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ranking for top-k relaxations. We then study the top-k pattern
relaxation problems, by providing their static analyses, and devel-
oping algorithms and optimization for finding and evaluating top-k
pattern relaxations. We further propose a notion of explanations
for answers to the relaxations and develop algorithms to compute
explanations. These together give us a framework for enriching the
results of graph pattern matching. Using real-life datasets, we ex-
perimentally verify that our framework and techniques are effective
and efficient for identifying meaningful matches in practice.
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1 INTRODUCTION

Graph pattern matching is being widely used in social network
analysis, among other things. It is to find subgraphs in a large
data graph that satisfy both the label and topological matching
constraints carried by a pattern graph. However, traditional graph
pattern matching is based on subgraph isomorphism [7], which
requires identical label and topological matching and is often too
restrictive to find matches in, e.g., social search.

To handle this, taxonomy assisted subgraph isomorphism [5]
has been proposed to capture more matches by relaxing label con-
straints, which makes use of a taxonomy of the labels such that
a pattern node with label I’ is allowed to match a data node with
label [ when [ is a descendant of I’ in the taxonomy. Nonetheless,
not all meaningful matches can be covered by this, as shown below.

Example 1: Consider a real-life example taken from [21] and
shown in Fig. 1. The data graph G; depicts a social travel network.
A node denotes an entity labeled types such as river and restaurant;
an edge indicates a relation between two entities, e.g., newspaper;
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shopping_mall
Figure 1: Querying knowledge network

recommends river (recom), and exhibition_hall is close to river
(near). A tourist wants to find a travel plan that she could (1) visit a
museum, (2) sightsee on a river close to the museum, and (3) dine
at a restaurant close to the two places. This query can be specified
by pattern graph Q; (in the dashed rectangular). Under subgraph
isomorphism, one can verify that there is no match to Q; in Gj.
This remains the case even we adopt taxonomy assisted subgraph
isomorphism. Consider a taxonomy graph T from DBpedia [1] and
shown in Fig. 2. It tells us that (a) exhibition_hall is a museum,
while theater is not, and (b) take_away_food is a restaurant.
Nonetheless, due to strict topological matching constraints, un-
der taxonomy subgraph isomorphism with T7, the match result to
Q1 remains empty. However, in the presence of T1, one can see that
the subgraph consisting of river, exhibition_hall, take_away_food
and restaurant is a sensible match to Q; in Gj. O

To tackle this, a natural idea is to further relax the matching
constraints of taxonomy subgraph isomorphism, so that both label
and structural matching semantics can be relaxed for graph pattern
matching. One immediate approach is to, along the same lines as
taxonomy subgraph isomorphism, combine taxonomy with graph
simulation [11, 14, 18], which has recently been used to relax the
topological matching constraints of subgraph isomorphism.

Unlike subgraph isomorphism which requires a bijective map-
ping function from pattern nodes to data nodes, graph simula-
tion [11, 14, 18] is defined by a binary relation that preserves the
child relationship. We refer to the “simulation version” of taxon-
omy subgraph isomorphism as taxonomy simulation, i.e., observe
the hierarchical “downward” is-a relationship between labels when
computing simulation relations between pattern and data graphs.
One can verify that taxonomy simulation can identify the sensible
match in Example 1, and can find all matches that can be found by
taxonomy subgraph isomorphism by the matching semantics.

Nonetheless, it is still not bullet-proof and can come short to cap-
ture matches in real-life, as shown by an experimental study below.
Using data and taxonomy graphs from DBpedia [1] and YAGO
[2], we have conducted an experiment on the percentage of pattern
graphs that have non-empty match results. We randomly generated
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Figure 2: Taxonomy graph
pattern graphs of size ranging from 2 to 10 by drawing random

labels from the data graphs, and queried DBpedia and YAGO with
them via taxonomy simulation. The results are shown below.

Vol 2 4 6 8 10
DBpedia 90% 18% 0% 0% 0%
YAGO  54% 2% 0% 0% 0%

Only 18% (resp. 2%) of the patterns with 4 nodes can find matches
in DBpedia (resp. YAGO) via taxonomy simulation; no patterns with
6 or more nodes can identify matches. The percentages are even
much lower with (taxonomy) subgraph isomorphism or graph sim-
ulation. However, by examining patterns and data graphs, we found
there are indeed many sensible matches to those empty patterns.

Example 2: Recall Q; and G; in Example 1. Consider pattern Q»
also in Fig. 1 that extends Q1 with a new node with label newspaper
(in blue), to further restrict that river and museum have to be rec-
ommended by a newspaper (blue dashed edges). Using taxonomy
simulation, no match can be found for Q2 in G;. However, both
newspaper and television_show are media as shown in the taxon-
omy graph T in Fig. 2. Hence, a sensible match to Qz in G is the
one in Example 1, together with data node television_show. [m]

This example suggests that we make further use of taxonomy in
an “upward” direction, to relax taxonomy simulation patterns to
capture more sensible matches, e.g., observing that newspaper and
television_show are media when matching Q; in Gj.

Contributions. This paper studies how to enable graph pattern
matching to capture more sensible matches in real-life complex
data graphs, by relaxing taxonomy simulation queries.

(1) We formalize taxonomy simulation and propose its relaxation to
enrich graph pattern matching results with a taxonomy in both the
“downward” and “upward” directions (Section 2). We also design
topological ranking and diversified topological ranking for top-k
relaxations. The functions combine taxonomy simulation seman-
tics, taxonomy graph, and the correlation between pattern and data
graphs together when ranking relaxations (Section 3).

(2) We study the problem of computing top-k pattern relaxations
w.r.t. the ranking functions (Section 4). We show that the problem
is (a) in PTIME when the topological ranking function is used; and
(b) NP-complete and APX-hard for approximation when diversifica-
tion is also considered. For (a), we develop a PTIME exact algorithm
by employing the Lawler’s procedure [16] for top-k combinatorial
optimization problems. For (b), we reduce the problem to the maxi-
mum dispersion problem, which enables us to use existing efficient
algorithms for the latter to compute top-k diversified relaxations.

(3) We give an evaluation algorithm for answering top-k relaxed
patterns while maximizing the sharing of computation (Section 5).

It is built upon hierarchical connections among the pattern relax-
ations and bounded decremental taxonomy simulation algorithm.

(4) We study the minimum explanation problem to explain why
a match to a relaxed pattern is returned, in terms of the essential
part of the relaxation that captures the match (Section 6). We
show that the problem is (a) in PTIME when only the topological
ranking function is concerned, and (b) becomes NP-complete in
general. We give a linear time optimal algorithm for (a) and a
parameterized algorithm for (b), which returns explanations with
accuracy parameterized by its time complexity.

(5) Using real-life graphs, we experimentally verify the effectiveness
and efficiency of the techniques (Section 7). We find the following.
(a) The top-k relaxations are effective: they find 11.9 times more
answers, among which 74% are verified sensible. (b) The average
evaluation time of relaxed patterns is 1.8 times faster than conven-
tional evaluation method when k = 15, and the gap grows with
larger k. (c) It can explain relaxations with accuracy above 85%
without access to G, and achieve 99% accuracy with 2 data accesses.

Related work. We categorize related work as follows.

Graph pattern matching. Traditional matching is by subgraph iso-
morphism, which is NP-complete [7] and found often too restrictive
to capture sensible matches [11]. To loosen the restriction, one di-
rection is to relax matching semantics of isomorphism by adopting
graph simulation based pattern matching [11, 13, 14, 18]. The other
direction is to loosen the identical label matching with an ontol-
ogy/taxonomy [5, 25, 26], Here we combine the two and use taxon-
omy assisted simulation as the base semantics of our framework.

Pattern relaxation. There has been work on pattern relaxation to
generate relaxed queries over XML [3], RDF [9, 10, 15] and graph
data [23]. They are based on (a) structure rewriting [3, 10, 23] or (b)
predicate relaxation of e.g., SPARQL pattern triples [9, 15]. Follow-
ing (b), we use taxonomy to relax taxonomy simulation patterns on
property graphs while retaining user specified pattern structures.

Our work differs from these work in the following. (1) Targeted
queries. We study relaxation of taxonomy simulation based on
graph simulation that is defined by a recursively computed
relation over the general schemaless graph model, while existing
works are for SPARQL and its variants over RDF [9, 10, 15] and
subgraph isomorphism over graphs [23]. Their “implicit" pattern
matching is defined via homomorphism or isomorphism, and is
more restrictive due to the use of functions for valuations. (2)
Ranking relaxations. The essence of query relaxation is the ranking
of relaxations. However, ranking relaxations highly depends on
the semantics of the queries to be relaxed. As a result, existing
approaches for generating and ranking relaxations do not work
well with taxonomy simulation due to its recursive nature and
relation based structural matching. (3) Additional feature. We also
study the explanation for answers to relaxed queries, which has
not been addressed by existing works on query relaxation.

Multi-query optimization. There has been work on multi-query
optimization for graph pattern (e.g., [20]) and SPARQL (e.g., [17])
relevant to the evaluation of relaxed patterns. They typically work
by decomposing queries and using shared computation on common
sub-queries. We adopt the general method for evaluating top-k
relaxed patterns but differ from prior work in techniques. Indeed,




our approach is PTIME while [17, 20] are NP-hard. Moreover, we
adopt bounded decremental algorithm for sharing computation.

Explanation. Related to the relaxation explanation are also query
resilience [12], phenomenon explanation [22], why-not queries [4]
and provenance [6], for relational queries. Different from theirs, we
study explanations that are defined by relaxations for graph pattern
queries, instead of relational query answering or provenance.

2 RELAXING TAXONOMY SIMULATION

In this section, we formalize taxonomy simulation (Section 2.1) and
propose relaxations for taxonomy simulation patterns (Section 2.2).

2.1 Taxonomy Simulation

A labeled directed graph G is a triple (V, E, f), where V and E are sets
of nodes and edges, respectively; and f is a total labeling function
such that for each node v € V (resp. e € E), f(v) (resp. f(e)) is a
label from an alphabet Xy (resp. Xg). The size |G| of G is |V| + |E|.

Data graphs and pattern graphs are both labeled directed graphs,
denoted by G(V, E, f) and Q(Vg, Eg. fo), respectively. Intuitively,
node labels carry the description of entities, e.g., place, job. Edge
labels specify the relationships between respective entities.

Graph simulation. Data graph G matches pattern Q via graph
simulation, denoted by Q < G, if there exists a left-total binary
match relation R C VXV in G for Q such that (1) for each (u,v) € R,
u and v have the same label, i.e., fo(u) = f(v); and (2) for each edge
e = (u,u’) € Eg, there exists an edge ¢’ = (v,v’) € E such that
(u',v’') € Rand fp(e) = f(e’), i.e, e and e’ have the same label.

Intuitively, graph simulation preserves the label match and the
child relationships between pattern and data graphs. It relaxes the
topological matching constraints of subgraph isomorphism.

As shown in Example 1, there are is-a like category relationships
between labels, which can be captured by a taxonomy.

Taxonomy graphs. A taxonomy graph is a labeled rooted forest,
defined as T(VT, ET, fT), in which (1) an edge from node u to v
represents an is-a relationship; and (2) fr is an injective labeling
function that maps nodes of Vr to distinct labels in the label set Xy .

Intuitively, T defines a specialization-generation hierarchy for
labels in the data graphs. The distance from node u to v’ in T,
denoted by dist (u, u”), is the number of edges in the shortest path
from u to v’ if u is an ancestor of u” in T; and is +oco otherwise.
We denote by desct (u) the set of descendants of u (including u) in
T. We also write distt(u, u”) and desct (u) as dist7(f7(u), fT(u’))
and descT (fr(u)), respectively, when labels are concerned.

Taxonomy simulation. Given data graph G(V, E, f), pattern Q(
Vo, EQ, fo) and taxonomy T, G matches Q w.r.t. T via taxonomy sim-
ulation, denoted by Q < G, if there is a left-total binary match rela-
tionRT ¢ Vo XV in G for Q such that (1) for each (u, v) € RT, f()
€ descy (fo(u)); and (2) for each edge e = (u,u’) € EQ, there exists
an edge e’ = (v,v’) € E such that (u/,v’) € Rand fo(e) = f(e’).
That is, taxonomy simulation observes the is-a relation among
node labels when computing match relations of graph simulation.
When Q <7 G, one can readily verify there exists a unique
maximum match relation RJ{I in G for Q wr.t. T. Given Q, G and T,
the answers to Q in G w.r.t. T via taxonomy simulation, denoted by
Q(G), is the unique maximum match relation Rl{[ inGfor Q wrt. T.

Example 3: Consider Q; and G; in Fig. 1, and T in Fig. 2. Note that
Q1 A Gy, i.e, G1 does not match Q; via graph simulation. However,
Q1 <1 Gi. Indeed, the maximum match relation in Gy for Q1 w.r.t.
T; maps museum, river and restaurant of Q; to {exhibition_hall},
{river} and {take_away_food, restaurant} in Gy, respectively. O

Algorithm TSim. Given Q, G and T, we extend the O(|Q||G|)-time
graph simulation algorithm [14] to compute taxonomy simulation
in O(|Q||G||T|)-time such that we check label containment (condi-
tion (1) of taxonomy simulation definition) in O(|T|) by traversing T
instead of identical label checking. We also optimize it to O(|Q||G|)-
time (denoted by TSim; omitted), with a bit string pre-computed
offline in O(|V7||T|) that encodes descendant labels of each taxon-
omy node, so that the label containment is checked in O(1).

2.2 Relaxations for Taxonomy Simulation

We next propose relaxations for taxonomy simulation patterns and
a relaxation framework for graph pattern matching based on it.

Label relaxation. A label relaxation § w.r.t. a taxonomy T is of form
I — I’ such that I is an ancestor label of [ in T.

Pattern relaxation. Consider pattern graph Q, a taxonomy graph T
and positive integer p. A p-bounded pattern relaxation A for Q wir.t.
T is a set of label relaxations w.r.t. T such that, (1) for each [l — I’
in A, lis alabel in Q and dist7(I’,1) < p; and (2) for any two label
relaxations Iy — I and I — IJ in A, I} # l;. When it is clear from
the context, we simply call A a pattern relaxation for Q w.r.t. T.

Let Q ® A denote the pattern derived from Q by replacing each
occurrence of [ with I’ in Q for each I — I’ in A. We refer to Q & A
as the relaxed pattern of Q w.r.t. A.

Intuitively, p is to bound the distance of label relaxations in A,
so that changes to pattern graphs by A can be controlled.

Example 4: Recall Q2 and T; from Example 2. When y = 2, A
= {0 = newspaper — media} is a 2-bounded pattern relaxation
for Q, wr.t. Tq. The relaxed pattern Qo @ A is derived from Q; by
replacing newspaper with media in Fig. 1. O

A relaxation framework. We next propose a relaxation frame-
work for graph pattern matching, built upon taxonomy simulation.
Given pattern Q, data graph G and taxonomy T, it works as follows.
(1) It generates and ranks relaxations for Q w.r.t. T, including Q.
(2) It evaluates top ranked relaxations for Q in G.
(3) It finally explains relaxations to the end user by showing why
matches are found and returned by the relaxations.

In the sequel, we discuss step (1) in Sections 3 and 4, step (2) in
Section 5, and step (3) in Section 6.

3 RANKING PATTERN RELAXATIONS

For a pattern Q, a data graph G, a taxonomy T and a positive in-
teger y, there are up to exponentially many p-bounded pattern
relaxations for Q w.r.t. T. This suggests that we define functions to
rank the relaxations and compute the top-k relaxations accordingly.

Below we design two ranking functions: topological ranking to
measure pattern relaxations in terms of their relaxation distances
wr.t. Q, with G and T taken into account together(Section 3.1);
and diversified-topological ranking which combines the topological
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function with a diversification function (Section 3.2). Based on the
functions, we introduce two top-k pattern relaxation problems.

3.1 Topological Ranking

In real world, one typically wants to capture more match results
while ensuring the results are sensible. Motivated by this, we de-
fine a bi-criteria relaxation ranking function, referred to as the
topological ranking, with two components: (a) the relaxation ratio
to measure the quality and accuracy of relaxed patterns in terms of
their distance to the original pattern and (b) the information ratio
to estimate the effectiveness of the relaxations in terms of their
ability to capture matches. We present it below.

(a) Relaxation ratio. The relaxation ratio of label relaxation§ =1 — I
w.r.t. taxonomy T for Q(Vg, Eq, fp),denoted by yp(5),is defined as

DT rankg(u) - p(distr (', D)),
uEVQ,fQ(u)=l

where rankp (1) denotes the number of nodes u” in Q that can
reach u via a directed path from u’ to u, and p(x) is a monotoni-
cally increasing function that normalizes the weight of dist7(I’,I).
Common choices for p(x) are p(x) = x and e*, as frequently used
in measuring social positions [24]. We use p(x) = e* by default.

Intuitively, larger disty(l’,1) gives a higher chance for node u
to find matches via taxonomy simulation. This effect is amplified
by rankg(u) which observes the recursive nature of taxonomy
simulation. Indeed, by taxonomy simulation, relaxation on u of Q
will possibly introduce more matches to nodes in Q that can reach
u (ancestors), but not descendants of u.

Example 5: Consider pattern Qs, data graph Gz and taxonomy
T, in Fig. 3. The match result for Q3 in G, via taxonomy simu-
lation contains nodes A1, By, C1 and Cy. A pattern relaxation
A = {B — D} on node B in Q3 turns data node D; to a match
of node D in Q3 & A, and further its parent data node A, to
a match of pattern node A. However, the relaxation does not
change the match status of the child node C; of Dq in Gz. Indeed,
rankg, (C) = 3 > rankg, (B) = 2 > rankg, (A) = 1. O

Observe that, the smaller yQ(S) is, the closer is the relaxed pat-
tern wr.t. § to the original pattern Q.

(b) Information ratio. Consider pattern Q(Vp, Eg, fo) and data
graph G(V, E, f). The information ratio 1o, )(5) of label relaxation
§=1—1"onQ inG is defined as |cand(g 1) (!)|/|cand (G, 1) (1)1,
where cand g, 1y (/) is the set of nodes v in G with f(v) € descr(I).

Intuitively, 7, )(J) captures the impacts of § on Q by observ-
ing the candidate match information from G. A smaller 7o )(J)
gives a higher potential to introduce more matches.

Topological ranking function. Given a pattern graph Q, a data graph
G, a taxonomy graph T, and a pattern relaxation A for Q w.rt. T,
the topological ranking function of A on Q for G w.r.t. T, denoted by
I'(Q.A), is defined as Y54 v0(8) - Z(0,:)(5)-

Intuitively, I'(Q, A) is a bi-criteria function specialized for G that
measures the quality of the relaxed pattern Q ® A in terms of their
closeness to Q and their ability to capture matches. By minimizing

I'(Q, A), we can on one hand maximize the accuracy of matches to
Q@ A in G via the relaxation ratio, and on the other hand maximize
the ability to capture matches in G via the information ratio.

This motivates us to study the top-k pattern relaxation problem
(kPR), formulated as follows.
Top-k pattern relaxation problem (kPR). Let U, (Q, T) be the set of
all p-bounded pattern relaxations for pattern Q w.r.t. taxonomy T.
Given Q, G, T, and integers p and k, problem kPR is to find a k-set
S € U, (Q,T), such that

S= arg min Z rQ,A).

S,Q(Z/I}[(Q,T), |8 |1=k AeS’

That is, kPR is to identify a set of k u-bounded pattern relaxations
with the minimum total topological ranking.

Example 6: Consider Q2 and Gy in Fig. 1, and T in Fig. 2. Suppose
that there are 7 isolated nodes in G; labeled magazine, radio_show,
venue, theater, valley, mountain and airport (not shown in Fig. 1).
Assume k = 2 and p = 2. The label relaxations and part of possible
pattern relaxations are listed in the table below.

Pattern relaxations I'(Q2, A;)
A = {81 = newspaper — media } 1.359
Ay = {52 = museum — cultural_center } 2.175
As = {83 = river — natural_place } 3.695
Ay = {84 = river — body_of_water } 4.077
As = {85 = restaurant — leisure_center } 7.249
Ag = {66 = restaurant — architecture.. } 14.778

Observe the following. (a) One can verify that S={A;, As} is the
top-2 pattern relaxations for kPR. (b) I'(Q2, A3) is smaller than
I'(Q2, Ag), although distr(natural_place, river) = 2 is larger than
distt(body_of_water, river) = 1. This is because the information
ratio ranks relaxations with more potential matches in G; higher, de-
spite relaxation ratio favors relaxations with smaller distance. O

3.2 Diversified Topological Ranking

It is desirable that the relaxed patterns are not only close to original
patterns, but also diverse to provide more information in the match
results. Hence, we introduce diversified topological ranking.
Diversification. To characterize the diversity of a set of pattern relax-
ations, we define a distance function to measure the “dissimilarity”
of two pattern relaxations. For any two pattern relaxations A; and
A, for Q, we define the similarity distance between A1 and Ay, de-
noted by QQ(AI, A), to be

IL(Q ® A1) N L(Q & 4y)|

IL(Q ® A1) UL(Q ® Ar)|

where L(Q) denotes the set of labels in pattern graph Q. That is,
the similarity distance measures the overlap of labels in the relaxed
patterns of the relaxations.

Example 7: Recall Example 6. We have the following: (a) 0, (A1,
Az) = £;and (b) g, (A7, Ag) = 0, in which A7={51, &2} and Ag={33,
J5}; that is, there are no overlapped labels between Q2 ® A7 and
Q2 @ Asg. Thus, A7 and Ag are most dissimilar to each other, among
others. One can verify that the connected component in the bottom
of Gy is in the match result of O @ Ag. The result is a bit inconsistent
with the target of Q», turning a scenery trip to an entertainment
trip, as topological ranking is not considered here yet. O



We next combine topological ranking and diversification.

Diversified topological ranking function. Consider a set S of k pat-

tern relaxations Ay, ... A for pattern graph Q w.r.t. taxonomy T.
We define the diversified topological ranking function | (Q, S) over
the pattern relaxation set S as

k-1 Y T(QA)+2-(1-4) >
Aj€eS A€S,AjES,i<j

where A € [0,1] is a user specified parameter, I'(Q,4;) =

I'(Q,A:)
[Vol-IL(Q)]-e¥
the number of labels appeared in Q. We scale up the topological
ranking component with a factor of (k — 1) since there are @
numbers in the diversification component, as opposed to k numbers
in the topological ranking.

00(Ai, Aj),

is a normalized topological function, and |L(Q)]| is

Diversified top-k pattern relaxation problem (kPRpg). We next in-
troduce the diversified top-k pattern relaxation problem, denoted
by kPRpF, along the same lines as kPR. More specifically, given Q,
G, T,and two integers y and k, kPRpr isto find a k-set S € U, (Q, T)
(recall U, (Q, T) from the kPR problem), such that

r(Q.s).

S = arg min
S'CUL(Q.T),IS =k

That is, kPRpF aims to find a set S of k p-bounded pattern relax-
ations for Q w.r.t. T that minimizes F (Q, S).

Example 8: Recall Example 6. One can verify that (a) when A = 1,
i.e., when only topological function is considered, a top-2 set is
{A1,A2}; and (b) when A = 0, i.e, when only diversification function
is considered, a top-2 set is {A7={01, d2},As={J3, J5}}. Moreover, (c)
when 0.823 < A < 0.924,{A3, A7} is the best set; (d) when A < 0.823,
{A7,As} is the best; and (e) when A > 0.924, {A1,A3} is the best. O

4 FINDING TOP-K RELAXATIONS

We next develop algorithms for the two top-k pattern relaxation
problems, which, together with Section 3, provide the foundation
to step (1) of the framework in Section 2.2. We focus on problem
kPR in Section 4.1 first, and move on to kPRpf in Section 4.2.

4.1 Finding Top-k Relaxations for kPR

We first present the main result for kPR. We assume that the num-
bers |cand g, 1 ()| for labels [ in G have already been precomputed.
Note that this can be done by a O(|V7]||V])-time offline computing.

Theorem 1: There exists an algorithm that computes the top-k -
bounded pattern relaxations for Q w.r.t. T in G within O(uk|Vp||Ql)-
time, independent of |G| and |T|. |

As aproof, we next give such an algorithm. It utilizes the Lawler’s
procedure [16]. Lawler’s procedure has the following property: for
an optimization problem that can be formulated in integer pro-
gramming with n 0-1 variables, if the optimal (top-1) solution can
be found in c¢(n) time, then the top-k solutions can be found in
O(k - c(n)) + B time, where B is the total time for branching the
space of feasible solutions into subspaces.

Algorithm relTF. The algorithm, denoted by relTF, is shown in
Fig. 4. It uses (a) a list LTr to store the top-k pattern relaxations
identified so far; and (b) a priority queue Q to cache candidate top-k
pattern relaxations, which will also be used to divide and branch the

Input: Q, G, T, two positive integers p and k.
Output: A list LTr of top-k pattern relaxations.

1. Ly :==[]; Q:=nil, K :=1;

2. for each label fi in Q do /* assume Q has labels €1, ..., m ™/

3. generate a list L; of label relaxations for £; bounded by y in T;
4. Ly:= (L1, ..., Lm); Ar :=topRel(Q, G, L;); Q.push({A1, L1));
5. while Q # 0 do

6. if K = k + 1 then break;

7. (A, Lk) = Q.pop();  /*Ak has minimum I'(Q, Ag) in Q*/

8. append Ak to Ltg;

9. sub-collections L1, ..., £L5m := LawlerBranch(Ak, Lk);

10. for iin [1, m] do A; :=topRel(Q, G, L5%); Q.push({A;, L51));

11. K:=K+1;
12. return LtR;

Procedure topRel(Q, G, £)

Input: Q, G, a collection L of candidate label relaxations.

Output: The best pattern relaxation A within £ wrt. I'(Q, A).

1. for eachiin [1, m] do 5[;“ = argminge Yo(9) - L0,6)(6);
2. A= {56! 52 ,...,5$in};returnA;

min’> “min

Figure 4: Algorithm relTF

search space. After initialization (line 1), it generates the collection
L1 of candidate label relaxations for all labels in Q with relaxed
distance bounded by y (lines 2-3). Here .£; includes, for each label
¢; in Q, alist L; of label relaxations ¢; — ¢’ (0 < dist7(¢”,¢;) < p).
It then finds top-1 pattern relaxation A; within £; via procedure
topRel, which is then pushed into Q together with £; (line 4).

It then iteratively searches the remaining k — 1 relaxations by

reducing to top-1 relaxation search within sub-collections of £
(lines 5-11), until Q becomes empty (line 5), or the top-k results are
already found (line 6). Each time it pops out Ag with minimum topo-
logical ranking value, together with the collection of candidate label
relaxations from which Ay is found, say Lg (line 7). It then puts
Ak to L1R as the K-th best relaxation (line 8). After that, it adopts
the Lawler’s procedure, denoted by LawlerBranch (cf.[16]), to gen-
erate sub-collections L5, ..., L5 of candidate label relaxations
from Lg and Ag (line 9). It then finds the top-1 pattern relaxation
Aj in each sub-collection L% via procedure topRel (lines 10-11). It
returns Ltg if all top-k relaxations are found (line 12).
Procedure topRel. Given Q, G and a collection £ of candidate
label relaxations, procedure topRel is also shown in Fig. 4. It
generates the top-1 pattern relaxation by selecting label relaxations
¢ with minimum yg () - Z(g, g)(9) for each label in Q.

Correctness & Complexity. The correctness of relTF is ensured by

the property of Lawler’s procedure. It is in O(uk|VQ||Eg]) time.
Indeed, topRel is in O(u|Vg||Eg|) and the time for branching can-
didate label relaxations is O(k|Vp |2). By the property of Lawler’s
procedure, relTF is in O(k - u[Vp||Eg]) +O(k|VQ|2) = O(uk[VollQl).

4.2 Top-k Diversified Relaxations for kPRpf

We next study the problem kPRpr. While kPR can be solved in
PTIME, kPRpE is intractable.

Theorem 2: (1) The decision problem of kPRpf is NP-complete. (2)
The optimization problem of kKPRpF is APX-hard to approximate. O



Despite of the hardness and inapproximability, we develop an
algorithm for kPRpf, denoted by relDF, by reducing kPRpF to the
maximum dispersion problem (maxDP), to utilize algorithms for
the later. Here problem maxDP is to find a subgraph G/ induced
by a k-node set Vi from a weighted complete graph G., with the
maximum sum of (positive) edge weights. It is a well-studied maxi-
mization problem, with a number of efficient exact, approximation
and heuristic algorithms already developed [8].

Algorithm relDF. We next present relDF by giving the reduction
from kPRpf to maxDP. The subtlety is that kPRpF is a minimization
problem while maxDP is maximization. Nonetheless, we guarantee
that optimal solutions to maxDP give us optimal answers to kPRpf.

Given Q, G, T, pt and k, algorithm relDF constructs G, of maxDP
as follows. (1) Each p-bounded pattern relaxation A for Q is encoded
by anode up in Gc. (2) For any two nodes up, , up, in G, the weight
w(e) for edge e = (up,, un,) is

M=4 3% T(Q. A1) - 2(1- )0o (A1, &),
i€f1,2)

where M = 21 - maerUf(Q,A) + 2(1 — A), in which U is the set
of all p-bounded pattern relaxations for Q w.r.t. T. Note that G is
an instance of maxDP since w(e) > 0.

It is easy to see that a k-node set Vi encodes the set of k pattern
relaxations for Q. Thus, algorithm relDF simply returns k pattern
relaxations encoded by V. for maxDP.

Proposition 3: If Vi is the optimal solution to G. of maxDP, then
the set of k pattern relaxations encoded by nodes in V}. is the optimal
solution to Q, G, T, u and k of kPRpF. O

Proposition 3 ensures the following: relDF always returns the
top-k pattern relaxations for kPRpr as long as the reduced maxDP
returns exact answers. To see this holds, observe the following. Let
Sk be the set of relaxations encoded by nodes in Vj.. The sum Wy of
edge weights in the subgraph induced by V}. is > w(u,v) =

U, VESE, UFV

RG=D v agk- DY Q. A)-20-2) > oA 4.
2 AeSy A, Aj€Sk.i<)
k(k-1) . . . .
Thus, Wy, = — -M—F (Q, Sg). Since V. is the optimal solution

to G¢ of maxDP, thus Wy, is the maximum among all such k-node
sets in G. Therefore, f (Q, Si) is the minimum among all k-sets of
pattern relaxations for Q of kPRpf.

Remark. The rationale behind the reduction is that y and L(Q) are
typically small, so that it is affordable to compute all the y-bounded
pattern relaxations for Q beforehand. Indeed, the maximum height
of the taxonomy trees (i.e., maximum value for y) in DBpedia taxon-
omy is only 6 and the average height (i.e., average p value) is 2.29
(see Section 7 for details).

5 ANSWERING PATTERN RELAXATIONS

In this section, we further study the evaluation of the top-k relaxed
patterns produced by algorithms in Section 4, providing foundation
to step (2) of the framework in Section 2.2.

Given Q, G, T and k pattern relaxations Ay, ..., A, we aim to
compute answers to the relaxed patterns Q @ Ay, ..., Q ® Ag in
G wr.t. T. A naive solution is to evaluate the k relaxed patterns
one by one. However, observe that they share the same structure
and interrelated labels. Inspired by this, we develop an algorithm

Agy Q2@ A
{517527 53754} media
Az Az museum —& river
{61,52,54} {51,52,53,54} nea\A Ar
restaurant
( A ) ( Ag } ‘ Agg ) ( Agy ) Q2@ As
01,02 02,04 82,03 81,03, 04 media
SN N SN N e S
river
Ay Ay Ay Ay Ay Ay Ag A | cemer TR
{51} {51a62} {52} {64} {53} {52753}{51a53} {51a54} restaurant

Figure 5: Minimum pairing tree

that maximally utilizes computation sharing among the relaxed
patterns, based on the semantics of taxonomy simulation.

Algorithm evalPR. The algorithm, denoted by evalPR, works in
two steps: (1) constructing the minimum pairing tree 7, a structure
to organize the evaluation of relaxed patterns while maximizing
shared computation; and (2) bounded decremental taxonomy simu-
lation that carries out the computation boundedly over 7 .

(1) Minimum pairing tree construction. The minimum pairing tree
7 of the k pattern relaxations Ay, ..., Ay for Q is a hierarchical
organization of the relaxations as follows. (a) Every node of 7~ is a
pattern relaxation. (b) 7~ has k leaves (at level 0), each correspond-
ing to one of the k pattern relaxations Ay, ..., Ay for Q. (c) Nodes at
level i + 1 are the minimum paring of pattern relaxations at level i
(i € [0, [log k1—1]). Here a pairing of pattern relaxations Ay, ..., An
is a set P of I'%'I pattern relaxations Ai, A?%] such that (i) each
A]’(] € [1,T41]) atlevel i + 1 is a union of two pattern relaxations
Ap and Ag (p,q € [1,n]) at level i, where AJ’. combines all label
relaxations in Ap and A4 together such that each label [ is relaxed
to the further label I’ if two label relaxations are attached to it; (ii)
AJ’. and A;., correspond to different pairs of relaxations if j # j’.

A pairing set P of a set S of n pattern relaxations is minimum for
pattern graph Q w.r.t. taxonomy T if

> leand(g, 1y (foear () \ cand(g, 1y (foen; (u)|
A’€P AjeAii=1,2 ueVp

is the minimum among all pairings of relaxations in S. Here A; €
A’(i = 1,2) denotes that A" combines A; and Az and cand (g, 1)(I)
is the set of nodes v in G such that f(v) € descr(l).

Intuitively, the minimum pairing set P of S groups relaxations in
S into pairs such that, by first evaluating relaxed patterns w.r.t. relax-
ations in P as shared computation, and then “recovering” answers
to relaxed patterns w.r.t. S, the total computation can be minimized.
The minimum pairing tree organizes such minimization recursively.

Here 7 can be built in O(k?-> log k) time, by invoking [log k]
times of the maximum weighted matching algorithm [19].

Example 9: Recall label relaxations 81, 2, ..., d in the table in
Example 6. When k = 8 and y = 2, one can verify that Ay, Ay, ...,
Ag are the top-8 pattern relaxations w.r.t. the topological ranking
function, as shown in the leaves in Fig. 5. Algorithm evalPR firstly
constructs the minimum pairing tree as shown in Fig. 5. Nodes at
level i + 1 are the minimum paring of pattern relaxations at level i
(i € [0,2]), e.g., A11,A12,...,A14 at level 1 is the minimum pairing of
A1,As,...,Ag at level 0, and Aqq is the union of Ay and As. O

(2) Bounded decremental evaluation. After constructing 7~ of Ay, ...,
Ay, evalPR then evaluates relaxed patterns of Q w.r.t. relaxations




in 7, from root to leaves. For each node u, it evaluates the relaxed
pattern wr.t. relaxation in u by reusing answers to the relaxed pat-
tern in the parent node pre(u) of u in 7, via BDeval (see below). It
finally returns answers to relaxed patterns in leaves of 7.

Here procedure BDeval decrementally computes (Q ® A;)(G)
and (Q & A,)(G) from (Q & A’)(G) if A’ combines A; and A, in
T, by iteratively removing matches in (Q & A’)(G) that are found
not in (Q ® Ay())(G), similar to the incremental graph simulation
algorithm [11]. Following [11], BDeval is also bounded in that its
cost is determined by the changes in input and output, i.e., [(Q ®
A")(G) \ (Q @ Aj())(G)| and the size of an affected areain G that
any algorithm has to access, and is not directly dependent of |G|.

Example 10: Continue Example 9. Algorithm evalPR then carries
out the decremental evaluation over 7~ in Fig. 5. Take Q2 ® A1 and
Q2 & As for example. evalPR evaluates them by starting from root
Asq,to Az1,and then to A1; sequentially. Firstly, (a) evalPR finds that
the connected component C; containing newspapers in Gy is the
match result to Q2 @ As31, and (b) further verifies that C; is also the
answer to Q2 ®A2;. Then, (c) evalPR removes nodes body_of _water
and newspaper; from Cj, yielding the match result Ca to Q2 ® A11.
Finally, (d) evalPR removes nodes castle and newspaper; from Cy
as the match result to Qz ® A1, and (e) also finds that the answer
Cy in (c) is exactly the match result to Q; @ As. |

6 EXPLAINING RELAXATIONS

In Section 5, we have studied the evaluation of top-k relaxed pat-
terns. A natural follow-up question is to ask, why certain nodes in
G are returned after relaxation? Below we answer this question, by
studying the match-relaxation explanation problem. This gives the
foundation to step (3) of the framework in Section 2.2.

Minimum explanation. Given pattern graph Q, data graph G, tax-
onomy T, pattern relaxation A, and a node v of G that is in the match
result (Q @ A)(G) to the relaxed pattern Q @ A in G, an explanation
for v wrt. A, denoted by Ex(v), is a subset of A such that v is in (Q®
EA(0))(G). Intuitively, Ea (v) explains why v is in the match result
to Q@A in G using label relaxations in A. In particular, when v is al-
ready in the match result to Q in G, 0 is an explanation for v w.r.t. A.
A minimum explanation & (v) for v wr.t. A is an explanation
of minimum cardinality among all such explanations. Intuitively,
& (v) is the minimum part of A that is essential for relaxing Q so
that v can be captured by Q © A.

Example 11: Recall Qy, G1 and A3 = {1, 82} from Example 10. The
match result to the relaxed pattern Q2 ® A3 in G; is {newspapery,
television_show, castle, river, exhibition_hall, take_away_food,
restaurant }. One can verify that (1) the minimum explanation
82”3 (exhibition_hall) for exhibition_hall w.r.t. A3 is {1}, a subset
of Asz; and (2) the minimum explanation for castle w.r.t. A3 is also
a subset of As, i.e., 82"3 (castle) = {52}. o

Match-relaxation explanation problem. Given a pattern Q,
data graph G, taxonomy T, k pattern relaxations Ay, ..., A for
Q wr.t. T and their match results (Q ® A1)(G), ..., (Q ® A)(G),
integer i € [1, k], and node v in (Q ® A;)(G), the match-relaxation
explanation problem (MRE) is to compute the minimum explanation
Sgli (v) for v wr.t. A;.

The study of MRE allows the user to ask for the minimum expla-
nation about why a particular node in G is in the match results to the
relaxed patterns, after computing the top-k relaxations (Section 4)
and their answers in G (Section 5). Nonetheless, it is intractable.

Theorem 4: The decision problem of MRE is NP-complete. O

Despite of the complexity, we below develop practical algorithms
for MRE. In particular, we study two instances of MRE, denoted
by MRETr and MREpF, respectively, to explain top-k relaxations
computed by algorithm relTF and relDF in Section 4.

(1) Instance MRETr. When we consider top-k topological relax-
ations, MRE becomes tractable. Indeed, the minimum explanation
can be found in linear time for MRETF, based on the property below.

Proposition 5: For any pattern Q, data graph G, taxonomy T and
top-k pattern relaxations Ay, ..., Ay identified by algorithm relTF,
foranyi € [1,k] and any node v in (Q ® A;)(G), there must exist
Jj € [1,k] suchthat Aj is the minimum explanation forv wrt. A;. 0O

Proposition 5 tells us that the minimum explanation for v w.r.t.
the top-k topologically ranked relaxations must also be one of those
k relaxations. It gives us a linear time algorithm, denoted by expTF,
for MRETF even without access to G or T: do a linear scan of (Q &
A1)(G), ..., (Q ® Ag)(G), and return A; with minimum cardinality
such that v is in (Q @ A;)(G). Note that algorithm expTF is optimal
since it only parses the input in linear time.

(2) Instance MREpf. We next study MREpF to explain the top-k
diversified pattern relaxations identified by relDF.

Due to the diversification component in the ranking function
for problem kPRpf, Proposition 5 does not hold anymore, and any
possible top-k pattern relaxations can be returned by relDF.

In spite of the hardness of MRE, we provide a parameterized
algorithm, denoted by expDF for MRE in general case, and thus
also works for MREpg. It returns an explanation &4, (v) for v wrt.
relaxation A; for Q with a parameter M, indicating the maximum
times of taxonomy simulation evaluation it can invoke to compute
&, (v). The parameter M balances the quality of the answer, ie.,
the size of €4, (v), and the time complexity of the algorithm: a
larger M gives a smaller E 4, (v) with longer time.

Algorithm expDRM) works in two steps as follows.

(1) It first finds relaxation A; (j € [1, k]) with minimum cardinality
satisfying (a) A; € A; and (b) v € (Q @ A;)(G).

(2) It then tests label relaxations § = I — I’ in A; in a de-
scending order by cand(g 7)(I’). Each time it checks whether
v € (Q®(A;\{5}))(G) (via TSim in Section 2 if (Q ® (A4;\ {5}))(G)
is not computed by evalPR in Section 5), and removes § from A;
if so. It returns A; after checking all remaining label relaxations
in Aj, or it has invoked TSim M times.

7 EXPERIMENTAL STUDY

Using real-life data, we verify the effectiveness and efficiency of the
framework for relaxing graph pattern matching with explanation.

Experimental setting. We use the following settings.
Data and taxonomy graphs. We used two real-life graphs.

(1) DBpedia was taken from DBpedia 201504 [1]. It consists of (i)
an RDF data graph with 4.32M nodes and 8.43M edges, and (ii) a



"Band" "City" "Band"

Relaxed KPR KPRpe
Patterns| Qp 1 Qp2 [ Qp3 | Qpa

City Town

Musical work
Band Band Band Band Band

Song Album
nstram. | Gty | city | city | city Set“'e""
Artist —

"City" "Band" “City" "Band" "City" "Band"  "Band" “City" "Band" "Town"

|3206362| "Song"

|3308322 "Song" "Song"|

3537509

entalist Instrum-| Musical Artist Musical | Musical
Musicaf artist entalist | artist artist artist
usical artis Musical
Song Song Song work Song
Top(part) Gp,1

Gp,2

Figure 6: Real-life taxonomy simulation relaxation and matches on DBpedia

built-in taxonomy graph with 735 concepts (nodes) for data graph
labels, where edges indicate an is-a relation. The taxonomy graph
is a rooted forest with average height 2.29 (maximum height 6).

(2) YAGO [2] consists of (i) a data graph with 5.13M nodes and
5.39M edges; and (ii) a built-in taxonomy graph (forest) with 6488
concepts (nodes), with average height 3.27 (maximum height 13).

Pattern generator. We implemented a generator for producing ran-
dom pattern graphs Q(Vp,Eq, fp), controlled by 3 parameters:
[Vol varying from 2 to 10, |[Eg| = La|Vp|], and the number | 5|V |]
of labels, which are from the same label set with data graphs.

Implementation. We implemented the following in C++: (a) our
algorithms TSim, relTF, relDF, evalPR, expTF and expDF; (b) our
algorithms evalTF and evalDF for using evalPR to answer top-k
relaxed patterns for kPR and kPRpf, respectively; (c) algorithms
TSimTF and TSimDF for using TSim k times to answer top-k
relaxed patterns for kPR and kPRpf, respectively; (d) algorithms
gsim [14], VF2 [7] and TISO [5] for answering graph simulation,
subgraph isomorphism and taxonomy isomorphism queries, re-
spectively; (e) algorithm relC for generating top-k relaxations with
a function that ranks relaxations by the total relaxation distance
on the taxonomy between the relaxed and original pattern labels,
as used in e.g., [15, 25]; and (f) algorithm TSimC for answering
the k relaxed patterns found by relC by invoking TSim k times.

We used a machine powered by an Intel Core(TM) Duo 3.00GHz
CPU with 16GB of memory. Each experiment was run 5 times and
the average is reported here.

Experimental results. In all the experiments reported below, we
fixed @ = 1.2, and set § = 1 by default when generating patterns.
We fixed A = 0.5, and set |Vp| = 6, k = 15 and p = 3 by default. We
did not report match results for (taxonomy) subgraph isomorphism
as they return even fewer answers than taxonomy simulation.

(1) Case study. We first exemplify the framework with a case study.

Consider a real-life pattern graph Qp, shown in Fig. 6, to find
all “city" items in DBpedia such that (a) the city is a hometown of
an “instrumentalist”, (b) the “instrumentalist” has founded a “band"
in the “city", and (c) the “instrumentalist" has released a “song". In
DBpedia graph nodes are entities with unique ids and labels which
indicate their domains. They only match the nodes of Qp with the
same geometry shapes, e.g., circles, ellipses, squares and pentagons.

By evaluating Qp against DBpedia, we found that there is no
match result to Qp on DBpedia via taxonomy simulation (not to
mention taxonomy isomorphism, subgraph isomorphism and graph
simulation). We next examine its relaxations. Using taxonomy Tp
in Fig. 6, we computed the top-2 relaxed patterns of Qp and their
match results in G, also shown in Fig. 6. Here Qp ; and Qp , are
top-2 relaxed patterns for kPR, and Qp 3 and Qp 4 are top-2 relaxed

patterns for kPRpr. Part of match results to the four relaxed patterns
are Gp,1, Gp,2, Gp,3 and Gp 4, respectively. One can see that they
all are sensible matches and can capture the intention of pattern
QOp. However, they cannot be found when using Qp directly.

We ascribe the situation to the inaccurate specification of pat-
terns from users versus the numerous labels residing in knowledge
graphs, e.g., 735 built-in labels for DBpedia.

(2) Match results of taxonomy simulation. We evaluated the
match results of taxonomy simulation, to elaborate the need of
pattern relaxation for taxonomy simulation.

Quantity. To justify the need for studying pattern relaxation, we
tested the capability of common matching semantics in capturing
matches. We used the pattern generator to generate random
patterns and compared the average number of matches found
by TSim and gsim. Varying |Vg| of Q from 2 to 10, we report the
results on DBpedia and YAGO in Figures 7(a) and 7(b). We found
that both TSim and gsim find very few matches for medium-sized
patterns on DBpedia and YAGO, e.g., when [Vg| > 6, they both
cannot identify any matches, although TSim can identify more
matches than gsim on small patterns, e.g., TSim found 1.4 times
mores matches than gsim did when [Vp| is 4 on DBpedia. This
confirms the need for studying pattern relaxation.

Quality. To further justify the focus of relaxation on taxonomy sim-

ulation queries, we also evaluated the quality of taxonomy simula-
tion matches. We designed 30 patterns using randomly sampled sub-
graphs from the two real-life graphs. For each pattern Q, we main-
tained a collection of nodes with clear search purpose in the con-
text of Q, e.g., places or books satisfying certain conditions, which
we used as the golden standard for checking the validity of their
matches. We define the accuracy of a match relation S to Q in G as

acc(S, Q, G) = Z valid(u, v)/|S|,

(u,v)eS

where valid(u, v) is 1 if data node v in G is an entity satisfying the
conditions maintained for u in Q (we also used WordNet and Wiki to
observe synonymous entities); and is 0 otherwise. Note that acc(S,
Q,G) isin [0,1] and is 1 if S contains accurate answers only. To
make it possible for manually inspection, we restrict that |S| < 50:
if the match relation Q(G) to Q in G is larger than 50, we use a
sample S € Q(G) such that |S| = 50; otherwise we use S = Q(G).
Using the accuracy measure, we inspected the match relations
returned by TSim to the 30 patterns and found that their average
accuracy is 0.98 and 0.94 on DBpedia and YAGO, respectively. This
justifies the focus on taxonomy simulation for pattern relaxation.

(3) Effectiveness of pattern relaxation. We next evaluated the
effectiveness of pattern relaxation.
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Figure 7: Effectiveness and efficiency of taxonomy simulation relaxation and explanation

Quality. We first evaluated the quality of relaxed patterns. Using
the same setting as Exp-(2), we inspected match relations to the
top-5 relaxed patterns of the 30 patterns, and found that the average
accuracy on DBpedia and YAGO is 0.81 and 0.75, respectively, when
topological ranking function is used, and is 0.72 and 0.68 with the
diversified topological ranking function.

Quantity. We then tested the effectiveness by comparing average
number of matches found by relaxed patterns returned by relTF,
relDF and relC, respectively, via evalTF, evalDF and TSimC.

(a) Impact of [Vg|. Varying the number |Vg| of nodes in Q from 2
to 10, we report the results in Figures 7(a) and 7(b) for DBpedia
and YAGO, respectively. Observe the following. (i) The number
of matches found by evalTF, evalDF and TSimC increases dramati-
cally compared to gsim on all cases, and is 10.7, 11.9 and 6.1 times
larger than gsim when [Vg| = 4 on DBpedia, respectively. (ii) In
all cases, evalTF and evalDF consistently find more matches than
TSimC. This verifies the effectiveness of information ratio in topo-
logical ranking function, which enables the use of information of
data graphs in ranking. (iii) evalDF identifies more matches than
evalTF. This is because the diversification function tends to gener-
ate more relaxed ancestor labels on taxonomy graphs, in order to
optimize both topological ranking and diversification.

(b) Impact of 1. To evaluate the impact of parameter y, we varied p
from 1 to 5 and tested the average number of matches. The results,
as shown in Figures 7(f) and 7(g), tell us the following. (i) Even
when p is small, both evalTF and evalDF are able to find sensible
matches on the two datasets, and the quantities are larger than

that of TSimC, e.g., they found 8525 and 16351 matches when y =
1 on YAGO, respectively, compared to 5320 by TSimC. (ii) Both
evalTF and evalDF make more use of larger y as they can take into
account more information on the data graphs and taxonomy, e.g.,
evalTF and evalDF found 39478 and 76502 matches when g = 5 on
YAGO, while TSimC still found 5320 matches.

(c) Impact of k. Similar to (b), we evaluated the impact of k by vary-
ing it from 5 to 25. The results are in Figures 7(k) and 7(1). We find
that both evalTF and evalDF can find sensible matches even when k
is small. For example, evalTF identified 10100 matches when k = 5
on YAGO, and even more for evalDF, while TSimC found no match.

(4) Effectiveness of explanation. To evaluate the effectiveness of
relaxation explanation, we randomly selected 100 matched nodes to
the relaxed patterns found by relTF and relDF, respectively, and used
algorithms expTF and expDF (with parameter M varying from 0 to
4) to compute minimum explanations. We report the accuracy of the
explanations, which is defined to be the percentage of explanations
that are real minimum explanations. Since the accuracy for expTF is
always 1, we only report results for expDF in Table 1.

Table 1: Effectiveness of explanations

M 0 1 2 3 4
DBpedia 85% 93% 99% 100% 100%
YAGO 88% 97% 100% 100% 100%

We find that the explanations computed by expDF are capable to
explain the relaxations well. The accuracy is consistently above 85%
and 88% on DBpedia and YAGO, respectively, even when M = 0;
and is above 99% when M is above 2 on both datasets.



(5) Efficiency of pattern relaxation and evaluation. We tested
the efficiency of our algorithms for relaxation and evaluation.
Since all top-k pattern relaxation algorithms relTF, reIDF and relC
terminate within 2s on all cases. We only report the efficiency of
evaluation. The offline pre-process takes 0.02s (resp. 2.97s) to en-
code labels into bit strings, and 7.38s (resp. 6.21s) to compute the
numbers |cand(g, 1) (/)| for labels I on DBpedia (resp. YAGO).

We compared the evaluation time of evalTF, evalDF, TSimTF,
TSimDF and TSimC, using the same setting as Exp-(3). We report
the findings in Figures 7(c), 7(d), 7(h), 7(i), 7(m) and 7(n), which tell us
the following. (i) evalTF and evalDF improved TSimTF and TSimDF
significantly, e.g., evalTF is 1.8 times faster than TSimTF when k =
15, [Vg| = 6 and p = 3 on DBpedia. The improvement increases
when |Vp| or k grows larger. (i) Algorithms TSimTF and TSimDF
are a bit slower than TSimC. This is because TSimTF and TSimDF
encode the dataset information into the ranking functions, such
that they both find many more meaningful matches than TSimC,
while TSimC always returns empty results even with medium size
patterns, e.g., queries Q on YAGO with [Vp| = 6.

(6) Efficiency of explanation. Using the same setting as in Exp-(4)
with M = 4 by default, we evaluated the efficiency of our expla-
nation algorithms expTF and expDF on DBpedia and YAGO. We
report the results in Figures 7(e), 7(j) and 7(o).

Observe the following. (i) Both expTF and expDF are efficient in
finding minimum explanations for relaxations, e.g., they took less
than 1ms and 2.4s in all cases, respectively. (ii) The running time of
expDF increases when |V | and p increase, as expected. It decreases
when k increases. Indeed, when k is large, more pattern relaxations
are generated, such that the chance to invoke TSim by expDF is low.

We also find that smaller A leads diverse relaxations with more
match results, e.g., evalDF(A = 0.5) finds more matches than
evalTF (A = 1) in all cases. This is because evalDF tends to gen-
erate more relaxed ancestor labels for diversification of relaxed
patterns. Accordingly, evalDF is also a bit slower than evalTF.

Summary. From the experiments we find the following.

(1) Taxonomy simulation returns 1.4 times more sensible matches
than graph simulation for Q with 4 nodes on DBpedia, within al-
most equal time. But it still cannot identify matches for larger pat-
terns, e.g., more than 5 nodes.

(2) Based on our top-k ranking functions and algorithms, our re-
laxation framework is effective and efficient in relaxing patterns
and explaining results: (a) It enables us to identify more sensible
matches by relaxation, e.g., 11.9 times more for Q with 4 nodes on
DBpedia, among which 74% are verified sensible. (b) Its average
evaluation time of the top-k relaxed patterns is 1.8 times faster than
direct evaluation, and the gap grows bigger with larger k. (c) It can
explain matches to the relaxed patterns accurately and efficiently,
e.g., it explains relaxations with accuracy above 85% even without
access to the data graphs, and achieves 99% accuracy when two
data accesses are allowed on both DBpedia and YAGO, in 2.4s.

8 CONCLUSION

We have proposed a framework for relaxing graph pattern matching
queries. We have formalized taxonomy simulation by combining
taxonomy with graph simulation, and proposed a notion of relax-
ation for it. We have designed ranking functions for relaxations of

taxonomy simulation patterns. We have also developed practical
algorithms to compute and answer top-k relaxed patterns, and to
explain matches captured by the relaxations. Finally, we have exper-
imentally verified the effectiveness and efficiency of the techniques.

There are several issues of interests for future research. We are to
study relaxing and explaining other graph queries, e.g., taxonomy
subgraph isomorphism, and to integrate the relaxation framework
into existing graph-based systems.
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