Outlier Detection in Sparse Data with Factorization Machines

Mengxiao Zhu!?, Charu C. Aggarwal’,

Shuai Mal%*,

Hui Zhang'?, Jinpeng Huail*

! SKLSDE Lab, Beihang University, China
2 Beijing Advanced Innovation Center for Big Data and Brain Computing, China
3 IBM T. J. Watson Research Center, New York, USA

{zhumx, mashuai, zhanghui, huaijp} @buaa.edu.cn

ABSTRACT

In sparse data, a large fraction of the entries take on zero values.
Some examples of sparse data include short text snippets (such as
tweets in Twitter) or some feature representations of categorical
data sets with a large number of values, in which traditional meth-
ods for outlier detection typically fail because of the difficulty of
computing distances. To address this, it is important to use the
latent relations between such values. Factorization machines repre-
sent a natural methodology for this, and are naturally designed for
the massive-domain setting because of their emphasis on sparse
data sets. In this study, we propose an outlier detection approach
for sparse data with factorization machines. Factorization machines
are also efficient due to their linear complexity in the number of
non-zero values. In fact, because of their efficiency, they can even
be extended to traditional settings for numerical data by an appro-
priate feature engineering effort. We show that our approach is
both effective and efficient for sparse categorical, short text and
numerical data by an extensive experimental study.

KEYWORDS

outlier detection; sparse data; factorization machine

1 INTRODUCTION

The problem of outlier detection has been studied extensively in
the literature because of its numerous applications in a variety
of domains such as intrusion detection, fraud detection, and fault
detection [2]. An overview of various algorithms for outlier detec-
tion may be found in [2, 15]. Many of the well-known methods
for outlier detection use distance-based methods [8, 14, 23, 32]. In
addition local normalization [14] is used by some of these methods.
Another class of methods [36] uses the Mahalanobis distance to the
centroid as the outlier score of a given data point.

These methods are mostly effective for conventional numeri-
cal data. It is also possible to extend some of these methods to
binary and categorical data in a limited way. However, in many
numerical and binary domains, the data is extremely sparse, and
most attributes take on zero values. Furthermore, many categorical
domains have a massive-domain property according to which the
number of distinct values of an attribute is very large; this is an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM’17, November 6-10, 2017, Singapore.

© 2017 ACM. ISBN 978-1-4503-4918-5/17/11...$15.00

DOI: http://dx.doi.org/10.1145/3132847.3132987

charu@us.ibm.com

indirect form of sparsity when the categorical data is converted
to binary form. In such domains it is generally more difficult to
robustly compute distances between pairs of records. In order to
explain this point, we will discuss the specific examples of sparse
massive-domain categorical data and short textual documents. We
will discuss how these different domains are not very amenable to
the use of traditional outlier detection methods.

Massive-domain Categorical Data. In many domains, the cate-
gorical attributes might be drawn from massive domains; in other
words, each attribute takes on one of a very large number of values.
For example, consider a telecommunication application in which
two of the attributes are source and destination IP-addresses, and a
third attribute corresponds to one of a hundred different intrusion
types. The number of possible IP-addresses may be more than 10°,
and the number of possible intrusions is 100 although some of them
might be related. As a result, simple distance measures like the
hamming distance are not very effective in these domains. Given
a pair of records, it is unlikely that even a single pair of attribute
values will be the same between them. On the other hand, the ham-
ming distance does not use the implicit correlations between the
various attribute values, which makes it fail in the sparse setting.

One can convert a categorical data set to a binary form by using
a binarization process in which each categorical set of values is
converted to a set of binary attributes. For example, for the source
IP-address, we could create as many binary attributes as the number
of possible IP-addresses. Exactly one of these attributes will take
on the value of 1 (depending on the value of the source IP-address),
and all the other binary attributes will take on the value of 0. One
could apply a similar process to the destination IP-addresses and
the intrusion type. Unfortunately, this process will greatly expand
the number of attributes, although the representation will be sparse
because most attributes will take on zero values. Straightforward
distance measures will be inadequate because they fail to account
for the implicit relationships between different IP-addresses and
intrusion types.Many common data domains that use social network
user identifiers, names, addresses, email addresses and URLs can be
categorized within this setting.

Short Text Snippets. In recent years, the problem of mining short
text snippets has gained increasing importance because of the
greater prevalence of short text segments in social media, chat
forums, and so on. It is often notoriously difficult to find outliers in
such data sets because of the challenges of using a small number of
words to infer the anomalous characteristics of a data point. Clearly,
the co-occurrence of certain semantic groups of words might be un-
usual; however, it would not be reflected in straightforward distance
measures that are commonly used in outlier detection algorithms.

1.1 Challenges in Sparse Data

There are several challenges of performing outlier detection in
such sparse data sets. One of the most important challenges is
that the use of straightforward distances between points does not
capture the true semantic distances because of underlying inter-
attribute dependencies. Consider an example of basic information
for movies in which the attributes correspond to actor, actress, and
movie type. It may be the case that actor Bob and actress Alice
often star in movies with the same type. As a result, a future movie
that Alice and Bob starred may not be surprising enough to qualify
as an outlier. A straightforward use of the hamming distance or the
cosine distance will typically not be able to capture such similarities.
For example, if actor Bob and actress Alice are correlated in terms
of their starred movie type, then there is an inherent similarity
between the two distinct attribute values “Bob” and “Alice”, even
though the hamming distance between these two distinct attribute
values in the binarized form is always 2.

In such data sets, traditional methods fail because of the dif-
ficulty in computing distances between the data records. These
types of similarities can be inferred only from the aggregate sta-
tistical characteristics of the data sets, because they can capture
the relationships between various attribute values in an implicit
way. Factorization machines provide the ability to construct any
non-linear manifold implied by a polynomial kernel by using the
aggregate statistical structure of the data; this provides a model of
the normal data set. The nonlinearity of the manifold structure is
particularly important in the sparse setting. For example, one can
learn the similarity between “Alice” and “Bob” only by examining
their co-occurrence with other attribute values; this implies that
we need to learn at least second-order (i.e., quadratic) interactions
between attributes to model the manifold structure. This also distin-
guishes the method from linear dimensionality reduction methods
such as PLSA [2] or PCA [36], which are known not to work very
well in the extremely sparse settings of massive-domain data or
short text snippets. Although it is particularly difficult to learn
such manifolds (especially nonlinear ones) in very sparse data sets,
factorization machines are able to achieve this goal by learning the
latent structure of a large parameter space rather than learning the
parameters directly. Once the manifold has been learned, we are
able to use the distance of a point from the manifold as an outlier
score. Larger values of the score are more indicative of outlierness.

Figure 1 shows a toy example of such an outlier with only three
attributes (in a relatively dense data set), although it is far more
difficult to pictorially represent these settings in sparse data sets.
This is because the sparse domains discussed in this paper can have
millions of attributes, most of the attribute values are 0s once they
have been converted into binary forms, and the relations between
pairs of attributes are increasingly difficult to infer. For example,
it is extremely uncommon for both of a pair of attributes to take
on the value of 1. As a result, the covariance structure of the data
set (which is crucial for methods like PCA) often contains little
discriminative information for analysis. Although it is possible to
use such methods for moderately sparse domains, an increasing
level of sparsity eventually leads to the failure of such methods, e.g.,
it has been shown experimentally that off-the-shelf dimensionality
reduction methods do not work very well for short text snippets

15+

14+

1.3+

OUTLIER

12+

114

FEATURE Z
N
1

0.9+ NONLINEAR|
MANIFOLD

FEATURE Y

FEATURE X
Figure 1: A nonlinear manifold and an associated outlier.
Accurate estimation of such manifolds is challenging in
high-dimensional and sparse data because of the overfitting
caused by an increased number of optimization parameters.

with increasing level of sparsity unless they are aggregated into
larger documents [20].

In such settings, the indirect relationships between pairs of at-
tributes (in terms of their co-occurrences with other attribute val-
ues) is crucial in inferring their similarity. This is the reason that
inferring higher-order relationships between attributes is particu-
larly important in these settings. Factorization machines [33, 34]
provide a natural approach for inferring such higher-order relation-
ships without causing the overfitting inherent in a large parameter
space. Although we restrict our approach to second-order factor-
ization machines in this paper, it is possible, in principle, to use
even higher-order factorization machines to capture more complex
forms of the latent structure of the underlying data set.

1.2 Merits of Factorization Machines

Although factorization machines have been used earlier in the con-
text of recommender systems, they have been known to have the
potential to solve other data mining problems such as classification
in sparse domains [3, 33, 34]. This work provides a new application
of factorization machines by creating a model of normal data with
the approach. Data points that deviate from this normal model are
reported as outliers. For sparse domains, with a small number of
non-zero entries, this approach provides a robust methodology to
perform outlier detection, which is generally difficult with conven-
tional methods. Furthermore, the approach can also be used for
conventional data sets by using feature engineering on the original
data to create a sparse representation. The main advantage of the
approach over distance-based methods is that of computational com-
plexity, whereas distance-based methods typically have quadratic
complexity, which means that even a few hundred thousand points
in the data set can make such methods intractable, factorization
machines have a linear complexity in the number of non-zero val-
ues in the sparse representation [33, 34]. Therefore, aside from
the dual advantages of effectiveness and efficiency in sparse data,
they provide significant efficiency advantages in the conventional
numerical setting while providing competitive or better effective-
ness results to other methods. We will experimentally show the
advantages of this technique over competing methods in Section 4.

1.3 Related Work

The problem of outlier detection has been widely studied in the
research community because of its numerous applications such as
intrusion detection, financial fraud detection, and fault detection [2,
15]. Many existing outlier detection methods [4-10, 12-14, 16, 18,
19, 21-25, 27-32, 35, 36, 38—43] have been proposed, and can be
classified in term of the data domains, such as numerical, categorical
and text data. (a) Many of the known methods for numerical data
use distance-based methods [8, 9, 14, 23, 27, 31, 32, 35, 36] in order
to determine outliers, and some are also extended to the high-
dimensional setting [4, 24, 25, 28, 30]. (b) Different from numerical
data, categorical data is inherently unordered, which makes it hard
to assign the similarity between different attribute values. In order
to solve this problem, several methods are designed, including
combining multiple categorical similarity measures [12], pattern-
based methods [6, 38], probability tests [16] and coupled based
random walk [29]. (c) In the context of text data, distance-based
methods [5, 7, 13] and a variety of probabilistic models [10, 19,
41, 43] are common for the noise removal or for the detection of
interesting anomalies [2]. (d) outlier detection has studied for time-
series [22] and graph data [18, 21, 39, 42]. (e) In addition, image
outliers have also been investigated with matrix factorization [40].
Although these methods are effective for many multi-dimensional
data sets, most of them do not work well for sparse data because of
the latent relationships between the attribute values, which can be
inferred only from the overall statistical structure of the underlying
data. Most of these methods are only effective for a specific data
domain, and cannot apply to various data domains in a unified way.
Further, different from matrix factorization for two categorical
variables, factorization machines include a nested parallel factor
analysis model for multi-categorical variables [33].

In recent years, factorization machines [33, 34] have been used
for effective prediction in recommender systems [3]. Although the
primary applicability of factorization machines today is in the con-
text of recommender systems, it has been shown [33, 34] that these
methods can also be used for sparse classification and regression.
(a) In this paper, we further show that factorization machines can
also be useful in the unsupervised setting. (b) In particular, we show
that factorization machines can also be used for outlier detection. (c)
The approach can be applied not only to sparse data sets, but rea-
sonable results can even be obtained with conventional numerical
data sets with a suitable feature engineering effort. The results of
this paper have the potential to further broaden the applicability of
factorization machines to various data domains.

Organization. This paper is organized as follows. Section 2 sets
up the problem definition and the factorization model for outlier
detection in sparse data. The gradient descent steps for model
computation are discussed in Section 3. The experimental results
are presented in Section 4, followed by conclusions in Section 5.

2 FACTORIZATION MACHINES FOR
OUTLIER DETECTION

In this section, we describe the factorization machine model used for
outlier detection. First, we will set up the notations and definitions.
We assume that we have a data set O with n records and d di-
mensions. The d-dimensional records are denoted by Z1...Zn,and

each record Z; is a vector with d dimensions denoted by (z;1 . . . z;4).
Note that this vector is typically created after a feature engineering
effort on the original data. The nature of the feature engineering is
slightly different, depending on the domain from which the data set
is drawn. For example, in the case of a categorical data set, a binary
attribute is created for each value of a categorical attribute in the
original data. Typically, the feature engineering effort converts the
original data set to a sparse and nonnegative representation. There-
fore, the value of d is often very large in real settings, although
most of the values of z;; are typically zeros. We will discuss several
examples of this feature engineering for various domains in the
next section. We will show that several sparse domains, which
cannot easily be addressed with traditional models can be handled
easily with factorization machines. Furthermore, one can even
successfully use the approach for traditional data sets (with numer-
ical attributes) by using sparse transformations, even though the
approach is not specifically designed for them.

2.1 Feature Engineering for Various Domains

Factorization machines require various types of feature engineer-
ing, depending on the domain at hand. Two particularly useful
domains in which factorization machines are particularly useful
include massive-domain categorical data, and short text segments.
In such cases, there are no known outlier detection techniques that
can provide robust results; factorization machines provide a neat
way to perform outlier detection in these settings because of their
robustness to sparsity. In the following, we provide an overview
of the feature engineering effort required for various types of data
sets. Note that it is possible for a data set to contain mixed attribute
types, in which case the appropriate type of feature engineering
is applied to the corresponding attribute. The resulting features
are then concatenated to create the overall data set. It is notewor-
thy that mixed attribute types are notoriously difficult to handle
in outlier detection [2]; factorization machines ease this problem
by creating a (roughly) homogenous attribute type as a result of
the initial feature engineering effort. Therefore, a data set contain
massive-domain categorical attributes, short text snippets, as well
as numerical attributes will be automatically converted to sparse
form as a result of the steps discussed in the following sections.

2.1.1 Massive-Domain Categorical Data. Massive-domain cate-
gorical data is defined as a data set in which the number of possible
values of a categorical attribute is very large. For example, when
an attribute corresponds to a name, an address, or an IP-address,
the number of possible values is extremely large. In such cases, it
is difficult to meaningfully compute distances between data points
with traditional methods. A simple approach to converting these
data sets to a sparse representation is the process of binarization.
For each value of each categorical attribute, a new binary attribute
is created. The value of binary attribute is either 0 or 1 depending
on whether or not that record takes on the categorical value at hand.
Therefore, for each categorical attribute in the original data set, a
large number of binary attributes will be created, and only a single
one of them will take on the value of 1. Therefore, the number of 1s
will be exactly equal to the total number values of the categorical
attributes in the original data. It is noteworthy that this data type
is particularly sparse in massive-domain settings.

2.1.2 Short Text Snippets and Tweets. Short text snippets occur
commonly in many real-life settings such as chat forums or tweets.
For example, in Twitter, the number of characters in a Tweet is
restricted to a a small number of characters, as a result of which the
number of keywords is small. In this case, the dimensionality of the
data set is equal to the number of distinct keywords, and only the
keywords contained in the text snippet have non-zero values. Fur-
thermore, if a particular tweet contains r non-zero keywords, then
the corresponding frequency of that attribute is 1/+/r. Therefore,
the attribute values are normalized so that the sum of the squares is
always equal to one. This is important in this setting because each
text snippet might contain a different number of keywords.

2.1.3 Conventional Numerical Data. In conventional numerical
data sets, we use the process of soft discretization. Soft discretization
is a variant of hard discretization in which more information is re-
tained about the values of records. Let o; be the standard deviation
of the ith attribute and y; be the mean. All data records whose
values lie in the range (y; — oy, pii + 0;) lie in one of ® equi-depth
intervals. Each such interval corresponds to a newly created at-
tribute. The value of the attribute is zero, if the data record does
not lie in that interval. Otherwise, the value of the attribute is 1.
Furthermore, one attribute is created for data points in which the
ith attribute is less than y; — o; and one attribute is created for data
points in which the ith attribute is greater than y; + o;. For data
records whose ith attribute value x; is less than p; — o, the value
of the newly created attribute value is set to |x; — (¢; — 07)|/0i. For
data records whose ith attribute value x; is larger than y; + o;, the
newly created attribute value is set to |x; — (¢; + 0;)|/0;. Since
at most (@ + 2) attributes are created for each numerical attribute
in the original data, the total number of attributes increases by a
factor of (@ +2), even though most of the values are zero. Therefore,
sparsity is retained in this type of data set. The value of ® is set
depending on the size of the data. The value of ® is set to 100 for
any data set containing more than 1000 points; For data sets with
less than 1000 points, the value of ® is set to [n/10], where n is the
total number of points in the data set.

2.2 Modeling with Factorization Machines

In this section, we will discuss the modeling approach used for
outlier detection with factorization machines. After the feature
engineering effort, we have an n x d matrix Z = [z,4]. We assume
that all points (i.e. d-dimensional rows of Z) can be modeled to lie
on a non-linear manifold of the following form:

d d d
g+ Z bix; + Z Z wijxixj = 0. (1)
i=1 i=1 j=i+1

Here, g is the global bias variable, (b1, . .., by) are the dimension-
specific biases, and W = [w;;] is a d X d matrix of coefficients. The
variables (x1, . .., xg) can be instantiated with any of the rows of
Z, and it is desired to learn the coefficients, so that Equation (1)
is satisfied as closely as possible. Note that Equation (1) is very
similar to the condition implied by a second-order polynomial
kernel; therefore, the data points are assumed to lie on a nonlinear
manifold in the d-dimensional space.

The number of coefficients w;; is d?. This can be very large in
sparse settings because the value of d is typically extremely large

after the feature engineering process. As a result, overfitting is ex-
tremely likely in sparse settings. In our previous example of actors
and actresses, if a particular actress Alice and actor Bob do not co-
occur in the (sparse) data set, it is difficult to meaningfully estimate
the coefficient w;; between them. However, factorization machines
provide a meaningful technique to estimate such coefficients by
imposing a low-rank structure on the coefficient matrix W = [wj;].
In particular, each w;; can be expressed as the dot product of two
low-rank (i.e., k-dimensional) vectors v; and v; as follows:

wij =0; - 0j.)
Here v; and v; are two k-dimensional vectors of the form (v, . . .,
v;r) and (vj1, . . ., Vjk), respectively. This assumption reduces the
number of coefficients from d? to d - k, which scales linearly with

the dimensionality of the data set. As a result, Equation (1) can now
be rewritten with the low-rank assumption as follows:

d d d
g+2bixi +Z Z (@7 - Tp)xixj = 0. 3)
i=1 i=1 j=i+1

Equation (3) can be viewed as an unsupervised avatar of the regres-
sion modeling equation used in recommender systems. The main
difference is that the right-hand side of Equation (3) is 0 rather than
the value of the rating in a recommender system. This is because
our goal is to design a model of the normal data points under the
(commonly used) assumption that the majority of the points show
normal behavior. Points which lie on the non-linear manifold of
normal points will (approximately) evaluate to zero, when they are
substituted in the left-hand side of Equation (3). Deviations from
this model of normal points are tagged as outliers. Therefore, the
basic idea is that for any particular d-dimensional instantiation
Z_p = (2p1 . . . zpq) of data points, the outlier score 0(Z;) is given by
substituting the values of Z in Equation (3) and using the modulus
of the scored value:

d d d
0Zp) = LQZp)lg+ Y bizpi + Y. . (@1 5)zpizpjl. (4)
i=1 i=1 j=i+1
Larger values of the score are more indicative of outlier-like behav-
ior. Here LQ(Z),) is the quotient of the average number of words
in all short text documents divided by the number of words in
document Zp, and LQ(Z) = 1 for categorical and numerical data
record Zj. The reason to introduce LQ(Z)) for short text data is
because the number of words in documents is often different.
The values of the parameters g, b; and v; (i € [1,d]) are deter-
mined by minimizing the mean-squared error of all the data points.
Therefore, the objective function J is defined as follows:

- 10 o

Minimize J = EPZ:;O(ZP) . (5)

The main problem with this model is that it will always lead to
the trivial solution in which each g, b;, and v;; is set to 0. However,
this model involves a non-convex optimization problem, and it
often obtains a non-trivial local solution [11]. Moreover, even if the
trivial solution is obtained under extremely rare cases, we could
reset the parameters and re-train the data. Besides that, this model
usually has a large number of model parameters, especially when k
is large. This makes it prone to over-fitting [33]. To overcome this,

Algorithm FMOutlier (Data Set: D),
begin
Perform feature engmeermg on data set D to create sparse
representation A 1. Zn n;
Initialize O(Z1) . .. O(Z,,) to zeros;
for iterations=1to t do
Randomly partition Z1...Znintomfolds Sy ...Sm
forr =1tomdo
Learn each 6 € {g,b1...bg,v11 ... V41 } by solving
optimization model of Equation (6) using points
in Uq¢r5q (Procedure LearnParameters in Figure 3);
For each Z; € S,, compute O(Z;) using Equation (4);
Otot(Zl): Otot(Zl) "'_O(Zl)a
return (Ot0(Z1) . . . Otot(Zn)).
end

Figure 2: Unsupervised learning for outlier detection with
factorization machines

L2 regularization is applied, the objective function is, therefore,
updated as follows:

Minimize J = Z O(Zp)2 + Z /1992 such that 6)

p 1 0eO
d k
D 296% = Agg” +ZA,, B+ D D Aoy vl @)
0O = i=1j=1

Here (1) © is the space consisting of parameters g, by ... by, v17 .. .
v4k, and 0 refers to one of them; (2) Ay is the regularization value
for parameter 0, and we adopt the same value A for all parameters,
which can be different for different parameters.

The parameters of this optimization problem can be learned with
gradient descent. This procedure is described in Section 3 in detail
together with a pseudo-code. In this section, we focus mainly on
the optimization model and overall framework of the solution.

One challenge with the procedure is that when an outlier is
scored while including the data point within the data set used for
performing the training, overﬁttlng is p0531ble In other words, we
are learning the parameters using Z; . . . Z, and, at the same time,
using these learned parameters to score Z; . . . Zy,. The problem with
this approach is that a true outlier might be missed because that
point is itself included as a part of the normal data. Although the
inclusion of (a small number of) outliers does not significantly affect
the scores in general, the effect on the specific outliers included
within the training data set can be quite drastic. Therefore, a point
should be scored without including it in the data set used to perform
the training. This is achieved with the use of cross-validation. The
data set is partitioned into m segments. For each segment, the
remaining (m — 1) segments are used to score the points within
the segment. In our implementations, we used m = 2, so that
one half of the data set is used for computing the outlier scores of
the remaining half of the data set. As a result, one can compute
an out-of-sample outlier score for each data point. However, the
problem with this approach is that the resulting outlier score can
be somewhat sensitive to the randomized choice of the partition
used. By throwing away half of the points during training, one
is not using the full knowledge in the data set for computing the

model of the normal data. Therefore, the partitioning of the data
into m segments is repeated t times in a randomized way to further
improve the robustness of the estimation process. This will result in
t different scores of each data point. The scores of each data point
from the ¢ different executions are averaged (or summed) in order to
create the final outlier score. The overall procedure is illustrated in
Figure 2. This type of approach has the additional benefit of variance
reduction because of its natural ensemble-centric approach [1].

3 MODEL COMPUTATION

In this section, we will discuss the solution methodology for the
factorization machine model. A natural approach to solving this
problem is that of gradient-descent. Let be a parameter of the
parameter optimization problem. Note that 6 could be the global
bias g, any of the dimension-specific biases b; . . . by, or any of the
components v;; of the latent vectors 77 ... 7. In order to perform
the gradient descent, the partial derivative of the objective function
J needs to be computed, in order to make the following gradient-
descent steps for each 6.

Y ®)
Here, « > 0 is the step-size, which corresponds to the learn-
ing rate. This update is performed for each distinct parameter
0 € {9.b1...bg,v11...v4r}. However, it is often inefficient to
compute the gradient direction because each data point contributes
to the partial derivative, and therefore one must compute a summa-
tion over a large number of data points. When the number of data
points is large, this process can be inefficient. A second approach
is to use stochastic-gradient descent to speed up the optimization
process. In stochastic gradient-descent, the idea is to perform the
updates based on the contribution of a single randomly chosen point
in the data. Therefore, the update step is as follows:

a
0 Contributed by pth data pomt

f=0-a

f=0-a

©)

In this case, one cycles through all the data points in random order,
and performs the update based on the aforementioned computation.
The term “stochastic gradient descent” derives its name from the
fact that the points are processed in stochastic order. The resulting
point-wise update for the data point Z can be shown to be as
follows:

0=0- a{LQ(Zp)g+Zblzp, +Z Z (T - 0))2pizp;]
i=1j=i+1 (10)
80(Zp)
a0

+210}.

Here, 6%(92"’) is the gradient of the right-hand side of Equation (4)
with respect to the parameter 6, which is defined as follows:

- 1 0i
90(Zp) 59
0 - LQ(Zp)-4 zpi Oisb; (11)
Zpi Z;.i:lvjs “Zpj — Vis 'an‘ 0 is vis.

The overall approach cycles through the training data points one
by one in order to learn the parameters. Note that the training data
set is constructed using only a subset S of the data set Z; ... Z,,

Algorithm LearnParameters (Training Subset: S);
begin
Randomly initialize {g, b1 ...bg,v11 ... vgx } to values in (0, 1)
repeat
Randomly shuffle all data points in S;
for each Z € S in shuffled order do
Update g according to Equation (10)
for each i such that z,; # 0 do
Update b; according to Equation (10);
Update each vjj . . . v;; according to Equation (10);
until convergence;
end

Figure 3: Learning parameters with gradient descent

based on the cross-validation procedure discussed earlier. For any
given point in this set S, all the parameters 6 do not need to be
updated because many of the updates in Equation (10) evaluate to
zero, when 0 is v;s, and the value of zp; is 0. Therefore, one only
needs to update those values of v;s for which z; is non-zero. This
is important from a computational efficiency perspective. These
parameters are used to score the points stored in the test portion
of the data set. The process is repeated t times over the various
cross-validation folds, and the averaged outlier score is reported.

We make use of AdaGrad [17] in our implementation, a modified
stochastic gradient descent algorithm with an adaptive learning-
rate that dynamically incorporate knowledge of the geometry of
the data observed in earlier iterations to perform more informa-
tive gradient-based learning. It has a base learning rate, which is
multiplied with a value that is updated after each iteration.

A pseudo-code of the procedure is illustrated in Figure 3. This pro-
cedure shows the learning process within a single cross-validation
fold of the data where m — 1 segments of the data (denoted by S)
are used to create the training model. The basic idea is to process
the data points in S in random order, as would be required by sto-
chastic gradient-descent. For each processed point, z, the updates
of Equation (10) need to be performed to the various parameters
0 € {g,b1...bg,v11...v4x}. However, we need to update only
those b; for which z,; is non-zero, and only those v;s for which z;
is non-zero. This is important in the sparse setting, because it leads
to improved computational efficiency. The updates are repeated
to convergence. Typically, only a small number of rounds of the
updates are required in order to achieve high-quality results.

3.1 Analysis of Computational Complexity

Although factorization machines provide the only reasonable method
for outlier detection in sparse data sets, they provide the additional
benefit of improving the computational complexity over conven-
tional distance-based methods like LOF. This complexity is also an
advantage in relatively dense data sets (e.g., conventional numerical
data for which factorization machines are not specifically designed).
In such cases, one is still able to obtain high-quality results by con-
verting the data sets to the sparse domain, but the scalability for a
single cycle of the stochastic gradient descent method requires a
time complexity that is linear in the number of non-zero values in
the data set, as k is typically a small constant, e.g. 10 and 50 [33, 34].

The update of Equation (10) can be performed in constant time,
and the number of times it needs to be performed (in a single cycle
of stochastic gradient descent) is exactly equal to the number of non-
zero values in the training data. Therefore, the overall complexity
of a single cycle of stochastic gradient descent is O(k - |S| - A), where
A is the average number of non-zero entries in each data record.
For example, the value of A in a short text snippet would be equal to
the number of distinct words in the snippet. If T cycles of stochastic
gradient descent are required, the complexity is O(k - |S| - A- T) for
a training procedure. However, the training procedure needs to be
repeated over m cross-validation folds and ¢ iterations. Furthermore,
the value of |S| is n-(m—1)/m. As aresult, the overall computational
complexity of FMOutlieris O(k -n-(m—-1)-A-T -1).

Note that the value of m is typically 2, and the values of T and ¢
are often less than 5. Therefore, the overall complexity is approx-
imately equal to k - 25 times the number of non-zero entries in
the entire data set, which provides a linear scalability. Techniques
like LOF are known to scale quadratically with the number of data
points. For data sets of even reasonably large size, such methods
may not remain practical, whereas factorization machines provide a
computationally viable solution. Therefore, even though the results
of this paper are focused on sparse data domains, they can also be
used to provide high-quality outliers in conventional data sets, e.g.
numerical data, in an efficient way. Even in such cases, we show
that factorization machines can often provide competitive results
in terms of quality.

4 EXPERIMENTAL STUDY

Using real-life sparse categorical, short text and conventional nu-
merical data, we conducted an extensive experimental study to
evaluate the effectiveness and efficiency of our outlier detection
method FMOutlier, compared with existing classical and recent
competitive methods.

4.1 Experimental Settings

We first introduce the settings of our experimental study.

4.1.1 Data sets. We chose real-life sparse categorical and short
text data and conventional numerical data, summarized in Table 1.

(1) Categorical data. (a) Publication is derived from Microsoft
Academic Graph data set, a large collection of publications [37]. (b)
Food is derived from City of Chicago Data Portal, records inspec-
tions of restaurants and other food establishments in Chicago from
January 1, 2010 to present (https://data.cityofchicago.org). (c) Imdb is
a movie review data set (http://www.imdb.com). For outlier detection,
we selected a set of records with categorical attributes and without
missing values from these data sets.

As there are no ground-truth outliers in these data sets [16,
26], we adopted the method of Random Shifting as follows. (1)
Select shifting attributes. We computed the standard deviation
for the occurrence times of values for each attribute, and selected
[1/2attributes] with higher standard deviations as the shifting
attributes; (2) Select alternative values for outliers. For attributes
with no more than 100 different values, we manually selected values
that occur less obviously than the other values; For attributes with
more than 100 different values, we selected values that occur at

l Data Sets [Records [Attributes [Distinct Values [Outliers (%)]

Publication 44,484 11 203,012 1.12
Food 25,629 11 84,098 1.17
Imdb 29,145 11 178,007 1.37

Tweets 2,510 8.56 5,431 1.51
GNewsT 11,299 6.23 9,213 1.69
GNewsS 11,299 22.19 22,311 1.69

Smtp 95,156 3 207 0.03

Shuttle 45,830 9 328 0.53

Annthyroid 7,200 6 317 7.42

Table 1: Summary of real-life data sets.

most 10 times; (3) Shift values. We randomly selected about 1%-
2% records of the original data, and shifted the values of shifting
attributes to their alternative values.

(2) Short text data. (a) Tweets [41] consists of 2,472 tweets highly
relevant to 89 queries. (b) Google News [41] consists of the titles
and snippets of 11,109 news articles about 152 events, which is
further divided into TitleSet (GNewsT), SnippetSet (GNewsS) that
contain the titles and snippets, respectively. Note that, there is an
article without title and an article without snippet, so the size of
both GNewsT and GNewsT is 11,108.

As there are no ground-truth outliers in these data sets, we
treated the original data as normal records and manually generated
outliers similar to the method in [41]. For Tweets, We generated 38
outliers, each of which has 9 words formed with 2-7 random letters.
Similarity, we generated 191 outliers with 6 words for GNewsT and
191 outliers with 22 words for GNewsS, respectively.

(3) Numerical data. (a) Smtp is from Outlier Detection DataSets

(ODDS) (http://odds.cs.stonybrook.edu), which has 95,156 3-dimensional
records with 30 outliers. (b) Shuttle is from UCI Machine learn-

ing repository, and is a 9-dimensional multi-class classification

data set (https://archive.ics.uci.edu/ml/datasets.html). Here, the training

and test data were combined. Its four smallest classes were com-

bined to form the outlier class. Hence, Shuttle has 45,830 records

with 244 outliers. (c) Annthyroid is from ODDS, which has 7,200

6-dimensional records with 534 outliers.

4.1.2 Comparison Algorithms. We have carefully chosen algo-
rithms to compare with our FMOutlier approach.

(1) Categorical data. (a) Several similarity measures for KNN
have been proposed to compute the similarity of two categorical
data instances [12], among which we chose KNN-Lin and KNN-
OF with the best performance. (b) CBRW [29], namely coupled
biased random walks, is a very recent outlier detection method for
categorical data with a time complexity depending on the number
of different values in a data set if the number of different values is
larger than the size of the data set.

(2) Short text data. (a) KNN-Text adopts TF-IDF as the represen-
tation of text data, and uses the cosine function to measure the
similarity [2]. (b) LDA is a popular probability-based method in
text clustering [10]. Documents that have a low probability of
belonging to their closest cluster are declared as outliers [2]. (c)
GSDPMM [41] is a very recent outlier detection method for text
data, which is actually the collapsed Gibbs sampling algorithm for
the Dirichlet Process Multinomial Mixture model.

1 1 1
_os _08 r—f ‘\ _08 b
:% 0.6 —#— FMOutlier % 0.6 — FMOfﬂier :E 0.6 —— FMOiJlI\er
—8— KNN-OF —8— KNN-OF —8— KNN-OF
£0.4] | —e—KnN-Lin £0.4} | —o—KNN-Lin £0.4f | —e—KnN-Lin
——CBRW —— CBRW ——CBRW
0.2 0.2 0.2
0 02 04 06 08 0 02 04 06 08 0 02 04 06 08
Recall Recall Recall
(a) Publication (b) Food (c) Imdb

Figure 4: Effectiveness on categorical data: precision-recall curve

[DataSets | KNN-OF | KNN-Lin | CBRW [FMOutlier |

Publication 0.9309 0.0072 0.0170 0.9785
Food 0.9670 0.0099 0.0114 1
Imdb 0.9633 0.0127 0.0812 0.9991

Table 2: Effectiveness on categorical data: average precision.

(3) Numerical data. LOF [14] is a widely used outlier detection
method for numerical data based on the local density estimation [6].

4.1.3 Implementation. We implemented all algorithms using
C++ with no parallelization. Parameters were set as follows. (1)
For KNN-OF and KNN-Lin, K = 10 for the Kth nearest neighbor
by [12]; (2) For CBRW, its damping factor a = 0.95 by [29]; (3) For
KNN-Text, its K = 10; (4) For LDA, its hyper-parameters a = K /50
and f = 0.1 by [41] and , where K is the number of topics; (5) For
GSDPMM, its number of topics K = 1, hyper-parameters = 0.02
and a = 0.1 * N by [41], where N is the number of records; (6) For
LOF, its Kth nearest neighbor K = 5 by [27]; (7) For FMOutlier,
we set a = 0.01, k = 50, A = 1 for categorical data, a = 0.1,
k = 50, A = 0.2 for text data, and a = 0.01, kK = 10, A = 0.2 for
numerical data, respectively, where a is the base learning rate, k
is the dimensionality of parameter v, and A is the regularization
parameter. All experiments were conducted on a machine with 2
Intel Xeon E5-2650 2.3GHz CPUs and 64GB of Memory, running 64
bit Windows 7 professional System. All tests were repeated over 3
times and the average is reported here.

4.2 Experimental Results

We tested the effectiveness and efficiency of FMOutlier on three
kinds of datasets, respectively. We next present our findings.

4.2.1 Effectiveness Tests. First, we evaluated the effectiveness of
FMOutlier compared with the methods presented above. To mea-
sure the effectiveness, we adopted the average precision, the average
of the precision values across recall levels [6], which is suitable
for measuring algorithms that generate a score of the “outlierness”
of an record. As FMOutlier is not deterministic, we repeated each
test 5 times, and computed the mean average precision. When we
plotted the precision-recall curve, the closest results to the aver-
age were used; As GSDPMM only checks whether an record is an
outlier or not, we just report its precision and recall.

Exp-1.1: Effectiveness on massive-domain categorical data.
To evaluate the effectiveness, we varied the recall level of the re-
sults, and plotted the precision-recall curves of KNN-OF, KNN-Lin,
CBRW and FMOutlier.

The results are reported in Figure 4 and Table 2. When varying
the recall level, KNN-Lin and CBRW consistently have lower pre-
cision for all data sets, KNN-OF performs unstably as recall level
changes, while FMOutlier always has the highest precision for all

1 = 1 1 1
_08 MEO,SWEUB °
S S S
20.6/ [—«—Fmoutlier 206/ ——Fmoutier| o 20.61 —«—Fmoutlier
£0.4] | —B—KNN-Text £ 0.4} | —B— KNN-Text £ 0.4} | —B— KNN-Text
—e—LDA ° —e—LDA —e—LDA
0.2 ® GSDPMM 0.2 ® GSDPMM 0.2 ® GSDPMM
E—)
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Recall Recall Recall
(a) Tweets (b) GNewsT (c) GNewsS

Figure 5: Effectiveness on short text data: precision-recall curve

[Data Sets | KNN-Text | LDA [GSDPMM [FMOutlier

Tweets 0.8282 0.0287 0.3412 0.9994
GNewsT 0.7802 0.0193 0.5542 0.9980
GNewsS 1 0.0212 0.8155 1

Table 3: Effectiveness on short text data: average precision.

recall levels. Indeed, FMOutlier improves the average precision
over (KNN-OF, KNN-Lin, CBRW) by (4.76%, 97.13%, 96.15%) on
Publication, (3.3%, 99.01%, 98.86%) on Food, (3.58%, 98.64%, 91.79%)
on Imdb, on average, respectively.

Exp-1.2: Effectiveness on short text data. To evaluate the effec-
tiveness, we varied the recall level of the results, and plotted the
precision-recall curves of KNN-Text, LDA and FMOutlier.

The results are reported in Figure 5 and Table 3. When varying
the recall level, LDA consistently has the lowest precision on all data
sets, KNN-Text performs unstably on both Tweets and GNewsT,
and has a high precision on GNewsS, possibly because GNewsS has
more words in one record, and gives more information for KNN-
Text to tell outliers. Besides, the performance of GSDPMM is worse
than KNN-Text and FMOutlier, while FMOutlier always has the
highest precision for all recall levels. Indeed, FMOutlier improves
the average precision over (KNN-Text, LDA, GSDPMM) by (17.12%,
97.07%, 65.82%) on Tweets, (21.78%, 97.87%, 44.38%) on GNewsT,
(0%, 97.88%, 18.45%) on GNewsS, on average, respectively.

Exp-1.3: Effectiveness on numerical data. To evaluate the ef-
fectiveness, we varied the recall level of the results, and plotted the
precision-recall curves of LOF and FMOutlier.

The results are reported in Figure 6 and Table 4. When vary-
ing the recall level, the precision of LOF increases first and then
decreases on three data sets with the increment of recall levels,
while FMOutlier keeps the highest precision first, and then de-
creases on Smtp, and varies in the same way as LOF on Shuttle and
Annthyroid, since some normal records show higher outlierness
than outliers and some defined outliers may not be true outliers.
Moreover, FMOutlier consistently performs better than LOF on
Smtp and Annthyroid, and performs better than LOF on Shuttle
when recall is less than 0.8. Indeed, FMOutlier improves the av-
erage precision over LOF by 54.94% on Smtp, 14.31% on Shuttle,
5.92% on Annthyroid, respectively.

4.2.2 Efficiency Tests. Second, we evaluated the efficiency of
our FMOutlier compared with other methods.

Exp-2.1: Impacts of the sizes of data sets. To evaluate the im-
pacts of data sizes for categorical data, following [41], we copied
Food five times to construct a big data set called LongFood. We
also keep the distribution of different values unchanged by chang-
ing values, and the number of different values in LongFood is 5

1 —#— FMOutlier 1 —=— FMOutlier 1 —— FMOutlier
—8—LOF —8— LOF —8— LOF

_08 _08 _08
o =] 2
©0.6 ©0.6 20.6
8 8 8
8 8 8
£0.4 £0.4 £0.4

02 0.2 0.2

oc
0O 02 04 06 08 1 0O 02 04 06 08 1 0O 02 04 06 08 1
Recall Recall Recall

(a) Smtp (b) Shuttle (c) Annthyroid

Figure 6: Effectiveness on numerical data: precision-recall curve

[DataSets | LOF [FMOutlier |
Smtp 0.0434 [05928
Shuttle | 0.1478 | 0.2909

Annthyroid | 0.1756 0.2348

Table 4: Effectiveness on numerical data: average precision.

’uTlZ —#— FMOutlier ,\30 —#— FMOutlier 12| —#— FMOutlier
§10 —8— KNN-OF & 25| —a—KNN-Text 81| —B—LoF
o g| —e— KNN-Lin 50| —e—1LDA E
© —— CBRW @ —— GSDPMM o 8
g6 £15 g6
S = =
g4 fro g4
g2 55 g2
H = 2 715
0 0 0

5 10 15 20

2 3 4 5
number of records (*10000) number of records (*10000)

(b) Short Text data

4
number of records (*10000)
(a) Categorical data (c) Numerical data

Figure 7: Efficiency tests: varying the sizes of data sets

N
[=)

z ST——Fouier [—+— Fmoutiier 12| —#— FMOutlier
S 4| —&— KNN-OF & 32| —B—KNN-Text g —B—LoF
S | —8—KNN-Lin L | —e—LDA al
{; 3| —p— cBRW 224 —g— GSDPMM o 8
g = Es
£ 2 216 =
e £ 24
£ e S
5 2
=0 0 0
10 20 30 40 50 10 20 30 10

4
number of attributes number of attributes

(b) Short Text data

number of attributes

(a) Categorical data (c) Numerical data

Figure 8: Efficiency tests: varying the number of attributes

times of Food. When we varied the number of records from 25629
to 256295 on LongFood, the running time could be obtained for
each approach, and is reported in Figure 7(a). Similarity, we con-
ducted experiments by selecting GNewsT for short text data and
Shuttle for numerical data. The corresponding results of GNewsT
and Shuttle are reported in Figure 7(b) and Figure 7(c), respectively.
When varying the number of records, the running time of LDA,
FMOutlier and GSDPMM increases nearly linearly, and the run-
ning time of other algorithms increases nearly quadratically with
the increment of the number of records. Moreover, FMOutlier con-
sistently runs faster than all the competitors, especially for larger
number of records. Indeed, FMOutlier is on average (48.7, 56.2,
64.3), (12.6, 15.5, 2.8) and (46.4) times faster than (KNN-OF, KNN-
Lin, CBRW), (KNN-Text, LDA, GSDPMM) and (LOF), respectively.

Exp-2.2: Impacts of the number of attributes. To evaluate the
impacts of the number of attributes, for categorical data, we copied
Food horizontally (and changed values) five times to construct
a high-dimensional data set, called HDFood. When varied the
number of attributes from 11 to 55 on HDFood, the running time
could be obtained for each method, and is reported in Figure 8(a).
Similarity, we conducted experiments by selecting GNewsT for
short text data and Shuttle for numerical data. Their results are
reported in Figure 8(b) and Figure 8(c), respectively.

c c 1§ o 1| —*—smp

2 2 S —&— Shuttle
308 X’ 208 -20.8| —— Annthyroid
e ¢ 3

a0.6 a0.6 a0.6

v) ©

20.4| —#*— Publication 20.4}| —*— Tweets 20.4

§ | —a— Foou O g

2 0.2 —p—mab 0.2 —— GNewss Z0.28

0 0 0
0.001 0.01 0.04 0.07 0.1 0.01 004 0.07 01 04 0.001 0.01 004 0.07 0.1
learning rate a learning rate a learning rate a

(a) categorical data (b) short text data (c) numerical data

Figure 9: Impacts of a on the effectiveness

c 1 c g —e—e——o - 1| ST
S o S —&— Shuttle
§ 0.8, -§ 0.8 -§ 0.8 —g— Annthyroid
$0.6 x0.6 X 0.6[, a—w—t——w—r—%
50.4|[—+— Pubiication $0.4|[—— Tweess S04
© —8— Food 5 —8— GNewsT @ Fg:g:ﬁ:g:g:Q
Z0.2f| ——imdb Z 0.2} —— GNewss z02
0 0 0

0 20 40 60 80 10C 0 20 40 60 80 10C 0 20 40 60 80 100

dimensionality k dimensionality k

(b) short text data

dimensionality k
(a) categorical data (c) numerical data

Figure 10: Impacts of k on the effectiveness

—s— Publication —— Tweets —+—smp
7 80| —8— Food % 80| —a— GNewsT 7 80| —a— shuttle
@ go| =¥ mdo @ o ¥ Chewss @ go| T Amityoid
240 240 240
g g g
220 220 220
— g
0 [0 0

g
0 20 40 60 80 10C 0 20 40 60 80 10C 0 20 40 60 80 100
dimensionality k dimensionality k dimensionality k

(a) categorical data (b) short text data (c) numerical data

Figure 11: Impacts of k on the efficiency

1| ——smp
c c & v — v v c
S S S —&— Shuttle
§ 0.8 § 0.8 § 0.8| —g— Annthyroid
206 206 @ 0.64———+——+——+
:-}0_ 4|[—e— Publication %0_4 —— Tweets §0_4
H —8— Food o} —8— GNewsT s G —H—o—H
Z0.2]| ——imdb Z0.2|| —— GNewss z02

0 C'2 02 10

4 6 8 4 6 8 4 6 8
m-fold cross-validation m-fold cross-validation m-fold cross-validation

(a) categorical data (b) short text data (c) numerical data

Figure 12: Impacts of m on the effectiveness

30 30
— —a— Publication — —a— Smtp
§ —8— Food @ § —&— Shuttle
£ 9p| =F—Imdb > (| —F— Annthyroid
[} £ @
E = E
5 E]
210 £ 210
c 5 =
g E 5
2 2

———— ¥
J 0
2

4 6 8 4 6 8
m-fold cross-validation m-fold cross-validation

(b) short text data

4 [3} 8
m-fold cross-validation

(a) categorical data (c) numerical data

Figure 13: Impacts of m on the efficiency

When varying the number of attributes, the running time of
CBRW increases nearly quadratically, while all the other methods
increase nearly linearly with the increment of the number of at-
tributes. Moreover, FMOutlier consistently runs faster than all the
competitors. Indeed, FMOutlier is on average (17.3, 21.1, 271.1),
(7.2, 22.8, 1.2) and (11.1) times faster than (KNN-OF, KNN-Lin,
CBRW), (KNN-Text, LDA, GSDPMM) and (LOF), respectively.

4.2.3 Impacts of parameters on effectiveness and efficiency. Fi-
nally, we evaluated the impacts of the learning rate a, dimensional-
ity k, number m of cross-validation folds and regularization param-
eter A. We fixed these parameters to their default values by default,
and tested the average precision and running time.

Exp-3.1: Impacts of learning rate a. To evaluate the impacts of
the learning rate a, we varied a from 0.001 to 0.4. The results of
the average precision are reported in Figure 9. Note that a has no
impacts on efficiency as the number of iterations is fixed.

When varying a, the average precision of FMOutlier first in-
creases, keeps almost stable after that, and, finally, decreases on
all data sets. The results tell us that the selection of a does have
certain impacts on the convergence of FMOutlier, such that larger
a might lead to oscillation and smaller a might result in trapping in
bad solutions. However, as shown in the results, FMOutlier is quite
robust to the selection of a, as long as a is within a certain range on
all data sets. Note that we set a to (0.01, 0.1, 0.01) for (categorical,
text, numerical) data by default, respectively, and the value of a can
be adjusted reasonably for other data sets.

Exp-3.2: Impacts of dimensionality k. To evaluate the impacts
of the dimensionality k, we varied k from 1 to 100. The results of
the average precision and running time are reported in Figures 10
and 11, respectively.

When varying k, the average precision of FMOutlier increases
rapidly when k is less than 10, increases slowly when k is less
than 50, and keeps almost stable after that on all data sets. To
guarantee the effectiveness of FMOutlier, it suffices to set k to 50
on all kinds of data sets. Indeed, the change of the average precision
when varying k from 50 to 100 is only (-0.10%, -0.29%, 0.23%) on
(categorical, text, numerical) data on average, respectively. When
varying k, the running time of FMOutlier increases nearly linearly
with the increment of k on all data sets. Indeed, FMOutlier is very
efficient, and could finish all the tests in 74.50 seconds when k was
100 on all data sets. Note that the value of k can be further reduced
to 10 for achieving a better efficiency at the price of a small loss of
the average precision.

Exp-3.3: Impacts of number m of cross-validation folds. In
our approach, we fix the number m of cross-validation folds to 2.
To verify the rationale, we further evaluated the impacts of m by
varying its value from 2 to 10. The results of the average precision
and running time are reported in Figures 12 and 13.

When varying m, the average precision of FMOutlier keeps al-
most stable on all data sets. Indeed, the change of the average
precision when varying m from 2 to 10 is only (0.07%, 0.04%, 0.61%)
for (categorical, text, numerical) data on average, respectively. It is
obvious that the running time of FMOutlier increases linearly with
the increment of m on all data sets. That is, fixing m = 2 is a good
choice for FMOutlier.

Exp-3.4: Impacts of regularization parameter 1. To evaluate
the impacts of the regularization parameter A, we varied A from 0.2
to 1. The results of the average precision are reported in Figure 14.
Similar to Exp-3.1, A has no impacts on efficiency.

When varying A, the average precision of FMOutlier keeps al-
most stable on all data sets. Indeed, the change of the average
precision when varying A from 0.2 to 1 is only (0.09%, 0.03%, 2.11%)
for (categorical, text, numerical) data on average, respectively. This
result indicates that FMOutlier is quite robust to A, and it is easy
to select a proper value of A on all kinds of data sets.

Summary. From these experimental results we find the following.
(1) FMOutlier is effective for outlier detection in sparse categorical

< c I ? ° o 1[——smp
S S S | —=—shuttle
208 208 -£0.8| —— Annthyroid
1 o o
a2 0.6 2 0.6 Q0.64—F—F———1
$0.4|[—— publication 50.4|[—— Tweets 504
§ —8— Food g —&— GNewsT g == g
202[| ——mab Z 0.2 —— cNewss 202 v

Q Q Q

02 04 06 08 1 02 04 06 08 1 02 04 06 08 1

regularization parameter A reqularization parameter A

(b) short text data

reqularization parameter A

(a) categorical data (c) numerical data

Figure 14: Impacts of A on the effectiveness

and short text data, and even conventional numerical data with a
suitable feature engineering effort. Indeed, FMOutlier on average
improves the average precision over (KNN-OF, KNN-Lin, CBRW)
by (3.88%, 98.26%, 95.60%) for categorical data, over (KNN-Text,
LDA, GSDPMM) by (12.97%, 97.61%, 42.88%) for short text data,
and over (LOF) by (25.06%) for numerical data, respectively.

(2) FMOutlier is efficient and provides a linear scalability. As data
sets grow larger, the advantage of FMOutlier becomes more ob-
vious. Indeed, FMOutlier is on average (48.7, 56.2, 64.3), (12.6,
15.5, 2.8) and (46.4) times faster than (KNN-OF, KNN-Lin,CBRW),
(KNN-Text, LDA, GSDPMM) and (LOF), respectively, in our tests.
The gap becomes larger as the increment of the sizes of data sets.
(3) FMOutlier introduces the learning rate a, dimensionality k, num-
ber m of cross-validation folds, and regularization parameter A for
the sake of practicability and flexibility in real-life applications.
However, FMOutlier is robust to these parameters in our tests.

5 CONCLUSIONS

We have proposed an unsupervised outlier detection approach for
sparse data with factorization machines. We have also experimen-
tally shown that our approach has the dual advantages of effective-
ness and efficiency, and can be applied not only to sparse massive
domain categorical and short text data, but reasonable results can
even be obtained for conventional numerical data with a suitable
feature engineering. The results of this study have the potential to
further broaden the applicability of factorization machines.

Although we have shown excellent results with the use of a
simple discretization methodology in this study, it is possible that
other more sophisticated sparse-coding methods can also be com-
bined with our approach to achieve even better results. This is an
interesting topic that deserves a further study.

ACKNOWLEDGMENT

This work is supported in part by NSFC U1636210, 973 Program
2014CB340300, NSFC 61421003 & 61322207, Special Funds of Beijing
Municipal Science & Technology Commission. For any correspon-
dence, please refer to Shuai Ma.

REFERENCES

[1] Charu C. Aggarwal. 2012. Outlier ensembles: position paper. SIGKDD Explo-
rations 14, 2 (2012), 49-58.
2] Charu C. Aggarwal. 2013. Outlier Analysis. Springer, New York.
[3] Charu C. Aggarwal. 2016. Recommender Systems - The Textbook. Springer.
] Charu C. Aggarwal and Philip S. Yu. 2001. Outlier Detection for High Dimen-
sional Data. In SIGMOD. 37-46.
[5] Charu C. Aggarwal and Philip S. Yu. 2010. On clustering massive text and
categorical data streams. Knowl. Inf. Syst. 24, 2 (2010), 171-196.
[6] Leman Akoglu, Hanghang Tong, Jilles Vreeken, and Christos Faloutsos. 2012.

Fast and reliable anomaly detection in categorical data. In CIKM.
[7] James Allan, Ron Papka, and Victor Lavrenko. 1998. On-Line New Event Detec-

tion and Tracking. In SIGIR.

—

8]

—

9]

[27]
(28]
[29]
[30]

[31

[32

(33]

(38]
[39]
[40]

[41

(42]

Fabrizio Angiulli and Clara Pizzuti. 2002. Fast Outlier Detection in High Dimen-
sional Spaces. In PKDD.

Kanishka Bhaduri, Bryan L. Matthews, and Chris Giannella. 2011. Algorithms
for speeding up distance-based outlier detection. In KDD.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. ACM JMLR 3 (2003), 993-1022.

Mathieu Blondel, Akinori Fujino, and Naonori Ueda. 2015. Convex Factorization
Machines. In ECML PKDD.

Shyam Boriah, Varun Chandola, and Vipin Kumar. 2008. Similarity Measures for
Categorical Data: A Comparative Evaluation. In SDM.

Thorsten Brants and Francine Chen. 2003. A System for new event detection. In
SIGIR.

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander. 2000.
LOF: Identifying Density-Based Local Outliers. In SIGMOD.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM Comput. Surv. 41, 3 (2009), 15:1-15:58.

Kaustav Das and Jeff G. Schneider. 2007. Detecting anomalous records in cate-
gorical datasets. In KDD.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization. ACM JMLR 12 (2011),
2121-2159.

Manish Gupta, Jing Gao, and Jiawei Han. 2013. Community Distribution Outlier
Detection in Heterogeneous Information Networks. In ECML PKDD.

Thomas Hofmann. 1999. Probabilistic Latent Semantic Indexing. In SIGIR.

L. Hong and B. Davison. 2010. Empirical study of topic modeling in twitter. In
First Workshop on Social Media Analytics.

Renjun Hu, Charu C. Aggarwal, Shuai Ma, and Jinpeng Huai. 2016. An embedding
approach to anomaly detection. In ICDE.

Eamonn J. Keogh, Jessica Lin, and Ada Wai-Chee Fu. 2005. HOT SAX: Efficiently
Finding the Most Unusual Time Series Subsequence. In ICDM.

Edwin M. Knorr and Raymond T. Ng. 1998. Algorithms for Mining Distance-
Based Outliers in Large Datasets. In VLDB.

Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. 2008. Angle-based
outlier detection in high-dimensional data. In KDD.

Aleksandar Lazarevic and Vipin Kumar. 2005. Feature bagging for outlier detec-
tion. In KDD.

Yen-Cheng Lu, Feng Chen, Yating Wang, and Chang-Tien Lu. 2016. Discovering
Anomalies on Mixed-Type Data Using a Generalized Student- t Based Approach.
IEEE TKDE 28, 10 (2016), 2582-2595.

Mario Lucic, Olivier Bachem, and Andreas Krause. 2016. Linear-Time Outlier
Detection via Sensitivity. In IJCAL

Emmanuel Miiller, Matthias Schiffer, and Thomas Seidl. 2011. Statistical selection
of relevant subspace projections for outlier ranking. In ICDE.

Guansong Pang, Longbing Cao, and Ling Chen. 2016. Outlier Detection in
Complex Categorical Data by Modeling the Feature Value Couplings. In IJCAL
Ninh Pham and Rasmus Pagh. 2012. A near-linear time approximation algorithm
for angle-based outlier detection in high-dimensional data. In KDD.

Milos Radovanovic, Alexandros Nanopoulos, and Mirjana Ivanovic. 2015. Reverse
Nearest Neighbors in Unsupervised Distance-Based Outlier Detection. IEEE
TKDE 27, 5 (2015), 1369-1382.

Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient Algo-
rithms for Mining Outliers from Large Data Sets. In SIGMOD.

Steffen Rendle. 2012. Factorization Machines with libFM. ACM TIST 3, 3 (2012),
57.

Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-
Thieme. 2011. Fast context-aware recommendations with factorization machines.
In SIGIR.

Saket Sathe and Charu C. Aggarwal. 2016. LODES: Local Density Meets Spectral
Outlier Detection. In SDM.

M. Shyu, S. Chen, K. Sarinnapakorn, and L. Chang. 2003. A novel anomaly
detection scheme based on principal component classifier. In ICDMW.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June(Paul)
Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service
(MAS) and Applications. In WWW.

Koen Smets and Jilles Vreeken. 2011. The Odd One Out: Identifying and Charac-
terising Anomalies. In SDM.

Hanghang Tong and Ching-Yung Lin. 2011. Non-Negative Residual Matrix
Factorization with Application to Graph Anomaly Detection. In SDM.

Liang Xiong, Xi Chen, and Jeff G. Schneider. 2011. Direct Robust Matrix Factor-
izatoin for Anomaly Detection. In ICDM.

Jianhua Yin and Jianyong Wang. 2016. A model-based approach for text clustering
with outlier detection. In ICDE.

Weiren Yu, Charu C. Aggarwal, Shuai Ma, and Haixun Wang. 2013. On Anoma-
lous Hotspot Discovery in Graph Streams. In ICDM.

Jian Zhang, Zoubin Ghahramani, and Yiming Yang. 2004. A Probabilistic Model
for Online Document Clustering with Application to Novelty Detection. In NIPS.

	Abstract
	1 Introduction
	1.1 Challenges in Sparse Data
	1.2 Merits of Factorization Machines
	1.3 Related Work

	2 Factorization Machines for Outlier Detection
	2.1 Feature Engineering for Various Domains
	2.2 Modeling with Factorization Machines

	3 Model Computation
	3.1 Analysis of Computational Complexity

	4 EXPERIMENTAL STUDY
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusions
	References

