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ABSTRACT
Traditional graph pattern matching is based on subgraph isomor-
phism, which is often too restrictive to identify meaningful matches.
To handle this, taxonomy subgraph isomorphism has been proposed
to relax the label constraints in the matching. Nonetheless, there
are many cases that cannot be covered. In this study, we �rst formal-
ize taxonomy simulation, a natural matching semantics combing
graph simulation with taxonomy, and propose its pattern relaxation
to enrich graph pattern matching results with taxonomy informa-
tion. We also design topological ranking and diversi�ed topological
ranking for top-k relaxations. We then study the top-k pattern
relaxation problems, by providing their static analyses, and devel-
oping algorithms and optimization for �nding and evaluating top-k
pattern relaxations. We further propose a notion of explanations
for answers to the relaxations and develop algorithms to compute
explanations. These together give us a framework for enriching the
results of graph pattern matching. Using real-life datasets, we ex-
perimentally verify that our framework and techniques are e�ective
and e�cient for identifying meaningful matches in practice.
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1 INTRODUCTION
Graph pattern matching is being widely used in social network
analysis, among other things. It is to �nd subgraphs in a large
data graph that satisfy both the label and topological matching
constraints carried by a pattern graph. However, traditional graph
pattern matching is based on subgraph isomorphism [7], which
requires identical label and topological matching and is often too
restrictive to �nd matches in, e.g., social search.

To handle this, taxonomy assisted subgraph isomorphism [5]
has been proposed to capture more matches by relaxing label con-
straints, which makes use of a taxonomy of the labels such that
a pattern node with label l ′ is allowed to match a data node with
label l when l is a descendant of l ′ in the taxonomy. Nonetheless,
not all meaningful matches can be covered by this, as shown below.
Example 1: Consider a real-life example taken from [21] and
shown in Fig. 1. The data graph G1 depicts a social travel network.
A node denotes an entity labeled types such as river and restaurant;
an edge indicates a relation between two entities, e.g., newspaper1
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Figure 1: Querying knowledge network

recommends river (recom), and exhibition_hall is close to river
(near). A tourist wants to �nd a travel plan that she could (1) visit a
museum, (2) sightsee on a river close to the museum, and (3) dine
at a restaurant close to the two places. This query can be speci�ed
by pattern graph Q1 (in the dashed rectangular). Under subgraph
isomorphism, one can verify that there is no match to Q1 in G1.

This remains the case even we adopt taxonomy assisted subgraph
isomorphism. Consider a taxonomy graph T1 from DBpedia [1] and
shown in Fig. 2. It tells us that (a) exhibition_hall is a museum,
while theater is not, and (b) take_away_food is a restaurant.

Nonetheless, due to strict topological matching constraints, un-
der taxonomy subgraph isomorphism with T1, the match result to
Q1 remains empty. However, in the presence ofT1, one can see that
the subgraph consisting of river, exhibition_hall, take_away_food
and restaurant is a sensible match to Q1 in G1. �

To tackle this, a natural idea is to further relax the matching
constraints of taxonomy subgraph isomorphism, so that both label
and structural matching semantics can be relaxed for graph pattern
matching. One immediate approach is to, along the same lines as
taxonomy subgraph isomorphism, combine taxonomy with graph
simulation [11, 14, 18], which has recently been used to relax the
topological matching constraints of subgraph isomorphism.

Unlike subgraph isomorphism which requires a bijective map-
ping function from pattern nodes to data nodes, graph simula-
tion [11, 14, 18] is de�ned by a binary relation that preserves the
child relationship. We refer to the “simulation version” of taxon-
omy subgraph isomorphism as taxonomy simulation, i.e., observe
the hierarchical “downward” is-a relationship between labels when
computing simulation relations between pattern and data graphs.
One can verify that taxonomy simulation can identify the sensible
match in Example 1, and can �nd all matches that can be found by
taxonomy subgraph isomorphism by the matching semantics.

Nonetheless, it is still not bullet-proof and can come short to cap-
ture matches in real-life, as shown by an experimental study below.

Using data and taxonomy graphs from DBpedia [1] and YAGO
[2], we have conducted an experiment on the percentage of pattern
graphs that have non-empty match results. We randomly generated
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Figure 2: Taxonomy graph

pattern graphs of size ranging from 2 to 10 by drawing random
labels from the data graphs, and queried DBpedia and YAGO with
them via taxonomy simulation. The results are shown below.

|VQ | 2 4 6 8 10
DBpedia 90% 18% 0% 0% 0%
YAGO 54% 2% 0% 0% 0%

Only 18% (resp. 2%) of the patterns with 4 nodes can �nd matches
in DBpedia (resp. YAGO) via taxonomy simulation; no patterns with
6 or more nodes can identify matches. The percentages are even
much lower with (taxonomy) subgraph isomorphism or graph sim-
ulation. However, by examining patterns and data graphs, we found
there are indeed many sensible matches to those empty patterns.

Example 2: Recall Q1 and G1 in Example 1. Consider pattern Q2
also in Fig. 1 that extendsQ1 with a new node with label newspaper
(in blue), to further restrict that river and museum have to be rec-
ommended by a newspaper (blue dashed edges). Using taxonomy
simulation, no match can be found for Q2 in G1. However, both
newspaper and television_show are media as shown in the taxon-
omy graph T1 in Fig. 2. Hence, a sensible match to Q2 in G1 is the
one in Example 1, together with data node television_show. �

This example suggests that we make further use of taxonomy in
an “upward” direction, to relax taxonomy simulation patterns to
capture more sensible matches, e.g., observing that newspaper and
television_show are media when matching Q2 in G1.
Contributions. This paper studies how to enable graph pattern
matching to capture more sensible matches in real-life complex
data graphs, by relaxing taxonomy simulation queries.
(1) We formalize taxonomy simulation and propose its relaxation to
enrich graph pattern matching results with a taxonomy in both the
“downward” and “upward” directions (Section 2). We also design
topological ranking and diversi�ed topological ranking for top-k
relaxations. The functions combine taxonomy simulation seman-
tics, taxonomy graph, and the correlation between pattern and data
graphs together when ranking relaxations (Section 3).
(2) We study the problem of computing top-k pattern relaxations
w.r.t. the ranking functions (Section 4). We show that the problem
is (a) in PTIME when the topological ranking function is used; and
(b) NP-complete and APX-hard for approximation when diversi�ca-
tion is also considered. For (a), we develop a PTIME exact algorithm
by employing the Lawler’s procedure [16] for top-k combinatorial
optimization problems. For (b), we reduce the problem to the maxi-
mum dispersion problem, which enables us to use existing e�cient
algorithms for the latter to compute top-k diversi�ed relaxations.
(3) We give an evaluation algorithm for answering top-k relaxed
patterns while maximizing the sharing of computation (Section 5).

It is built upon hierarchical connections among the pattern relax-
ations and bounded decremental taxonomy simulation algorithm.
(4) We study the minimum explanation problem to explain why
a match to a relaxed pattern is returned, in terms of the essential
part of the relaxation that captures the match (Section 6). We
show that the problem is (a) in PTIME when only the topological
ranking function is concerned, and (b) becomes NP-complete in
general. We give a linear time optimal algorithm for (a) and a
parameterized algorithm for (b), which returns explanations with
accuracy parameterized by its time complexity.
(5) Using real-life graphs, we experimentally verify the e�ectiveness
and e�ciency of the techniques (Section 7). We �nd the following.
(a) The top-k relaxations are e�ective: they �nd 11.9 times more
answers, among which 74% are veri�ed sensible. (b) The average
evaluation time of relaxed patterns is 1.8 times faster than conven-
tional evaluation method when k = 15, and the gap grows with
larger k . (c) It can explain relaxations with accuracy above 85%
without access toG , and achieve 99% accuracy with 2 data accesses.
Related work. We categorize related work as follows.
Graph pattern matching. Traditional matching is by subgraph iso-
morphism, which is NP-complete [7] and found often too restrictive
to capture sensible matches [11]. To loosen the restriction, one di-
rection is to relax matching semantics of isomorphism by adopting
graph simulation based pattern matching [11, 13, 14, 18]. The other
direction is to loosen the identical label matching with an ontol-
ogy/taxonomy [5, 25, 26], Here we combine the two and use taxon-
omy assisted simulation as the base semantics of our framework.
Pattern relaxation. There has been work on pattern relaxation to
generate relaxed queries over XML [3], RDF [9, 10, 15] and graph
data [23]. They are based on (a) structure rewriting [3, 10, 23] or (b)
predicate relaxation of e.g., SPARQL pattern triples [9, 15]. Follow-
ing (b), we use taxonomy to relax taxonomy simulation patterns on
property graphs while retaining user speci�ed pattern structures.

Our work di�ers from these work in the following. (1) Targeted
queries. We study relaxation of taxonomy simulation based on
graph simulation that is de�ned by a recursively computed
relation over the general schemaless graph model, while existing
works are for SPARQL and its variants over RDF [9, 10, 15] and
subgraph isomorphism over graphs [23]. Their “implicit" pattern
matching is de�ned via homomorphism or isomorphism, and is
more restrictive due to the use of functions for valuations. (2)
Ranking relaxations. The essence of query relaxation is the ranking
of relaxations. However, ranking relaxations highly depends on
the semantics of the queries to be relaxed. As a result, existing
approaches for generating and ranking relaxations do not work
well with taxonomy simulation due to its recursive nature and
relation based structural matching. (3) Additional feature. We also
study the explanation for answers to relaxed queries, which has
not been addressed by existing works on query relaxation.
Multi-query optimization. There has been work on multi-query
optimization for graph pattern (e.g., [20]) and SPARQL (e.g., [17])
relevant to the evaluation of relaxed patterns. They typically work
by decomposing queries and using shared computation on common
sub-queries. We adopt the general method for evaluating top-k
relaxed patterns but di�er from prior work in techniques. Indeed,



our approach is PTIME while [17, 20] are NP-hard. Moreover, we
adopt bounded decremental algorithm for sharing computation.
Explanation. Related to the relaxation explanation are also query
resilience [12], phenomenon explanation [22], why-not queries [4]
and provenance [6], for relational queries. Di�erent from theirs, we
study explanations that are de�ned by relaxations for graph pattern
queries, instead of relational query answering or provenance.

2 RELAXING TAXONOMY SIMULATION
In this section, we formalize taxonomy simulation (Section 2.1) and
propose relaxations for taxonomy simulation patterns (Section 2.2).

2.1 Taxonomy Simulation
A labeled directed graphG is a triple (V ,E, f ), whereV andE are sets
of nodes and edges, respectively; and f is a total labeling function
such that for each node v ∈ V (resp. e ∈ E), f (v ) (resp. f (e )) is a
label from an alphabet ΣV (resp. ΣE ). The size |G | of G is |V | + |E |.

Data graphs and pattern graphs are both labeled directed graphs,
denoted by G (V ,E, f ) and Q (VQ ,EQ , fQ ), respectively. Intuitively,
node labels carry the description of entities, e.g., place, job. Edge
labels specify the relationships between respective entities.
Graph simulation. Data graph G matches pattern Q via graph
simulation, denoted by Q E G, if there exists a left-total binary
match relationR ⊆ VQ×V inG forQ such that (1) for each (u,v ) ∈ R,
u andv have the same label, i.e., fQ (u) = f (v ); and (2) for each edge
e = (u,u ′) ∈ EQ , there exists an edge e ′ = (v,v ′) ∈ E such that
(u ′,v ′) ∈ R and fQ (e ) = f (e ′), i.e., e and e ′ have the same label.

Intuitively, graph simulation preserves the label match and the
child relationships between pattern and data graphs. It relaxes the
topological matching constraints of subgraph isomorphism.

As shown in Example 1, there are is-a like category relationships
between labels, which can be captured by a taxonomy.
Taxonomy graphs. A taxonomy graph is a labeled rooted forest,
de�ned as T (VT , ET , fT ), in which (1) an edge from node u to v
represents an is-a relationship; and (2) fT is an injective labeling
function that maps nodes ofVT to distinct labels in the label set ΣV .

Intuitively, T de�nes a specialization-generation hierarchy for
labels in the data graphs. The distance from node u to u ′ in T ,
denoted by distT (u,u ′), is the number of edges in the shortest path
from u to u ′ if u is an ancestor of u ′ in T ; and is +∞ otherwise.
We denote by descT (u) the set of descendants of u (including u) in
T . We also write distT (u,u ′) and descT (u) as distT ( fT (u), fT (u ′))
and descT ( fT (u)), respectively, when labels are concerned.
Taxonomy simulation. Given data graph G (V ,E, f ), pattern Q (
VQ ,EQ , fQ ) and taxonomyT ,G matchesQ w.r.t.T via taxonomy sim-
ulation, denoted byQ ET G , if there is a left-total binary match rela-
tion RT ⊆ VQ ×V inG forQ such that (1) for each (u,v ) ∈ RT , f (v )
∈ descT ( fQ (u)); and (2) for each edge e = (u,u ′) ∈ EQ , there exists
an edge e ′ = (v,v ′) ∈ E such that (u ′,v ′) ∈ R and fQ (e ) = f (e ′).

That is, taxonomy simulation observes the is-a relation among
node labels when computing match relations of graph simulation.

When Q ET G, one can readily verify there exists a unique
maximum match relation RTM in G for Q w.r.t. T . Given Q , G and T ,
the answers to Q in G w.r.t.T via taxonomy simulation, denoted by
Q (G ), is the unique maximum match relation RTM inG forQ w.r.t.T .

Example 3: ConsiderQ1 andG1 in Fig. 1, andT1 in Fig. 2. Note that
Q1 6E G1, i.e.,G1 does not matchQ1 via graph simulation. However,
Q1 ET G1. Indeed, the maximum match relation in G1 for Q1 w.r.t.
T1 maps museum, river and restaurant of Q1 to {exhibition_hall},
{river} and {take_away_food, restaurant} in G1, respectively. �

Algorithm TSim. GivenQ ,G andT , we extend theO ( |Q | |G |)-time
graph simulation algorithm [14] to compute taxonomy simulation
in O ( |Q | |G | |T |)-time such that we check label containment (condi-
tion (1) of taxonomy simulation de�nition) inO ( |T |) by traversingT
instead of identical label checking. We also optimize it toO ( |Q | |G |)-
time (denoted by TSim; omitted), with a bit string pre-computed
o�ine in O ( |VT | |T |) that encodes descendant labels of each taxon-
omy node, so that the label containment is checked in O (1).

2.2 Relaxations for Taxonomy Simulation
We next propose relaxations for taxonomy simulation patterns and
a relaxation framework for graph pattern matching based on it.
Label relaxation. A label relaxation δ w.r.t. a taxonomy T is of form
l → l ′ such that l ′ is an ancestor label of l in T .
Pattern relaxation. Consider pattern graph Q , a taxonomy graph T
and positive integer µ. A µ-bounded pattern relaxation ∆ for Q w.r.t.
T is a set of label relaxations w.r.t. T such that, (1) for each l → l ′

in ∆, l is a label in Q and distT (l ′, l ) ≤ µ; and (2) for any two label
relaxations l1 → l ′1 and l2 → l ′2 in ∆, l1 , l2. When it is clear from
the context, we simply call ∆ a pattern relaxation for Q w.r.t. T .

Let Q ⊕ ∆ denote the pattern derived from Q by replacing each
occurrence of l with l ′ in Q for each l → l ′ in ∆. We refer to Q ⊕ ∆
as the relaxed pattern of Q w.r.t. ∆.

Intuitively, µ is to bound the distance of label relaxations in ∆,
so that changes to pattern graphs by ∆ can be controlled.

Example 4: Recall Q2 and T1 from Example 2. When µ = 2, ∆
= {δ = newspaper → media} is a 2-bounded pattern relaxation
for Q2 w.r.t. T1. The relaxed pattern Q2 ⊕ ∆ is derived from Q2 by
replacing newspaper with media in Fig. 1. �

A relaxation framework. We next propose a relaxation frame-
work for graph pattern matching, built upon taxonomy simulation.
Given patternQ , data graphG and taxonomyT , it works as follows.
(1) It generates and ranks relaxations for Q w.r.t. T , including Q .
(2) It evaluates top ranked relaxations for Q in G.
(3) It �nally explains relaxations to the end user by showing why
matches are found and returned by the relaxations.

In the sequel, we discuss step (1) in Sections 3 and 4, step (2) in
Section 5, and step (3) in Section 6.

3 RANKING PATTERN RELAXATIONS
For a pattern Q , a data graph G, a taxonomy T and a positive in-
teger µ, there are up to exponentially many µ-bounded pattern
relaxations for Q w.r.t. T . This suggests that we de�ne functions to
rank the relaxations and compute the top-k relaxations accordingly.

Below we design two ranking functions: topological ranking to
measure pattern relaxations in terms of their relaxation distances
w.r.t. Q , with G and T taken into account together(Section 3.1);
and diversi�ed-topological ranking which combines the topological
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function with a diversi�cation function (Section 3.2). Based on the
functions, we introduce two top-k pattern relaxation problems.

3.1 Topological Ranking
In real world, one typically wants to capture more match results
while ensuring the results are sensible. Motivated by this, we de-
�ne a bi-criteria relaxation ranking function, referred to as the
topological ranking, with two components: (a) the relaxation ratio
to measure the quality and accuracy of relaxed patterns in terms of
their distance to the original pattern and (b) the information ratio
to estimate the e�ectiveness of the relaxations in terms of their
ability to capture matches. We present it below.
(a) Relaxation ratio. The relaxation ratio of label relaxation δ = l → l ′

w.r.t. taxonomyT forQ (VQ ,EQ , fQ ), denoted byγQ (δ ), is de�ned as∑
u ∈VQ ,fQ (u )=l

rankQ (u) · ρ (distT (l
′, l )),

where rankQ (u) denotes the number of nodes u ′ in Q that can
reach u via a directed path from u ′ to u, and ρ (x ) is a monotoni-
cally increasing function that normalizes the weight of distT (l ′, l ).
Common choices for ρ (x ) are ρ (x ) = x and ex , as frequently used
in measuring social positions [24]. We use ρ (x ) = ex by default.

Intuitively, larger distT (l ′, l ) gives a higher chance for node u
to �nd matches via taxonomy simulation. This e�ect is ampli�ed
by rankQ (u) which observes the recursive nature of taxonomy
simulation. Indeed, by taxonomy simulation, relaxation on u of Q
will possibly introduce more matches to nodes in Q that can reach
u (ancestors), but not descendants of u.

Example 5: Consider pattern Q3, data graph G2 and taxonomy
T2 in Fig. 3. The match result for Q3 in G2 via taxonomy simu-
lation contains nodes A1, B1, C1 and C2. A pattern relaxation
∆ = {B → D} on node B in Q3 turns data node D1 to a match
of node D in Q3 ⊕ ∆, and further its parent data node A2 to
a match of pattern node A. However, the relaxation does not
change the match status of the child node C2 of D1 in G2. Indeed,
rankQ3 (C) = 3 > rankQ3 (B) = 2 > rankQ3 (A) = 1. �

Observe that, the smaller γQ (δ ) is, the closer is the relaxed pat-
tern w.r.t. δ to the original pattern Q .
(b) Information ratio. Consider pattern Q (VQ ,EQ , fQ ) and data
graphG (V ,E, f ). The information ratioI(Q,G ) (δ ) of label relaxation
δ = l → l ′ on Q in G is de�ned as |cand(G,T ) (l ) |/|cand(G,T ) (l

′) |,
where cand(G,T ) (l ) is the set of nodes v inG with f (v ) ∈ descT (l ).

Intuitively, I(Q,G ) (δ ) captures the impacts of δ on Q by observ-
ing the candidate match information from G. A smaller I(Q,G ) (δ )
gives a higher potential to introduce more matches.
Topological ranking function. Given a pattern graphQ , a data graph
G, a taxonomy graph T , and a pattern relaxation ∆ for Q w.r.t. T ,
the topological ranking function of ∆ on Q forG w.r.t.T , denoted by
Γ (Q,∆), is de�ned as ∑δ ∈∆ γQ (δ ) · I(Q,G ) (δ ).

Intuitively, Γ (Q,∆) is a bi-criteria function specialized forG that
measures the quality of the relaxed pattern Q ⊕ ∆ in terms of their
closeness to Q and their ability to capture matches. By minimizing

Γ (Q,∆), we can on one hand maximize the accuracy of matches to
Q ⊕∆ inG via the relaxation ratio, and on the other hand maximize
the ability to capture matches in G via the information ratio.

This motivates us to study the top-k pattern relaxation problem
(kPR), formulated as follows.
Top-k pattern relaxation problem (kPR). LetUµ (Q,T ) be the set of
all µ-bounded pattern relaxations for pattern Q w.r.t. taxonomy T .
Given Q , G, T , and integers µ and k , problem kPR is to �nd a k-set
S ⊆ Uµ (Q,T ), such that

S = argmin
S ′⊆Uµ (Q,T ), |S ′ |=k

∑
∆∈S ′

Γ (Q,∆).

That is,kPR is to identify a set ofk µ-bounded pattern relaxations
with the minimum total topological ranking.
Example 6: ConsiderQ2 andG1 in Fig. 1, andT1 in Fig. 2. Suppose
that there are 7 isolated nodes inG1 labeled magazine, radio_show,
venue, theater, valley, mountain and airport (not shown in Fig. 1).
Assume k = 2 and µ = 2. The label relaxations and part of possible
pattern relaxations are listed in the table below.

Pattern relaxations Γ (Q2, ∆i )

∆1 = {δ1 = newspaper→ media } 1.359
∆2 = {δ2 = museum→ cultural_center } 2.175
∆3 = {δ3 = river→ natural_place } 3.695
∆4 = {δ4 = river→ body_of_water } 4.077
∆5 = {δ5 = restaurant→ leisure_center } 7.249
∆6 = {δ6 = restaurant→ architecture.. } 14.778
· · · · · ·

Observe the following. (a) One can verify that S={∆1, ∆2} is the
top-2 pattern relaxations for kPR. (b) Γ (Q2,∆3) is smaller than
Γ (Q2,∆4), although distT (natural_place, river) = 2 is larger than
distT (body_of_water, river) = 1. This is because the information
ratio ranks relaxations with more potential matches inG1 higher, de-
spite relaxation ratio favors relaxations with smaller distance. �

3.2 Diversi�ed Topological Ranking
It is desirable that the relaxed patterns are not only close to original
patterns, but also diverse to provide more information in the match
results. Hence, we introduce diversi�ed topological ranking.
Diversi�cation. To characterize the diversity of a set of pattern relax-
ations, we de�ne a distance function to measure the “dissimilarity"
of two pattern relaxations. For any two pattern relaxations ∆1 and
∆2 for Q , we de�ne the similarity distance between ∆1 and ∆2, de-
noted by θQ (∆1,∆2), to be

|L(Q ⊕ ∆1) ∩ L(Q ⊕ ∆2) |

|L(Q ⊕ ∆1) ∪ L(Q ⊕ ∆2) |
,

where L(Q ) denotes the set of labels in pattern graph Q . That is,
the similarity distance measures the overlap of labels in the relaxed
patterns of the relaxations.

Example 7: Recall Example 6. We have the following: (a) θQ2 (∆1,
∆2) = 2

6 ; and (b) θQ2 (∆7,∆8) = 0, in which ∆7={δ1, δ2} and ∆8={δ3,
δ5}; that is, there are no overlapped labels between Q2 ⊕ ∆7 and
Q2 ⊕ ∆8. Thus, ∆7 and ∆8 are most dissimilar to each other, among
others. One can verify that the connected component in the bottom
ofG1 is in the match result ofQ2⊕∆8. The result is a bit inconsistent
with the target of Q2, turning a scenery trip to an entertainment
trip, as topological ranking is not considered here yet. �



We next combine topological ranking and diversi�cation.
Diversi�ed topological ranking function. Consider a set S of k pat-
tern relaxations ∆1, . . .∆k for pattern graph Q w.r.t. taxonomy T .
We de�ne the diversi�ed topological ranking function z(Q, S ) over
the pattern relaxation set S as

λ · (k − 1)
∑
∆i ∈S

Γ̂ (Q, ∆i ) + 2 · (1 − λ)
∑

∆i ∈S,∆j ∈S,i< j

θQ (∆i , ∆j ),

where λ ∈ [0, 1] is a user speci�ed parameter, Γ̂ (Q,∆i ) =
Γ (Q,∆i )

|VQ | · |L(Q ) | ·e µ is a normalized topological function, and |L(Q ) | is
the number of labels appeared in Q . We scale up the topological
ranking component with a factor of (k − 1) since there are k ·(k−1)

2
numbers in the diversi�cation component, as opposed to k numbers
in the topological ranking.
Diversi�ed top-k pattern relaxation problem (kPRDF). We next in-
troduce the diversi�ed top-k pattern relaxation problem, denoted
by kPRDF, along the same lines as kPR. More speci�cally, given Q ,
G,T , and two integers µ andk ,kPRDF is to �nd ak-setS ⊆ Uµ (Q,T )
(recallUµ (Q,T ) from the kPR problem), such that

S = argmin
S ′⊆Uµ (Q,T ), |S ′ |=k

z(Q, S ′).

That is, kPRDF aims to �nd a set S of k µ-bounded pattern relax-
ations for Q w.r.t. T that minimizes z(Q, S ).

Example 8: Recall Example 6. One can verify that (a) when λ = 1,
i.e., when only topological function is considered, a top-2 set is
{∆1,∆2}; and (b) when λ = 0, i.e., when only diversi�cation function
is considered, a top-2 set is {∆7={δ1, δ2},∆8={δ3, δ5}}. Moreover, (c)
when 0.823 < λ < 0.924, {∆3,∆7} is the best set; (d) when λ ≤ 0.823,
{∆7,∆8} is the best; and (e) when λ ≥ 0.924, {∆1,∆2} is the best. �

4 FINDING TOP-K RELAXATIONS
We next develop algorithms for the two top-k pattern relaxation
problems, which, together with Section 3, provide the foundation
to step (1) of the framework in Section 2.2. We focus on problem
kPR in Section 4.1 �rst, and move on to kPRDF in Section 4.2.

4.1 Finding Top-k Relaxations for kPR
We �rst present the main result for kPR. We assume that the num-
bers |cand(G,T ) (l ) | for labels l inG have already been precomputed.
Note that this can be done by a O ( |VT | |V |)-time o�ine computing.
Theorem 1: There exists an algorithm that computes the top-k µ-
bounded pattern relaxations forQ w.r.t.T inG withinO (µk |VQ | |Q |)-
time, independent of |G | and |T |. �

As a proof, we next give such an algorithm. It utilizes the Lawler’s
procedure [16]. Lawler’s procedure has the following property: for
an optimization problem that can be formulated in integer pro-
gramming with n 0-1 variables, if the optimal (top-1) solution can
be found in c (n) time, then the top-k solutions can be found in
O (k · c (n)) + B time, where B is the total time for branching the
space of feasible solutions into subspaces.
Algorithm relTF. The algorithm, denoted by relTF, is shown in
Fig. 4. It uses (a) a list LTR to store the top-k pattern relaxations
identi�ed so far; and (b) a priority queue Q to cache candidate top-k
pattern relaxations, which will also be used to divide and branch the

Input: Q , G , T , two positive integers µ and k .
Output: A list LTR of top-k pattern relaxations.
1. LTR := [ ]; Q := nil; K := 1;
2. for each label `i in Q do /* assumeQ has labels `1 , . . . , `m */

3. generate a list Li of label relaxations for `i bounded by µ in T ;
4. L1 := (L1, . . . , Lm ); ∆1 := topRel(Q, G, L1); Q .push(〈∆1, L1〉);
5. while Q , ∅ do
6. if K = k + 1 then break;
7. 〈∆K , LK 〉 := Q .pop(); /*∆K has minimum Γ (Q, ∆K ) in Q*/

8. append ∆K to LTR;
9. sub-collections Ls1, . . . , Lsm := LawlerBranch(∆K , LK );
10. for i in [1,m] do ∆i := topRel(Q, G, Lsi ); Q .push(〈∆i , Lsi 〉);
11. K := K + 1;
12. return LTR;

Procedure topRel(Q, G, L)

Input: Q , G , a collection L of candidate label relaxations.
Output: The best pattern relaxation ∆ within L w.r.t. Γ (Q, ∆).
1. for each i in [1,m] do δ imin := argminδ ∈Li γQ (δ ) · I(Q,G ) (δ );
2. ∆ := {δ 1min, δ

2
min, . . . , δ

m
min }; return ∆;

Figure 4: Algorithm relTF

search space. After initialization (line 1), it generates the collection
L1 of candidate label relaxations for all labels in Q with relaxed
distance bounded by µ (lines 2-3). Here L1 includes, for each label
`i in Q , a list Li of label relaxations `i → `′ (0 ≤ distT (`′, `i ) ≤ µ).
It then �nds top-1 pattern relaxation ∆1 within L1 via procedure
topRel, which is then pushed into Q together with L1 (line 4).

It then iteratively searches the remaining k − 1 relaxations by
reducing to top-1 relaxation search within sub-collections of L1
(lines 5-11), until Q becomes empty (line 5), or the top-k results are
already found (line 6). Each time it pops out∆K with minimum topo-
logical ranking value, together with the collection of candidate label
relaxations from which ∆k is found, say LK (line 7). It then puts
∆K to LTR as the K-th best relaxation (line 8). After that, it adopts
the Lawler’s procedure, denoted by LawlerBranch (cf.[16]), to gen-
erate sub-collections Ls1 , . . . , Lsm of candidate label relaxations
from LK and ∆K (line 9). It then �nds the top-1 pattern relaxation
∆i in each sub-collection Lsi via procedure topRel (lines 10-11). It
returns LTR if all top-k relaxations are found (line 12).
Procedure topRel. Given Q , G and a collection L of candidate
label relaxations, procedure topRel is also shown in Fig. 4. It
generates the top-1 pattern relaxation by selecting label relaxations
δ with minimum γQ (δ ) · I(Q,G ) (δ ) for each label in Q .
Correctness & Complexity. The correctness of relTF is ensured by
the property of Lawler’s procedure. It is in O (µk |VQ | |EQ |) time.
Indeed, topRel is in O (µ |VQ | |EQ |) and the time for branching can-
didate label relaxations is O (k |VQ |

2). By the property of Lawler’s
procedure, relTF is inO (k ·µ |VQ | |EQ |)+O (k |VQ |

2) =O (µk |VQ | |Q |).

4.2 Top-k Diversi�ed Relaxations for kPRDF

We next study the problem kPRDF. While kPR can be solved in
PTIME, kPRDF is intractable.
Theorem 2: (1) The decision problem of kPRDF is NP-complete. (2)
The optimization problem of kPRDF is APX-hard to approximate. �



Despite of the hardness and inapproximability, we develop an
algorithm for kPRDF, denoted by relDF, by reducing kPRDF to the
maximum dispersion problem (maxDP), to utilize algorithms for
the later. Here problem maxDP is to �nd a subgraph G ′c induced
by a k-node set Vk from a weighted complete graph Gc , with the
maximum sum of (positive) edge weights. It is a well-studied maxi-
mization problem, with a number of e�cient exact, approximation
and heuristic algorithms already developed [8].
Algorithm relDF. We next present relDF by giving the reduction
from kPRDF tomaxDP. The subtlety is that kPRDF is a minimization
problem while maxDP is maximization. Nonetheless, we guarantee
that optimal solutions to maxDP give us optimal answers to kPRDF.

GivenQ ,G ,T , µ and k , algorithm relDF constructsGc of maxDP
as follows. (1) Each µ-bounded pattern relaxation∆ forQ is encoded
by a nodeu∆ inGc . (2) For any two nodesu∆1 ,u∆2 inGc , the weight
w (e ) for edge e = (u∆1 ,u∆2 ) is

M − λ
∑

i∈{1,2}
Γ̂ (Q, ∆i ) − 2(1 − λ)θQ (∆1, ∆2),

where M = 2λ ·max∆∈U Γ̂ (Q,∆) + 2(1 − λ), in which U is the set
of all µ-bounded pattern relaxations for Q w.r.t. T . Note that Gc is
an instance of maxDP since w (e ) > 0.

It is easy to see that a k-node setVk encodes the set of k pattern
relaxations for Q . Thus, algorithm relDF simply returns k pattern
relaxations encoded by Vk for maxDP.
Proposition 3: If Vk is the optimal solution to Gc of maxDP, then
the set of k pattern relaxations encoded by nodes in Vk is the optimal
solution to Q , G, T , µ and k of kPRDF. �

Proposition 3 ensures the following: relDF always returns the
top-k pattern relaxations for kPRDF as long as the reduced maxDP
returns exact answers. To see this holds, observe the following. Let
Sk be the set of relaxations encoded by nodes inVk . The sumWk of
edge weights in the subgraph induced byVk is ∑

u,v ∈Sk ,u,v
w (u,v ) =

k (k − 1)
2 ·M − λ (k − 1)

∑
∆∈Sk

Γ̂ (Q, ∆) − 2(1 − λ)
∑

∆i ,∆j ∈Sk ,i< j

θQ (∆i , ∆j ).

Thus,Wk = k (k − 1)
2 ·M−z(Q, Sk ). SinceVk is the optimal solution

to Gc of maxDP, thusWk is the maximum among all such k-node
sets inGc . Therefore, z(Q, Sk ) is the minimum among all k-sets of
pattern relaxations for Q of kPRDF.
Remark. The rationale behind the reduction is that µ and L(Q ) are
typically small, so that it is a�ordable to compute all the µ-bounded
pattern relaxations for Q beforehand. Indeed, the maximum height
of the taxonomy trees (i.e., maximum value for µ) in DBpedia taxon-
omy is only 6 and the average height (i.e., average µ value) is 2.29
(see Section 7 for details).

5 ANSWERING PATTERN RELAXATIONS
In this section, we further study the evaluation of the top-k relaxed
patterns produced by algorithms in Section 4, providing foundation
to step (2) of the framework in Section 2.2.

Given Q , G, T and k pattern relaxations ∆1, . . . , ∆k , we aim to
compute answers to the relaxed patterns Q ⊕ ∆1, . . . , Q ⊕ ∆k in
G w.r.t. T . A naive solution is to evaluate the k relaxed patterns
one by one. However, observe that they share the same structure
and interrelated labels. Inspired by this, we develop an algorithm
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Figure 5: Minimum pairing tree

that maximally utilizes computation sharing among the relaxed
patterns, based on the semantics of taxonomy simulation.
Algorithm evalPR. The algorithm, denoted by evalPR, works in
two steps: (1) constructing the minimum pairing tree T , a structure
to organize the evaluation of relaxed patterns while maximizing
shared computation; and (2) bounded decremental taxonomy simu-
lation that carries out the computation boundedly over T .
(1) Minimum pairing tree construction. The minimum pairing tree
T of the k pattern relaxations ∆1, . . . , ∆k for Q is a hierarchical
organization of the relaxations as follows. (a) Every node of T is a
pattern relaxation. (b) T has k leaves (at level 0), each correspond-
ing to one of the k pattern relaxations ∆1, . . . ,∆k forQ . (c) Nodes at
level i + 1 are the minimum paring of pattern relaxations at level i
(i ∈ [0, d logke−1]). Here a pairing of pattern relaxations∆1, . . . ,∆n
is a set P of dn2 e pattern relaxations ∆′1, . . . , ∆′

d n2 e
such that (i) each

∆′j (j ∈ [1, d
n
2 e]) at level i + 1 is a union of two pattern relaxations

∆p and ∆q (p,q ∈ [1,n]) at level i , where ∆′j combines all label
relaxations in ∆p and ∆q together such that each label l is relaxed
to the further label l ′ if two label relaxations are attached to it; (ii)
∆′j and ∆′j′ correspond to di�erent pairs of relaxations if j , j ′.

A pairing set P of a set S of n pattern relaxations is minimum for
pattern graph Q w.r.t. taxonomy T if∑
∆′∈P

∑
∆i ∈∆′;i=1,2

∑
u∈VQ

|cand(G,T ) (fQ⊕∆′ (u )) \ cand(G,T ) (fQ⊕∆i (u ) |

is the minimum among all pairings of relaxations in S . Here ∆i ∈
∆′(i = 1, 2) denotes that ∆′ combines ∆1 and ∆2 and cand(G,T ) (l )
is the set of nodes v in G such that f (v ) ∈ descT (l ).

Intuitively, the minimum pairing set P of S groups relaxations in
S into pairs such that, by �rst evaluating relaxed patterns w.r.t. relax-
ations in P as shared computation, and then “recovering” answers
to relaxed patterns w.r.t. S , the total computation can be minimized.
The minimum pairing tree organizes such minimization recursively.

Here T can be built in O (k2.5 logk ) time, by invoking dlogke
times of the maximum weighted matching algorithm [19].

Example 9: Recall label relaxations δ1, δ2, . . . , δ6 in the table in
Example 6. When k = 8 and µ = 2, one can verify that ∆1, ∆2, . . . ,
∆8 are the top-8 pattern relaxations w.r.t. the topological ranking
function, as shown in the leaves in Fig. 5. Algorithm evalPR �rstly
constructs the minimum pairing tree as shown in Fig. 5. Nodes at
level i + 1 are the minimum paring of pattern relaxations at level i
(i ∈ [0, 2]), e.g., ∆11,∆12,. . . ,∆14 at level 1 is the minimum pairing of
∆1,∆2,. . . ,∆8 at level 0, and ∆11 is the union of ∆1 and ∆3. �

(2) Bounded decremental evaluation. After constructing T of∆1, . . . ,
∆k , evalPR then evaluates relaxed patterns of Q w.r.t. relaxations



in T , from root to leaves. For each node u, it evaluates the relaxed
pattern w.r.t. relaxation in u by reusing answers to the relaxed pat-
tern in the parent node pre(u) of u in T , via BDeval (see below). It
�nally returns answers to relaxed patterns in leaves of T .

Here procedure BDeval decrementally computes (Q ⊕ ∆l ) (G )
and (Q ⊕ ∆r ) (G ) from (Q ⊕ ∆′) (G ) if ∆′ combines ∆l and ∆r in
T , by iteratively removing matches in (Q ⊕ ∆′) (G ) that are found
not in (Q ⊕ ∆l (r ) ) (G ), similar to the incremental graph simulation
algorithm [11]. Following [11], BDeval is also bounded in that its
cost is determined by the changes in input and output, i.e., |(Q ⊕
∆′) (G ) \ (Q ⊕ ∆l (r ) ) (G ) | and the size of an a�ected area in G that
any algorithm has to access, and is not directly dependent of |G |.

Example 10: Continue Example 9. Algorithm evalPR then carries
out the decremental evaluation over T in Fig. 5. Take Q2 ⊕ ∆1 and
Q2 ⊕ ∆3 for example. evalPR evaluates them by starting from root
∆31, to∆21, and then to∆11 sequentially. Firstly, (a) evalPR �nds that
the connected component C1 containing newspaper1 in G1 is the
match result to Q2 ⊕ ∆31, and (b) further veri�es thatC1 is also the
answer toQ2⊕∆21. Then, (c) evalPR removes nodes body_of_water
and newspaper2 fromC1, yielding the match resultC2 to Q2 ⊕ ∆11.
Finally, (d) evalPR removes nodes castle and newspaper1 from C2
as the match result to Q2 ⊕ ∆1, and (e) also �nds that the answer
C2 in (c) is exactly the match result to Q2 ⊕ ∆3. �

6 EXPLAINING RELAXATIONS
In Section 5, we have studied the evaluation of top-k relaxed pat-
terns. A natural follow-up question is to ask, why certain nodes in
G are returned after relaxation? Below we answer this question, by
studying the match-relaxation explanation problem. This gives the
foundation to step (3) of the framework in Section 2.2.
Minimum explanation. Given pattern graphQ , data graphG, tax-
onomyT , pattern relaxation∆, and a nodev ofG that is in the match
result (Q ⊕ ∆) (G ) to the relaxed pattern Q ⊕ ∆ inG, an explanation
forv w.r.t.∆, denoted by E∆ (v ), is a subset of∆ such thatv is in (Q⊕
E∆ (v )) (G ). Intuitively, E∆ (v ) explains whyv is in the match result
toQ ⊕∆ inG using label relaxations in ∆. In particular, whenv is al-
ready in the match result toQ inG, ∅ is an explanation forv w.r.t. ∆.

A minimum explanation Em∆ (v ) for v w.r.t. ∆ is an explanation
of minimum cardinality among all such explanations. Intuitively,
Em∆ (v ) is the minimum part of ∆ that is essential for relaxing Q so
that v can be captured by Q ⊕ ∆.

Example 11: RecallQ2,G1 and∆3 = {δ1,δ2} from Example 10. The
match result to the relaxed pattern Q2 ⊕ ∆3 in G1 is {newspaper1,
television_show, castle, river, exhibition_hall, take_away_food,
restaurant }. One can verify that (1) the minimum explanation
Em∆3

(exhibition_hall) for exhibition_hall w.r.t. ∆3 is {δ1}, a subset
of ∆3; and (2) the minimum explanation for castle w.r.t. ∆3 is also
a subset of ∆3, i.e., Em∆3

(castle) = {δ2}. �

Match-relaxation explanation problem. Given a pattern Q ,
data graph G, taxonomy T , k pattern relaxations ∆1, . . . , ∆k for
Q w.r.t. T and their match results (Q ⊕ ∆1) (G ), . . . , (Q ⊕ ∆k ) (G ),
integer i ∈ [1,k], and node v in (Q ⊕ ∆i ) (G ), the match-relaxation
explanation problem (MRE) is to compute the minimum explanation
Em∆i

(v ) for v w.r.t. ∆i .

The study of MRE allows the user to ask for the minimum expla-
nation about why a particular node inG is in the match results to the
relaxed patterns, after computing the top-k relaxations (Section 4)
and their answers in G (Section 5). Nonetheless, it is intractable.
Theorem 4: The decision problem ofMRE is NP-complete. �

Despite of the complexity, we below develop practical algorithms
for MRE. In particular, we study two instances of MRE, denoted
by MRETF and MREDF, respectively, to explain top-k relaxations
computed by algorithm relTF and relDF in Section 4.
(1) InstanceMRETF. When we consider top-k topological relax-
ations, MRE becomes tractable. Indeed, the minimum explanation
can be found in linear time for MRETF, based on the property below.
Proposition 5: For any pattern Q , data graph G, taxonomy T and
top-k pattern relaxations ∆1, . . . , ∆k identi�ed by algorithm relTF,
for any i ∈ [1,k] and any node v in (Q ⊕ ∆i ) (G ), there must exist
j ∈ [1,k] such that∆j is theminimum explanation forv w.r.t.∆i . �

Proposition 5 tells us that the minimum explanation for v w.r.t.
the top-k topologically ranked relaxations must also be one of those
k relaxations. It gives us a linear time algorithm, denoted by expTF,
for MRETF even without access to G or T : do a linear scan of (Q ⊕
∆1) (G ), . . . , (Q ⊕ ∆k ) (G ), and return ∆j with minimum cardinality
such that v is in (Q ⊕ ∆j ) (G ). Note that algorithm expTF is optimal
since it only parses the input in linear time.
(2) InstanceMREDF. We next study MREDF to explain the top-k
diversi�ed pattern relaxations identi�ed by relDF.

Due to the diversi�cation component in the ranking function
for problem kPRDF, Proposition 5 does not hold anymore, and any
possible top-k pattern relaxations can be returned by relDF.

In spite of the hardness of MRE, we provide a parameterized
algorithm, denoted by expDF for MRE in general case, and thus
also works for MREDF. It returns an explanation E∆i (v ) for v w.r.t.
relaxation ∆i for Q with a parameterM , indicating the maximum
times of taxonomy simulation evaluation it can invoke to compute
E∆i (v ). The parameter M balances the quality of the answer, i.e.,
the size of E∆i (v ), and the time complexity of the algorithm: a
larger M gives a smaller E∆i (v ) with longer time.

Algorithm expDF(M ) works in two steps as follows.
(1) It �rst �nds relaxation ∆j (j ∈ [1,k]) with minimum cardinality
satisfying (a) ∆j ⊆ ∆i and (b) v ∈ (Q ⊕ ∆j ) (G ).
(2) It then tests label relaxations δ = l → l ′ in ∆j in a de-
scending order by cand(G,T ) (l

′). Each time it checks whether
v ∈ (Q ⊕ (∆j \ {δ })) (G ) (via TSim in Section 2 if (Q ⊕ (∆j \ {δ })) (G )
is not computed by evalPR in Section 5), and removes δ from ∆j
if so. It returns ∆j after checking all remaining label relaxations
in ∆j , or it has invoked TSimM times.

7 EXPERIMENTAL STUDY
Using real-life data, we verify the e�ectiveness and e�ciency of the
framework for relaxing graph pattern matching with explanation.
Experimental setting. We use the following settings.
Data and taxonomy graphs. We used two real-life graphs.
(1) DBpedia was taken from DBpedia 201504 [1]. It consists of (i)
an RDF data graph with 4.32M nodes and 8.43M edges, and (ii) a
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Figure 6: Real-life taxonomy simulation relaxation and matches on DBpedia

built-in taxonomy graph with 735 concepts (nodes) for data graph
labels, where edges indicate an is-a relation. The taxonomy graph
is a rooted forest with average height 2.29 (maximum height 6).
(2) YAGO [2] consists of (i) a data graph with 5.13M nodes and
5.39M edges; and (ii) a built-in taxonomy graph (forest) with 6488
concepts (nodes), with average height 3.27 (maximum height 13).
Pattern generator. We implemented a generator for producing ran-
dom pattern graphs Q (VQ ,EQ , fQ ), controlled by 3 parameters:
|VQ | varying from 2 to 10, |EQ | = bα |VQ |c, and the number bβ |VQ |c
of labels, which are from the same label set with data graphs.
Implementation. We implemented the following in C++: (a) our
algorithms TSim, relTF, relDF, evalPR, expTF and expDF; (b) our
algorithms evalTF and evalDF for using evalPR to answer top-k
relaxed patterns for kPR and kPRDF, respectively; (c) algorithms
TSimTF and TSimDF for using TSim k times to answer top-k
relaxed patterns for kPR and kPRDF, respectively; (d) algorithms
gsim [14], VF2 [7] and TISO [5] for answering graph simulation,
subgraph isomorphism and taxonomy isomorphism queries, re-
spectively; (e) algorithm relC for generating top-k relaxations with
a function that ranks relaxations by the total relaxation distance
on the taxonomy between the relaxed and original pattern labels,
as used in e.g., [15, 25]; and (f) algorithm TSimC for answering
the k relaxed patterns found by relC by invoking TSim k times.

We used a machine powered by an Intel Core(TM) Duo 3.00GHz
CPU with 16GB of memory. Each experiment was run 5 times and
the average is reported here.
Experimental results. In all the experiments reported below, we
�xed α = 1.2, and set β = 1 by default when generating patterns.
We �xed λ = 0.5, and set |VQ | = 6, k = 15 and µ = 3 by default. We
did not report match results for (taxonomy) subgraph isomorphism
as they return even fewer answers than taxonomy simulation.
(1) Case study. We �rst exemplify the framework with a case study.

Consider a real-life pattern graph QD , shown in Fig. 6, to �nd
all “city" items in DBpedia such that (a) the city is a hometown of
an “instrumentalist", (b) the “instrumentalist" has founded a “band"
in the “city", and (c) the “instrumentalist" has released a “song". In
DBpedia graph nodes are entities with unique ids and labels which
indicate their domains. They only match the nodes of QD with the
same geometry shapes, e.g., circles, ellipses, squares and pentagons.

By evaluating QD against DBpedia, we found that there is no
match result to QD on DBpedia via taxonomy simulation (not to
mention taxonomy isomorphism, subgraph isomorphism and graph
simulation). We next examine its relaxations. Using taxonomy TD
in Fig. 6, we computed the top-2 relaxed patterns of QD and their
match results in G, also shown in Fig. 6. Here QD,1 and QD,2 are
top-2 relaxed patterns for kPR, andQD,3 andQD,4 are top-2 relaxed

patterns forkPRDF. Part of match results to the four relaxed patterns
are GD,1, GD,2, GD,3 and GD,4, respectively. One can see that they
all are sensible matches and can capture the intention of pattern
QD . However, they cannot be found when using QD directly.

We ascribe the situation to the inaccurate speci�cation of pat-
terns from users versus the numerous labels residing in knowledge
graphs, e.g., 735 built-in labels for DBpedia.
(2) Match results of taxonomy simulation. We evaluated the
match results of taxonomy simulation, to elaborate the need of
pattern relaxation for taxonomy simulation.
Quantity. To justify the need for studying pattern relaxation, we
tested the capability of common matching semantics in capturing
matches. We used the pattern generator to generate random
patterns and compared the average number of matches found
by TSim and gsim. Varying |VQ | of Q from 2 to 10, we report the
results on DBpedia and YAGO in Figures 7(a) and 7(b). We found
that both TSim and gsim �nd very few matches for medium-sized
patterns on DBpedia and YAGO, e.g., when |VQ | ≥ 6, they both
cannot identify any matches, although TSim can identify more
matches than gsim on small patterns, e.g.,TSim found 1.4 times
mores matches than gsim did when |VQ | is 4 on DBpedia. This
con�rms the need for studying pattern relaxation.
Quality. To further justify the focus of relaxation on taxonomy sim-
ulation queries, we also evaluated the quality of taxonomy simula-
tion matches. We designed 30 patterns using randomly sampled sub-
graphs from the two real-life graphs. For each pattern Q , we main-
tained a collection of nodes with clear search purpose in the con-
text of Q , e.g., places or books satisfying certain conditions, which
we used as the golden standard for checking the validity of their
matches. We de�ne the accuracy of a match relation S to Q in G as

acc(S, Q, G ) =
∑

(u,v )∈S

valid(u, v )/ |S |,

where valid(u,v ) is 1 if data node v in G is an entity satisfying the
conditions maintained for u inQ (we also used WordNet and Wiki to
observe synonymous entities); and is 0 otherwise. Note that acc(S,
Q,G ) is in [0, 1] and is 1 if S contains accurate answers only. To
make it possible for manually inspection, we restrict that |S | ≤ 50:
if the match relation Q (G ) to Q in G is larger than 50, we use a
sample S ⊆ Q (G ) such that |S | = 50; otherwise we use S = Q (G ).

Using the accuracy measure, we inspected the match relations
returned by TSim to the 30 patterns and found that their average
accuracy is 0.98 and 0.94 on DBpedia and YAGO, respectively. This
justi�es the focus on taxonomy simulation for pattern relaxation.
(3) E�ectiveness of pattern relaxation. We next evaluated the
e�ectiveness of pattern relaxation.
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Figure 7: E�ectiveness and e�ciency of taxonomy simulation relaxation and explanation

Quality. We �rst evaluated the quality of relaxed patterns. Using
the same setting as Exp-(2), we inspected match relations to the
top-5 relaxed patterns of the 30 patterns, and found that the average
accuracy on DBpedia and YAGO is 0.81 and 0.75, respectively, when
topological ranking function is used, and is 0.72 and 0.68 with the
diversi�ed topological ranking function.
Quantity. We then tested the e�ectiveness by comparing average
number of matches found by relaxed patterns returned by relTF,
relDF and relC, respectively, via evalTF, evalDF and TSimC.
(a) Impact of |VQ |. Varying the number |VQ | of nodes in Q from 2
to 10, we report the results in Figures 7(a) and 7(b) for DBpedia
and YAGO, respectively. Observe the following. (i) The number
of matches found by evalTF, evalDF and TSimC increases dramati-
cally compared to gsim on all cases, and is 10.7, 11.9 and 6.1 times
larger than gsim when |VQ | = 4 on DBpedia, respectively. (ii) In
all cases, evalTF and evalDF consistently �nd more matches than
TSimC. This veri�es the e�ectiveness of information ratio in topo-
logical ranking function, which enables the use of information of
data graphs in ranking. (iii) evalDF identi�es more matches than
evalTF. This is because the diversi�cation function tends to gener-
ate more relaxed ancestor labels on taxonomy graphs, in order to
optimize both topological ranking and diversi�cation.
(b) Impact of µ. To evaluate the impact of parameter µ, we varied µ
from 1 to 5 and tested the average number of matches. The results,
as shown in Figures 7(f) and 7(g), tell us the following. (i) Even
when µ is small, both evalTF and evalDF are able to �nd sensible
matches on the two datasets, and the quantities are larger than

that of TSimC, e.g., they found 8525 and 16351 matches when µ =
1 on YAGO, respectively, compared to 5320 by TSimC. (ii) Both
evalTF and evalDFmake more use of larger µ as they can take into
account more information on the data graphs and taxonomy, e.g.,
evalTF and evalDF found 39478 and 76502 matches when µ = 5 on
YAGO, while TSimC still found 5320 matches.
(c) Impact of k . Similar to (b), we evaluated the impact of k by vary-
ing it from 5 to 25. The results are in Figures 7(k) and 7(l). We �nd
that both evalTF and evalDF can �nd sensible matches even when k
is small. For example, evalTF identi�ed 10100 matches when k = 5
on YAGO, and even more for evalDF, while TSimC found no match.
(4) E�ectiveness of explanation. To evaluate the e�ectiveness of
relaxation explanation, we randomly selected 100 matched nodes to
the relaxed patterns found by relTF and relDF, respectively, and used
algorithms expTF and expDF (with parameter M varying from 0 to
4) to compute minimum explanations. We report the accuracy of the
explanations, which is de�ned to be the percentage of explanations
that are real minimum explanations. Since the accuracy for expTF is
always 1, we only report results for expDF in Table 1.

Table 1: E�ectiveness of explanations
M 0 1 2 3 4

DBpedia 85% 93% 99% 100% 100%
YAGO 88% 97% 100% 100% 100%

We �nd that the explanations computed by expDF are capable to
explain the relaxations well. The accuracy is consistently above 85%
and 88% on DBpedia and YAGO, respectively, even when M = 0;
and is above 99% when M is above 2 on both datasets.



(5) E�ciency of pattern relaxation and evaluation. We tested
the e�ciency of our algorithms for relaxation and evaluation.
Since all top-k pattern relaxation algorithms relTF, relDF and relC
terminate within 2s on all cases. We only report the e�ciency of
evaluation. The o�ine pre-process takes 0.02s (resp. 2.97s) to en-
code labels into bit strings, and 7.38s (resp. 6.21s) to compute the
numbers |cand(G,T ) (l ) | for labels l on DBpedia (resp. YAGO).

We compared the evaluation time of evalTF, evalDF, TSimTF,
TSimDF and TSimC, using the same setting as Exp-(3). We report
the �ndings in Figures 7(c), 7(d), 7(h), 7(i), 7(m) and 7(n), which tell us
the following. (i) evalTF and evalDF improved TSimTF and TSimDF
signi�cantly, e.g., evalTF is 1.8 times faster than TSimTF when k =
15, |VQ | = 6 and µ = 3 on DBpedia. The improvement increases
when |VQ | or k grows larger. (ii) Algorithms TSimTF and TSimDF
are a bit slower than TSimC. This is because TSimTF and TSimDF
encode the dataset information into the ranking functions, such
that they both �nd many more meaningful matches than TSimC,
while TSimC always returns empty results even with medium size
patterns, e.g., queries Q on YAGO with |VQ | = 6.
(6) E�ciency of explanation. Using the same setting as in Exp-(4)
with M = 4 by default, we evaluated the e�ciency of our expla-
nation algorithms expTF and expDF on DBpedia and YAGO. We
report the results in Figures 7(e), 7(j) and 7(o).

Observe the following. (i) Both expTF and expDF are e�cient in
�nding minimum explanations for relaxations, e.g., they took less
than 1ms and 2.4s in all cases, respectively. (ii) The running time of
expDF increases when |VQ | and µ increase, as expected. It decreases
when k increases. Indeed, when k is large, more pattern relaxations
are generated, such that the chance to invoke TSim by expDF is low.

We also �nd that smaller λ leads diverse relaxations with more
match results, e.g., evalDF (λ = 0.5) �nds more matches than
evalTF (λ = 1) in all cases. This is because evalDF tends to gen-
erate more relaxed ancestor labels for diversi�cation of relaxed
patterns. Accordingly, evalDF is also a bit slower than evalTF.
Summary. From the experiments we �nd the following.
(1) Taxonomy simulation returns 1.4 times more sensible matches
than graph simulation for Q with 4 nodes on DBpedia, within al-
most equal time. But it still cannot identify matches for larger pat-
terns, e.g., more than 5 nodes.
(2) Based on our top-k ranking functions and algorithms, our re-
laxation framework is e�ective and e�cient in relaxing patterns
and explaining results: (a) It enables us to identify more sensible
matches by relaxation, e.g., 11.9 times more for Q with 4 nodes on
DBpedia, among which 74% are veri�ed sensible. (b) Its average
evaluation time of the top-k relaxed patterns is 1.8 times faster than
direct evaluation, and the gap grows bigger with larger k . (c) It can
explain matches to the relaxed patterns accurately and e�ciently,
e.g., it explains relaxations with accuracy above 85% even without
access to the data graphs, and achieves 99% accuracy when two
data accesses are allowed on both DBpedia and YAGO, in 2.4s.

8 CONCLUSION
We have proposed a framework for relaxing graph pattern matching
queries. We have formalized taxonomy simulation by combining
taxonomy with graph simulation, and proposed a notion of relax-
ation for it. We have designed ranking functions for relaxations of

taxonomy simulation patterns. We have also developed practical
algorithms to compute and answer top-k relaxed patterns, and to
explain matches captured by the relaxations. Finally, we have exper-
imentally veri�ed the e�ectiveness and e�ciency of the techniques.

There are several issues of interests for future research. We are to
study relaxing and explaining other graph queries, e.g., taxonomy
subgraph isomorphism, and to integrate the relaxation framework
into existing graph-based systems.
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