000);
6. tx.sucess();
7. tx.close();
8. · · ·
9. tx = service.beginTx();
10. tom.getDynProperty(“work place”, “2016/1/01”);
11. tom.getDynPropertyMax(“salary”,

“2016/1/01”, “2016/6/01”);
12. tx.success();
13. tx.close().

Table 1: An Example Program of TGraph

Figure 3 is the user interface of traffic data management
system built on top of TGraph, using Gephi (https://gephi.org).
It has two major areas. (1) Area 1 is the control panel from
where users choose the type of queries, and set the condi-
tions of queries, and (2) road network topologies and query
answers are shown at area 2, which supports zoomIn and
zoomOut commands to present different levels of network
details.
If a user wants to query the traffic situation at a history

time point, the user needs to set the time point at area 1 and
to trigger the query. The system then sends the query to
TGraph and shows the corresponding results returned from
TGraph on the road network.
If a user wants to find a temporal shortest path between

two nodes, the user needs to select a start node and an end
node by clicking them at area 2, and sets a departure time
at area 1. The system runs a time-dependent generalized
Dijkstra algorithm [1] to compute a path with the earliest
arrival time, and highlights the resulting path at area 2.
Figure 4 is an example that tells the temporal shortest

pathes between two nodes at different departure time. Fig-
ure 4(a) illustrates the path, departed at 1:05 am, recom-
mended by TGraph, which is indeed the same as the shortest

(a) Temporal shortest path departing at 1:05 am

(b) Temporal shortest path departing at 8:05 am

Figure 4: Temporal shortest path queries: given the same
two nodes with the different departure time, return two dif-
ferent pathes.

distance path since all traffic conditions are smooth during
that time; Figure 4(b) illustrates the recommended path de-
parted at 8:05 am in the traffic peak time, and the system
returns a different path that avoids jammed roads.

B. PROGRAMMING WITH TGRAPH APIS
TGraph provides a full package of operations to write and

query both static and dynamic graph data, and to assure
ACID transactions.

An example program is provided in Table 1. The pro-
gram first initializes the TGraph service (line 1), and starts
a transaction to find the first node whose “name” property
is “tom” (lines 2, 3). Then it sets the property “work place”
of the node “tom” to “Google” on date “2016/1/01”, and the
salary of “tom” to “20000” on date “2016/1/01” (lines 4, 5).
After that, it closes the transaction (lines 6, 7). (3) Finally,
it starts a new transaction to query information from those
modifications (line 9). It finds the “work place” of “tom”
on date “2016/1/01” (line 10), and the max salary of “tom”
from dates “2016/1/01” to “2016/6/01” (line 11).


