
String Generation for Testing Regular
Expressions

Lixiao Zheng1, Shuai Ma2, Yuanyang Wang1 and Gang Lin1

1College of Computer Science and Technology, Huaqiao University, Xiamen, China
2SKLSDE Lab, Beihang University & Beijing Advanced Innovation Center for Big Data and

Brain Computing, Beijing, China

Email: mashuai@buaa.edu.cn

Regular expressions have been widely studied due to their expressiveness and
flexibility for various applications. A common yet challenging way to ensure the
quality of regular expressions is regular expression testing. In this work, we
study coverage criteria based string generation for testing regular expressions.
Firstly, we propose a notion of pairwise coverage criterion for regular expressions,
and analyze the subsumption relationships with existing coverage criteria for
both regular grammars and finite automata. Secondly, we design an algorithm
that given as input a regular expression, outputs a small set of strings that
satisfies the pairwise coverage criterion. Thirdly, we extend the coverage criterion
and the generation algorithm to further deal with regular operators counting
and interleaving. Fourthly, we experimentally demonstrate the effectiveness and
efficiency of our algorithms by testing element type definitions of real-world XML
schemas. Finally, we identify more applications of pairwise coverage and its
corresponding generation algorithm, and show that they can be used to generate
characteristic samples for certain regular expression learning algorithms that
follow Gold’s learning paradigm of learning (identification) in the limit. These
results are not only theoretically meaningful, but are also useful for practical

applications involved with regular expressions.

Keywords: String generation; testing; regular expressions; finite automata; regular grammars;
coverage criterion.

Received 04 January 2018; revised 21 July 2018

1. INTRODUCTION

Regular expressions, due to their expressiveness and
flexibility, have long been used in a large variety
of application domains such as text processors,
programming languages, query processing, and XML
schema languages [1, 2]. A faulty regular expression
may cause unwanted consequences. Consider for
example an XML database storing information of
a list of books. Each book should have a title,
followed by one or more authors and one optional
publisher. This requirement can be specified by regular
expression title, author+, publisher?. If we incautiously
write the expression as title, author∗, publisher?, then
books with no authors may also be accepted by the
database, which obviously does not conform to the
expectation. Actually, previous studies [3, 4] show
that regular expressions are quite error-prone, i.e.,
the defined languages do not agree exactly with the
intended languages. Therefore, ensuring the (semantic)
correctness of regular expressions is a vital prerequisite
for their use in practical applications.

Testing is a common way to ensure the quality of

regular expressions. The purpose of regular expression
testing is to check whether the defined language meets
the specification of users. One straightforward way
to achieve this purpose is to automatically generate a
number of strings from the regular expression under
testing, and to check whether they comply with the
intended language [3, 4, 5]. Recall the example given
before. If a meaningful set of strings are generated
from the incorrect expression title, author∗, publisher?,
and contains strings with no author, then the fault of
using improper regular operator (∗ instead of +) can be
detected. Negative strings, i.e., strings that are rejected
by the regular expression, are also useful for the testing
purpose. However, the generation of negative strings is
typically based on the generation of positive ones. For
example, negative strings can be obtained by treating ?
as repetition of twice and + as repetition of zero times
during the generation process [3]. Therefore, we focus
on the generation of positive strings for testing regular
expressions in this study.

In formal language theory, two problems concerning
the generation of regular languages have been studied:

The Computer Journal, Vol. ??, No. ??, ????

2 L. Zheng, S. Ma, Y. Wang, G. Lin

(1) sampling that generates a uniformly random string
of length n of a regular language [6, 7, 8, 9] so that
strings of length n in that language have all the same
probability to be returned, and (2) enumerating that
tries to enumerate all the distinct strings or all strings
of length n of a regular language in lexicographical
order [10, 11, 12, 13]. However, most existing sampling
and enumerating algorithms take finite automata or
regular grammars as their inputs. To our knowledge,
there is only one sampling algorithm [14] taking regular
expressions directly as its input, which accepts regular
expressions without Kleene star only, and is a purely
theoretical analysis without experimental validations.
Besides, sampling and enumerating are not suitable for
testing purposes. For example, sampling algorithms
randomly produce one string at a time, which makes it
difficult for testers to decide when the testing activities
should be terminated. Enumerating algorithms usually
produce a large number of strings, i.e., all strings or all
strings of a certain length in the regular language, which
imposes a considerable overhead on the testing task.
That is, there is a need to automatically generate strings
for regular expressions that are capable of detecting the
potential errors with a reasonable overhead.

In software testing community, coverage criterion
is a common measure to justify the sufficiency of
a particular test set, and provides a basis for test
data generation algorithms [15]. Coverage criteria are
usually defined with respect to programs. For instance,
the most well-known structural coverage criteria for
programs include statement coverage, branch coverage
and path coverage, which require that each statement,
branch and path in the program’s code is executed
by the test set. Researchers from formal language
community have adopted this concept to grammars, and
proposed several coverage criteria for different grammar
formalisms. Purdom [16] introduced rule coverage
for context-free grammars, which requires that each
grammar rule is used at least once in deriving the
test strings. Based on rule coverage, more precise
criteria for context-free grammars were proposed such
as context-dependent rule coverage [17] and length-k
successor coverage [18]. A notion of two-dimensional
approximation coverage was proposed for attribute
grammars [19]. String generation algorithms with
respect to some of these coverage criteria for grammars
have also been devised and implemented [16, 20, 21, 22].

For regular expressions, however, there has been
little work devoted to the coverage criteria and the
related string generation problems. Although one can
first convert regular expressions to regular grammars,
a subclass of context-free grammars, and then use
coverage based generation algorithms for context-free
grammars to generate strings for regular expressions,
this indirect approach is not very suitable. The
generated strings only fulfill some coverage criterion for
the translated grammars, and it is hard to measure
whether they are sufficient for testing the regular

expressions. Finite automata are another formalism
equivalent to regular expressions, and can be viewed as
control flow graphs of programs and several coverage
criteria for them such as edge coverage and path
coverage exist. However, using finite automata and
their existing coverage to generate strings for regular
expressions has the same disadvantages as regular
grammars. Therefore, a more suitable approach is to
define coverage criteria for regular expressions directly,
and to develop algorithms generating strings directly
from regular expressions.

Apart from standard regular expressions that only
use standard regular operators such as concatenation,
alternation and Kleene star, many applications allow
the use of additional operators. For instance,
egrep [23], Perl patterns [24] and XML schema
language XSD [25] allow the use of counting operator
that defines the minimal and maximal number of
times a regular construct can be repeated. The
XML schema language Relax NG [26] supports the
use of interleaving operator that specifies unordered
concatenations. Although these operators can be
equivalently expressed by standard operators, they have
a drastic impact on succinctness. For instance, it has
been shown that the complexity of translation from
expressions extended with counting and interleaving
into standard expressions is exponential [27] and double
exponential [28], respectively. Hence, it is also necessary
to study the coverage criteria and corresponding
generation algorithms to handle such operators, which
has been ignored by the community.

Contributions. To this end, we study coverage
criteria for both standard and extended regular
expressions, and string generation algorithms for
regular expressions based on different coverage criteria.

(1) We propose a notion of pairwise coverage for
regular expressions, inspired by pairwise testing from
traditional software testing techniques (Section 3). For
comparison, we also consider a much more rigorous
but trivial criterion, namely combination coverage,
such that the Kleene star (zero-or-more repetitions) is
restricted to a fixed number k. We also extend these
coverage criteria to deal with non-standard regular
operators: counting and interleaving.

(2) We give an analysis of our coverage criteria
for regular expressions and four existing criteria for
regular grammars and finite automata (Section 4). We
study the subsumption relationships among the criteria
defined with respect to the three different formalisms
for regular languages, and show that pairwise coverage,
although weaker than combination and path coverage,
is stronger than all the other existing practical criteria
for grammars and automata.

(3) We develop an algorithm that takes as input a
regular expression and outputs a small set of strings
that satisfies pairwise coverage (Section 5). The

The Computer Journal, Vol. ??, No. ??, ????

String Generation for Testing Regular Expressions 3

generations are conducted by performing a bottom-
up traversal along the abstract syntax trees of regular
expressions. For the purpose of comparison, we
develop an algorithm for combination coverage as well.
Both algorithms accept not only standard regular
expressions but also expressions extended with counting
and interleaving operators.

(4) We experimentally verify the effectiveness and
efficiency of our algorithms by applying them to the
testing of real-world regular expressions, specifically,
element type definitions of real-world XML schemas
(Section 6). We use mutation testing technique to assess
the quality of the generated test data. We find that test
data produced by coverage criteria based generation
algorithms has in general a higher fault detection ability
than the randomly generated one. Comparing pairwise
coverage with the stronger combination coverage, we
find that the former requires a much smaller test
set, but has almost the same fault detection ability
compared with the latter. Moreover, our algorithms
can help to reveal faults ignored by other existing string
generation tools.

(5) We discuss more applications of pairwise coverage
and the related string generation algorithm (Section 7).
In particular, we show that they are very useful
for generating characteristic samples for some regular
expression learning algorithms that are based on Gold’s
learning model of learning (identification) in the limit.

2. PRELIMINARIES

In this section, we introduce basic notions.

2.1. Regular Expressions

Following the notations in [29], we define the following.
Consider an alphabet Σ of symbols.

A Σ-symbol (or simply symbol) is an element of
Σ, a Σ-string (or simply string) is a finite sequence
w = a1...an of Σ-symbols, and the empty string is
denoted by ε.

The set of all strings over alphabet Σ is denoted by
Σ∗, and a string language is a subset of Σ∗.

The concatenation of two strings w1 and w2 is
denoted by w1 ·w2 or simply w1w2. The concatenation
L·L′ (or simply LL′) of two string languages L,L′ ⊆ Σ∗

is {ww′|w ∈ L,w′ ∈ L′}. The concatenation L · . . . · L
(i times) is also abbreviated by Li, where L0 = {ε}.

A regular expression (or expression for short) over
Σ is defined recursively as follows. (1) The empty
string ε, the empty set ∅ and each symbol a ∈
Σ is a regular expression; (2) If E1 and E2 are
regular expressions, then E1 · E2, E1|E2 and E∗1 are
regular expressions. Here, operators ·, | and ∗ denote
concatenation, alternation and zero-or-more repetitions
(i.e., Kleene star), respectively.

For convenience, we sometimes omit the concatena-
tion operator, simply write E1E2, instead of E1 · E2.

To eliminate any ambiguity, parentheses have highest
precedence, followed by Kleene star, concatenation, and
alternation. Note that the above definition does not
contain Kleene plus + (one-or-more repetitions) and op-
tional operator ?. This is not a restriction since they
can be equivalently expressed as follows: E+ = E · E∗,
and E? = ε|E.

The language defined by a regular expression E,
denoted by L(E), is a subset of Σ∗, and is defined as
follows. L(ε) = {ε}, L(∅) = ∅ and L(a) = {a} for some
a ∈ Σ. If E = E1 · E2, then L(E) = L(E1) · L(E2); If
E = E1|E2, then L(E) = L(E1) ∪ L(E2); and finally if
E = E∗1 , then L(E) =

⋃∞
i=0 L(E1)i.

What we have defined above is about standard
regular expressions. We next give the formal definition
of regular expressions extended with two additional
operators counting [l, r] and interleaving &: when E1

is a regular expression, then E
[l,r]
1 is also a regular

expression with l, r ∈ N and 0 ≤ l ≤ r; when
E1, E2 are regular expressions, then E1&E2 is also
a regular expression. Such expressions are called
extended regular expressions.

For an extended regular expression, the defined

language is as follows: L(E
[l,r]
1) =

⋃r
i=l L(E1)i;

L(E1&E2) = {w1&w2|w1 ∈ L(E1) and w2 ∈ L(E2)}
where by w1&w2 we denote the set of strings
that is obtained by interleaving or shuffling
w1 and w2 in every possible way. That is,
w1&ε = ε&w1 = w1, w2&ε = ε&w2 = w2,
and if both w1 and w2 are non-empty and
w1 = aw′1, w2 = bw′2, where a and b are single
symbols, then w1&w2 = a{w′1&bw′2} ∪ b{aw′1&w′2}.
One can verify that, the same as binary operators |
and ·, & also obeys the associative law. For example,
L((ab)[2,4]) = {abab, ababab, abababab}, L(a&(b&c)) =
L((a&b)&c) = {abc, bac, bca, cba, cab, acb}, and
L((ab)&(cd)) = {acbd, acdb, cabd, cadb, abcd, cdab}, i.e.,
(ab)&(cd) accepts all strings that have a occurring
before b and c occurring before d.

In the sequel, unless otherwise stated, regular expres-
sions mean both standard and extended expressions.

2.2. Regular Grammars and Finite Automata

Formally, a context-free grammar (or grammar for
short) is a 4-tuple G = (N,T, P, S), in which N
and T are disjoint sets of nonterminals and terminals
respectively, P is a set of rules of the form X → α with
X ∈ N and α ∈ (N ∪ T)∗, and S ∈ N is the start
symbol. A derivation step is an element of the form
βXγ ⇒ βαγ with β, γ ∈ (N ∪ T)∗ and X → α ∈ P .

A derivation, denoted as
∗⇒, is a sequence of derivation

steps. The language defined by G, denoted as L(G), is

the set of strings L(G) = {w ∈ T ∗|S ∗⇒ w}.
A regular grammar is a grammar such that all the

rules are of one of the following forms: X → ε, X → a
or X → aY where X and Y are nonterminals and a

The Computer Journal, Vol. ??, No. ??, ????

4 L. Zheng, S. Ma, Y. Wang, G. Lin

FIGURE 1. Two equivalent regular grammars that define
the same language as regular expression (a|b)c∗. We use
p1, ..., pn to denote rules and S to denote the start symbol.
The upper-case letters are used to distinguish nonterminals
from terminals.

1

2

FIGURE 2. Two equivalent finite automata that define
the same language as regular expression (a|b)c∗. The node
with an edge coming in from nowhere denotes the start
state, and the node with a double circle denotes a final state,
respectively.

is a terminal. For any regular expression E, there is
a regular grammar G such that L(G) = L(E). Note
that different regular grammars may define the same
language. For instance, regular grammars G1 and G2 in
Figure 1 define the same language as expression (a|b)c∗.

A finite automaton (or automaton for short) is a tuple
A = (Σ, Q, q0, F, δ), in which Q is a finite set of states,
q0 is the initial state, F is the set of final states, and δ is
the transition function δ : Q× Σ→ 2Q that maps each
pair of a state and symbol to a set of states. A run ρ
of A on some string w = a1...an is a sequence of states
q0, ..., qn, such that qi ∈ δ(qi−1, ai) for each i ∈ [1, n].
Furthermore, when qn is a member of F , we say that
the run is accepting. The string language accepted by
A is denoted by L(A) and is defined as the set of strings
w for which there exists an accepting run of A on w.

For any regular expression E, there is a finite
automaton A such that L(A) = L(E). Note that,
similarly to regular grammars, different automata may
define the same language. For instance, the two
automata illustrated in Figure 2 are equivalent, defining
the same language as expression (a|b)c∗.

3. COVERAGE CRITERIA FOR REGULAR
EXPRESSIONS

In this section, we propose two coverage criteria for
regular expressions, namely combination coverage and
pairwise coverage. Combination coverage is simple and
strong, but may introduce the combinatorial explosion
problem. Hence, we introduce pairwise coverage, a
loose but more practical coverage. We first define these
criteria for standard expressions, and then extend them
for expressions with counting and interleaving.

3.1. Coverage Criteria for Standard Expres-
sions

In software testing, the strongest coverage is full
coverage. That is, for a regular expression E, all strings
of L(E) are generated. However, L(E) may be infinite,
which is typically caused by Kleene star operators. One
simple approach to eliminating this infiniteness is to
restrict the repetitions within a limited range. We shall
first define a trivial but relatively strong coverage, called
combination coverage, by restricting the repetitions.

Combination coverage. Let E be a regular
expression. A subset S ⊆ L(E) achieves combination
coverage for E if it contains the finite set C(E) defined
below by induction on the structure of E.

(1) If E is ε, ∅ or a for some a ∈ Σ, then C(E) = L(E);

(2) If E = E1|E2, then C(E) = C(E1) ∪ C(E2);

(3) If E = E1 · E2, then C(E) = C(E1) · C(E2);

(4) If E = E∗1 , then C(E) = {ε} ∪ C(E1) ∪ C(E1)k for
some k > 1.

A string set achieving combination coverage for ex-
pression E contains each possible combination of char-
acteristic substrings generated by the subexpressions of
E. Actually, the finite set C(E) in the above definition
is just the language of E when we restrict Kleene star
∗ to be three possibilities: zero, one and more-than-one
repetitions. For example, the set {a, b, ac, bc, accc, bccc}
achieves combination coverage for expression (a|b)c∗
while for expression (a|b)c∗(d|e) the set would be
{ad, ae, bd, be, ace, acd, bce, bcd, accce, acccd, bccce, bcccd}.
Note that if we fix the more-than-one repetition num-
ber, for example, as exactly 3, the minimal set achieving
combination coverage for expression E is unique.

However, this coverage may introduce combinatorial
explosion problem. Take expression a∗1a

∗
2...a

∗
n for

instance, there are at least 3n strings required for
achieving combination coverage. This obviously makes
combination coverage impractical for use.

In light of this, we introduce a loose but practical
coverage. The idea is inspired by pairwise testing [30].
Pairwise testing is a combinatorial method of software
testing that, for each pair of input parameters to a
system, tests all possible combinations of these two
parameters. Pairwise testing is a good trade-off between
test effort and test coverage. Using carefully chosen test

The Computer Journal, Vol. ??, No. ??, ????

String Generation for Testing Regular Expressions 5

cases, this can be done much faster than an exhaustive
search of all combinations of all parameters. Empirical
results have shown that pairwise testing is practical and
effective for various types of software systems [31].

We adopt pairwise testing strategy and propose a
notion of pairwise coverage for regular expressions. Let
w1, w2 be two strings. We say that the ordered pair
〈w1, w2〉 is covered by string w if both w1 and w2 are
substrings of w and the last symbol of w1 appears
before the first symbol of w2. Especially, if w1 and
w2 are adjacent to each other, we say that the ordered
pair 〈w1, w2〉 is covered adjacently by string w. For
example, 〈a, cd〉 is covered by abcd, and 〈ab, c〉 is covered
adjacently by abcd.

Pairwise coverage. For the alternation operator |
and the atomic constructors ε, ∅ and a single symbol a,
pairwise coverage is the same as combination coverage.
The main difference lies in operators concatenation and
Kleene star. Let E be a regular expression. A subset
S ⊆ L(E) achieves pairwise coverage for E if it contains
the finite set C(E) satisfying conditions defined below
by induction on the structure of E.

(1) If E is ε, ∅ or a for some a ∈ Σ, then C(E) = L(E);

(2) If E = E1|E2, then C(E) = C(E1) ∪ C(E2);

(3) If E = E1 · ... · En, then for any two sets C(Ei)
and C(Ej) where i, j ∈ [1, n], i < j and any two strings
s ∈ C(Ei), s

′ ∈ C(Ej), there exists a string w ∈ C(E)
such that the ordered pair 〈s, s′〉 is covered by w, and
furthermore if for each Ek (i < k < j), ε ∈ C(Ek), then
there exists a string w ∈ C(E) such that the ordered
pair 〈s, s′〉 is covered adjacently by w;

(4) If E = E∗1 , then {ε} ∪ C(E1) ⊆ C(E), and for any
two strings s, s′ ∈ C(E1) there exists a string w ∈ C(E)
such that the ordered pair 〈s, s′〉 is covered adjacently
by w.

We give a detailed explanation of the definition for
concatenation and Kleene star below.

Concatenation. Suppose that a regular expression is of
the form E1 · ... · En. Combination coverage requires
taking all the possible combinations of characteristic
substrings defined by those subexpressions Ek (k ∈
[1, n]), while pairwise coverage only requires covering
all combinations of any two subexpressions Ei and Ej
(i 6= j and i, j ∈ [1, n]). Table 1 shows an example. The
expression E is a concatenation of four subexpressions
Ei (i ∈ [1, 4]). For each subexpression, there are three
substrings. Testing all possible combinations of those
substrings requires 34 = 81 test strings. As shown by
the lower part of the table, while using pairwise testing,
only 9 test strings are needed to cover all combinations
of any two subexpressions. Furthermore, taking the
very special empty string ε into account, we require that
if all the subexpressions between the two subexpressions
Ei and Ej define languages containing empty string,
then all the combinations of Ei and Ej must be
adjacently covered. Consider (a|ε)(b|ε)(c|ε) for instance.

C(E1) a1, b1, c1
C(E2) a2, b2, c2
C(E3) a3, b3, c3
C(E4) a4, b4, c4

C(E)

a1a2a3a4,
a1c2c3b4,
a1b2b3c4,
b1a2c3c4,
b1b2a3b4,
b1c2b3a4,
c1a2b3b4,
c1c2a3c4,
c1b2c3a4

TABLE 1. Example pairwise coverage for regular
expression E = E1E2E3E4, where E1 = a1|b1|c1, E2 =
a2|b2|c2, E3 = a3|b3|c3 and E4 = a4|b4|c4, respectively.

Pairs 〈a, a〉 〈a, b〉 〈a, c〉 〈b, a〉 〈b, b〉 〈b, c〉 〈c, a〉 〈c, b〉 〈c, c〉
aabbcc

√ √ √ √ √

bacacb
√ √ √ √

TABLE 2. Example pairwise coverage for regular
expression E = E∗1 , where E1 = a|b|c and, hence, C(E1) =
{a, b, c}. There are 9 ordered pairs covered adjacently by
the two strings shown in the table.

Since the second subexpression (b|ε) produces an empty
string, the string set fulfilling pairwise coverage should
at least contain strings ε, a, c and ac which adjacently
cover the four combinations 〈ε, ε〉, 〈a, ε〉, 〈ε, c〉 and 〈a, c〉
of subexpressions (a|ε) and (c|ε).
Kleene star. Suppose that a regular expression is of the
form E∗1 . Similarly to combination coverage, we choose
three typical possibilities for ∗: zero, one and more-
than-one repetitions. By original definition of ∗, the
language defined by E∗1 is the set of all strings obtained
by concatenating any finite number of strings from
L(E1). That is, strings in L(E1) can be concatenated
in any order. Following the pairwise testing idea, we
consider any two strings s, s′ and require that s · s′
occurs as a substring in some string w ∈ C(E∗1), i.e.,
the ordered pair 〈s, s′〉 is covered adjacently by w. Take
E = E∗1 where E1 = a|b|c for example. We have
C(E1) = {a, b, c}, and there are 9 ordered pairs that can
be covered adjacently by aabbcc and bacacb as shown
in Table 2. Thus set {ε, a, b, c, aabbcc, bacacb} achieves
pairwise coverage for E.

Remarks. (1) Note that the string set achieving
pairwise coverage for a regular expression E is
not necessarily unique even if we fix the repetition
number k. Consider the expression E = (a|b|c)∗
for example. Both sets {ε, a, b, c, aabbcc, bacacb} and
{ε, a, b, c, aabbca, bacccb} fulfill pairwise coverage for
this expression.

(2) Clearly, combination coverage is stronger than
pairwise coverage. That is, if a set satisfies combination

The Computer Journal, Vol. ??, No. ??, ????

6 L. Zheng, S. Ma, Y. Wang, G. Lin

coverage then it also satisfies pairwise coverage. The
converse is not necessarily true.

3.2. Coverage Criteria for Extended Expres-
sions

We then extend the coverage criteria for standard reg-
ular expressions to deal with counting and interleaving.

Consider combination coverage first. For counting
[l, r], we adapt the boundary-value analysis technique
from software testing and require that the number of
times of repetitions must contains l, r and a number
k between l and r, i.e., the representatives of boundary
values in range [l, r]. For interleaving &, we simply take
all the possible shuffling results of its operands.

Combination coverage. Continuing with combina-
tion coverage, a subset of L(E) is said to achieve combi-
nation coverage criterion for E extended with counting
and interleaving if it further considers two cases.

(1) If E = E
[l,r]
1 then C(E) = C(E1)l∪C(E1)r∪C(E1)k,

where l < k < r.

(2) If E = E1&E2 then C(E) = {w1&w2|w1 ∈ C(E1)
and w2 ∈ C(E2)}.

For example, both sets {aa, aaa, aaaaa} and {aa,
aaaa, aaaaa} achieve combination coverage for a[2,5],
while the set achieving combination coverage for
(a|b|c)[2,5] contains 32+33+35 strings for k = 3 and 32+
34+35 strings for k = 4, respectively. The set satisfying
combination coverage for a&(b&c) is exactly the
language L(a&(b&c)) = {abc, bac, bca, cba, cab, acb}.
Pairwise coverage. For counting [l, r], we also take
the boundary-value l, r and a number k between l and r.
For Kleene star, we follow the same idea as combination
coverage that the ordered pair of any two representative
strings of the counting operator’s operand constitutes a
substring in the final string set. For interleaving &, we
view interleaving as concatenations without orders for
simplicity. Suppose that E = E1&...&En. Similar to
the concatenations of pairwise coverage, we require that
for any two operands Ei and Ej , this unordered feature
must be reflected at least once. More specifically,
for any two representative strings s, s′ of Ei and Ej
respectively, s appears at least once before s′, and at
least once after s′. Note that s and s′ are not necessarily
adjacent.

Continuing with pairwise coverage for standard
expressions, a subset of L(E) is said to achieve pairwise
coverage for extended expression E if it contains the
finite set C(E) satisfying two more conditions.

(1) If E = E
[l,r]
1 , then there exist strings w,w′, w′′ ∈

C(E) such that w ∈ C(E1)l, w′ ∈ C(E1)r, w′′ ∈ C(E1)k

for some l < k < r, and for any ordered pair 〈s, s′〉
where s, s′ ∈ C(E1) there exists a string v ∈ C(E) such
that 〈s, s′〉 is covered adjacently by v.

(2) If E = E1&...&En, then for any two sets C(Ei)
and C(Ej) with i, j ∈ [1, n], i 6= j and any two

strings s ∈ C(Ei), s
′ ∈ C(Ej), there exist two strings

w,w′ ∈ C(E) such that ordered pairs 〈s, s′〉 and 〈s′, s〉
are covered by w and w′, respectively.

For example, the set {aa, cc, bbcb, abaca} achieves
pairwise coverage for (a|b|c)[2,5]. Here aa and cc
represent repetitions of 2 times, abaca of 5 times and
bbcb of 4 times, a valid value k between the boundary-
values 2 and 5. The ordered pairs are the same as those
shown in Table 2 and are all covered adjacently by these
strings. For expression a&b&c, a set achieving pairwise
coverage could be {abc, cba} where abc covers ordered
pair 〈a, b〉, 〈a, c〉, 〈b, c〉 and cba covers ordered pair
〈c, b〉, 〈c, a〉, 〈b, a〉. One can verify that for expression
(a|b)&(c|d)&(e|f), a set achieving pairwise coverage
could be {ace, bde, adf, bcf, eca, edb, fda, fcb}.

4. ANALYSIS OF COVERAGE CRITERIA

It is well known that regular expressions, regular
grammars and finite automata have an equivalent
expressive power [29]. There have been coverage criteria
proposed for context-free grammars which subsume
regular grammars. Finite automata can be seen as
control flow graphs of programs and for them several
coverage criteria exist. In this section, we compare
the criteria for regular expressions with those for
regular grammars and finite automata, and analyze
their subsumption relationships.

4.1. Coverage Criteria for Grammars

In the seminal paper [16] for generating strings from
context-free grammars, Purdom proposed rule coverage
for context-free grammars. In a follow-up work [17],
Lämmel proposed a much stronger criterion called
context-dependent rule coverage. We introduce these
two criteria which are formally defined below.

Rule coverage. Let G = 〈N,T, P, S〉 be a context-free
grammar. A string w ∈ L(G) is said to cover a rule

p = X → α ∈ P if there is a derivation S
∗⇒ βXγ

p⇒
βαγ

∗⇒ w, where X ∈ N and α, β, γ ∈ (N ∪ T)∗. A
string set S ⊆ L(G) is said to achieve rule coverage for
G, if for each p ∈ P there is a w ∈ S that covers p.

Take the grammars in Figure 1 for example. String
set {ac, b} satisfies rule coverage for G1, and string set
{acc, b} satisfies rule coverage for G2.

Rule coverage explores a grammar structure by
considering rules independently. To achieve a better
accuracy, Lämmel proposed a generalization such that
the context in which a rule is covered is also taken
into consideration, known as context-dependent rule
coverage [17].

Context-dependent rule coverage. Let G =
〈N,T, P, S〉 be a context-free grammar. If Y → βXγ ∈
P , where X,Y ∈ N, β, γ ∈ (N ∪ T)∗, then Y → β X γ
is called a direct occurrence of X in G. A string
w ∈ L(G) is said to cover a rule p = X → α ∈ P

The Computer Journal, Vol. ??, No. ??, ????

String Generation for Testing Regular Expressions 7

for the occurrence Y → β X γ if there is a derivation

S
∗⇒ δY η

q⇒ δβXγη
p⇒ δβαγη

∗⇒ w with q = Y →
βXγ ∈ P . A string set S ⊆ L(G) is said to achieve
context-dependent rule coverage for G, if all p ∈ P for
all occurrences are covered.

The above definition is for general context-free
grammars. In this study, we concentrate on regular
grammars in which, by definition, the right-hand side of
each rule contains at most only one nonterminal. This
means that for each rule p, there is at most one direct
occurrence of a nonterminal at the right-hand side of p.
Therefore, a derivation can be represented as a sequence
of rules. Consider the regular grammar G1 in Figure 1.
Derivation S ⇒ aA ⇒ acA ⇒ ac can be represented
as sequence p1p3p4, denoting the unique rules used in
derivation steps.

We can now interpret context-dependent rule
coverage for regular grammars as follows. A string set
S ⊆ L(G) is said to achieve context-dependent rule
coverage for regular grammar G, if for each possible
rule-pair pipj of grammar G, there exists a string
w ∈ S such that pipj is a subsequence appearing in
the derivation sequence of w. Here possible rule-pair
means rules used in a possible derivation of 2 steps.
For G1 in Figure 1, the possible rule-pairs are p1p3,
p1p4, p2p3, p2p4, p3p3 and p3p4. The string ac whose
derivation sequence is p1p3p4 only covers p1p3 and p3p4.
So to achieve context-dependent rule coverage for G1,
we need to add more strings such as a, b, bcc. For G2 in
Figure 1, the possible rule-pairs are p1p3, p1p4, p2p3,
p2p4, p3p5, p3p6, p5p5 and p5p6. A possible string
set satisfying context-dependent rule coverage for G2

is {a, b, accc, bc}.

4.2. Coverage Criteria for Automata

We now consider coverage for finite automata. A finite
automaton can be viewed as a directed graph where
states and transitions of the automaton are nodes and
edges of the graph. An accepting run of the automaton
is actually a path from the initial state to one of the
final states. Automata can be viewed as the control
flow graphs for programs and for them several coverage
criteria exist. Here we introduce two commonly used
coverage criteria: edge coverage and path coverage.

Edge coverage. Let A be a finite automaton and S be
a subset of L(A). If for each edge e of A there exists a
string w ∈ S such that the accepting run of w contains
e, then we say that S achieves edge coverage for A.

Take the automata in Figure 2 for example. The
string set {ac, b} satisfies edge coverage for A1 and
string set {acc, b} satisfies edge coverage for A2.

Path coverage. Let A be a finite automaton and
S be a subset of L(A). If for each path p of A that
starts at the initial state and ends at a final state, there
exists a string w ∈ S such that the accepting run of
w corresponds exactly to path p, then we say that S

achieves path coverage for A.
Since loops introduce an unbounded number of

paths, we consider only a limited number of looping
possibilities. Similarly to the boundary-interior path
coverage in software testing field, we consider three
possibilities for loops: zero, once, and multiple
repetitions [32]. Consider automata A1 and A2

in Figure 2, string sets {a, b, ac, bc, acc, bcc} and
{a, b, ac, bc, acc, bcc, accc, bccc} fulfill path coverage for
A1 and A2, respectively.

4.3. Subsumption and Transformation

When talking about different test criteria, we usually
need to compare them and to see whether one criterion
is stronger than another one. One of the commonly
used comparison method is to analyze the subsumption
relationship defined as follows [33].

Subsumption. Let C1 and C2 be two coverage criteria.
C1 is said to subsume C2 if every test set S that satisfies
C1 also satisfies C2.

We next compare the criteria for regular expressions
with those for regular grammars and finite automata,
and analyze the subsumption relationships among
them. Our criteria can handle not only standard but
also extended expressions. Note that the translation
from extended expressions to standard ones and thus
to regular grammars and finite automata have a drastic
impact on succinctness. It may not be suitable to
compare criteria defined on compact representation,
i.e., extended expressions, with that defined on the
translated representation, i.e., grammars or automata,
which may have a size of high complexity. Thus in the
analysis we only consider standard expressions.

For criteria defined with respect to the same
formalism, the subsumption relationship is clear.
Specifically, context-dependent rule coverage subsumes
rule coverage for regular grammars, path coverage
subsumes edge coverage for finite automata and
combination coverage subsumes pairwise coverage for
regular expressions.

For criteria between different formalisms, the analysis
is more involved. It is known that these different
formalisms, i.e., regular grammars, finite automata and
regular expressions are equivalently transferable to each
other. However, the order and translations algorithms
are very important. Therefor, we first fix the setting for
our analysis.

We start with a particular regular grammar G, then
G is transformed to an equivalent finite automaton AG
and finally AG is transformed to an equivalent regular
expression EAG

. We shall study that, given any string
set S satisfying coverage C for formalism Γ, whether
it also satisfies coverage C ′ for another formalism Γ′

where Γ and Γ′ range over grammar G, automaton AG
and expression EAG

, and C ranges over the criteria of
Γ, C ′ ranges over the criteria of Γ′.

Two transforming algorithms are needed: one from

The Computer Journal, Vol. ??, No. ??, ????

8 L. Zheng, S. Ma, Y. Wang, G. Lin

FIGURE 3. Illustration of the state elimination method
for converting finite automata to regular expressions.

regular grammars to finite automata and the other
from finite automata to regular expressions. We
briefly describe two classical transforming algorithms,
and details can be found in any textbook on formal
languages, e.g., [29].

Regular Grammars into Finite Automata. Given
a regular grammar G, an equivalent finite automaton
AG can be obtained as follows. The number of states in
the automaton is equal to the number of nonterminals
plus one. Each state in the automaton represents each
nonterminal in the regular grammar. The additional
state is the final state of the automaton. The state
corresponding to the start symbol of the grammar is the
initial state. The transitions to automaton are obtained
as follows.

• For each rule in the form of X → aY in G, add a
transition from state X to the state Y labeled with
symbol a;

• For each rule in the form of X → a in G, add a
transition from state X to the final state labeled
with symbol a;

• For each rule in the form of X → ε in G, add a
transition from state X to the final state labeled
with empty string ε.

As an example, the above algorithm converts regular
grammars G1 and G2 in Figure 1 to finite automata A1

and A2 in Figure 2, respectively.

Finite Automata into Regular Expressions. We
use the state elimination method to transform a
finite automaton into an equivalent regular expression.
This method extends finite automata with generalized
transitions that are allowed to be labeled by regular
expressions instead of just symbols from Σ. We briefly
describe the basic idea of this method (more details can
be found in [34]). First, replace multiple transitions
between the same two states by one transition using the
alternation operator. Then, repeatedly remove states
and change transitions accordingly until only the start
state and final state remain. For each removed state,
a regular expression is generated accordingly. The
resulting regular expression is just the label on the

single transition from the start state to the final state.
If there are n accepting states, union of different regular
expressions are taken.

The state elimination strategy is briefly illustrated in
Figure 3. Suppose we want to eliminate state qk that is
neither starting nor final, and qi and qj are two of the
remaining states (i = j is possible) that have qk as their
middle node. To safely delete qk, we have to replace the
paths between qi and qj by a single edge.

• Suppose that the transitions from qi to qk, qk to
qj are labeled by expressions Eik and Ekj , and the
loop on qk is labeled by Ekk. If there is no loop on
qk, we treat Ekk as ε. Then we replace the path
via qk with one edge labeled by EikE

∗
kkEkj .

• If there is already an edge from qi to qj
labeled with Eij , then we add Eij by using the
alternation operator and obtain the expression
Eij |(EikE∗kkEkj).

For instance, using state elimination method, we
can transform finite automaton A1 in Figure 2 to
regular expression (a|b)c∗ε, and finite automaton A2 to
regular expression (a|b)(ε|cc∗ε). Both expressions are
equivalent and define the same language as expression
(a|b)c∗.

4.4. Subsumption Analysis

We are now ready to analyze the relationships between
different coverage criteria. Figure 4 summarizes
our analysis. The subsumption relationship between
pairwise coverage and combination coverage for
regular expressions is quite obvious. So are the
relationships between edge coverage and path coverage
for finite automata, and between rule coverage and
context-dependent rule coverage for regular grammars,
respectively. We next explain the reasons behind the
other relationships.

Criteria between Grammars and Automata. We
first compare coverage for regular grammars with those
for finite automata. Recall that a string set achieves
rule coverage for a given regular grammar G if it
covers all the rules of G, and a string set achieves
context-dependent rule coverage for G if it covers all
possible rule-pairs pipj of grammar G. Note that during
the transformation from regular grammar to finite
automaton, a rule of the grammar is translated to an
edge of the automaton. Correspondingly, we can then
interpret rule coverage for grammars as edge coverage
for automata, and context-dependent rule coverage for
grammars as edge-pair coverage for automata. Here
edge-pair means each reachable subpath of length 2.
One can then readily infer that path coverage subsumes
context-dependent rule coverage, and edge coverage and
rule coverage subsume each other.

Criteria between Automata and Expressions.
We then compare coverage for finite automata with

The Computer Journal, Vol. ??, No. ??, ????

String Generation for Testing Regular Expressions 9

those for regular expressions. Note that during
the state elimination construction from automata to
expressions, loops are represented by Kleene stars, and
multiple edges between two nodes are represented by
alternations. According to the requirements of pairwise
coverage, the operand of Kleene star must repeat at
least zero, once and more than once, while each operand
of alternation must appear at least once. Thus for
an automaton A and its constructed expression EA, if
string set S achieves pairwise coverage for EA, it must
cover all the edges of A. The converse however does not
necessarily hold. Therefore we conclude that pairwise
coverage for expressions subsumes edge coverage for
automata. Along the same lines, one can verify that
combination coverage for expressions and path coverage
for automata subsume each other.

Criteria between Expressions and Grammars.
We now compare coverage for regular expressions with
those for regular grammars. As we have stated, combi-
nation coverage for expressions subsumes path coverage
for automata, and the latter again subsumes context-
dependent rule coverage for grammars. Consequent-
ly, we have that combination coverage is stronger than
context-dependent rule coverage. Similarly, we have
that pairwise coverage is stronger than rule coverage.
In fact, pairwise coverage is even stronger than context-
dependent rule coverage. To show this, we introduce the
notion of 2-grams. A 2-gram of a language L is a string
of length 2 that occurs as a substring in some w ∈ L.
For instance, the set of 2-grams for language L((a|b)∗c)
is {aa, ab, ba, bb, ac, bc}.

We next verify that if a string set achieves pairwise
coverage for an expression, then the strings must
contain all the 2-grams of the language defined by that
expression.

Proposition 4.1. Let E be a standard regular
expression. If a string set S ⊆ L(E) achieves pairwise
coverage for E, then S contains all the 2-grams of
language L(E).

Proof. It suffices to show that the set C(E) included
by S as defined by pairwise coverage contains all the
2-grams of L(E). We show this by induction on the
structure of E.

• If E is ε, ∅ or a for some a ∈ Σ, then C(E) = L(E)
clearly contains all the 2-grams of L(E).
• If E = E1|E2 and suppose that C(E1) and
C(E2) contain all the 2-grams of L(E1) and L(E2)
respectively, then C(E) = C(E1)∪C(E2) contains
all the 2-grams of L(E).
• If E = E1 · ... · En and suppose that for each
Ek (k ∈ [1, n]), C(Ek) contains all the 2-grams
of L(Ek). We show that C(E) contains all the
2-grams of L(E). Let ab be a 2-gram of L(E).
Clearly C(E) contains it if ab is a 2-gram of some
L(Ek). Otherwise, there must exist a substring
wa from some set C(Ei) ending with symbol a

and a substring wb from some set C(Ej) starting
with symbol b. If subexpressions Ei and Ej are
adjacent then according to the requirement of
pairwise coverage, the ordered pair 〈wa, wb〉 must
be adjacently covered by a string in C(E). If
subexpression Ei and Ej are not adjacent, then
the existence of a 2-gram ab implies that all the
subexpressions between Ei and Ej contain empty
strings. Again according to the requirement of
pairwise coverage, the ordered pair 〈wa, wb〉 must
be adjacently covered by a string in C(E). Thus
we can assure that for any 2-gram ab of L(E), ab
is also a 2-gram of C(E).
• If E = E∗1 and suppose that C(E1) contains all
the 2-grams of L(E1). Let ab be a 2-gram of
L(E). Clearly C(E) contains it if ab is a 2-gram
of L(E1). Otherwise, there must exist a substring
wa ∈ C(E1) ending with symbol a and a substring
wb ∈ C(E1) starting with symbol b. According to
the definition of pairwise coverage, the ordered pair
〈wa, wb〉 must be adjacently covered by a string in
C(E) which ensures that the 2-gram ab of L(E) is
also a 2-gram of C(E).

Clearly, if language L is described by an automaton,
then each 2-gram of L corresponds to a subpath of
length 2, i.e., an edge-pair of the automaton. Since
context-dependent rule coverage can be interpreted
as edge-pair coverage for automata, along with
Proposition 4.1, we can then infer that if a string
set achieves pairwise coverage for expression E it
also achieves context-dependent rule coverage for the
grammar from which E is translated. Thus pairwise
coverage subsumes context-dependent rule coverage.
The converse does not always hold, as shown by the
following. Consider the grammar G1 in Figure 1 and
the expression (a|b)c∗ε translated from G1 (G1 is first
translated to automaton A1 in Figure 2 and then A1

translated to expression (a|b)c∗ε). One can verify that
string set {a, b, acc, bcc} satisfies the context-dependent
rule coverage for G1, but not the pairwise coverage for
the expression.

The reason why context-dependent rule coverage does
not necessarily subsume pairwise coverage lies mainly
in the Kleene star operators, which correspond to
recursions in grammars. Here recursions refer to rules
whose left-hand sides appear exactly in the right-hand
sides. Such rules introduce self loops in the converted
automata. Context-dependent rule coverage, which is
interpreted as edge-pair coverage on automata, requires
that such self loops repeat at least zero and twice. While
pairwise coverage requires that the operands of Kleene
star must repeat at least zero, once and more than once.
Hence, a string set satisfies context-dependent rule
coverage does not necessarily satisfy pairwise coverage.

We emphasize again that the order and algorithms
used for transforming between different formalisms are

The Computer Journal, Vol. ??, No. ??, ????

10 L. Zheng, S. Ma, Y. Wang, G. Lin

FIGURE 4. Subsumption relationships of coverage
criteria. Here, Context Coverage is abbreviated for Context-
Dependent Rule Coverage.

very important for the subsumption analysis. For
instance, if we consider grammar G1 in Figure 1 and
automaton A2 in Figure 2, which is not converted from
the former using the algorithm discussed in our article,
one can verify that there is a string set {ac, b} that
achieves rule coverage for the former while does not
achieve edge coverage for the later. Another example,
consider the expression (a|b)c∗ε and grammar G2 in
Figure 1. The string set {a, b, ac, bc, acc, bcc} achieves
combination coverage for the expression but does not
satisfy context-dependent rule coverage for grammar
G2. If we change the expression to (a|b)(ε|cc∗ε)
which is converted from G2 (G2 is first transformed
to A2 in Figure 2 and then A2 to the above
expression), one can verify that the unique string set
{a, b, ac, bc, acc, bcc, accc, bccc} (if we fix the multiple
repetitions as exactly twice) achieving combination
coverage definitely satisfies context-dependent rule
coverage for G2.

Remarks. (1) Our analysis shows that pairwise
coverage as proposed in this study for regular
expressions is stronger than rule coverage, and the
more accurate context-dependent rule coverage for
grammars, and is also stronger than edge coverage for
automata.

(2) Combination coverage is as rigorous as path
coverage for automata. However, these coverage criteria
are not practical due to the high complexity of sufficient
test sets.

5. STRING GENERATION ALGORITHMS

In this section, we develop two algorithms for
automatically generating string sets from regular
expressions, one for pairwise coverage and the other for
combination coverage, for both standard and extended
regular expressions. The generations utilize the abstract

FIGURE 5. The abstract syntax tree for regular
expression (a|b|c)∗(d|e)(f |g).

syntax trees of regular expressions. Hence, we first
introduce abstract syntax trees, and then present the
algorithms.

An abstract syntax tree (or simply syntax tree) of
a regular expression is a labeled and ordered tree,
where the internal nodes are labeled by operators, and
the leaf nodes represent the operands of the internal
operators. That is, the leaves have nullary operators,
i.e., symbols, empty string ε or empty set ∅. The
structure of the syntax tree of an expression shows
the precedence of operators occurred in the expression.
Parentheses are implicit in the tree structure. Note that
we do not restrict the syntax trees to be binary. This
is without loss of generality since all the binary regular
operators are associative. Thus for each node labeled
with unary operator ∗ or [l, r], there is only one child
while for each node labeled with binary operator |, ·
or &, there are two or more children. As an example,
Figure 5 illustrates the syntax tree of regular expression
(a|b|c)∗(d|e)(f |g).

Given an expression E, we first construct its syntax
tree, and then perform a bottom-up traversal along
this tree. For each node of the tree, we compute a
set of substrings corresponding to the subexpression
described by that node. Starting from the leaves, we go
up and combine these substrings into longer substrings.
As a leaf is simply a single symbol a or ε or ∅, thus the
substring set associated with each leaf consists of the
leaf itself or just simply ∅. The computation strategy
of the substring set for each internal node depends on
the labeled operator and the target criterion. Figure 6
shows the bottom-up process of generating strings along
with the abstract syntax tree for an example regular
expression, in which the final set generated based on
combination coverage contains 52 strings, while the set
based on pairwise coverage contains 14 strings only.

We describe in detail the generation of strings from
syntax trees in Algorithm 1 and Algorithm 2, which are
defined recursively. In the following, we assume that λ
is an internal node of an abstract syntax tree, Si is the
set computed for its ith child if λ is labeled by binary
operator concatenation, alternation or interleaving, SC
is the set computed for its only child if λ is labeled by
unary operators Kleene star or counting. For analyzing
the size complexity of the generated string set, we use

The Computer Journal, Vol. ??, No. ??, ????

String Generation for Testing Regular Expressions 11

Algorithm 1 ComGen

Input: Abstract syntax tree T of regular expression E;
Output: A set achieving combination coverage for E;
1: Let λ be the root of T
2: if λ is a leaf then
3: return {l} or ∅ where l is the label of λ
4: else if λ is labeled by | then
5: S ← ∅
6: for each child λi of λ do
7: S ← S ∪ComGen(λi)
8: end for
9: else if λ is labeled by . then

10: for each child λi of λ do
11: Si ← ComGen(λi)
12: end for
13: Prod← CartesianProduct(S1, ..., Sn)
14: S ← Product2String(Prod)
15: else if λ is labeled by ∗ then
16: SC ← ComGen(λ.child)
17: Prod← CartesianProduct(SC , SC)
18: S ← {ε} ∪ SC ∪ Product2String(Prod)
19: else if λ is labeled by [l, r] then
20: SC ← ComGen(λ.child), S ← ∅
21: for k ← l, r and Random(l, r) do
22: Prod ← CartesianProduct(SC , ..., SC) with k

sets SC

23: S ← S ∪ Product2String(Prod)
24: end for
25: else if λ is labeled by & then
26: S ← {ε}
27: for each child λi of λ do
28: Si ← ComGen(λi)
29: S ← Interleave(S, Si)
30: end for
31: end if
32: return DeleteDuplicate(S)

n to denote the number of λ’s children if λ is not unary,
and |S| to denote the number of elements in a string set
S, respectively.

5.1. Combination Coverage as Target Criterion

The string generation process when taking combination
coverage as target is described in Algorithm 1. Consider
an internal node λ of the syntax tree of a regular
expression. We discuss the following cases.

(1) λ is labeled by alternation (lines 4-8). We just
take the union of all those string sets computed for its
children, which produces

∑n
i=1 |Si| strings.

(2) λ is labeled by concatenation (lines 9-14). We
take all possible discrete combinations of substrings
generated for its children. That is, we first compute
the Cartesian product of those Si sets, then convert the
product to a set of strings by concatenating for each
tuple of the product all the members in the order they
appear in that tuple (line 14). This produces exactly∏n
i=1 |Si| strings that increase exponentially with n.

Consider the left syntax tree in Figure 6. There are 52

substrings generated for the root node which is labeled
with ·.
(3) λ is labeled by Kleene star (lines 15-18). We
merge the three sets {ε}, SC and the set containing
all the possible combinations of SC with itself,
denoting repetitions of zero, once and more-than-once
respectively. To control the size of generated sets, here
we fix more-than-once as exactly twice, and 1 + |SC |+
|SC |2 strings are generated. Consider the left syntax
tree in Figure 6 for example. There are 13 substrings
generated for the node labeled with ∗.
(4) λ is labeled by [l, r] (lines 19-24). We combine the
substrings of SC with themselves for l times, r times and
then k times if there exists an integer l < k < r. We
take all possible discrete combinations. This produces
exactly |SC |l + |SC |r + |SC |k strings.

(5) λ is labeled by & (lines 25-30). We get the
interleavings of all the string sets computed for λ’s
children. This step essentially reduces to computing
the interleaving of two strings. Recall that for any two
strings w1 and w2, if one is ε then the interleaving result
is the other string; otherwise, let w1 = aw′1, w2 = bw′2
where a and b are single symbols, then w1&w2 =
a{w′1&bw′2} ∪ b{aw′1&w′2}. Following this definition,
we use a recursive function to implement it. We omit
the details due to space limitations. We next give a
brief analysis of the number of strings generated in this
case. First, note that the interleaving of two strings w1

and w2 with lengths m and n produces
(
m+n
m

)
strings.

Second, note that there are |S1| × |S2| interleaving of
strings when λ has two children. Suppose that λ has
n children and the average length of strings in each
child set Si is l. Then interleaving S1 and S2 results
in |S1| × |S2| ×

(
2l
l

)
strings, and then interleaving those

strings with S3 results in |S1| × |S2| ×
(
2l
l

)
× |S3| ×

(
3l
l

)
strings. In this way, we can estimate that the total
number of strings computed for the node λ is

∏n
i=1 |Si|×∏n

i=1

(
i×l
l

)
. Especially, when l = 1, the total number is∏n

i=1 |Si| × n! that increases factorially with n. For
instance, for E = a&b&c, the algorithm generates
1×1×1×3! = 6 strings, and for E = (a|b)&(c|d)&(e|f),
the algorithm generates 2× 2× 2× 3! = 48 strings.

5.2. Pairwise Coverage as Target Criterion

The generation of strings taking pairwise coverage as
the target criterion as described in Algorithm 2 is more
involved than combination coverage based generation.
We explain in detail below. Again, suppose that λ is an
internal node of the syntax tree of a regular expression.

(1) λ is labeled by alternation (lines 4-8). We just
need to merge the sets computed for its children, which
generates

∑n
i=1 |Si| strings.

(2) λ is labeled by concatenation (lines 9-16). We need
to find a pairwise test set from the sets generated for
λ’s children. The problem of generating a minimum

The Computer Journal, Vol. ??, No. ??, ????

12 L. Zheng, S. Ma, Y. Wang, G. Lin

{a} {b}

f {g}

{a,b,c}

{f,g}{ ,a,b,c,aa,

ab,ac,ba,bb,

bc,ca,cb,cc}

{df,dg,ef,eg,adf,adg,aef,aeg,bd

f,bdg,bef,beg,cdf,cdg,cef,ceg,

...}

{c}

{d} {e}

{d,e}

{a} {b}

f {g}

{a,b,c}

{f,g}{ ,a,b,c,a

abaca,bbcb

,cc}

{df,adg,bdf,cdf,aabacadf,bbcbdf,c

cdf,eg,aef,beg,ceg,aabacaeg,bbcbe

g,cceg}

{c}

{d} {e}

{d,e}

FIGURE 6. The bottom-up generation of strings achieving combination coverage and pairwise coverage, respectively.

pairwise test set is known to be NP-complete [35].
Many heuristic strategies to generate near-minimum
pairwise test set have been proposed and tools have
been developed [31]. Our algorithm utilizes the
Pairwise Independent Combinatorial Tool (PICT for
short, available at https://github.com/microsoft/pict)
to generate strings achieving pairwise coverage when
the regular operator is concatenation. More specifically,
for λ with n children, the algorithm calls PICT by
providing n substring sets, and gets a set of n-tuples.
Those n-tuples are then translated to a set of strings
by concatenating for each tuple all the members in the
order they appear in that tuple (see the root node in the
right syntax tree of Figure 6 for example). Finally, we
need to compute all the ordered pairs that are required
to be adjacently covered and find which of them already
adjacently covered by the strings generated by PICT.
For those uncovered ones, we construct new strings
to adjacently cover them. The construction follows a
greedy strategy similar to the generation for Kleene star
(lines 20-27), which will be explained immediately.

The number of strings generated in this case depends
on the output of the PICT tool and the output of
greedy construction to adjacently cover some necessary
ordered pairs. To our knowledge, there is no accurate
analysis on the former problem. A trivial lower bound
for the minimal number of strings output by PICT
is max{|Si| × |Sj |}, where i, j ∈ [1, n] and i 6= j.
Furthermore, it has been shown that the minimal
number of test cases for pairwise testing grows only
logarithmically with n [36]. For the latter problem, we
consider the worst case in which each Si contains the
empty string ε. In such a case, there are

∑n
k=3(|S1| ×

|Sk|) ordered pairs beginning with strings from S1 that
need to be adjacently covered, and

∑n
k=4(|S2| × |Sk|)

ordered pairs beginning with strings from S2 that need
to be adjacently covered, and so on. Assume that the
average number of strings in each Si is ¯|S|. Then in

total there are
(
n−1
2

)
× ¯|S|2 ordered pairs. A string can

at least adjacently cover one such ordered pair and at
most about (n− 1)/2 such ordered pairs (one example
is s1s3s5...sn, where each si ∈ Si for i = 1, 3, 5, ..., n.)

Therefore, we obtain a lower bound for the number of
generated strings to adjacently cover all those pairs is

about n× ¯|S|2 and an upper bound n2 × ¯|S|2.

(3) λ is labeled by Kleene star (lines 17-27). The
key step is to generate a set of strings that adjacently
cover all the ordered pairs 〈s, s′〉 where s, s′ are any
two strings of SC , the child set computed for λ’s only
child. In our algorithm, we adopt a kind of greedy
strategy. First compute all the ordered pairs of SC .
Then pick an uncovered pair 〈s, s′〉, start from string
s and extend it as long as possible whenever it can
cover more uncovered pairs. Repeat the above process
until all pairs are covered. For instance, suppose
that the child set SC contains 3 strings a, b and c.
The algorithm produces a set {aabaca, bbcb, cc}, which
covers the |SC |×|SC | = 9 ordered pairs as below, where
ordered pairs above symbol =⇒ are to be covered during
the process of string extension.

1© a
〈a,a〉
=⇒ aa

〈a,b〉
=⇒ aab

〈b,a〉
=⇒ aaba

〈a,c〉
=⇒ aabac

〈c,a〉
=⇒ aabaca

2© b
〈b,b〉
=⇒ bb

〈b,c〉
=⇒ bbc

〈c,b〉
=⇒ bbcb

3© c
〈c,c〉
=⇒ cc

At last, we add the empty string ε and all strings
in SC itself, denoting repetitions of zero and once,
respectively. For the above example, we finally obtain
a string set {ε, a, b, c, aabaca, bbcb, cc} for the node λ
labeled by Kleene star (see the ∗ node in the right
syntax tree of Figure 6).

We next estimate the number of generated strings
in this case. In the greedy construction, we try to
cover as many uncovered pairs as possible. Suppose
that s1 is an element of SC . We can generate only
one string to cover all the pairs beginning with s1 and
all the pairs ending with s1, i.e., pairs 〈s1, sk〉 and
〈sk, s1〉 for all sk ∈ SC . Since there are |SC | elements
in SC , our greedy construction produces at most |SC |
strings to cover all the |SC | × |SC | pairs. Thus, in
total 2|SC |+ 1 strings are generated in this case. Note
that the analysis of the number of strings produced by
greedy construction is a bit different from the case for
concatenation because in the case of Kleene star we can
extend a string as long as possible, while the extension

The Computer Journal, Vol. ??, No. ??, ????

String Generation for Testing Regular Expressions 13

Algorithm 2 PairGen

Input: Abstract syntax tree T of regular expression E;
Output: A set achieving pairwise coverage for E;
1: Let λ be the root of T
2: if λ is a leaf then
3: return {l} or ∅ where l is the label of λ
4: else if λ is labeled by | then
5: S ← ∅
6: for each child λi of λ do
7: S ← S ∪ PairGen(λi)
8: end for
9: else if λ is labeled by . then

10: for each child λi of λ do
11: Si ← PairGen(λi)
12: end for
13: Prod← PICT(S1, ..., Sn)
14: S ← Product2String(Prod)
15: Compute pairs that need to be adjacently covered but

not yet covered by S
16: Similar codes to lines 20-27
17: else if λ is labeled by ∗ then
18: SC ← PairGen(λ.child), S ← {ε} ∪ SC

19: Mark all ordered pairs of SC uncovered
20: for each uncovered pair 〈s, s′〉 do
21: s̄← s;w ← s̄
22: while there are uncovered pair 〈s̄, s̄′〉 do
23: w ← w · s̄′ and mark 〈s̄, s̄′〉 covered
24: s̄← s̄′

25: end while
26: S ← S ∪ {w}
27: end for
28: else if λ is labeled by [l, r] then
29: SC ← PairGen(λ.child), S ← ∅
30: Mark all ordered pairs of SC uncovered
31: Tr, Tl, Tk ← False
32: for each uncovered pair 〈s, s′〉 do
33: s̄← s;w ← s̄;T ← 1
34: while there are uncovered pair 〈s̄, s̄′〉 do
35: w ← w · s̄′ and mark 〈s̄, s̄′〉 covered
36: s̄← s̄′;T + +;
37: if T ≡ r then
38: Tr ← True; break
39: end if
40: end while
41: if T ≡ l or l < T < r then
42: Tl ← True or Tk ← True respectively
43: end if
44: S ← S ∪ {w}
45: end for
46: if Tr ≡ False then
47: pick a string s ∈ SC , add sr to S
48: end if
49: Similarly if Tl ≡ False or Tk ≡ False
50: else if λ is labeled by & then
51: Same codes as lines 10-16
52: S ← S ∪Reverse(S)
53: end if
54: return DeleteDuplicate(S)

is restricted in the case of concatenation. For example,
if E = E1 · ... ·En, then the extension can only be done

at most n− 1 times.

(4) λ is labeled by [l, r] (lines 28-49). The generation is
similar to that for Kleene star. We take the same greedy
strategy to generate strings adjacently covering all the
ordered pairs of SC , and at the same time incorporate a
length control mechanism to ensure that the repetition
of strings in SC must include l times, r times and k
times for some integer k with l < k < r. For instance,
suppose that the child set SC contains 3 strings a, b, c,
and λ is labeled with [2, 5]. The following process
illustrates the generation of a set {aabac, bbca, cb, cc}
that adjacently covers the |SC |×|SC | = 9 ordered pairs,
and satisfies the repetition requirements.

1© r = 5 : a
〈a,a〉
=⇒ aa

〈a,b〉
=⇒ aab

〈b,a〉
=⇒ aaba

〈a,c〉
=⇒ aabac

2© k = 4 : b
〈b,b〉
=⇒ bb

〈b,c〉
=⇒ bbc

〈c,a〉
=⇒ bbca

3© l = 2 : c
〈c,b〉
=⇒ cb

4© l = 2 : c
〈c,c〉
=⇒ cc

The number of generated strings in this case has the
same order of magnitude as the case of Kleene star.

(5) λ is labeled by & (lines 50-53). In this case, pairwise
coverage requires that for any two children sets Si and
Sj of node λ (i 6= j) and any two strings s ∈ Si, s′ ∈ Sj ,
both the ordered pairs 〈s, s′〉 and 〈s′, s〉 are covered by
the generated strings for λ. Clearly, if a string w covers
the pair 〈s, s′〉, then the reverse of w will definitely
cover the pair 〈s′, s〉. Based on this observation, we
reuse the same codes that handle concatenation to get
a string set, then reverse all the strings of this set,
and finally take the union of the original set with the
reversed set. Thus, the number of generated strings in
this case has the same order of magnitude as the case
of concatenation.

It should be pointed out that duplicated strings may
appear during combinations, which is mainly caused
by the concatenation of empty strings. Consider the
expression ε∗ for example. Algorithm 1 produces three
empty strings. Thus, we need to eliminate duplications
before returning the final result, as indicated in the last
lines of Algorithm 1 and Algorithm 2.

6. EXPERIMENTAL STUDY

In this section, we experimentally evaluate our
algorithms. We have analyzed the subsumption
relationships among coverage criteria for regular
expressions and for the other two regular language
definition formalisms, i.e., regular grammars and finite
automata in Section 4. Different coverage based string
generation algorithms may take different formalisms
as inputs. For fairness, we only compare our two
algorithms (PairGen and ComGen) and other two
existing string generation tools that take regular
expressions as input. We compare the number of
generated strings and assess the quality of the strings.

All experiments were performed on a 2.6Ghz Intel i5
machine with 8GB of RAM.

The Computer Journal, Vol. ??, No. ??, ????

14 L. Zheng, S. Ma, Y. Wang, G. Lin

6.1. Background

We take XML schema testing as the application
background to evaluate our algorithms. XML
(eXtensible Markup Language) is a popular method for
data exchange on the Internet [37]. XML documents are
usually accompanied with a schema that describes their
structures. The structures can be formally specified
in a schema written in a schema language such as
the Document Type Definitions (DTDs) or the XML
Schema Definitions (XSDs). Regular expressions are
an important component of many commonly used
XML schema languages. In fact, for DTDs, element
type declarations are described precisely by regular
expressions. An example DTD is shown below.

<!ELEMENT addrbook (person+)>

<!ELEMENT person (name,tel?,email*)>

<!ELEMENT name #PCDATA>

<!ELEMENT tel #PCDATA>

<!ELEMENT email #PCDATA>

As shown above, a DTD is essentially a mapping ρ
from element names to regular expressions over element
names. An XML document is valid with respect to
ρ if for every occurrence of an element name e in the
document, the string formed by its children belongs to
the language of the corresponding regular expression
ρ(e). For instance, the above DTD requires each
addrbook element to have one or more person children,
and each person must have a name child, which must
be followed by an optional tel and zero or more email

elements. Therefore, testing whether a DTD is correctly
defined essentially reduces to testing whether each
element name is mapped to a correctly defined regular
expression. XSDs can be seen as an extension of DTDs
with a restricted form of specialization. Although XSDs
are more expressive than DTDs, regular expressions
remain one of the main building blocks. For instance,
the complex element type definitions of XSDs are
actually specified by regular expressions. In particular,
XSDs support additional regular operators including
counting and interleaving. In light of this, we choose
regular expressions occurring in real-world DTDs and
XSDs to evaluate our algorithms.

6.2. Real-World Expressions

Our experiments are conducted on the data set
discussed in [38] (http://lcs.ios.ac.cn/~zhangxl/
project.html). This data set contains a large corpus
of about 7000 DTDs and XSDs gathered from different
websites covering various fields such as education,
agriculture, science, economics, engineering, sports and
so on. We extract from these DTDs and XSDs a set
of non-trivial regular expressions of different types and
forms. Specifically, we classify regular expressions into
different categories according to the contained regular
operators; we further distinguish regular expressions

of the same category, i.e., containing the same set of
regular operators, by their star heights, nesting depths,
parenthesis depths and sizes. These measures are
defined as follows.

Star Height [39]. The star height of a regular
expression E over alphabet Σ, denoted by h(E), is a
nonnegative integer defined recursively as follows. If E
is ε, ∅ or a for some a ∈ Σ, then h(E) = 0; If E = E1|E2

or E = E1 · E2, then h(E) =max{h(E1), h(E2)}; If
E = E∗1 , then h(E) = h(E1) + 1. Star height is an
illustration of iteration depth of regular expressions.
Kleene plus and counting are treated similarly as Kleene
star. Optional is treated similarly as alternation and
interleaving is treated similarly as concatenation.

Nesting Depth [38]. The nesting depth of a regular
expression E over alphabet Σ, denoted by d(E), is a
nonnegative integer defined recursively as follows. If
E is ε, ∅ or a for some a ∈ Σ, then d(E) = 0;
If E = E1λE2 where λ is a binary operator, then
d(E) =max{d(E1), d(E2)}; If E = Eλ1 where λ is a
unary operator, then d(E) = d(E1) + 1. Intuitively,
nesting depth is the maximum nesting depth of unary
operators occurring in a regular expression. Compared
with star height, it can reflect the syntactic structural
complexity of a regular expression. For example, the
star height of ((a?|b|c)∗|d)? and a∗ are both 1 while the
nesting depths are 3 and 1 respectively.

Parenthesis Depth and Size are other two measures.
The former is the maximum nesting depth of
parenthesis occurring in that expression. The latter is
the number of operator occurrences in that expression
with parentheses not counted.

In total, we extracted 58 non-trivial regular
expressions which are classified into 25 categories as
illustrated in the left part of Table 3. It should be
pointed out that even two regular expressions have
almost the same properties, their forms may differ quite
much. We try to cover as more forms as possible.
For example, r22 and r26 have the same operators,
star heights, nesting depths and parenthesis depths
but they are of different forms: a∗1(a∗2|a∗3|a∗4)a∗1 and
(a1|a2|a3)∗(a4|...|a47)∗. We choose both of them in our
experiments.

6.3. Experimental Design

We apply mutation testing technique to assess the
quality of the test data generated by our algorithms.
Mutation testing is a fault-based technique to design
new test data or evaluate the quality of existing test
data [40]. It involves modifying the software artifact
under test in small ways. Each mutated version is called
a mutant, and test sets detect and reject mutants by
causing the behavior of the original version to differ
from the mutant. This is called killing the mutant. Test
sets are measured by the percentage of mutants that
they kill. The higher the percentage is, the stronger

The Computer Journal, Vol. ??, No. ??, ????

String Generation for Testing Regular Expressions 15

the fault detection ability is.
We compare our two algorithms PairGen and

ComGen with other two string generators. One is
Xeger [41], an open-source Java library that generates
strings for regular expressions in a random way.
Another is Egret [3], a recent tool that generates both
positive and negative strings for regular expressions,
i.e., strings accepted and strings rejected.

The experimental process is depicted in Figure 7.
For an original expression E, a set S of strings are
generated. The generated strings are undoubtedly
accepted by E. We then obtain a set of mutants of E by
applying mutation operators. For each mutant M , we
check whether M can recognize all the strings in S. If
there exists a string s ∈ S not acceptable by the mutant,
then this indicates that M behaves differently with the
original expression E, and thus we mark thatM is killed
by S, otherwise not killed. Note that the string set
S generated by Egret for an expression contains two
subsets: positive strings Sp and negative strings Sn.
For Sp we follow the same strategy as above to check
the killing of mutants. For rejected strings we follow the
opposite strategy. That is, if there exists a string s ∈ Sn
acceptable by mutant M , then we mark M killed. We
mark that M is killed by S if M is killed by either Sp
or Sn or both.

An important step in our experiments is to choose
suitable mutation operators for regular expressions. Li
and Miller [42] proposed a set of mutation operators
for XSDs, which are based on the most common faults
that may occur in developing XML schemas. We select
four operators (the first four listed below) that are
suitable for standard and extended regular expressions.
Arcaini et al. [4] introduced several mutation operators
for regular expressions that are used in string pattern
matching. Such regular expressions have a quite
different syntax and thus their mutation operators
cannot applied directly in our experiments. We adopt
ideas of the mutation operators in [4], such as Negation
Addition and Character Class Negation, and define
another four operators (the last four listed below) that
are suitable for expressions used in our experiments.
• Replace one of the binary/unary regular operators

by each of the other binary/unary operators;
• Change the order of elements one by one, if

there is more than one element connected by the
concatenation operator;

• Delete elements one by one if there is more than
one element in the type declaration;

• Change the value of an element occurrence
constraint (particularly applied to the counting
operator);

• Change one of the element names to a new one or
another one in the type declaration;

• Add a unary regular operator whenever possible in
a regular expression;

• If a unary operator has more than one operand,
then distribute it to all or one of its operands;

FIGURE 7. Process of mutation testing

• If a unary operator has more than one operand,
then take one of its operands out.

For each expression, we obtain a set of mutants by
applying these mutation operators. We then delete
all equivalent mutants by using the dk.brics.automaton
package [43]. The number of non-equivalent mutants
for each expression is shown in column Num.OfMutants
of Table 3. For each mutant, we conduct mutation
testing as illustrated by Figure 7, and check whether
the mutant is killed or not by a specific string set. The
checking can be automatically done by using a regular
expression pattern matching tool. In our experiments,
we use the java.util.regex package for pattern matching
with standard regular expressions and expressions
extended with counting. This package does not
support interleaving, so for expressions extended with
interleaving, we first translate them into standard ones,
and then utilize java.util.regex package for validation.

6.4. Experimental Results

6.4.1. Generated Strings
For each expression, we record the numbers of strings
produced by our algorithms and Egret, as illustrated
in the middle part of Table 3. For the random tool
Xeger, the number of strings is controlled to be the
same with algorithm PairGen for comparison purpose
and is omitted. For Egret, we record the number of
positive strings (column Egret+) and the total number
of both positive ones and negative ones (column Egret).
Since Xeger does not support the interleaving operator,
so the numbers for the last two expressions are omitted
and similarly for Egret.

(1) PairGen vs. ComGen. The number of
strings generated by ComGen is much larger than the
number of those generated by PairGen especially for
expressions with large sizes. The average number of
strings generated by ComGen for those 58 expressions
is about 200,000, while the average number is reduced
to only about 70 by PairGen. This also confirms our
theoretical analysis in Section 5 that the number of
strings generated by ComGen increases exponentially
with the size of expression E and even factorially if E

The Computer Journal, Vol. ??, No. ??, ????

16 L. Zheng, S. Ma, Y. Wang, G. Lin

contains interleaving, while by PairGen the increasing
rate is at most quadratic.

(2) PairGen itself. PairGen produces a relatively
small number of strings for most of the expressions.
About 75% of the expressions generate no more than
50 strings, 88% generate fewer than 100 strings. Five
expressions generate more than 200 strings and only one
generate more than 1000 strings. Roughly speaking,
expressions with large sizes and complex structures
generate more strings. For expressions with almost
the same sizes and structural complexities, those that
contain | mixed with ∗ or + generate more strings than
those that do not contain |.
(3) PairGen vs. Egret. For simple expressions, the
numbers of strings generated by PairGen and Egret
are comparable. For complex expressions especially
those containing | mixed with ∗ or +, PairGen
produces more positive strings than Egret. This is
because that for such kinds of expressions, PairGen
requires that all the adjacency cases between the
operands of ∗ or + are covered while Egret only pick
one case. Take (c1 |...| c10)∗ for instance, Egret
produces set {ε, c1, . . . , c10, c1c1} containing only one
string c1c1 which only covers the adjacent pair 〈c1, c1〉
while PairGen produces tens of strings covering all
the adjacent pairs 〈ci, cj〉 (i, j ∈ [1, 10]). We also
observe that a majority of the strings generated by
Egret are positive ones: about 40% of the expressions
generate zero negative strings; 28% generate only one
negative string; 98% generate fewer than six negative
strings; the most negative string generated is thirteen.
In fact, Egret’s generation strategy of negative strings
is simple. For example, (a|b)? generates one negative
string aa, (a|b)+ generates one negative string ε, and
(a|b)∗ generates no negative strings.

6.4.2. Quality of Generated Strings
We perform mutation testing to assess the quality of
the generated strings. We compute the mutation score
of a string set S for an expression E using the following
formula

MutationScore(E,S) =
#KilledMTs(E,S)

#TotalNonEqMTs(E)
× 100%

where #KilledMTs(E,S) denotes the number of
mutants of expression E killed by set S and
#TotalNonEqMTs(E) denotes the total number of
non-equivalent mutants of expression E, respectively.
We compare strings generated by PairGen, ComGen,
random algorithm Xeger and Egret. Since Egret
generates also negative strings, we consider two cases
of Egret: only positive strings (denoted by Egret+)
and total strings including both positive and negative.
The number of strings generated by random algorithm
is controlled to be the same with PairGen. The
experiments of mutation testing for the random
algorithm were repeated over 50 times and the average
is reported here. The comparison results are shown in

the last five columns of Table 3. Note that since Xeger
and Egret do not support the interleaving operator, so
the comparison for the last two expressions are omitted.
We next report our findings.

(1) PairGen vs. ComGen. The mutation scores
of strings generated by those two algorithms are the
same for all the expressions. This implies that although
pairwise coverage is weaker than combination coverage,
its faults revealing ability does not decrease greatly.
Hence, considering both the fault detection ability
and the string set size, we conclude that pairwise
coverage is much more suitable in practice. We analyze
why PairGen even ComGen cannot always earn a
100% mutation score. Basically we can classify a
non-equivalent mutant M of an expression E into
three types: generalized (L(M) ⊃ L(E)), specialized
(L(M) ⊂ L(E)) and arbitrary edit (L(M) 6⊃ L(E)
and L(M) 6⊂ L(E)). Clearly, generalized mutants can
never be killed by only positive strings of the original
expression. Indeed, we find out that in the experiments
the mutants that PairGen and ComGen fail to kill
are exactly of this type. Mutants of other two types are
all successfully killed.

(2) PairGen vs. Random. As shown by the data,
PairGen outperforms random generation in almost
all the cases. On average, the mutation score of
strings generated by the former is about 12% higher
than the later. This shows that strings generated
based on pairwise coverage in general have higher fault
detection ability than randomly generated ones. For
r26, r38, r47, r52, r53, r54, the scores are equal or very
close. We analyze that the reason lies mainly in the
number of the generated strings. In our experiments,
when comparing PairGen and random generation, we
use Xeger randomly generating the same number of
strings with PairGen. As can be seen from Table 3, for
these expressions, PairGen produces relatively large
numbers of strings compared with the other expressions.
Thus the numbers of randomly generated strings are
also relatively large which helps to earn higher mutation
scores.

(3) PairGen vs. Egret+. For expressions containing
nearly no | operator, i.e., categories C1 − C11 and C24,
PairGen and Egret+ kill the same number of mutants.
However, for the other categories especially those
that contain various kinds of regular operators and
have complex expression structures (C23 for example),
PairGen works better than Egret+ in most cases.
Among those categories, there are also a few expressions
for which PairGen and Egret+ earn a same mutation
score. However, we find out that such expressions
are either of small sizes (r22, r27, r45, r46, r48) or of
simple forms (r33 : a∗1|...|a∗11|a12?|a13?). This indicates
that PairGen can help to reveal some of the faults
that may pass undetected by using Egret+ especially
when the expression is complex. In fact, the

The Computer Journal, Vol. ??, No. ??, ????

String Generation for Testing Regular Expressions 17

RegularExpression Num.OfStrings Num.Of MutationScore(%)
Category RE OPs Sheight Ndepth Pdepth Size Pair Com Egret+ Egret Mutants Pair Com Rand Egret+ Egret

C1 r1 {·} 0 0 0 5 1 1 1 1 49 57 57 57 57 57
r2 {·∗} 2 2 0 6 19 757 9 9 17 100 100 88 100 100

C2 r3 {·∗} 1 1 0 9 10 27 8 8 54 78 78 70 78 78
C3 r4 {·?} 0 1 0 10 4 8 5 8 62 71 71 60 71 76
C4 r5 {·+} 1 1 0 7 2 2 2 3 54 65 65 61 65 67

r6 {·∗?} 1 2 1 5 12 12 7 8 25 84 84 64 84 88
C5 r7 {·∗?} 1 1 0 11 9 72 9 12 54 83 83 70 83 89

r8 {·+?} 1 2 1 6 6 6 5 7 29 69 69 62 69 90
r9 {·+?} 1 2 1 7 6 12 6 10 33 79 79 67 79 91

C6 r10 {·+?} 1 1 0 10 6 16 6 10 54 76 76 72 76 83
r11 {· ∗+} 2 2 1 5 15 21 7 8 23 83 83 82 83 91

C7 r12 {· ∗+} 1 1 0 15 10 108 10 12 86 77 77 74 77 80
r13 {· ∗+?} 1 1 0 9 7 24 7 10 46 80 80 76 80 87
r14 {· ∗+?} 2 2 1 9 27 126 9 12 40 80 80 78 80 93

C8 r15 {· ∗+?} 1 2 1 12 21 78 10 16 52 83 83 75 83 94
C9 r16 {|} 0 0 0 8 9 9 9 9 53 49 49 44 49 49
C10 r17 {·|} 0 0 1 5 4 4 3 3 62 52 52 40 52 52

r18 {·|?} 0 1 1 8 10 20 12 14 58 66 66 53 66 69
C11 r19 {·|?} 0 2 2 10 12 12 7 11 55 71 71 65 71 80

r20 {|∗} 1 1 1 13 17 51 12 12 140 67 67 61 29 29
C12 r21 {|∗} 1 1 1 14 29 211 16 16 115 100 100 47 62 62

r22 {·|∗} 1 1 1 9 22 63 12 12 45 86 86 82 86 86
r23 {·|∗} 2 2 2 9 75 1281 11 11 69 87 87 83 67 67
r24 {·|∗} 2 2 1 12 49 2366 15 15 72 94 94 90 74 74
r25 {·|∗} 1 1 2 16 99 9765 19 19 137 100 100 85 72 72

C13 r26 {·|∗} 1 1 1 45 581 22399 48 48 359 100 100 100 62 62
r27 {|+} 1 1 0 5 6 6 6 7 20 85 85 60 85 85
r28 {|+} 2 2 1 5 9 21 5 6 28 61 61 54 50 86

C14 r29 {|+} 1 1 1 47 94 2256 48 48 472 80 80 79 70 70
r30 {·|+} 2 2 1 5 8 20 4 5 31 74 74 55 55 74

C15 r31 {·|+} 1 1 1 7 10 22 7 8 55 91 91 48 67 82
r32 {|∗?} 1 2 1 9 15 57 11 11 48 100 100 65 60 60

C16 r33 {|∗?} 1 1 0 25 24 24 24 25 73 81 81 50 81 84
r34 {·|∗?} 1 1 1 12 42 222 14 15 124 99 99 96 57 58
r35 {·|∗?} 1 2 2 21 88 3472 19 19 78 88 88 73 60 60

C17 r36 {·|∗?} 1 2 1 22 145 2110 21 25 163 96 96 92 69 71
r37 {| ∗+} 2 2 1 8 18 90 9 9 31 100 100 71 39 39

C18 r38 {| ∗+} 2 2 1 77 155 6162 78 78 314 100 100 98 50 50
r39 {·| ∗+} 1 1 1 9 37 93 11 12 57 95 95 89 68 74
r40 {·| ∗+} 1 1 1 9 66 372 12 13 93 92 92 91 68 76
r41 {·| ∗+} 2 2 1 11 66 1116 13 14 67 97 97 96 89 93

C19 r42 {·| ∗+} 1 1 2 19 24 24 13 15 104 73 73 69 70 74
r43 {|+?} 1 1 1 13 24 134 14 15 108 99 99 76 78 88

C20 r44 {|+?} 1 2 1 16 20 110 18 18 68 100 100 71 62 62
r45 {·|+?} 1 2 1 6 10 10 7 8 26 85 85 77 85 88
r46 {·|+?} 2 2 1 6 10 10 7 8 28 79 79 64 79 82

C21 r47 {·|+?} 1 1 1 59 220 12320 113 116 662 83 83 83 66 75
r48 {| ∗+?} 1 1 0 13 12 12 12 15 44 80 80 50 80 93
r49 {| ∗+?} 2 2 1 23 38 380 25 25 118 100 100 88 64 64

C22 r50 {| ∗+?} 2 2 1 28 37 343 30 30 120 100 100 68 60 60
r51 {·| ∗+?} 3 3 3 22 100 6007 35 39 143 94 94 90 83 89
r52 {·| ∗+?} 2 3 3 39 1022 3664128 43 44 179 95 95 95 85 89
r53 {·| ∗+?} 1 2 1 49 249 20676 48 52 368 98 98 98 72 73

C23 r54 {·| ∗+?} 1 1 3 67 676 76624 121 125 518 91 91 91 80 86
r55 {·?[]} 0 1 0 12 19 96 9 15 54 83 83 74 83 92

C24 r56 {·|?[]} 0 1 1 24 26 3840 16 29 110 79 79 73 79 90
r57 {?&} 0 1 0 11 28 1957 - - 46 87 87 - - -

C25 r58 {?&} 0 1 0 19 61 9864101 - - 78 87 87 - - -

Aver. 76 236280 18 20 85 85 73 72 77

TABLE 3. Real-world expressions used in the experiments, numbers of strings generated by different algorithms and the
mutation testing results.

The Computer Journal, Vol. ??, No. ??, ????

18 L. Zheng, S. Ma, Y. Wang, G. Lin

1

10

100

1000

10000

100000
R

u
n

n
in

g
 T

im
e

(m

s
)

PairGen ComGen

FIGURE 8. Running time of string generation algorithms ComGen and PairGen.

generation strategy adopted by Egret is simpler than
ours especially when dealing with | (see the example
given in Section 6.4.1 (3)). Therefore, the generated
strings may be not sufficient to detect some complex
errors. For instance, consider expression (a|b)∗ and
one of its specialized mutant (a∗|b∗), Egret produces
positive strings {ε, a, b, aa}, Clearly, they cannot kill
this mutant.

(4) PairGen vs. Egret. Theoretically, negative
strings may probably be able to kill some of the
generalized mutants that can never be killed by positive
ones. The experimental results verify this analysis.
The mutation score of Egret is increased when negative
strings are used. Thus it is higher than PairGen. for
expressions where PairGen and Egret+ earn a same
mutation score. However, as we have mentioned in
Section 6.4.1, Egret generates only a small number of
negative strings. However, our experimental results
show that there are still generalized mutants not killed.
Take a very simple expression a?|b? for instance, Egret
generates two negative strings {aa, bb}. Consider the
mutant a?b?, which is a generalization of a?|b?. Since
a?b? rejects both aa and bb, this mutant cannot be
killed. Actually, the average mutation score of Egret
even with negative strings is still lower than PairGen
which generates no negative strings (77% vs. 85%).

6.4.3. Running Time
Figure 8 shows, for each regular expression used in
our experiments, the time taken for generating strings
using algorithms PairGen and ComGen. Regular
expressions are sorted by their sizes. The tests were
repeated 100 times and the total running time was
recorded. Since the running time of ComGen for
certain regular expressions are two large, we use a
logarithmic scale to show the results in figures.

We can observe that, in general, the running time
grows with the sizes of the expressions for both
PairGen and ComGen; however, there are also long
regular expressions consuming less time than shorter
expressions. Indeed, the time required for string
generation depends not only on the size but also on

the structure and form of the regular expression. Take
(a|b|c)? and (a|b|c)∗ for instances, the two expressions
have the same sizes; but the former consumes less
time because the generation strategy for ? is much
simpler than ∗. Comparing PairGen and ComGen,
we observe that, for a same expression, PairGen
takes less time than ComGen. This is not surprising
because ComGen generates much more strings which
consequently requires much more running time.

Summary. We find the following from these
experiments. (1) Test data generated based on the
coverage criteria proposed in this study is more capable
of detecting faults than randomly generated test data.

(2) Considering both the size and the fault detection
ability of test data, pairwise coverage based generation
is much more useful than combination coverage based
generation in practical applications.

(3) Compared with Egret, pairwise coverage based
generation can reveal more faults for testing complex
regular expressions while Egret is more suitable when
dealing with simple regular expressions.

7. MORE APPLICATIONS

The generation algorithms proposed in this work are
not only useful to test regular expressions themselves
but also useful to test systems that require structured
data as inputs and use regular expressions to describe
the input structures. One application example is in
computational biology. It has been long proposed [44]
that DNA sequences can be modeled as strings in
regular languages or in languages higher up in the
Chomsky hierarchy such as context-free languages.
Automatic generation of strings in these languages
provides a good set of test data for algorithms that
process DNA sequences. Another application example
is in semi-structured data management. As introduced
in Section 6, regular expressions are used in XML
schema languages to specify the structural constraints
of XML documents. Automated generation of XML
documents conforming to a given schema can be
used for black-box testing of applications accepting

The Computer Journal, Vol. ??, No. ??, ????

String Generation for Testing Regular Expressions 19

as input XML documents and for benchmarking of
XML database management systems. Since regular
expressions consist of an important part of XML
schemas, generation of XML documents largely relies
on algorithms for generating strings from regular
expressions. Finally, being able to generate strings from
regular expressions allows us to generate test samples to
test regular expression learning algorithms. We discuss
this application in the following.

Over the past years, many algorithms have been
proposed that are capable of learning a regular
expression, given a finite number of samples of the
language defined by the target expression. Those
algorithms are useful in various fields such as
information extraction [45], pattern recognition [46],
etc. Because it is not always possible to formally
prove optimality of the learning algorithms, their
effectiveness is usually validated by experiments. One
experimental method is to generate samples from the
target expression and to see how closely the learned
expression resembles the target one. Thus the string
generation algorithms proposed in this work can be
used for generating test samples for regular expression
learning algorithms. In particular, we show that they
are especially useful for some algorithms that are based
on Gold’s learning paradigm of learning (identification)
in the limit [47], which is explained as follows.

A language (target) class L (defined via a class of
language describing formalisms Γ as, e.g., expressions,
automata or grammars) is said to be learnable or
identifiable if there is an algorithm M mapping samples
to objects in Γ such that: (1) S ⊆ L(M(S)) for every
sample S, and (2) to every object d ∈ Γ we can associate
a so-called characteristic sample Sc ⊆ L(d) such that,
for each sample S with Sc ⊆ S ⊆ L(d), L(M(S)) =
L(d). Intuitively, the first condition says that algorithm
M must be sound; the second condition says that M
must be complete, i.e., M should convergence when the
sample contains enough data. By the above definition,
enough data is specified by the so-called characteristic
sample. Clearly, characteristic samples are very useful
and important in testing such learning algorithms. If
such a sample is the input data for an expression E,
then according to Gold’s learning in the limit model,
the learning algorithm should return exactly E or an
expression equivalent to E.

It was shown by Gold [47] that the class of all
regular languages is not learnable from positive data.
Researchers have identified several subclasses of regular
languages that can be learnable. We next show
that for some of the learnable subclasses, we can
automatically generate the characteristic samples by
using the generation algorithms proposed in this study.
The regular expressions mentioned below contain only
standard operators.

Single Occurrence Regular Expressions. Bex et
al. [48] identified a subclass described by a kind of

restricted regular expressions, called single occurrence
regular expressions (SOREs for short) and proposed a
novel algorithm for learning SOREs from positive data.
A follow-up work [49] made further improvements. A
regular expression is single occurrence if every symbol
occurs at most once in it. For example, (a|b)c∗ is a
SORE while (a|b)c∗(a|d) is not. Bex et al. pointed out
that the characteristic sample for the language defined
by a given SORE E is specified by using the notion of
2-grams. Recall that a 2-gram of a set of strings W is
a string of length 2 that occurs as a substring in some
w ∈ W . A sample S ⊆ L(E) is characteristic for an
SORE E if the following holds:

(1) For every a ∈ Σ starting a string in L(E) there is a
string in S that starts with a;

(2) For every b ∈ Σ ending a string in L(E) there is a
string in S that ends with b;

(3) Every 2-gram of L(E) is a 2-gram of S.

Clearly, a set fulfilling combination coverage satisfies
the above three conditions. Actually, we show that
pairwise coverage is already sufficient for this purpose.

Proposition 7.1. Given an SORE E, the set
generated by algorithm PairGen is a characteristic
sample for E.

Proof. By Proposition 4.1, if a set S satisfies pairwise
coverage for E, then S contains all the 2-grams of
L(E). We next show that conditions (1)(2) also hold
by induction on the structure of expression E. We only
need to show that the set C(E) defined by pairwise
coverage satisfies conditions (1)(2). One can easily
verify this for the case that E is ε, ∅ or a for some
a ∈ Σ, or E is of the form E = E1|E2. We next prove
the other two cases.

• If E = E1 · ... · En and suppose that for each Ek
(k ∈ [1, n]), C(Ek) satisfies conditions (1)(2). Let
a be a starting symbol in L(E). Then a must be
a starting symbol in L(Ek) for some k ∈ [1, n]. If
k = 1, by supposition, there is a string s ∈ C(E1)
that starts with a and by the definition of pairwise
coverage there exists a string w ∈ C(E) that starts
with s and thus also starts with a. If k > 1,
this implies that for each Ei with i < k, L(Ei)
contains empty string ε. One can easily verify by
the definition of pairwise coverage that if L(Ei)
contains ε then C(Ei) is also required to contain
ε. This means that ε ∈ C(E1) and furthermore for
each Ej between E1 and Ek, ε ∈ C(Ej). Again by
definition of pairwise coverage, there exists a string
w ∈ C(E) that adjacently covers the ordered pair
〈ε, s〉 (Note that ε in this pair comes from C(E1)).
This indicates that w starts with s and thus with
symbol a. Therefore we conclude that in both of
the two cases, C(E) contains a string starting with
a. That is, condition (1) holds. Along the same
lines, one can verify that condition (2) also holds.

The Computer Journal, Vol. ??, No. ??, ????

20 L. Zheng, S. Ma, Y. Wang, G. Lin

FIGURE 9. A simple looping automaton.

• If E = E∗1 and suppose that C(E1) satisfies
conditions (1)(2). Let a be a starting symbol
in L(E). Then a must be a starting symbol in
L(E1). By supposition, there is a string s ∈ C(E1)
that starts with a. Notice that to capture the
feature of the ∗ operator and meanwhile to avoid
infinite generation, pairwise coverage restricts the ∗
repetitions to be three possibilities: zero, once and
more than once. We hence have C(E1) ⊆ C(E)
which implies that s also appeared in C(E). Thus
condition (1) holds. The verification for condition
(2) is similar.

Simple Looping Regular Expressions. Fernau [50]
identified another subclass of learnable regular lan-
guages, namely, simple looping regular languages.

This languages are defined by simple looping regular
expressions. A regular expression is called simple
looping if it is a finite union of pairwisely left-
aligned union-free expressions α such that α is ε or
ak11 a

x1
1 a

k2
2 a

x2
2 ...a

kn
n axn

n , where each ai is a single symbol
from the basic alphabet Σ, each ki is some positive
integer, each xi equals to either 0 or ∗, and for all
1 ≤ i < n, ai 6= ai+1. Two such union-free expressions
β, γ are left-aligned if β 6= γ or if they share a common
longest prefix subexpression Ē, i.e., β = ĒEβ , γ =
ĒEγ , then Eβ and Eγ begin with symbols different from
the ending symbol of Ē. For example, aa∗b and aa∗c
are left-aligned while a and aa are not.

Simple looping languages can also be characterized
by simple looping automata. A finite automaton
A is called simple looping iff when deleting all the
loops in the automaton graph, the resulting (arc-
labeled) skeleton graph would be a directed tree without
multiple arcs such that for any node of outdegree larger
than one, its emanating arcs carry pairwisely different
labels, and the label a carried by some loop arc (at some
state q) in the automaton graph is likewise carried by
the necessarily existing other arc pointing to q. For
example, the automaton displayed in Figure 9 is simple
looping. (This example is taken from [50].)

A simple looping automaton can be equivalently
translated to a simple looping expression and vice
versa. Simply speaking, given an automaton A, we can
decompose it into a set of paths such that each path
contains only one final state, namely the last one on

the path. Each path can be turned into a union-free
expression whose collection yields the required simple
looping regular expression. Conversely, given a simple
looping regular expression consisting of pairwisely left-
aligned union-free subexpressions Ei, we can turn each
Ei into a simple looping automaton Ai, and overlay
the different Ais to produce a total simple looping
automaton. For instance, the simple looping expression
corresponds to the automaton in Figure 9 is

aa∗bb∗|aa∗bb∗c|aa∗bb∗abb∗|aa∗bb∗abb∗a

Given some sample strings, Fernau’s learning
algorithm first constructs a simple looping automaton
and then translates the automaton into a simple
looping expression. The construction of a simple
looping automaton A is divided into two steps.
(1) Create a start tree. First transform strings
into block strings where each block [x] represents
the repetition of symbol x for any times. For
instance, {ababb, aabb, ababa, abc} is transformed into
{[a][b][a][b], [a][b], [a][b][a][b][a], [a][b][c]}. Then create a
classical prefix tree acceptor [51] from the block strings
where arcs are labeled by block letters. For example,
the underlying tree structure (deleting loops) of the
automaton shown in Figure 9 is the tree constructed
from the above sample strings. (2) Introduce loops.
Consider an arc that is labeled with a block letter [a].
If the finite set of strings represented by [a] during step
(1) contains more than one string, say an1 , ..., anm , then
only keep the shortest among these words as a label of
the arc and enable the generation of the longer words by
introducing a loop labeled a at the node that arc points
to. For example, the automaton illustrated in Figure 9
is the final simple looping automaton constructed from
the given sample {ababb, aabb, ababa, abc}.

Fernau described how to obtain a characteristic
sample from a simple looping automaton. Actually,
from the algorithm described above, one can infer that
if a sample can provide the information to construct
the prefix block tree and then to provide enough
information for introducing the loops, then this sample
is a characteristic sample. We next show that using
our pairwise coverage based generation algorithm, we
can automatically obtain a characteristic sample for a
simple looping language L when L is described by a
simple looping expression.

Proposition 7.2. Given a simple looping regular
expression E, the set generated by algorithm PairGen
is a characteristic sample for E.

Proof. By definition, regular expression E is of the
form E = E1|...|Em where each Ei (i ∈ [1,m]) is a
concatenation of subexpressions of the form aka∗ or ak

with k a positive integer. Let A be the simple looping
automaton translated from E. By translation, each Ei
corresponds to a path from the initial state to a final
state in the prefix block tree (deleting loops) of A and
each Kleene star corresponds to a loop in A. Due to

The Computer Journal, Vol. ??, No. ??, ????

String Generation for Testing Regular Expressions 21

the restricted form of each Ei, one can verify that from
any string w ∈ L(Ei) we can create the corresponding
path of Ei in the prefix block tree of automaton A.
Let S be the string set generated by PairGen. On
one hand, pairwise coverage ensures that for each Ei
there exists at least one string of L(Ei) contained in S.
Thus S provides enough information to construct the
prefix block tree. On the other hand, pairwise coverage
ensures that for each Kleene star a∗, a repeats at least
more than once. Thus S provides enough information
to introduce the loops. In total, we conclude that S is
a characteristic sample for E.

8. THREATS TO VALIDITY

In this study, we investigate regular expressions
from the perspective of formal language theory and
practice. We consider the formal definition of regular
expressions and support basic regular operators and
some commonly used extended regular operators. We
take XML schema testing as the application background
to evaluate our algorithms. We select regular
expressions from a large data set of real-world XML
schemas. In our selection, we try to cover various kinds
of regular expressions occurring in these schemas, that
is, expressions containing different regular operators, of
different forms, different structures, different sizes and
different complexities. Therefore, we believe that the
experimental results could be at least generalized to
all expressions that are used in the same application,
i.e., XML schemas. In other applications, for example,
string pattern matching, regular expressions have a
very different syntax. Operators such as negation,
character class are allowed. Some string generation
tools including Egret are developed specially for testing
such expressions. In theory, this kind of expressions
can be translated to the standard expressions and thus
can use our algorithms for string generation. Therefore,
in such application, our algorithm can be used as a
complement to other specialized algorithms.

We next discuss the faults that may not be revealed
by our algorithms. First of all, since our algorithms
generate only positive strings, generalized mutants can
never be killed. In our experiments, we have tried to
add the negative strings produced by Egret to ours
and find that the average mutation score is indeed
increased. However, as we have analyzed, since Egret’s
negative generation strategy is relatively simple, there
are still a large number of generalized mutants not
killed. How to derive meaningful negative strings is
a problem that needs further investigation. Secondly,
similar to pairwise testing, pairwise coverage has its
own limitations. For instance, since it covers only
two (pairwise) combinations, errors related to more
than two combinations cannot be captured. Although
combination coverage can help revealing such kind
of errors, the generated test set is too large. We

always need to balance the test size with the fault
detection capability. One solution might be to define
more coverage criteria that are stronger than pairwise
coverage and weaker than combination coverage, for
example, n-wise coverage (n ≥ 2), and let the user to
decide which coverage is used for generating test strings.

9. RELATED WORK

In software testing community, the objects under test
are usually software systems, or more specifically,
programs or applications. Test techniques include the
process of executing the program or application with the
intent of finding software bugs (errors or other defects),
and verifying that the software system is fit for use. As
stated in [52], structural descriptions or descriptions of
structures are indispensable in some software systems
such as parsers and XML document processors. These
descriptions are usually specified by different kinds of
grammar formalisms including context-free grammars,
tree/graph grammars, regular expressions and so on.
In such grammarwares, ensuring the completeness
and correctness of structural descriptions is a vital
prerequisite for their uses. Some efforts have been
devoted to this issue. For instance, [17, 53, 54] studied
testing approaches and metrics definitions for context-
free grammars, [22, 55] investigated testing approaches
and metrics definitions for attribute grammars, [56,
42, 57] explored testing approaches for XML schemas
(tree grammars) and [58] studied approaches for
developing high-quality generative design grammars
(graph grammars). However, little work has been found
concerning the quality of regular expressions.

Coverage Criteria are an important topic in software
testing, which are usually sets of rules to help determine
whether a test set has adequately tested a software and
provide a basis for test data generation. A number
of coverage criteria have been proposed and applied
such as statement coverage, branch coverage, path
coverage and so on. These criteria are defined for
programs, i.e., defined based on the codes of programs
under test. Coverage criteria for different grammar
formalisms have also been studied. The notion of rule
coverage used as a criterion for testing context-free
grammars was first introduced by Purdom [16]. A test
string is said to cover a grammar rule if that rule is
used at least once in deriving that string. Purdom
described an algorithm for generating a minimal set
of strings that uses all the rules of a grammar, i.e.,
100% rule coverage. Following up on Purdom’s work,
several string generation algorithms based on rule
coverage have been developed. [59] extended Purdom’s
algorithm by modifying the rule choose strategy and
[20] by integrating a length control mechanism in
string generation process. Lämmel [17] proposed a
generalization of rule coverage, where the context in
which a rule is covered is taken into account. This
criterion is called context-dependent rule coverage and

The Computer Journal, Vol. ??, No. ??, ????

22 L. Zheng, S. Ma, Y. Wang, G. Lin

a string generation algorithm for this metric was worked
out in [21]. Based on Purdom and Lämmel’s work, [18]
introduced more test criteria for context-free grammars
including length-k successor coverage that takes not
just one or two derivation steps but k > 2 derivation
steps of the context in which a grammar rule is
covered into account, but did not provide corresponding
string generation algorithms. [19] developed the
notion of two-dimensional approximation coverage
for attribute grammars, which involves a syntactic
dimension corresponding to the underlying context-
free grammar and a semantic dimension corresponding
to the attributes, conditions and computations, and
designed a generator algorithm for test sets achieving
this coverage. These work on coverage criteria
and string generation algorithms focuses mainly on
grammars, while our work is devoted specifically to
regular expressions.

Also close to our work is automatic generation of
strings for regular languages. This is a fundamental
issue in formal language theory, and sampling and
enumerating have been extensively studied. (1)
Sampling, i.e., randomly and uniformly generating
strings from a regular language, was first addressed by
Hickey and Cohen [6], as a particular case of context-
free languages, and a recursive sampling algorithm
was proposed to take a deterministic finite automaton
of a regular language, and generate uniformly at
random a string of length n. Kannan et al. [7]
studied the problem of counting and random generation
of strings in regular languages that are described
by nondeterministic finite automata, and provided
randomized algorithms for approximate counting and
almost uniform generation. Recently, Bernardi and
Giménez [8] developed a new divide-and-conquer
approach for sampling strings of regular languages,
which improves the average complexity of generation
by using floating point arithmetic. Also based on
a divide-and-conquer approach, Oudinet et al. [9]
devised the so-called dichopile method which offers
an excellent compromise in terms of space and time
requirements. (2) Enumerating was first discussed
in [10] where the author presented an algorithm
that given a regular grammar returns all strings of
length n derived by that grammar in lexicographical
order. Then Ackerman and Shallit [11, 12] modified
the algorithm to obtain an algorithm that takes a
nondeterministic finite automaton as input. In [13], the
authors presented new and more efficient algorithms
with better practical running times for regular
language enumeration problems, including finding the
lexicographically minimal string of length n, listing all
strings of length n in lexicographical order, and listing
the first m strings according to length-lexicographic
order. This work is different to ours in that we
consider taking a regular expression as direct input and
emphasize on producing string sets achieving certain
coverage criterion for that regular expression.

There are several tools developed for generating
strings from regular expressions, such as Xeger [41],
Exrex [60], Generex [61], Egret [3]. These tools focus
on regular expression patterns, i.e., expressions used
in manipulating text strings, while in this paper we
study general-purpose regular expressions from the
perspective of formal language theory. Moreover, the
generation strategies of these tools are random [41,
60, 61] or based on the underlying automata [3].
Our generation, on the contrast, is based on coverage
criteria defined directly on expressions themselves.
The experimental results show that coverage based
generation outperforms random generation in testing
regular expressions. Egret first converts a regular
expression into a specialized automaton, then derives a
set of basis paths of the resulting automaton and finally
creates strings from the basis paths. In one sense, we
may say that the generated strings can cover the basis
paths of the specialized automaton. Roughly speaking,
this coverage is not as strict as pairwise coverage
proposed in this paper. Our experiments show that
some of the faults captured by our algorithm could not
be exposed by Egret even if Egret can produce negative
test strings. Moreover, our algorithms can be used to
generate characteristic samples for validating regular
expression learning algorithms. Egret, however, cannot
guarantee the generation of characteristic samples.

10. CONCLUSIONS

Coverage criteria are used to measure the quality
of a particular test set, and to provide strategies
for test data generation algorithms. In this
study, we have proposed a novel coverage for both
standard regular expressions and regular expressions
extended with counting and interleaving. We have
compared the criterion for regular expressions with
existing criteria for both regular grammars and
finite automata, and analyzed their subsumption
relationships. We have also developed the string
generation algorithm, and experimentally verified the
effectiveness of our algorithms. Finally, we have
identified more applications of our coverage and
generation algorithm, especially in the application
of generating characteristic samples for some regular
expression learning algorithms. These results are
not only theoretically meaningful in formal language
research, but are also practically useful for applications
involved with regular expressions.

In the future, we plan to investigate more practical
applications of the coverage and string generation
algorithms, such as DNA sequences. Another work is to
extend our algorithms for generating not only positive
but also useful negative strings.

ACKNOWLEDGEMENTS

Zheng is supported in part by NSFC (No. 61502184

& 61472405) and Natural Science Foundation of Fujian

The Computer Journal, Vol. ??, No. ??, ????

String Generation for Testing Regular Expressions 23

Province (No. 2015J01259). Ma is supported in part
by NSFC (No. U1636210 & 61421003) and 973 Program
(No. 2014CB340300). We also thank the research group
of Professor Haiming Chen for preparing the extended
regular expressions used in our experiments.

REFERENCES

[1] Murata, M., Lee, D., Mani, M., and Kawaguchi, K.
(2005) Taxonomy of XML schema languages using
formal language theory. ACM Transactions on Internet
Technology, 5, 660–704.

[2] Fan, W., Li, J, Ma, S., Tang, N. and Wu, Y. (2012)
Adding regular expressions to graph reachability and
pattern queries. Frontiers of Computer Science, 6(3),
313–338.

[3] Larson, E. and Kirk, A. (2016) Generating evil
test strings for regular expressions. Proceedings
of International Conference on Software Testing,
Verification and Validation (ICST), , Chicago, IL,
USA, 11-15 April, pp. 309–319. IEEE CS, Washington.

[4] Arcaini, P., Gargantini, A., and Riccobene, E. (2018)
Fault-based test generation for regular expressions
by mutation. Software Testing, Verification and
Reliability , e1664.

[5] Li, N., Xie, T., Tillmann, N., de Halleux, J., and
Schulte, W. (2009) Reggae: Automated test generation
for programs using complex regular expressions.
Proceedings of International Conference on Automated
Software Engineering (ASE) , Auckland, New Zealand,
16-20 November, pp. 515–519. IEEE CS, Washington.

[6] Hickey, T. and Cohen, J. (1983) Uniform random
generation of strings in a context-free language. SIAM
Journal on Computing, 12, 645–655.

[7] Kannan, S., Sweedyk, Z., and Mahaney, S. (1995)
Counting and random generation of strings in
regular languages. Proceedings of annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), San
Francisco, California, USA, 22-24 January pp. 551–557.
SIAM, Philadelphia.

[8] Bernardi, O. and Giménez, O. (2012) A linear
algorithm for the random sampling from regular
languages. Algorithmica, 62, 130–145.

[9] Oudinet, J., Denise, A., and Gaudel, M. C. (2013)
A new dichotomic algorithm for the uniform random
generation of words in regular languages. Theoretical
Computer Science, 502, 165–176.

[10] Mäkinen, E. (1997) On lexicographic enumeration of
regular and context-free languages. Acta Cybernetica,
13, 55–61.

[11] Ackerman, M. and Shallit, J. (2007) Efficient
enumeration of regular languages. Proceedings
of International Conference on Implementation and
Application of Automata (CIAA), Prague, Czech
Republic, 16-18 July, pp. 226–242. Springer, Berlin.

[12] Ackerman, M. and Shallit, J. (2009) Efficient
enumeration of words in regular languages. Theoretical
Computer Science, 410, 3461–3470.

[13] Ackerman, M. and Mäkinen, E. (2009) Three new algo-
rithms for regular language enumeration. Proceedings
of International Computing and Combinatorics Confer-
ence (COCOON), Niagara Falls, NY, USA, 13-15 July,
pp. 178–191. Springer, Berlin.

[14] Gore, V., Jerrum, M., Kannan, S., Sweedyk, Z., and
Mahaney, S. (1997) A quasi-polynomial-time algorithm
for sampling words from a context-free language.
Information and Computation, 134, 59–74.

[15] Myers, G. J., Sandler, C., and Badgett, T. (2011) The
art of software testing. John Wiley & Sons, Hoboken,
New Jersey.

[16] Purdom, P. (1972) A sentence generator for testing
parsers. BIT, 12, 366–375.

[17] Lämmel, R. (2001) Grammar testing. Proceeding of
International Conference on Fundamental Approaches
to Software Engineering (FASE), Genova, Italy, 2-6
April, pp. 201–216. Springer, Berlin.

[18] Li, H., Jin, M., Liu, C., and Gao, Z. (2004)
Test criteria for context-free grammars. Proceedings
of International Computer Software and Applications
Conference (COMPSAC), Hong Kong, China, 27-30
September, pp. 300–305. IEEE CS, Washington.

[19] Harm, J. and Lämmel, R. (2000) Two-dimensional
approximation coverage. Informatica, 24, 355–369.

[20] Zheng, L. and Wu, D. (2009) A sentence generation
algorithm for testing grammars. Proceedings of
International Computer Software and Applications
Conference (COMPSAC), Seattle, Washington, USA,
20-24 July, pp. 130–135. IEEE CS, Washington.

[21] Xu, Z., Zheng, L., and Chen, H. (2011) A toolkit
for generating sentences from context-free grammars.
International Journal of Software and Informatics, 5,
659–676.

[22] Harm, J. and Lämmel, R. (2000) Testing attribute
grammars. Proceedings of third workshop on attribute
grammars and their applications (WAGA), Ponte de
Lima, Portugal, 7 July, pp. 79–98. Springer, Berlin.

[23] Hume, A. (1988) A tale of two greps. Software:
Practice and Experience, 18, 1063–1072.

[24] Wall, L., Christiansen, T., and Orwant, J. (2000)
Programming perl. O’Reilly Media, Inc, Sebastopol,
California.

[25] Thompson, H. S., Beech, D., Maloney, M., and
Mendelsohn, N. (2004). XML Schema part 1:
structures. Second edition.

[26] Clark, J. and Makoto, M. (2001). Relax NG Tutorial.

[27] Kilpeläinen, P. and Tuhkanen, R. (2003) Regular
expressions with numerical occurrence indicators-
preliminary results. Proceeding of Symposium on
Programming Languages and Software Tools (SPLST),
Kuopio, Finland, 17-18 June, pp. 163–173. CEUR-
WS.org, Aachen, Germany.

[28] Gelade, W. (2010) Succinctness of regular expressions
with interleaving, intersection and counting. Theoreti-
cal Computer Science, 411, 2987–2998.

[29] Hopcroft, J. E., Motwani, R., and Ullman, J. D.
(2001) Introduction to Automata Theory, Languages,
and Computation (Second Edition). Addison-Wesley,
Boston, MA.

[30] Nie, C. and Leung, H. (2011) A survey of combinatorial
testing. ACM Computing Surveys, 43, 11:1–11:29.

[31] Pairwise testing. http://www.pairwise.org/.

[32] Ntafos, S. C. (1988) A comparison of some structural
testing strategies. IEEE Transactions on Software
Engineering, 14, 868–874.

The Computer Journal, Vol. ??, No. ??, ????

24 L. Zheng, S. Ma, Y. Wang, G. Lin

[33] Zhu, H., Hall, P. A. V., and May, J. H. R. (1997)
Software unit test coverage and adequacy. ACM
Computing Surveys, 29, 366–427.

[34] Han, Y. and Wood, D. (2007) Obtaining shorter regular
expressions from finite-state automata. Theoretical
Computer Science, 370, 110–120.

[35] Lei, Y. and Tai, K.-C. (1998) In-parameter-order:
A test generation strategy for pairwise testing.
Proceedings of International High-Assurance Systems
Engineering Symposium (HASE), Washington, D.C,
USA, 13-14 November, pp. 254–261. IEEE CS,
Washington.

[36] Anant P. Godbole, D. E. S. and Sunley, R. A.
(1996) t-covering arrays: upper bounds and poisson
approximations. Combinatorics, Probability and
Computing, 5, 105–117.

[37] Abiteboul, S., Buneman, P., and Suciu, D. (2000) Data
on the Web: from relations to semistructured data and
XML. Morgan Kaufmann, San Francisco.

[38] Li, Y., Zhang, X., Peng, F., and Chen, H. (2016)
Practical study of subclasses of regular expressions
in DTD and XML Schema. Proceedings of Asia-
Pacific Web Conference (APWeb), Suzhou, China, 23-
25 September, pp. 368–382. Springer, Berlin.

[39] Bala, S. (2002) Intersection of regular languages and
star hierarchy. Proceedings of International Colloquium
on Automata, Languages, and Programming (ICALP),
Malaga, Spain, 8-13 July, pp. 159–169. Springer, Berlin.

[40] Demillo, R. A., Lipton, R. J., and Sayward, F. G.
(1978) Hints on test data selection: Help for the
practicing programmer. Computer, 11, 34–41.

[41] Xeger. https://code.google.com/archive/p/xeger/.

[42] Li, J. B. and Miller, J. (2005) Testing the semantics of
W3C XML Schema. Proceedings of International Com-
puter Software and Applications Conference (COMP-
SAC), Edinburgh, Scotland, UK, 25-28 July, pp. 443–
448. IEEE CS, Washington.

[43] http://www.brics.dk/automaton/.

[44] Searls, D. B. (1993) The computational linguistics
of biological sequences. In Hunter, L. (eds),
Artificial intelligence and molecular biology. American
Association for Artificial Intelligence, Menlo Park, CA,
USA.

[45] Brauer, F., Rieger, R., Mocan, A., and Barczynski,
W. M. (2011) Enabling information extraction by
inference of regular expressions from sample entities.
Proceedings of International Conference on Information
and Knowledge Management (CIKM), Glasgow, United
Kingdom, 24-28 October, pp. 1285–1294. ACM, New
York.

[46] Garcia, P. and Vidal, E. (1990) Inference of k-
testable languages in the strict sense and application
to syntactic pattern recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 12, 920–
925.

[47] Gold, E. M. (1967) Language identification in the limit.
Information and Control, 10, 447 – 474.

[48] Bex, G. J., Neven, F., Schwentick, T., and
Vansummeren, S. (2010) Inference of concise regular
expressions and DTDs. ACM Transactions on
Database Systems, 35, 1–47.

[49] Freydenberger, D. D. and Kötzing, T. (2015) Fast
learning of restricted regular expressions and DTDs.
Theory of Computing Systems, 57, 1114–1158.

[50] Fernau, H. (2009) Algorithms for learning regular
expressions from positive data. Information and
Computation, 207, 521–541.

[51] Angluin, D. (1982) Inference of reversible languages.
Journal of the ACM, 29, 741–765.

[52] P.Klint, R.Lämmel, and C.Verhoef (2005) Towards
an engineering discipline for grammarware. ACM
Transaction on Software Engineering and Methodology,
14, 331–380.

[53] Power, J. F. and Malloy, B. A. (2004) A metrics
suite for grammar-based software. Journal of Software
Maintenance and Evolution: Research and Practice,
16, 405–426.

[54] Crepinsek, M., Kosar, T., Mernik, M., Cervelle, J.,
Forax, R., and Roussel, G. (2010) On automata and
language based grammar metrics. Computer Science
and Information Systems, 7, 309–329.

[55] Cruz, J., Henriques, P. R., and da Cruz, D. (2015)
Assessing attribute grammars quality: metrics and
a tool. Proceedingd of International Symposium on
Languages, Applications and Technologies (SLATE),
Madrid, Spain, 18-19 June, pp. 137–144. Springer,
Berlin.

[56] Emer, M. C. F. P., Vergilio, S. R., and Jino, M. (2005)
A testing approach for XML schemas. Proceedings
of International Computer Software and Applications
Conference (COMPSAC), Edinburgh, Scotland, UK,
25-28 July, pp. 57–62. IEEE CS, Washington.

[57] Emer, M. C. F. P., Nazar, I. F., Vergilio, S. R., and
Jino, M. (2012) Fault-based test of XML schemas.
Computing and Informatics, 30, 531–557.

[58] Königseder, C. and Shea, K. (2014) Systematic rule
analysis of generative design grammars. Artificial
Intelligence for Engineering Design, Analysis and
Manufacturing, 28, 227–238.

[59] Celentano, A., Crespi-Reghizzo, S., Della-Vigna, P.,
and Ghezzi, C. (1980) Compiler testing using a sentence
generator. Software Practice and Experience, 10, 897–
918.

[60] Exrex. https://github.com/asciimoo/exrex.

[61] Generex. https://github.com/mifmif/generex.

The Computer Journal, Vol. ??, No. ??, ????

