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ABSTRACT

Graph Edit Distance (GED) is a general and domain-agnostic metric
to measure graph similarity, widely used in graph search or retriev-
ing tasks. However, the exact GED computation is known to be
NP-complete. For instance, the widely used A* algorithms explore
the entire search space to find the optimal solution which inevitably
suffers scalability issues. Learning-based methods apply graph rep-
resentation techniques to learn the GED by formulating a regression
task, which can not recover the edit path and lead to inaccurate GED
approximation (i.e., the predicted GED is smaller than the exact).
To this end, in this work, we present a data-driven hybrid approach
MATA* for approximate GED computation based on Graph Neural
Networks (GNNs) and A* algorithms, which models from the per-
spective of learning to match nodes instead of directly regressing
GED. Specifically, aware of the structure-dominant operations (i.e.,
node and edge insertion/deletion) property in GED computation, a
structure-enhanced GNN is firstly designed to jointly learn local
and high-order structural information for node embeddings for
node matchings. Second, top-k candidate nodes are produced via
a differentiable top-k operation to enable the training for node
matchings, which is adhering to another property of GED, i.e., mul-
tiple optimal node matchings. Third, benefiting from the candidate
nodes, MATA” only performs on the promising search directions,
reaching the solution efficiently. Finally, extensive experiments
show the superiority of MATA" as it significantly outperforms the
combinatorial search-based, learning-based and hybrid methods
and scales well to large-size graphs.
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1 INTRODUCTION

Graph-structured data are ubiquitous, ranging from chemical com-
pounds [8], social networks [16], computer vision [35] to program-
ming languages [23]. A recurrent and pivotal task when working
with these graph-structured applications is assessing how similar
or different two given graphs are, among which graph edit distance
(GED) is a widely used metric due to its flexible and domain-agnostic
merits 3, 9, 10, 23]. In general, GED computation refers to finding
the minimum cost of edit operations (node insertion/deletion, edge
insertion/deletion, and node/edge relabeling) to transform the source
graph to a target one [5] (see Fig. 1 for an example).

The exact GED computation guarantees optimality which is how-
ever NP-complete [5]. It typically treats all possible edit operations
as a pathfinding problem where A* algorithm (a best-first search
method) is widely used to expand the search [9-11, 18]. These so-
lutions mainly focus on pruning unpromising search spaces using
A* algorithm or filtering dissimilar graph pairs to speed up GED
computation. However, they all run in factorial time in the worst
case due to the exhaustiveness of their search spaces, such that
they cannot reliably compute the GED of graphs with more than
16 nodes in a reasonable time [7].

Some recent works for the approximate GED computation have
been proposed with the help of the graph representation techniques,
which can be divided into two main categories: Learning-based
models [2-4, 23, 26, 27, 41, 42] and hybrid approaches [33, 37]. For
learning-based models, they directly formulate the approximate
GED computation as a regression task and supervisedly learn the
GED as a graph similarity metric in an end-to-end manner. Al-
though such learning-based methods alleviate the computational
burden of GED, they could encounter the inaccurate GED approxi-
mation issue (i.e., the predicted GED is smaller than the exact result)
and also fail to recover an actual edit path, which is indispensable in
specific tasks e.g., network alignment [21], graph matching [12, 33].
For hybrid methods, deep learning and combinatorial-search tech-
niques are combined to optimize the GED computation. Recently
[33] and [37] separately propose two hybrid approaches, both of
which apply Graph Neural Networks (GNNs) to guide the search
directions of A" algorithms. However, the solved edit distance is
typically provided with a large gap, due to their accumulation of
the inaccurate GED approximation in the cost function estimation
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Figure 1: An edit path from source graph G; to target graph G,. Different colors represent the nodes with different labels.
Assume the edit costs are uniform, and ged (G1, G2) = 4. That is at least four edit operations are required to transform G; to Go,
where the node mapping corresponding to the edit path is {uj, u2, u3, us} to {v1,v2,v3,0v4}. (1) Essentially, there are two optimal
node matchings for ged (G1, G2) = 4, and another node mapping is {u;, ug, u3, us} to {v2,v3,04,05}. (2) Among the edit operations,
there includes one attribute operation (i.e.,, relabel u3) and three structure operations.

(i.e., the cost of unmatched subgraphs) of A* algorithms. Besides,
GNNs with the attention mechanism are employed to estimate the
cost function, which take O(n?d + d%n) time for extending each
search, and encounter scalability issues [33, 37].

It is known that GED computation equals finding the optimal
node matching between the source and the target graphs. Once the
node matchings are given, GED can be easily calculated by scanning
the two graphs once [9], which reveals the intrinsic connection
between GED computation and node matching. Besides, existing
learning-based and hybrid approaches only formulate GED as a
regression task for graph or subgraph pairs, which fails to explicitly
consider the node matching in their models. Be aware of the intrin-
sic connection between GED computation and node matching, in
this work, we attempt to learn the node matching corresponding
to GED using GNNs. However, it is not trivial as the following two
combinatorial properties essentially exist in GED computation. (1)
Multiple optimal node matchings (i.e., different matchings to produce
GED) makes it difficult to learn the node matching by directly mod-
eling in end-to-end learning. (2) Structure-dominant operations (i.e.,
most edit operations are involved in structure) create challenges
for incorporating structural information into learning models. Also,
see Fig. 1 for an example.

To this end, in this work, we present a data-driven hybrid ap-
proach MATA" based on Graph Neural Networks and A* algorithms,
which leverages the learned candidate matching nodes to prune
unpromising search directions of A* algorithm (i.e., A*LSa [9]) for
approximate GED computation.

Contributions. The main contributions are as follows.

(1) We present a hybrid approach based on GNNs and A* algorithms
rather than via an end-to-end manner, which models GED compu-
tation from the perspective of node matching and combines the
intrinsic connection between GED computation and node matching.
(2) A structure-enhanced Graph Neural Network (i.e., SEGCN) is in-
troduced to jointly learn local and high-order structural information
for node embeddings w.r.t. node matchings from a fine granularity,
which captures the combinatorial property of structure-dominant
operations in GED computation.

(3) Further, top-k candidate nodes are produced to be aware of
the multiple optimal node matchings combinatorial property via
a differentiable top-k operation, which is built upon two comple-
mentary learning tasks to jointly generate the candidate nodes, i.e.,
learning node matching and learning GED.

(4) We conduct extensive experiments on real-life datasets A1Ds,

IMDB, and CANCER to demonstrate the superiority and scalability of
MATA” from three types of methods: combinatorial search-based,
learning-based and hybrid approaches. Indeed, MATA* improves
the accuracy by (39.0%, 21.6%, 11.7%) and reduces the average dis-
crepancy by (6.5%, 9.1%, 24.5%) at least on three real-life datasets
(A1ps, IMDB, CANCER), respectively.

2 RELATED WORKS

Computing the graph edit distance between graphs is a classical
and fundamental combinatorial optimization problem over graphs
where a vast body of literature exists in various domains [2, 4,
9, 10, 15, 18, 23, 25, 27, 28, 30, 33, 37, 41, 42]. We next present a
detailed overview of existing literature from three categories: (1)
combinatorial search-based, (2) learning-based and (3) hybrid graph
edit distance computation.

Combinatorial search-based. Combinatorial search-based algo-
rithms either directly explore the search space corresponding to
GED, or relax it to other combinatorial problems with polynomial
time complexity. (1) The solution space of exact GED is typically
treated as a pathfinding problem where best-search (A" [17, 30]) and
depth-first search [1, 6] are utilized to expand the search path [37].
Different exact algorithms mainly focus on how to better estimate
the cost of unmatched subgraphs with the theoretical guarantee
to prune the search space, such as using label sets [29, 30], and
subgraph structures [9, 10, 18]. (2) The approximate algorithms are
proposed to find the sub-optimal solutions. [25] explores the most
possible directions with the limited beam size of A* algorithms. [28]
and [15] only consider the local structure and relax it to bipartite
matching problems, which are computed in cubic time.
Learning-based GED computation. With the progress of graph
representation techniques of Graph Neural Networks [14, 19, 39],
some works directly model it as a regression problem and learn the
approximate GED via an end-to-end manner by treating GED as
a similarity score between graphs. Different learning-based algo-
rithms mainly focus on designing different GNN models for the
graph edit distance computation task. [3] first presents a model
using GCN [19] and attention mechanism to approximately learn
GED in an end-to-end fashion. Based on [3], [4] further introduces
a multi-scale node comparison technique to extract the fine-grained
information from the node-to-node similarity matrix. Besides, [23]
incorporates both the node and graph level information by the
cross-graph module to trade-off the accuracy and computation. [2]
splits the graph edit distance into different types of edit operations



MATA”: Learning to Match Nodes for GED Computation

and applies graph aggregation layers to learn each type individually.
More recently, [26] designs a GED-specific regularizer to impose
the matching constraints involved in GED, where the graph pairs
are represented by the association graphs. [27] designs a novel
siamese graph neural network, which through a carefully crafted
inductive bias, learns the graph and subgraph edit distances via a
property-preserving manner.

Hybrid GED computation. Recently, there has been a surge of
interest in marrying learning-based approaches with combinatorial-
search techniques. This interdisciplinary blend has given birth
to several hybrid methodologies, particularly those that integrate
Graph Neural Networks (GNNs) with the A* search algorithm, as
seen in references [33, 37]. Both methods leverage machine learning
techniques to enhance the performance of A* algorithms for GED
computation, by predicting the cost of unmatched subgraphs to
optimize their search directions. [37] proposes graph path networks
incorporating pre-training edit path information and cross-graph
information for training the model and [33] integrates a dynamic
graph embedding network [3] for estimating the cost associated
with unmatched subgraphs.

3 PRELIMINARIES

We focus the discussions on the labeled and undirected simple
graphs, that is a graph denoted by G = {V, E,®}, where V is the
set of nodes, & is the set of undirected edges with & € V x V and
® is a label function that assigns labels to each node or edge.
Graph Edit Distance (GED). The graph edit distance between
graphs G and G is defined as the minimum cost of edit operations
(i.e., node insertion/deletion, edge insertion/deletion, and node/edge
relabeling) to transform G; to Gz, denoted by ged(Gi1, G2) [2, 10,
37]. One specific constraint to note is the aspect of node deletion
operation, it’s restricted only to the nodes that are isolated, ensuring
structural integrity and meaningful transformations between the
graphs. Due to the NP-completeness of graph edit distance, the
approximate edit distance is often used, denoted by gﬁ(gl, G2),
offers a balance between computational scalability and accuracy. In
this work, we focus on the line of uniform edit cost, i.e., all of the
edit operations share the same cost [2-4, 9, 10, 26, 27, 37], yet the
techniques presented in the following sections can also be extended
to handle the non-uniform edit cost.
GED computation from node matchings. We next illustrate
how to compute GED from the view of node matchings. Here, the
node matching refers to an injective function from the nodes V; to
the nodes V5.
Proposition 1: The ged between the graph pair G and G2 equals
the minimum edit cost among all node matchings from the source
graph G to the target graph Gz [9]. O

By proposition 1, the ged(G1, G2) can be determined by exhaus-
tively generating all possible matchings from V; to V5, i.e., this
essentially translates to identifying the node matching that incurs
the least edit cost. Based on the commutativity of ged(-, -) and the
edit cost are uniform, w.l.o.g. for a graph pair G; and Go, G always
refers to the graph with fewer nodes in later sections.

Moreover, the optimal node matching between G; and G can
be formulated as the constrained binary quadratic programming

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Table 1: Statistics of types of edit operations. We randomly
sample 1,000 graphs for each dataset and compute their edit
operations, where NI, EI and ED stand for node insertions,
edge insertions and edge deletions, respectively.

Datasets ‘ Structure Operations ‘ Attribute Operations

NI | EI | ED | Relabeling
A1ps 18.3% | 34.8% | 8.7% 38.0%
IMDB 12.1% | 61.8% | 5.2% 0.0%
CANCER | 4.6% | 40.8% | 35.5% 18.6%

(CBQP) problem [26]:

min dist = Z C; k1 X i + Z Cik i1 Xi kX
e i,k ik ik, j, I} kN,

u;€Gh u;,u; €Gi
EG K, UIEG)
s.t. Z Xix=1Yu; € G (1)
k€G>
> Xik=1Vop € G
U €G1

Xir €{0,1},Yu; € G101 € G2

where X € |Vi| X |'V2] is a binary matrix representing the node
matching between G and G». The value X; i is 1 if node u; in Gy
matches with node vy in Gz. The edit cost c; ;. denotes the cost of
matching u; in G and v in Go. ¢; ;. = 1 if u; and v have different
labels and 0 otherwise. Similarly, ¢; . ;; is the edit cost of matching
the edge (uj,uj) in G1 and the edge (vf, ;) in Go. ¢ j; = 11if
(ui, uj) and (vg, vy) have different labels and 0 otherwise.

4 THE PROPOSED MODEL: MATA*

Distinct from previous works that formulate GED computation
as a regression task, we suggest tracing the problem back to the
node matching so that the combinatorial properties (i.e., structure-
dominant operations and multiple optimal node matchings) in GED
computation could be leveraged.

4.1 Analysis of Learning to Match Nodes.

In order to learn node matchings of GED from CBQP formulation,
it requires X; x. € {0, 1} to relax to be continuous in [0, 1], where the
constraints in Eq. (1) could be modeled as the quadratic infeasibility
penalty [20]. This relaxation strategy endows the binary matrix X
with an augmented perspective. Thus, the binary matrix X can be
viewed as the confidence of node u; in G; matching with node v,
in G,. In this way, we formulate the problem as the linear matching
paradigm, by incorporating the graph structure information into
node embedding, i.e., solving the following transportation problem:

[ Vi | V2]

min ) 3" Xij [[hy; ~ ha, @
i=1 j=1

where hy € RIVilxd ang h; € RIV2IXd 3re the node embeddings
of G1 and Gy, respectively. Intuitively, the kernel finds the optimal
way to transform one set of node embeddings h; to the other hy,
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Figure 2: The framework of MATA". The black arrows stand for the data flow in the training and testing phases and the red
arrows only denote that in the testing. (1) Embedding module takes graph pairs as input and extracts the local and high-order
structural information via SEGcN. (2) Matching module utilized node embeddings to build two learning tasks, i.e., learning
node matching with the help of the similarity matrix and learning GED using graph representation. Further, top-k candidates
and the assignment matrix are generated by Alg. 1. (3) Benefiting from the candidate nodes, MATA" only performs on the
promising search directions to refine these matchings using A*LSa.

by minimizing the Euclidean distance between corresponding node
pairs w.r.t. graph pairs.

We further analyze the combinatorial properties to design the
approximate GED computation framework, after modeling it from
learning node matchings by solving Eq. (2).

Structure-dominant operations. Structure operations (node and
edge insertion/deletion) are dominant among all edit operations,
which occupy at least 62.0% as illustrated in Table 1. Indeed, the
operations of node deletion can be interpreted as node insertion, as we
arrange the source graph G; and target Gz graph with V; <V, [9].
Further, by reducing the CBQP formulation to the transportation
problem in Eq. (2), the graph structure information is assumed to
be embedded into node embeddings. These tell us we need a GNN
to effectively learn powerful node embeddings enhanced by the
graph structures (Section 4.2).

Multiple optimal node matchings. Due to the combination and
permutation natures of node matchings, the two graphs typically
have multiple optimal node matchings that yield the GED. Hence,
directly learning the node correspondence according to the match-
ing confidence is extremely challenging, as it could lead to the
inability to satisfy the injection constraint or a larger gap between
ged(-,-) and geTi(~, -). That is, it requires us to relax the constraint
on the number of matched nodes and obtain candidate nodes using
a flexible parameter top-k. To conclude, we (1) need a differentiable
top-k operation to enable the training for node matchings (Section
4.3) and (2) refine the matchings from the top-k candidates using
A* algorithms (Section 4.4).

Thus, the proposed MATA* employs a structure-enhanced GNN
(i.e., SEGCN) to learn the differentiable top-k candidate matching
nodes which prunes the unpromising search directions of A*LSa
[9] for approximate GED computation. The overview of MATA* is
illustrated in Fig. 2 with the details of each module elaborated in
the following paragraphs.

4.2 Embedding Module

As analyzed, structural information is critical to learn the fine-
grained matching of node pairs for the GED computation. Here, a

structure-enhanced GNN SEGcN is proposed that jointly learns the
structural information from the views of local and high-order.
Degree encoding. When matching the nodes of two graphs w.r.t. GED,
the nodes with similar degrees are more likely to be matched. Note
that, the degree is not an accurate measure of structural similarity
as the edge insertions and deletions are involved. Hence, rather
than directly encoding the degree with a one-hot vector, we assign
each node with a learnable embedding d; based on its degree, and
the values of d; are randomly initialized.

Position encoding. The nodes located with similar local positions
are more likely to match in the GED computation. Shortest-path-
distances [39], PageRank [24] and random walk [14, 22] are gener-
ally used to measure the relative position of nodes [38]. For the sake
of computation efficiency, we employ the probabilities of random
walks after different steps as the relative position encoding p; € R?.
R @

ii >l

pi=1 R, 3)

where R = AD™! is the random walk operator, ¢ is the number of
steps of random walks, and Rl.(it) refers to the landing probability
of the node i to itself after the ¢-th step of random walk. Though
the local positions are encoded via random walk, nodes with slight
structure distinction may hard to be matched as the Eq. (3) is de-
terministic yet the editing operations from G; to G2 do change the
graph structures.

For more robust position encoding, perturbations are further
injected to the original graphs to get the perturbed position encod-
ing. Specifically, we randomly insert and remove a small portion
of edges (10% utilized in experiments) to produce the perturbed
graphs Gin and Gy, respectively. The random walk diffusion man-
ners are further performed on Gj, and Gy, with the perturbed local
positions p!™ and p!®, respectively. Combined with the Eq. (3), the
positional encoding is given as follow:

pi=pi+pi"+ple. )

Local view. By concatenating (1) the node feature x; (i.e., the at-
tribute feature of its label), (2) degree encoding d;, and (3) position

encoding p;, the node embeddings with local structure hgo) e R4
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are built via a multilayer perceptron (MLP):
RO =MLP(x; ®d; @ pi), VieV )

High-order view. We adopt the GCN [19] as the backbone of
SEGcN to learn the higher-order neighbor information. The node
embeddings are aggregated from the embeddings of its adjacency
nodes and itself. The I-th iteration of aggregation could be charac-

LD n) ©)

terized as:
() _ (
hi =0 Z cii J
jen; M

where hgl) € R? is the representation of node i of I-th GCN layer,

N is the set of neighbors of node i, and w( is the learned weights
of [-th layer. In order to reduce the bias because of the different
numbers of neighbors, the aggregated embeddings from adjacent
nodes are also normalized by the total number of adjacent nodes
cij. SEGeN takes the obtained h? as the input embedding.

After encoding by SEGcN, the node embeddings of G from

the local and high-order views are denoted as hgo) e RINIxd

and hil) e RIMiIxd, respectively. The node embeddings of G are
similarly obtained.

4.3 Matching Module

The local and high-order structural affinities between two graphs
has been ingeniously encoded into the node embedding space, by
SEGcN. As such, learning to match nodes is reduced to solve the
Eq. (2). We thus jointly learn the matchings from both the local view
and high-order view to obtain the differentiable top-k candidates
by iteratively minimizing the underlying transportation problem.
In addition to the task of learning node matching, a complementary
task learning GED is also put forward, which attempts to learn
the distance between graph representations that assists the node
matching task.

Learning node matchings. Intuitively, we learn node matchings
from fine-grained correspondences to minimize the transportation
problem, which aims that the resultant node matchings are not
just approximations but are reflective of the genuine structural
alignments between the two graphs.

Similarity matrix. To solve the Eq. (2), we model it in a flexible way,

and similarity matrices from the local view SO € || x |'V,] and
the high-order view SO € |Vy| x [Vy] are:

5O = o(h® "w,h(") o
7
sO = 50" W,n)

where Wy, € R js a learnable weights matrix and shares the
parameters between $(%) and $(!). All elements of similarity matrix
S are positive after applying the sigmoid function, and S(O)

sures the similarity between Vy; and V5 from the local V1ew And

S( ) measures the similarity from the high-order view. Besides, $(%)

also models the cost by transforming the embedding hﬁo) to hgo).
Different from padding the similarity matrix [4], it is enough to
represent all possible matchings with |V;| X |'V2| from the Eq. 1.
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Algorithm 1 Differentiable top-k matching nodes

Input: Similarity mat S(o), S<l), k, regularization e
Output: Assignment mat Sa(o), Sa(l), candidates M| ViIxk
1: Build D, ¢, r from s(0) by Eq. (8); T = -D/e;
2. while T is not converged do > Sinkhorn normalization
3 T'=diag((T1or1)7'T;
4 T=dag([M1oc)'n
5: Rebuild assignment mat Sa(o) from T;
6: Repeat lines 1-5 for S to obtain Sa(l);
7: if training then return Sa(o), Sa(l) R
8: else return MIVilxk by greedily searching top-k;

Top-k candidate matching nodes. Inspired by [31, 34], choosing the

top-k matches from the similarity matrices S(O) and S(l) is typically
formulated as an optimal transport problem Wthh selects the
k most confident matches for each node based on the matching
confidences, shown in Alg. 1.

Specifically, we first flatten the similarity matrix S0 with local
structure affinity into d = [d;,do, ..., al|(y1 ‘ |q/2|]. As such, to differ-
entiable find the top-k matches, the optimal transport problem can
be viewed as redistributing d to one of dpqx and dpin, where the
capacities of dmax and dmin are k and |Vi||V2| — k, respectively.
That is the matches moved into dp4x are preserved during the re-
distributing and the others moved into dy;, are discarded. Let ¢ and
r represent the marginal distributions, D represents the distance
matrix, and 1 represents the vector of all ones (line 1). And we have:

r=10 1 €= [VlIVa2l -k KIT

D= di1 — dmin  d2 — dmin djv;||v,| ~ dmin ®)
dmax —d1  dmax—dz2 -+ dmax — d|q/1||‘1/2|

Then an efficient method Sinkhorn [13, 16] for solving the op-
timal transport problem is typically adopted to learn the prob-
abilities of the top-k matchings, which is an approximate and
differentiable version of Hungarian. It iteratively performs row-
normalization, i.e., element-wise division by the sum of its row and
column-normalization until convergence, where © means element-
wise division, diag(-) means building a diagonal matrix from a
vector (lines 2-4).

After the differentiable top-k operation, we reshape T into the
assignment matrix from local view Sa® € [Vi] X [V, , which
essentially measures the confidence of V1; and V, belonging to the
optimal matching (line 5). For the similarity matrix $/) with high-
order structure affinity are also performed to obtain the assignment
matrix S3 1) from high-order view (line 8). Finally, Alg. 1 returns
Sa(0 5, (D during the training, and top-k candidate nodes MIVilxk
during the testing (lines 6-7).

Note that, during the testing, we further propose a greedy method
to find top-k candidate nodes in O(kn?) time, In brief, it iteratively
finds a node with the largest matching probability as a candidate
from the unmatched nodes, where the injection constraint of node
matchings is also guaranteed.

Learning GED. We further propose an auxiliary task tailored to
learn the (approximate) graph edit distance that assists the node
matching task by exploiting the graph-level similarity.
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Algorithm 2 Mapping refinement based on A*LSa [1]

Input: Graphs G1, G, candidates M M

Output: The approximate é;ﬁ(gl, G2)

1: Push (0, 0, null, 0) into Q; > Initialize the priority queue Q
with the root of the search tree.

2: while Q # 0 do

3: Pop (i, f, pa, Ib) with minimum [b from Q;

4 Compute the lower bound Ib using A*LSa for each child
c € MIMilxk of f

5. forall child c € MIViIXk of £ do

6 if i + 1 = |V| then ged(G1, G2) = c.lb; break;

7: else Push (i + 1, ¢, f, Ib) into Q;

8 return ged(G1, G2)

Intuitively, hgo) and hgl) capture the node features enhanced by
the local and high-order graph structural information of G;. This
intricate embedding process ensures that the nodes’ features are
not only captured in their raw features but are also contextualized
within the broader structure of the graph. Essentially, (approximate)
GED measures the similarity of graph pairs from the graph level,
and hence, we aggregate the node embeddings with both local and
high-order views of G1 and G passed through MLPs for the learning
GED task. And we have the following:

h =mMP(h!” @ h!))
hd =MP(h{” @ h!") ©
dg, g, =MLP(h{ ® hj)

That is, dg, g, is predicted using the MLP operation which grad-
ually reduces the concatenated graph representations h? and h‘g
of the graph pair. Actually, to counter this and provide a more
interpretable and standardized measure, the GED are typically nor-
malized by exp{—ged(G1, G2) X 2/ (V1 + V2)}.

Loss design. MATA" is trained in a supervised manner for graph
pairs Gx and Gy using normalized ground-truth GED dfc,y and
its corresponding node matching Mfc,y. The loss function evalu-
ates both the difference for predicted node matchings from the
local/high-order view of assignment matrices $a(9/5, (D and learn-
ing GED from the predicted normalized GED dy, . For the learning
node matching task, we jointly minimize the negative log-likelihood
of the node matchings on the assignment matrices Sa® and s, (D:

Ly = —ﬁ Z . Z logSai(’(;.) + 1ogSa§’lj) (10)
(xy)€D (i,j)e MLy
Note that, different from the use of permutation cross-entropy loss
[32] or Hungarian loss [40] for the graph matching task, only the
node pairs belonging to a node matching are penalized by L, the
other node pairs are not penalized. The rationale behind this is
that multiple optimal node matchings typically exist, and these
unmatched node pairs may also belong to other node matchings
corresponding to the GED.
For the learning GED task, we minimize the MSE loss:

1
L= 1o Do (dey - di ) (11)
(xy)eD
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Table 2: Statistics of datasets. The graph pairs are partitioned
60%, 20%, 20% as training, validation, test sets, respectively.

|Graphs| |Pairs| avg(%) min(V]) max(V]) avg(V])

AIDS 700 490K 0.98 2 10 8.90
ImpB 1500  2.25M 4.05 7 89 13.00
CANCER 800 100K 1.08 21 90 30.79

where D is the set of training graph pairs.
Our final loss function is a combination of the negative log-
likelihood loss and MSE loss: £ = Ly + L.

4.4 Mapping Refinement Module

MATA* finally integrates A*LSa algorithm [9] to refine the edit
distance (i.e., node matching) among the learned top-k candidate
matching nodes MIViIXk a5 shown in Alg. 2.

Specifically, MATA* conducts a best-first search by treating GED
computation as a pathfinding problem. Such a representation is
convenient because it provides a systematic and heuristic way to
explore possible node matchings. To facilitate this search process,
a priority queue is maintained to store the search states during
the process for guiding the search direction. The priority queue Q
contains the level i, current partial matching f, the parent matching
pa, and the lower bound [b. A*LSa initializes the priority queue
Q by the root of the search tree (line 1). It then iteratively pops
(i, f, pa, Ib) from Q with the minimum lower bound, and subse-
quently extends the current matching f by computing the lower
bound of each child belonging to the candidates M [Vilxk
2-7). If the full node matching is formed, then géa(-, -) equals its
lower bound and is returned (lines 6, 8).

Note that, different from the hybrid approach [33, 37], during the
mapping refinement of MATA”, the search space is pruned by the
theoretical bounded estimation of unmatched subgraphs of A*LSa.

lines

5 EXPERIMENTS
5.1 Experimental Settings

Datasets. In this work, three benchmark datasets i.e., Aips [3],
IMDB [36], and CANCER ! are employed. (1) AIDs is a set of antivirus
screen chemical compounds labeled with 29 types. Following [3, 33],
700 graphs with no more than ten nodes are sampled as the Aips
dataset. (2) IMDB consists of 1, 500 ego-networks of movie actors or
actresses and each of which is an non-attributed graph. (3) CANCER
consists of 32,577 graphs of molecules discovered in carcinogenic
tumors. To test the scalability and efficiency of our MATA*, we
sample 800 graphs with nodes from 21 to 90 as CANCER dataset,
where the nodes are labeled with 37 types of atoms. Statistics of
the three real-life datasets are shown in Table 2.

Baseline methods. Our baselines include three types of meth-
ods, combinatorial search-based algorithms, learning-based mod-
els and hybrid approaches. (1) The representative methods in the
first category include three well-known approximate algorithms
A*Beam [25], Hungarian [28] and V] [15]. (2) The second category
includes three common-used and one state-of-the-art learning mod-
els, i.e., SImGNN [3], GMN [23], GENN [33] and GREED [27]. (3)

!https://cactus.ncinih.gov/download/nci/CAN2DA99.sdz
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Table 3: Effectiveness evaluations. The metrics are calculated on the normalized edit distance. T indicates the high the better
and | otherwise. Top-k are set to 4, 6 and 8 for AIps, IMDB and CANCER, respectively. The unit of metrics ACC and MSE are % and
1072, respectively, and - refers to memory overflow on 32GB machines or runs in more than 10 minutes for one graph pair.

Edi
Datasets Methods P:i}t ACCT MAE | MSE | p@10 T p@20 7 7T 7
A*Beam [25] v 16.68 0.092 1.37 0.460 0.470 0.720 0.546
Hungarian [28] v 4.19 0.194 4.77 0.293 0.328 0.541 0.386
V) [15] v 0.95 0.216 5.64 0.215 0.273 0.543 0.387
AIDS SimGNN [3] X 0.01 0.036 0.22 0.470 0.540 0.886 0.725
GMN [23] X 0.02 0.034 0.19 0.401 0.489 0.750 0.673
GREED [27] X 0.00 0.031 0.17 0.461 0.533 0.894 0.732
GENN [33] X 0.02 0.031 0.17 0.441 0.525 0.898 0.738
GENNA* [33] v 20.05 0.034 0.46 0.407 0.556 0.515 0.378
MATA* (Ours) v 59.12 0.029 0.37 0.486 0.526 0.844 0.698
A*Beam [25] v 23.18 0.111 5.22 0.464 0.527 0.489 0.381
Hungarian [28] v 22.53 0.115 5.38 0.438 0.498 0.465 0.359
V) [15] v 22.24 0.115 5.38 0.436 0.495 0.465 0.359
IMDB SimGNN [3] x 0.11 0.114 5.01 0.474 0.531 0.500 0.388
GMN [23] X 0.29 0.128 5.01 0.479 0.542 0.513 0.392
GREED [27] X 0.93 0.110 5.04 0.477 0.541 0.499 0.389
GENN [33] X 0.22 0.108 5.04 0.476 0.533 0.495 0.384
GENNA* [33] v - - - - - - -
MATA* (Ours) v 44.80 0.098 5.03 0.509 0.570 0.542 0.456
A*Beam [25] v 44.23 0.053 1.14 0.161 0.266 0.446 0.352
Hungarian [28] v 2.19 0.162 3.56 0.123 0.227 0.139 0.096
V) [15] v 0.00 0.184 4.85 0.095 0.187 0.188 0.133
CANCER SimGNN [3] X 0.01 0.068 1.42 0.273 0.297 0.277 0.191
GMN [23] X 0.00 0.071 1.47 0.280 0.285 0.254 0.174
GREED [27] X 0.00 0.077 1.86 0.131 0.164 0.170 0.118
GENN [33] X 0.00 0.069 1.44 0.285 0.264 0.300 0.207
GENNA* [33] v - - - - - - -
MATA* (Ours) v 55.89 0.040 1.13 0.820 0.825 0.729 0.625

We chose an up-to-date model GENNA* as the representative of
hybrid approaches, and our MATA* also belongs to this category.

Evaluation metrics. We adopt the following experimental metrics
to evaluate the performance of the various approaches: (1) Edit path
means whether a method can recover the edit path corresponding
to the computed edit distance. (2) Accuracy (ACC), which measures
the accuracy between the computed distance and the ground-truth
solutions. (3) Mean Absolute Error (MAE), which indicates the
average discrepancy between the computed distance and ground
truth. (4) Mean Squared Error (MSE), which stands for the average
squared difference between the computed distance and ground
truth. (5) Precision at 10 (p@10) and (6) Precision at 20 (p@20),
both of which mean the precision of the top 10 and 20 most similar
graphs within the ground truth top 10 and 20 similar results. (7)
Spearman’s Rank Correlation Coefficient (p) and (8) Kendall’s Rank

Correlation (7), both of which measure how well the computed
results match with the ground-truth ranking results. (9) Time. It
records the running time to compute the distance for one graph
pair. The methods involving learning only report the testing time.

Due to the fact that exact GED computation is NP-complete,
the ground-truth of Aps is produced by exact algorithms and the
ground-truth of IMpB and CANCER are generated by the smallest
edit distances of A*Beam, Hungarian, and V], following [3]. Note
that, MATA” is able to achieve a smaller edit distance, and the
ground-truth of IMpB and CANCER are further updated by the best
results of the four approaches. Therefore, the metrics on Aips are
calculated by the exact solutions and the metrics on IMDB and
CANCER are calculated by the updated ground-truth. Note that the
edit distance is normalized into a similarity score in the range of
(0, 1] as explained in Section 4.3, the same as [3, 33].
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Table 4: Efficiency evaluations. Average running time for
solving one graph pair on test data (ms). The training time
for learning-based and hybrid approaches does not include.

SimGNN GMN GENN

A*Beam Hungarian V) ‘GENNA* MATA*

AIDs 0.3 9.0 04 20.4 6.7 6.7 | 38624 4.4
ImDB 0.7 59 04 26.6 230.8  230.7 - 35.3
CANCER 5.5 91.5 9.5 271.7 38.8 32.7 - 146.8

Parameter settings. We conduct all experiments on machines
with Intel Xeon Gold@2.40GHz CPU and NVIDIA Tesla V100 32GB
GPU. The number of SEGeN layers, i.e., [ is set to 3 and the random
walk step ¢ is set to 16 for the three datasets. During the training,
we set the batch size to 128 and use Adam optimizer with 0.001
learning rate and 5 x 10% weight decay for each dataset. The source
codes and data are available at https://github.com/jfkey/mata.

5.2 Experimental Results

In this section, we evaluate the performance of MATA* from the
effectiveness, scalability, efficiency, ablation study, top-k compar-
isons, and the analysis of assignment matrices.

Effectiveness evaluations. Table 3 shows the effectiveness of
eight approaches on three real-world datasets. MATA" consistently
achieves the best performance under almost each evaluation metric,
which demonstrates the superiority of our hybrid method MATA*
incorporating the two combinatorial properties of GED computa-
tion. We conduct the following findings from the evaluations.

(1) From the ACC, MATA* achieves smaller edit distances at least
(58.1%, 32.1%, 53.6%) of graph pairs on (A1Ds, IMDB, CANCER) when
comparing with combinatorial search-based and hybrid approaches.
Hence, the ground-truth of IMDB and CANCER are further updated
by these, which reduces MAE by at least (6.5%, 9.1%, 24.5%). (2) Only
learning-based models cannot recover the edit path, as they directly
learn GED as a similarity score and ignore the combinatorial nature.
(3) On ImDB, all methods perform worse than on Aips and CANCER.
IMDB is large with a wide range from 7 to 89 nodes. Besides, the
graphs are much denser with |&|/|V| = 4.05 and the distances of
pairs are also larger, which increases the difficulty for combinatorial
search and learning methods.

(4) The improvement of MATA* on ACC is such significant with
at least (39.0%, 21.6%, 11.7%), and the improvement of other metrics
is relatively less significant. The rationales behind this lie in that (a)
MATA* models from the perspective of node matching and explicitly
build the task of learning node matching, that is the learned top-k
candidate nodes could directly improve the accuracy due to the
correspondence between GED and the node matching. (b) For fewer
node pairs whose matchings have not been learned by MATA, it
prunes the search subtree rooted at the these node pairs, which
leads to a larger edit distance reflected in other metrics.
Scalability w.r.t. graph size. Consider the overall performance
of the approaches from small-size, i.e.,, AIDSs to large-size i.e., IMDB,
CANCER. We find the following. (1) Our MATA* leverages the learned
candidate matching nodes to directly prune unpromising search
directions, which scales well to large-size graphs and also performs
better on i.e., IMDB and CANCER from Table 3. (2) Combinatorial
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Table 5: Ablation study. / SEGcN refers to replacing SEGeN
with GCN, / LN refers to only removing learning node match-
ing, / LG refers to only removing learning GED, and / A" refers
to only removing the matching refinement module.

Datasets  Models ACCT MAE| p@107 T
MATA* 59.12 0.031 0.486 0.844
/ SEGen 54.38 0.036 0.485 0.819
AIDs /LN 32.13 0.057 0.397 0.783
/LG 58.09 0.033 0.469 0.858
/ A* 9.28 0.167 0.244 0.357
MATA* 44.80 0.098 0.509 0.542
/ SEGen 41.43 0.100 0.493 0.544
IMDB /LN 40.01 0.102 0.488 0.541
/LG 42.99 0.098 0.505 0.549
/ A* 30.16 0.112 0.428 0.521
MATA* 55.89 0.040 0.820 0.729
/ SEGen 53.36 0.042 0.817 0.699
CANCER /LN 45.85 0.046 0.790 0.582
/LG 55.87 0.040 0.812 0.729
/ A* 10.89 0.104 0.327 0.146

search-based algorithms can be extended to large-scale graphs with
general performance due to aggressive relaxation (Hungarian and
VJ) or pruning strategies (A*Beam). (3) Learning-based models add
a bias to the predicted GED values to reduce the discrepancy be-
tween the predicted and ground truth. Their scalability heavily
relies on the ground truth produced by combinatorial search-based
algorithms. This is why they perform worse on IMpB and CANCER
than A1ps. (4) The hybrid approach GENNA* only completes A1ps
for less than 10 nodes graphs and fails to scale to IMDB and CANCER.
This is because GENNA* explores the entire space, i.e., factorial
scale and takes O(n®d + d?n) time for each search as explained in
the introduction.

Efficiency w.r.t. running time. The computational efficiency of
eight approaches, evaluated over three real-life datasets, has been
presented in Table 4. Due to the end-to-end learning, SimGNN and
GENN achieve the best results and run in several microseconds
to predict the GED for one graph pair. Though MATA”" is slightly
slower than the learning-based models, its running time is close to
combinatorial search-based algorithms, and nearly 10* times faster
than the other hybrid approach GENNA*. This marked difference in
performance underscores the significance of top-k candidate node
finds and the impact on the computational efficiency of MATA™.
Ablation study. We perform ablation studies to verify the effec-
tiveness of each module and the results are reported in Table 5. It
is observed the performance drops dramatically if the matching re-
finement module is removed. This is because multiple optimal node
matchings typically exist from the node matching perspective of
GED. It is also noted that the performance considerably decreases if
the structure-enhanced GNN (i.e., SEGcN) is replaced by the vanilla
one. It demonstrates that SEGcN successfully captures the combi-
natorial property of structure-dominant operations and learns the
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Table 6: Performance evaluations w.r.t. different top-k. The
metrics are calculated in the same way as those in Table 3.

Datasets top-k ACCT MAE| p@10T pT Time]|

5 74.85 0.018 0.586 0.796 4.3
6 84.10 0.010 0.693 0.859 44
7 91.79 0.005 0.787 0.910 44
8
9

Ai1Ds
95.79 0.002 0.846 0.940 4.5
97.76 0.001 0.912 0.959 4.8
10 100.00 0.000 1.000 1.000 5.2
5 38.57 0.106 0.381 0.578 30.2
6 39.40 0.105 0.391 0.579 35.3
7 40.97 0.103 0.401 0.582 43.3
ImMDB
8 41.56 0.102 0.400 0.582 51.9
9 44.47 0.100 0.412 0.587 53.2
10 45.05 0.100 0.415 0.588 55.3
5 5.01 0.104 0.452 0.678 129.8
6 7.37 0.091 0.486 0.709 146.8
7 10.55 0.079 0.543 0.734 153.1
CANCER
8 14.37 0.069 0.569 0.758 168.0
9 22.63 0.058 0.615 0.777 176.7

10 34.19  0.048 0.684 0.794 193.2

powerful embeddings for approximate GED computation. Further,
the two designed learning tasks (i.e., LN, and LG) are both helpful
for improving the solution quality of GED, especially the learning
node matching tasks (i.e., LN). The ablation study is consistent with
our analysis of the approximate GED computation.

5.3 Performance w.r.t. top-k selection.

We also study the performance w.r.t. selecting different k of MATA”
on A1ps, IMDB and CANCER datasets. We conduct the following
findings from Table 6.

(1) Varying k in the experiments emphasize the trade-off between
solution quality and time. That is setting larger k could improve
the approximate GED solution quality, but the running time indeed
increases mainly due to the large search space of A*LSa. (2) Aps is a
small dataset with the exact solutions, and MATA* also achieves the
optimal solutions running in 5.2 ms, when k is set to 10. Note that,
MATA” degenerates to A*LSa when all nodes of G, are selected as
the candidate matching nodes. (3) When k is set to 6, 8 for datasets
ImpB and CANCER, the evaluation metric is worse than that in Table
3. In fact, k is set to 10 in this test which achieves a smaller edit
distance, and the ground-truth of IMDB and CANCER are further
updated by these solutions. Hence, the evaluation metrics are re-
calculated, which produces worse metrics on IMDB and CANCER.
To encapsulate, the interplay of the value of k, offers a balance
between computational scalability and accuracy of the approximate
graph edit distance computation.

5.4 Analysis of assignment matrices of MATA*

we offer a visual representation of four assignment matrices that
encapsulate both local and high-order perspectives. These matrices,
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Figure 3: Analysis of the assignment matrices. The GED of
graph pairs (a) & (b) are both equal to 2.

specifically pertaining to two pairs of graphs, have been portrayed
as heatmap images, and are generated by MATA” on A1ps in Fig. 3.
From our observations, both the local and high-order views play a
crucial role in the extraction of features tailored for node match-
ings. This is evident when considering specific node pairs, such as
(6,6) and (7,7), from the graph pair labeled (a) (the top row of the
assignment matrics Sa(o) and Sa(l)). We can see that the local and
high-order views both extract features for matching nodes, e.g., the
node pairs (6,6) and (7, 7) of the pair (a) (the top row). Besides, the
assignment matrix SaV) in the high-order view typically has a more
powerful capacity to learn the node correspondence compared to
the local view S,(?). For example, S, (9) fails to capture the node
pairs (1,1) of the pair (b), while S, (D successfully learns it. Thus,
Fig. 3 shows the importance of using local and high-order views to
jointly learn the top-k candidates rather than a single one.

6 CONCLUSION

We have presented a data-driven hybrid approach MATA” based on
Graph Neural Networks (SEGceN) and A* algorithms, which leverage
the learned candidate matching nodes to prune unpromising search
directions of A*LSa algorithm to approximate graph edit distance.
We have modeled it from a new perspective of node matching and
combined the intrinsic relationship between GED computation and
node matching. Besides, the design of our hybrid approach MATA*
has been aware of the two combinatorial properties involved in
GED computation: structure-dominant operations and multiple
optimal node matching, to learn the matching nodes from both
local and high-order views. Benefiting from the candidate nodes,
MATA* has offered a balance between computational scalability
and accuracy on the real-life datasets. Finally, we have conducted
extensive experiments on AIps, IMDB, and CANCER to demonstrate
the effectiveness, scalability, and efficiency of combinatorial search-
based, learning-based and hybrid approaches.
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