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ABSTRACT 
There have been recently quite a few works on optimizing the 

MapReduce execution plans, which either optimize the join 

operators or apply a set of translation rules to reduce the number 

of MapReduce jobs in an execution plan. However, none of these 

works has put into consideration and utilized how MapReduce 

jobs are generated and combined. To further improve the 

efficiency of MapReduce execution plans, we incorporate into our 

optimization approach the way how MapReduce jobs are 

generated and combined. In this paper, we propose MRPacker, a 

novel SQL-to-MapReduce optimizer by (a) using a set of 

transformation rules to reduce the number of MapReduce jobs, 

and (b) merging MapReduce jobs in a more reasonable way. We 

have finally experimentally demonstrated the effectiveness and 

efficiency of MRPacker, using the TPC-H benchmark.  
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1. INTRODUCTION 
MapReduce [1], together with its open-source implementation 

Hadoop [2], has been widely adopted in many practical data 

processing applications. In the early days when MapReduce was 

initially developed, programmers implemented their data 

processing tasks in MapReduce with an explicitly hand coding of 

the map and reduce functions. Although this provides a high 

flexibility for programmers, it increases the difficulty for program 

debugging [3] and restricts its usages to sophisticated developers 

only. Further, many data analysts prefer SQL-like declarative 

languages. This need drives the development of several SQL-like 

declarative languages, e.g., Pig Latin [6], HiveQL/Hive [7] and 

Tenzing [4]. These High Level Query Languages (HLQLs) have 

already played a more important role than hand-coded programs 

in MapReduce [5] since they can greatly simplify the efforts of 

application developments by reducing hand-coded programs in 

MapReduce.  

Normally, programs written with HLQL are compiled as query 

plans [12], and then an SQL-to-MapReduce translator parses each 

query plan into an execution plan, i.e., a sequence of MapReduce 

jobs. However, it has been observed that the translated 

MapReduce jobs are often extremely inefficient in practice, 

compared with the MapReduce jobs programmed by experienced 

programmers [9]. Furthermore, programs generated from the 

inefficient SQL-to-MapReduce translators would create many 

inefficient jobs or even unnecessary jobs [5], which results in a 

serious waste of computer cluster resources.  

There have been recently quite a few works [5, 9, 10] that focus 

on optimizing the MapReduce execution plans. They either 

optimize the join operators [9, 10] or apply a set of translation 

rules to reduce the number of MapReduce jobs in an execution 

plan [5]. However, we found in practice and experimentally that 

not only the number of MapReduce jobs of execution plans, but 

also the way how MapReduce jobs are generated (a query 

operation in a query plan may be bind into the map or reduce 

function when it is converted into a MapReduce job by some 

SQL-to-MapReduce translator) and the way how MapReduce jobs 

are combined (it is typically common that different translators 

may allow or restrict different job combinations. For instance, a 

translator may merge a MapReduce job with its preceding or 

subsequent MapReduce job) could have a big impact on the 

efficiency of MapReduce execution plans. 

Contributions. To further improve the efficiency of MapReduce 

execution plans, we incorporate the way how MapReduce jobs are 

generated and combined into our optimization approach. More 

specifically, we design a new SQL-to-MapReduce optimizer, i.e. 

MRPacker, which significantly improves the efficiency of 

MapReduce tasks, by (a) using a set of transformation rules to 

reduce the number of MapReduce jobs, and (b) merging 

MapReduce jobs in a more reasonable way. Experimental results 

over the TPC-H benchmark [11] have justified the effectiveness 

and efficiency of MRPacker. For instance, it reduces 30-45% and 

7-18% cost than the Hive Translator and YSmart optimizer, 

respectively, for the TPC-H Q17 query. 

2. PRELIMINARY 
We first present the basic notions to be used. 

Query operations. HLQLs, such as Hive [7], Pig [6], Tenzing [4], 

etc., implement a subset of query operations supported in SQL 

DML. These operations can be divided into three groups in the 

context of big data processing: (1) relation operations, including 

Project(π), Selection(σ), Join( ), Intersect(∩), Difference(-) and 

Union(U); (2) aggregation operations, including Sum, Count, 

Max, Min, Average and Distinct; and (3) Order and Group 

operations. 

Query plans. A Query plan is defined as a directed acyclic graph 
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(DAG), Q(V, E),  where (1) V is a finite set of vertexes, in which u 

belongs to ΣO,  and denotes a query operation; (2) E ⊆ V × V is a 

finite set of edges, in which (u, v) denotes a data stream from 

vertex u to vertex v. Here ΣO is the set of all query operations. 

A query plan is converted to an execution plan, which will be 

transferred to the MapReduce platform to be executed. 

Query operations in MapReduce (MRO). A MapReduce job that 

implements a set of query operations is called MRO. 

Execution plan (MRQ). An execution plan implemented as 

MapReduce jobs (execution plan for short) is defined as a DAG, 

MRQ(J, D), where (1) J⊂ ΣMRO is a finite set of vertexes, in which 

u belongs to J, and denotes a MapReduce Job; (2) D ⊆ J×J is a 

finite set of edges, in which (u, v) denotes a data stream from 

vertex u to vertex v. Here ΣMRO is a set of MROs 

Let ΣMRO0 be a set of MapReduce jobs and each job implements 

only one query operation, and function f is the one-to-one-

mapping from ΣO to ΣMRO0. 

Initial execution plan (MRQ0). The initial execution plan, 

denoted as MRQ0 (J0, D0), is the one to one mapping from Q (V, E) 

to an MRO such that (1) ∀v∈V, ∃u∈J0∧u = f(v); (2) ∀ (u, 

v)∈E, ∃u’,v’∈J0∧(u’, v’) ∈D0.    

Equivalent execution plans. For any input, if MRQi and MRQj 

always have the equivalent output, then MRQi and MRQj are 

called equivalent execution plans, denoted by MRQi ↔ MRQj. 

Execution plan set (MRQ*). Given a query plan Q, MRQ0 is the 

initial execution plan of Q, the execution plan set is defined as 

MRQ* = {MRQ | MRQ ↔ MRQ0}. 

Cost of MRQ. Given an execution plan, MRQ (J, D), and C is the 

cost function, the cost of MRQ is defined as C(MRQ)  = Σu∈JC(u).  

Lowest cost execution plan (MRQL).A MRQ is an execution plan 

with the lowest cost, named MRQL, iff ∀MRQ∈MRQ*, 

C(MRQL)≤ C(MRQ). 

3. MRPACKER 
We aim at finding out the lowest cost execution plan for a 

MapReduce query plan. As a query plan can be directly mapped 

to an initial execution plan, the challenge is how to find out an 

equivalent execution plan with the lowest cost. For this target, we 

focus on two sub-problems: (1) to incorporate the ways of 

generating and combining MapReduce jobs as well as to reduce 

the number of jobs in an execution plan, so as to produce a larger 

space of possible equivalent execution plans; and (2) to estimate 

the cost of execution plans with an cost model, so as to pick out 

the lowest cost execution plan MRQL. 

To find out the MRQL, we have implemented MRPacker, a 

novel SQL-to-MapReduce optimizer. MRPacker first directly 

maps a MRQ into the MRQ0. Then it transforms the MRQ0 to 

equivalent MRQs by using a set of transformation rules. Finally 

MRPacker identifies the MRQL with an enumeration algorithm.   

3.1 Map MRQ to the MRQ0 
Process. The map function or reduce function of MapReduce is 

defined as a process, denoting a set of operations over the input 

key-value pairs. 

Shuffle. The partition, sort and shuffle in MapReduce is defined 

as shuffle = (pk, sort), where (1) pk = k1k2k3…kn is the partition 

key; and (2) sort = T | F denotes whether the output of map is 

sorted (T) or not (F), and the default value is false (F). 

An MRO is defined as a triple (map, shuffle, reduce), where (1) 

map∈ΣP denotes the Map process of MapReduce; (2) shuffle∈ΣS 

denotes the Shuffle process of MapReduce; and (3) reduce∈ΣP 

denotes the Reduce process of MapReduce. Here ΣP is a set of 

processes, and ΣS is a set of shuffles. 

An MRO can implement multiple query operations. However, 

given a query plan, MRPacker will first directly map each query 

operation of the query plan into an MRO0. In Table 1, there is a 

list of MRO0s, and each MRO0 implements only one query 

operation. MRO0 has the form of (map, ,), ( , shuffle, ), or ( , 

shuffle, reduce).  

Table 1.  Mapping Query Operations to MRO0s 

Symbol Operations  MRO0 Description 

SPJ 

σ Selection (σ, ,)  Map only, 

empty 

shuffle and  

reduce 

π Project (π, ,) 

n Nested-Loop-Join ( n, ,) 

h Hash- Join (, (pk,F), h) Empty map 

s Sort-Merge-Join (, (pk,T), s) 

∩ Intersection (, (pk,T), ∩) 

- Difference (, (pk,T), -) 

Order and Group 

grp Group (, (pk, F), ) Shuffle only, 

empty map 

and reduce 
ord Order (, (pk, T), ) 

Aggregation 

sum Sum (, (pk, F), sum) Empty map 

count Count (, (pk,F), count) 

avg Average (, (pk, F), avg) 

MROs are further divided in to two classes according to their 

operation types implemented: 

(1) MR_SPJ. An MRO that implements query operations except 

the aggregation operations is called an MR_SPJ. 

(2) MR_SPJE. An MRO that includes aggregation operations is 

called an MR_SPJE.  

If an MR_SPJ has the form of (map, ,), then this MR_SPJ is 

also called an MR_SP. The typical MR_SP is an MRO that 

implements Selection, Project, Nested-Loop-Join or a 

composition of these operations. MR_SPs will greatly increase the 

ways of generating and combining MROs. 

3.2 Deduce Equivalent MRQs 
An MRQ can be transformed into equivalent MRQs by 

MRPacker using a set of transformation rules when some 

conditions are satisfied. That is, two jobs can be merged into one 

MapReduce job if and only if one of them is the unique successor 



of the other, and they are partition compatible, i.e., both jobs have 

the same partition key or the partition key of one job is null. 

3.2.1 Using Standard Translation Rules 
For MR_SPJ and MR_SPJE, their combinations have four 

types: (MR_SPJ, MR_SPJ), (MR_SPJ, MR_SPJE), (MR_SPJE, 

MR_SPJ) and (MR_SPJE, MR_SPJE). MRPacker defines two 

standard rules, namely Rule 1 and Rule 2, for these combinations. 

Rule 1 and Rule 2 are called standard rules because they simply 

combine two MapReduce jobs in a conventional way, i.e. map to 

map and reduce to reduce. 

Rule 1: If u is an MR_SPJ, v is an MR_SPJ or MR_SPJE, then u 

+ v = (mapu + mapv, shuffleu + shufflev, reduceu + reducev).  

Rule 2: If u is an MR_SPJE, v is an MR_SPJ or MR_SPJE, then 

u + v = (mapu + mapv1, shuffleu + shufflev, reduceu + mapv2 + 

reducev), where (1) mapv1 + mapv2 = mapv; (2) data fields 

(columns) processed by mapv1 are disjoint with the fields 

(columns) processed by any aggregation operations of u.  

3.2.2 Using Extended Translation Rules 
As an MR_SP is a special MR_SPJ, there are five kinds of 

special combinations of MROs: (MR_SP, MR_SP), (MR_SP, 

MR_SPJ), (MR_SP, MR_SPJE), (MR_SPJ, MR_SP) and 

(MR_SPJE, MR_SP). MRPacker also defines three extended rules, 

namely Rules 3-5, for these five combinations. Rules 3-5 merge 

map of one MRO with reduce of another MRO, which increases 

the ways of combination and may be helpful to reduce the cost of 

execution plans. 

Rule 3: If u is an MR_SP, and v is an MR_SPJ or MR_SPJE, 

then u + v = (mapv, shufflev, mapu + reducev).  

Rule 4: If u is an MR_SPJ or MR_SPJE, and v is an MR_SP, 

then u + v = (mapu, shuffleu, reduceu + mapv). 

Rule 5: If u and v are both MR_SPs, then u + v = ( , , mapu + 

mapv). 

If u and v are both MR_SPJ and MR_SPJE, MRPacker doesn’t 

define any extended rules to combine them, because any special 

combination of them can be achieved by using Rules 1-2 together 

with Rules 3-5 in the context that query operations are mapped to 

MRO0s in the ways listed in Table 1.  

3.2.3 Completeness and Correctness 
MRPacker can find out all equivalent execution plans of MRQ0 

that mapped from a query plan as the way shown in Table 1.  As 

MRO has three classes, i.e. MR_SP, MR_SPJ and MR_SPJE, 

there are totally nine kinds of combinations of any two MROs: 

(MR_SPJ, MR_SPJ), (MR_SPJ, MR_SPJE), (MR_SPJE, 

MR_SPJ), (MR_SPJE, MR_SPJE), (MR_SP, MR_SP), (MR_SP, 

MR_SPJ), (MR_SP, MR_SPJE), (MR_SPJ, MR_SP) and 

(MR_SPJE, MR_SP). MRPacker uses the five transformation 

rules to cover all combinations of MROs for getting all equivalent 

execution plans.  

3.3 Picking out the MRQL 
MRPacker refers to a Hadoop MapReduce performance model 

[8] to calculate the costs of MROs and MRQs, and it relies on an 

enumeration algorithm to find out the MRQL from the equivalent 

execution plan set. 

The enumeration algorithm (see Figure 1) is an exhaustive 

algorithm. It first takes MRQ0 as the initial state (lines 1-3). Then 

it applies an arbitrary rule on any ledge (u, v) of MRQ to get 

MRQ' (lines 5-8), uses the cost model [8] to calculate the cost of 

each MRQ (line 9), and compares costs and finds out the MRQL 

(line 10). The above process is repeated until it has exhausted all 

equivalent MRQs of the MRO0 (lines 4, 11).  

 

Figure 1. Enumeration Algorithm of MRPacker 

4. EXPERIMENTAL STUDY 
We have designed a set of experiments to show the efficiency 

and effectiveness of MRPacker. These experiments are designed 

to compare MRPacker with Hive [7] translator and YSmart [5], 

another two important SQL-to-MapReduce translators, to show 

the benefits and advantages of MRPacker. 

All of the experiments are executed over data generated by the 

database performance benchmark tool TPC-H [11], and we use 

two data tables created by the tool: lineitem and part. Also, all 

experiments are run in a cluster of 10 computing nodes with 

detailed configuration shown in Table 2. 

Table 2. Cluster Configuration 

CPU Intel© Core(TM) 

i7,860@2.80GHz  

OS Linux 2.6.26-2-

amd64 #1 SMP 

Memory 16G Hadoop 0.23.3 

Disk 1T Hive 0.9.0 

Ethernet 1Gbps Nodes 10 

4.1 Compare MRPacker with other Optimizers 
In these experiments, we compare MRPacker with Hive 

translator and YSmart. We restate the original TPC-H Q17 query 

written in SQL to an equivalent query written in HiveQL [7], 

denoted by TPC-H Q17'. We then use Hive translator, YSmart 

and MRPacker to generate execution plans, respectively.   

For the Hive Translator and YSmart, the Nested-Loop-Join will 

be fixed in the map phase (see Figure 2), while MRPacker may 

place it into either map phase (see Figure 2.b) or reduce phase 

(see Figure 2.c) according to the costs of execution plans, so as to 

generate the lowest cost execution plan. 

Input:  MRQ0 

Output:  MRQL 
------------------------------------------------------------------------- 
1:  Calculate costs of MROs in MRQ0; 

2:  MRQL := MRQ0; 

3:  stack.Push (MRQ0); 

4:  While (stack.hasNode())  

5:      MRQ := stack.pop(); 

6:     For ∀ (u,v) ∈ MRQ.D,  ∀rule ∈ rules 

7:          If rule.applicable for (u,v) then 

8:  MRQ’ := rule.transformation(MRQ, u, v) ; 

9:  Update costs of MROs in MRQ’; 

10:  If (MRQ’.cost< MRQL.cost) then MRQL := MRQ’; 

11:            stack.push( MRQ’) ; 

12: Return MRQL; 



We execute execution plans generated by these translators, and 

compare their execution time. Figure 3 shows the execution time 

of TPC-H Q17’ under these translators, where α and β are row 

selectivity and column selectivity of the nest-loop-join operation. 

(1) When α=2 and β=1.94, the execution time of the execution 

plan generated by MRPacker is about 43% and 18% shorter than 

that of Hive translator and that of YSmart, respectively. (2) When 

α=1 and β=1.88, the execution time of the execution plan 

generated by MRPacker is about 35% and 7% shorter than that of 

Hive translator and that of YSmart, respectively. (3) When α=0.91 

and β=1.89, the execution time of the execution plan generated by 

MRPacker is about 40% and 15% shorter than that of Hive 

translator and that of YSmart, respectively. (4) When α=2 and  

β=0.82, the execution time of the execution plan generated by 

MRPacker is about 40% and 13% shorter than that of Hive 

translator and that of YSmart, respectively.  

 

 

 Figure 2.  Execution Plans of TPC-H Q17’ 

    

(a)  (α=2, β=1.94)  (b) (α=1, β=1.88) 

      

(c) (α=0.91, β=1.89) (d) (α=2, β=0.82) 

Figure 3. Execution Time of TPC-H Q17’  

Our experiments indicate that MRPacker typically is no worse 

than the Hive translator and YSmart, and in cases when MR_SPs 

have certain data selectivity (e.g., when (α=2, β=0.82), (α=0.91, 

β=1.89) and (α>1, β>1)), MRPacker indeed has a much better 

efficiency than the Hive translator and YSmart. 

5. RELATED WORK 
Optimizing query executions in a MapReduce environment is 

very challenging, comparing with query optimization in relational 

systems [12], since the unique programming model of 

MapReduce typically causes new transformation rules and new 

cost models for optimizing a query execution. Many efforts have 

been done on improving the query performance in MapReduce.  

AQUA [9] parses users’ queries into a join graph and groups 

the join operators so as to be evaluated by a single MapReduce 

job. [10] studies multi-way (natural) joins that join multiple 

relations in a single map-reduce. YSmart [5] provides a 

correlation aware SQL-to-MapReduce translator to reduce 

redundant computations, I/O operations and network transfers. It 

applies a set of rules to use the minimal number of MapReduce 

jobs to execute multiple correlated operations in a complex query. 

These projects are SQL-to-MapReduce translations and 

optimizations. However, they mainly focus on reducing the 

number of MapReduce jobs in an execution plan, while they 

ignore the way how MapReduce jobs are generated or combined. 

6. CONCLUSION AND FUTURE WORK 
MapReduce applications developed with High Level Query 

Languages are compiled as query plans, and then each query plan 

is translated to an execution plan of MapReduce jobs by certain 

SQL-to-MapReduce translator. This paper introduces MRPacker, 

a new SQL-to-MapReduce optimizer that considers both the 

number of MapReduce jobs and the ways how MapReduce jobs 

are combined, to generate an execution plan with a lower cost. We 

are revising our enumeration algorithm for MRPacker to further 

improve the performance.  
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