
MRPacker: An SQL to MapReduce Optimizer

Xuelian Lin, Yue Ye, Shuai Ma*
SKLSDE Lab, Beihang University, China

{linxl, yeyue, mashuai}@act.buaa.edu.cn

ABSTRACT
There have been recently quite a few works on optimizing the

MapReduce execution plans, which either optimize the join

operators or apply a set of translation rules to reduce the number

of MapReduce jobs in an execution plan. However, none of these

works has put into consideration and utilized how MapReduce

jobs are generated and combined. To further improve the

efficiency of MapReduce execution plans, we incorporate into our

optimization approach the way how MapReduce jobs are

generated and combined. In this paper, we propose MRPacker, a

novel SQL-to-MapReduce optimizer by (a) using a set of

transformation rules to reduce the number of MapReduce jobs,

and (b) merging MapReduce jobs in a more reasonable way. We

have finally experimentally demonstrated the effectiveness and

efficiency of MRPacker, using the TPC-H benchmark.

Categories and Subject Descriptors

H.2.4 [DATABASE MANAGEMENT]: Systems—Query

processing

General Terms

Algorithms, Performance, Design.

Keywords

SQL, MapReduce, Translator, Optimizer

1. INTRODUCTION
MapReduce [1], together with its open-source implementation

Hadoop [2], has been widely adopted in many practical data

processing applications. In the early days when MapReduce was

initially developed, programmers implemented their data

processing tasks in MapReduce with an explicitly hand coding of

the map and reduce functions. Although this provides a high

flexibility for programmers, it increases the difficulty for program

debugging [3] and restricts its usages to sophisticated developers

only. Further, many data analysts prefer SQL-like declarative

languages. This need drives the development of several SQL-like

declarative languages, e.g., Pig Latin [6], HiveQL/Hive [7] and

Tenzing [4]. These High Level Query Languages (HLQLs) have

already played a more important role than hand-coded programs

in MapReduce [5] since they can greatly simplify the efforts of

application developments by reducing hand-coded programs in

MapReduce.

Normally, programs written with HLQL are compiled as query

plans [12], and then an SQL-to-MapReduce translator parses each

query plan into an execution plan, i.e., a sequence of MapReduce

jobs. However, it has been observed that the translated

MapReduce jobs are often extremely inefficient in practice,

compared with the MapReduce jobs programmed by experienced

programmers [9]. Furthermore, programs generated from the

inefficient SQL-to-MapReduce translators would create many

inefficient jobs or even unnecessary jobs [5], which results in a

serious waste of computer cluster resources.

There have been recently quite a few works [5, 9, 10] that focus

on optimizing the MapReduce execution plans. They either

optimize the join operators [9, 10] or apply a set of translation

rules to reduce the number of MapReduce jobs in an execution

plan [5]. However, we found in practice and experimentally that

not only the number of MapReduce jobs of execution plans, but

also the way how MapReduce jobs are generated (a query

operation in a query plan may be bind into the map or reduce

function when it is converted into a MapReduce job by some

SQL-to-MapReduce translator) and the way how MapReduce jobs

are combined (it is typically common that different translators

may allow or restrict different job combinations. For instance, a

translator may merge a MapReduce job with its preceding or

subsequent MapReduce job) could have a big impact on the

efficiency of MapReduce execution plans.

Contributions. To further improve the efficiency of MapReduce

execution plans, we incorporate the way how MapReduce jobs are

generated and combined into our optimization approach. More

specifically, we design a new SQL-to-MapReduce optimizer, i.e.

MRPacker, which significantly improves the efficiency of

MapReduce tasks, by (a) using a set of transformation rules to

reduce the number of MapReduce jobs, and (b) merging

MapReduce jobs in a more reasonable way. Experimental results

over the TPC-H benchmark [11] have justified the effectiveness

and efficiency of MRPacker. For instance, it reduces 30-45% and

7-18% cost than the Hive Translator and YSmart optimizer,

respectively, for the TPC-H Q17 query.

2. PRELIMINARY
We first present the basic notions to be used.

Query operations. HLQLs, such as Hive [7], Pig [6], Tenzing [4],

etc., implement a subset of query operations supported in SQL

DML. These operations can be divided into three groups in the

context of big data processing: (1) relation operations, including

Project(π), Selection(σ), Join(), Intersect(∩), Difference(-) and

Union(U); (2) aggregation operations, including Sum, Count,

Max, Min, Average and Distinct; and (3) Order and Group

operations.

Query plans. A Query plan is defined as a directed acyclic graph

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CIKM'13, October 27 - November 01 2013, San Francisco, CA, USA

Copyright 2013 ACM 978-1-4503-2263-8/13/10…$15.00.

http://dx.doi.org/10.1145/2505515.2507813

(DAG), Q(V, E), where (1) V is a finite set of vertexes, in which u

belongs to ΣO, and denotes a query operation; (2) E ⊆ V × V is a

finite set of edges, in which (u, v) denotes a data stream from

vertex u to vertex v. Here ΣO is the set of all query operations.

A query plan is converted to an execution plan, which will be

transferred to the MapReduce platform to be executed.

Query operations in MapReduce (MRO). A MapReduce job that

implements a set of query operations is called MRO.

Execution plan (MRQ). An execution plan implemented as

MapReduce jobs (execution plan for short) is defined as a DAG,

MRQ(J, D), where (1) J⊂ ΣMRO is a finite set of vertexes, in which

u belongs to J, and denotes a MapReduce Job; (2) D ⊆ J×J is a

finite set of edges, in which (u, v) denotes a data stream from

vertex u to vertex v. Here ΣMRO is a set of MROs

Let ΣMRO0 be a set of MapReduce jobs and each job implements

only one query operation, and function f is the one-to-one-

mapping from ΣO to ΣMRO0.

Initial execution plan (MRQ0). The initial execution plan,

denoted as MRQ0 (J0, D0), is the one to one mapping from Q (V, E)

to an MRO such that (1) ∀v∈V, ∃u∈J0∧u = f(v); (2) ∀ (u,

v)∈E, ∃u’,v’∈J0∧(u’, v’) ∈D0.

Equivalent execution plans. For any input, if MRQi and MRQj

always have the equivalent output, then MRQi and MRQj are

called equivalent execution plans, denoted by MRQi ↔ MRQj.

Execution plan set (MRQ*). Given a query plan Q, MRQ0 is the

initial execution plan of Q, the execution plan set is defined as

MRQ* = {MRQ | MRQ ↔ MRQ0}.

Cost of MRQ. Given an execution plan, MRQ (J, D), and C is the

cost function, the cost of MRQ is defined as C(MRQ) = Σu∈JC(u).

Lowest cost execution plan (MRQL).A MRQ is an execution plan

with the lowest cost, named MRQL, iff ∀MRQ∈MRQ*,

C(MRQL)≤ C(MRQ).

3. MRPACKER
We aim at finding out the lowest cost execution plan for a

MapReduce query plan. As a query plan can be directly mapped

to an initial execution plan, the challenge is how to find out an

equivalent execution plan with the lowest cost. For this target, we

focus on two sub-problems: (1) to incorporate the ways of

generating and combining MapReduce jobs as well as to reduce

the number of jobs in an execution plan, so as to produce a larger

space of possible equivalent execution plans; and (2) to estimate

the cost of execution plans with an cost model, so as to pick out

the lowest cost execution plan MRQL.

To find out the MRQL, we have implemented MRPacker, a

novel SQL-to-MapReduce optimizer. MRPacker first directly

maps a MRQ into the MRQ0. Then it transforms the MRQ0 to

equivalent MRQs by using a set of transformation rules. Finally

MRPacker identifies the MRQL with an enumeration algorithm.

3.1 Map MRQ to the MRQ0
Process. The map function or reduce function of MapReduce is

defined as a process, denoting a set of operations over the input

key-value pairs.

Shuffle. The partition, sort and shuffle in MapReduce is defined

as shuffle = (pk, sort), where (1) pk = k1k2k3…kn is the partition

key; and (2) sort = T | F denotes whether the output of map is

sorted (T) or not (F), and the default value is false (F).

An MRO is defined as a triple (map, shuffle, reduce), where (1)

map∈ΣP denotes the Map process of MapReduce; (2) shuffle∈ΣS

denotes the Shuffle process of MapReduce; and (3) reduce∈ΣP

denotes the Reduce process of MapReduce. Here ΣP is a set of

processes, and ΣS is a set of shuffles.

An MRO can implement multiple query operations. However,

given a query plan, MRPacker will first directly map each query

operation of the query plan into an MRO0. In Table 1, there is a

list of MRO0s, and each MRO0 implements only one query

operation. MRO0 has the form of (map, ,), (, shuffle,), or (,

shuffle, reduce).

Table 1. Mapping Query Operations to MRO0s

Symbol Operations MRO0 Description

SPJ

σ Selection (σ, ,) Map only,

empty

shuffle and

reduce

π Project (π, ,)

n Nested-Loop-Join (n, ,)

h Hash- Join (, (pk,F), h) Empty map

s Sort-Merge-Join (, (pk,T), s)

∩ Intersection (, (pk,T), ∩)

- Difference (, (pk,T), -)

Order and Group

grp Group (, (pk, F),) Shuffle only,

empty map

and reduce
ord Order (, (pk, T),)

Aggregation

sum Sum (, (pk, F), sum) Empty map

count Count (, (pk,F), count)

avg Average (, (pk, F), avg)

MROs are further divided in to two classes according to their

operation types implemented:

(1) MR_SPJ. An MRO that implements query operations except

the aggregation operations is called an MR_SPJ.

(2) MR_SPJE. An MRO that includes aggregation operations is

called an MR_SPJE.

If an MR_SPJ has the form of (map, ,), then this MR_SPJ is

also called an MR_SP. The typical MR_SP is an MRO that

implements Selection, Project, Nested-Loop-Join or a

composition of these operations. MR_SPs will greatly increase the

ways of generating and combining MROs.

3.2 Deduce Equivalent MRQs
An MRQ can be transformed into equivalent MRQs by

MRPacker using a set of transformation rules when some

conditions are satisfied. That is, two jobs can be merged into one

MapReduce job if and only if one of them is the unique successor

of the other, and they are partition compatible, i.e., both jobs have

the same partition key or the partition key of one job is null.

3.2.1 Using Standard Translation Rules
For MR_SPJ and MR_SPJE, their combinations have four

types: (MR_SPJ, MR_SPJ), (MR_SPJ, MR_SPJE), (MR_SPJE,

MR_SPJ) and (MR_SPJE, MR_SPJE). MRPacker defines two

standard rules, namely Rule 1 and Rule 2, for these combinations.

Rule 1 and Rule 2 are called standard rules because they simply

combine two MapReduce jobs in a conventional way, i.e. map to

map and reduce to reduce.

Rule 1: If u is an MR_SPJ, v is an MR_SPJ or MR_SPJE, then u

+ v = (mapu + mapv, shuffleu + shufflev, reduceu + reducev).

Rule 2: If u is an MR_SPJE, v is an MR_SPJ or MR_SPJE, then

u + v = (mapu + mapv1, shuffleu + shufflev, reduceu + mapv2 +

reducev), where (1) mapv1 + mapv2 = mapv; (2) data fields

(columns) processed by mapv1 are disjoint with the fields

(columns) processed by any aggregation operations of u.

3.2.2 Using Extended Translation Rules
As an MR_SP is a special MR_SPJ, there are five kinds of

special combinations of MROs: (MR_SP, MR_SP), (MR_SP,

MR_SPJ), (MR_SP, MR_SPJE), (MR_SPJ, MR_SP) and

(MR_SPJE, MR_SP). MRPacker also defines three extended rules,

namely Rules 3-5, for these five combinations. Rules 3-5 merge

map of one MRO with reduce of another MRO, which increases

the ways of combination and may be helpful to reduce the cost of

execution plans.

Rule 3: If u is an MR_SP, and v is an MR_SPJ or MR_SPJE,

then u + v = (mapv, shufflev, mapu + reducev).

Rule 4: If u is an MR_SPJ or MR_SPJE, and v is an MR_SP,

then u + v = (mapu, shuffleu, reduceu + mapv).

Rule 5: If u and v are both MR_SPs, then u + v = (, , mapu +

mapv).

If u and v are both MR_SPJ and MR_SPJE, MRPacker doesn’t

define any extended rules to combine them, because any special

combination of them can be achieved by using Rules 1-2 together

with Rules 3-5 in the context that query operations are mapped to

MRO0s in the ways listed in Table 1.

3.2.3 Completeness and Correctness
MRPacker can find out all equivalent execution plans of MRQ0

that mapped from a query plan as the way shown in Table 1. As

MRO has three classes, i.e. MR_SP, MR_SPJ and MR_SPJE,

there are totally nine kinds of combinations of any two MROs:

(MR_SPJ, MR_SPJ), (MR_SPJ, MR_SPJE), (MR_SPJE,

MR_SPJ), (MR_SPJE, MR_SPJE), (MR_SP, MR_SP), (MR_SP,

MR_SPJ), (MR_SP, MR_SPJE), (MR_SPJ, MR_SP) and

(MR_SPJE, MR_SP). MRPacker uses the five transformation

rules to cover all combinations of MROs for getting all equivalent

execution plans.

3.3 Picking out the MRQL
MRPacker refers to a Hadoop MapReduce performance model

[8] to calculate the costs of MROs and MRQs, and it relies on an

enumeration algorithm to find out the MRQL from the equivalent

execution plan set.

The enumeration algorithm (see Figure 1) is an exhaustive

algorithm. It first takes MRQ0 as the initial state (lines 1-3). Then

it applies an arbitrary rule on any ledge (u, v) of MRQ to get

MRQ' (lines 5-8), uses the cost model [8] to calculate the cost of

each MRQ (line 9), and compares costs and finds out the MRQL

(line 10). The above process is repeated until it has exhausted all

equivalent MRQs of the MRO0 (lines 4, 11).

Figure 1. Enumeration Algorithm of MRPacker

4. EXPERIMENTAL STUDY
We have designed a set of experiments to show the efficiency

and effectiveness of MRPacker. These experiments are designed

to compare MRPacker with Hive [7] translator and YSmart [5],

another two important SQL-to-MapReduce translators, to show

the benefits and advantages of MRPacker.

All of the experiments are executed over data generated by the

database performance benchmark tool TPC-H [11], and we use

two data tables created by the tool: lineitem and part. Also, all

experiments are run in a cluster of 10 computing nodes with

detailed configuration shown in Table 2.

Table 2. Cluster Configuration

CPU Intel© Core(TM)

i7,860@2.80GHz

OS Linux 2.6.26-2-

amd64 #1 SMP

Memory 16G Hadoop 0.23.3

Disk 1T Hive 0.9.0

Ethernet 1Gbps Nodes 10

4.1 Compare MRPacker with other Optimizers
In these experiments, we compare MRPacker with Hive

translator and YSmart. We restate the original TPC-H Q17 query

written in SQL to an equivalent query written in HiveQL [7],

denoted by TPC-H Q17'. We then use Hive translator, YSmart

and MRPacker to generate execution plans, respectively.

For the Hive Translator and YSmart, the Nested-Loop-Join will

be fixed in the map phase (see Figure 2), while MRPacker may

place it into either map phase (see Figure 2.b) or reduce phase

(see Figure 2.c) according to the costs of execution plans, so as to

generate the lowest cost execution plan.

Input: MRQ0

Output: MRQL

1: Calculate costs of MROs in MRQ0;

2: MRQL := MRQ0;

3: stack.Push (MRQ0);

4: While (stack.hasNode())

5: MRQ := stack.pop();

6: For ∀ (u,v) ∈ MRQ.D, ∀rule ∈ rules

7: If rule.applicable for (u,v) then

8: MRQ’ := rule.transformation(MRQ, u, v) ;

9: Update costs of MROs in MRQ’;

10: If (MRQ’.cost< MRQL.cost) then MRQL := MRQ’;

11: stack.push(MRQ’) ;

12: Return MRQL;

We execute execution plans generated by these translators, and

compare their execution time. Figure 3 shows the execution time

of TPC-H Q17’ under these translators, where α and β are row

selectivity and column selectivity of the nest-loop-join operation.

(1) When α=2 and β=1.94, the execution time of the execution

plan generated by MRPacker is about 43% and 18% shorter than

that of Hive translator and that of YSmart, respectively. (2) When

α=1 and β=1.88, the execution time of the execution plan

generated by MRPacker is about 35% and 7% shorter than that of

Hive translator and that of YSmart, respectively. (3) When α=0.91

and β=1.89, the execution time of the execution plan generated by

MRPacker is about 40% and 15% shorter than that of Hive

translator and that of YSmart, respectively. (4) When α=2 and

β=0.82, the execution time of the execution plan generated by

MRPacker is about 40% and 13% shorter than that of Hive

translator and that of YSmart, respectively.

 Figure 2. Execution Plans of TPC-H Q17’

(a) (α=2, β=1.94) (b) (α=1, β=1.88)

(c) (α=0.91, β=1.89) (d) (α=2, β=0.82)

Figure 3. Execution Time of TPC-H Q17’

Our experiments indicate that MRPacker typically is no worse

than the Hive translator and YSmart, and in cases when MR_SPs

have certain data selectivity (e.g., when (α=2, β=0.82), (α=0.91,

β=1.89) and (α>1, β>1)), MRPacker indeed has a much better

efficiency than the Hive translator and YSmart.

5. RELATED WORK
Optimizing query executions in a MapReduce environment is

very challenging, comparing with query optimization in relational

systems [12], since the unique programming model of

MapReduce typically causes new transformation rules and new

cost models for optimizing a query execution. Many efforts have

been done on improving the query performance in MapReduce.

AQUA [9] parses users’ queries into a join graph and groups

the join operators so as to be evaluated by a single MapReduce

job. [10] studies multi-way (natural) joins that join multiple

relations in a single map-reduce. YSmart [5] provides a

correlation aware SQL-to-MapReduce translator to reduce

redundant computations, I/O operations and network transfers. It

applies a set of rules to use the minimal number of MapReduce

jobs to execute multiple correlated operations in a complex query.

These projects are SQL-to-MapReduce translations and

optimizations. However, they mainly focus on reducing the

number of MapReduce jobs in an execution plan, while they

ignore the way how MapReduce jobs are generated or combined.

6. CONCLUSION AND FUTURE WORK
MapReduce applications developed with High Level Query

Languages are compiled as query plans, and then each query plan

is translated to an execution plan of MapReduce jobs by certain

SQL-to-MapReduce translator. This paper introduces MRPacker,

a new SQL-to-MapReduce optimizer that considers both the

number of MapReduce jobs and the ways how MapReduce jobs

are combined, to generate an execution plan with a lower cost. We

are revising our enumeration algorithm for MRPacker to further

improve the performance.

ACKNOWLEDGMENTS. Shuai is a contact author; Xuelian

and Shuai are supported in part by NGFR 973 grant

2014CB340304 and 863 grant 2011AA01A202, NSTMP grant

2012ZX01039001, and SKLSDE grant SKLSDE-2012ZX-08.

7. REFERENCE
[1] J.Dean and S.Ghemawat. MapReduce: Simplified data processing

on large cluster. In OSDI (2004).

[2] Hadoop, website: http://hadoop.apache.org/.

[3] J.Tan, S.Kavulya, R.Gandhi and P.Narasimhan. Visual, log-based

causal tracing for performance debugging of mapreduce systems. In

ICDCS (2010).

[4] B.Chattopadhyay, et al. Tenzing: A SQL Implementation on the

MapReduce Framework. In PVLDB 4(12): 1318-1327 (2011).

[5] R.Lee, T.Luo, Y.Huai, F.Wang, Y.He and X.Zhang. YSmart: Yet

Another SQL-to-MapReduce Translator. In ICDCS (2011).

[6] A.Gates, et al. Building a high level dataflow system on top of

MapReduce: The Pig experience. In PVLDB 2(2): 1414-1425 (2009).

[7] A.Thusoo, et al. Hive - a warehousing solution over a Map-Reduce

framework. In PVLDB 2(2): 1626–1629 (2009).

[8] X.Lin, Z.Meng, C. Xu and M.Wang. A Practical Performance Model

for Hadoop MapReduce. In ClusterW (2012).

[9] S.Wu, F.Li, S.Mehrotra and B.C.Ooi. Query Optimization for

Massively Parallel Data Processing. In SOCC (2011).

[10] F.N.Afrati and J.D.Ullman. Optimizing joins in a Map-Reduce

environment. In EDBT (2010).

[11] TPC-H, website: http://www.tpc.org/tpch/default.asp.

[12] S.Chaudhuri. An overview of query optimization in relational

systems. In PODS (1998).

π

Aggr

h
σ

(a) Hive

π

σ

Aggr

lineitem

n

σ

Part

π

Aggr h

σ

(b) YSmart/MRPacker

n

π σ

Aggr

lineitem

σ

Part

π

Aggr

h

σ

(c) MRPacker

n

σ

Aggr

lineitem

π

σ

Part

Legend Reduce

Map
Stream Operator

http://www.tpc.org/tpch/default.asp

