
1

Approximate Computation for Big Data Analytics
Shuai Ma, Jinpeng Huai

Abstract—Over the past a few years, research and development has made significant progresses on big data analytics. A fundamental
issue for big data analytics is the efficiency. If the optimal solution is unable to attain or not required or has a price to high to pay, it is
reasonable to sacrifice optimality with a “good” feasible solution that can be computed efficiently. Existing approximation techniques
can be in general classified into approximation algorithms, approximate query processing for aggregate SQL queries and
approximation computing for multiple layers of the system stack. In this article, we systematically introduce approximate computation,
i.e., query approximation and data approximation, for efficiency and effectiveness big data analytics. We first explain the idea and
rationale of query approximation, and show efficiency can be obtained with high effectiveness in practice with three analytic tasks:
graph pattern matching, trajectory compression and dense subgraph computation. We then explain the idea and rationale of data
approximation, and show efficiency can be obtained even without sacrificing for effectiveness in practice with three analytic tasks:
shortest paths/distances, network anomaly detection and link prediction.

Index Terms—Big data, query approximation, data approximation

F

1 INTRODUCTION

Over the past a few years, research and development has
made significant progresses on big data analytics with the
supports from both governments and industries all over
the world, such as Spark1, IBM Watson2 and Google Al-
phaGo3. A fundamental issue for big data analytics is the
efficiency, and various advances towards attacking this issue
have been achieved recently, from theory to algorithms to
systems [15], [29], [48]. However, if the optimal solution is
unable to attain or not required or has a price to high to pay, it is
reasonable to sacrifice optimality with a “good” feasible solution
that can be computed efficiently. Hence, various approximation
techniques have been developed, and can in general be clas-
sified into three aspects: algorithms, SQL aggregate queries
and multiple layers of the system stack.
(1) Approximation algorithms were formally defined in the

1970s [20], [28]. An approximation algorithm is neces-
sarily polynomial, and is evaluated by the worst case
possible relative error over all possible instances of
the NP-hard optimization problem, under the widely
believed P 6= NP conjecture. This is relatively mature
research field algorithm community, many approxima-
tion algorithm have been designed for optimization
problems (see books [4], [24], [45]).

(2) Approximate query processing supports a slightly con-
strained set of SQL-style declarative queries, and it
specifically provides approximate results for standard
SQL aggregate queries, e.g., queries involving COUNT,
AVG, SUM and PERCENTILE. Over the past two
decades, approximate query processing has been suc-
cessfully studied, among which sampling technique
are heavily employed [9], [21], [30], [42]. Not only

• S. Ma and J. Huai are with the SKLSDE Lab & Beijing Advanced Inno-
vation Center for Big Data and Brain Computing, Beihang University,
Beijing, China.
E-mail: {mashuai, huaijp}@buaa.edu.cn.

1. https://spark.apache.org
2. https://www.ibm.com/watson
3. https://deepmind.com/research/alphago

traditional DBMS systems, such as Oracle4, provide
approximate functions to support approximate results,
but also emerging new systems specially designed
for approximate queries, such as BlinkDB5, Verdict6,
Simba7, have been designed. However, as pointed out
in [9], “ it seems impossible to have an approximate
query processing system that supports the richness of
SQL with significant saving of work while providing an
accuracy guarantee that is acceptable to a broad set of
application workloads.”

(3) Approximation computing is a recent computation tech-
nique that returns a possibly inaccurate result rather
than a guaranteed accurate result from a system point
of view. It involves with multiple layers of the system
stack from software to hardware to systems (such as
approximate circuits, approximate storage and loop
perforation), and can be used for applications where
an approximate result is sufficient for its purpose [2],
[41]. Recently, a workshop on approximate computing
across the stack has been usefully held for research
on hardware, programming languages and compiler
support for approximate computing since 2014. (see
e.g., 20168, 20179 and 201810). Besides the various task
oriented quality metrics, the quality-energy trade-off
is also concerned for approximate computing. For in-
stance, allowing only 5% loss of classification accuracy
can provide 50 times energy saving for clustering algo-
rithm k-means [41].

In this article, we present the idea of approximate com-
putation for efficient and effective big data analytics: query
approximation and data approximation, based on our recent

4. https://oracle-base.com/articles/12c/approximate-query
-processing-12cr2

5. http://blindb.org/
6. http://verdictdb.org/
7. https://initialdlab.github.io/Simba/index.html
8. http://approximate.computer/wax2016/
9. http://approximate.computer/wax2017/
10. http://approximate.computer/wax2018/



2

Figure 1. Query approximation

research experiences [13], [14], [25], [31], [33]–[39]. Approx-
imation algorithms ask for feasible solutions that are theo-
retically bounded with respect to optimal solutions from an
algorithm design aspect. Approximate query processing and
approximation computing relax the need for accuracy guar-
antees for aggregate SQL queries and for multiple layers of
the system stack, respectively. Similarly, our approximate
computation is unnecessarily theoretically bounded with
respect to optimal solutions, but from an algorithm design
point of view. That is, we focus on approximate computation
for big data analytics for a situation where an approximate
result is sufficient for a purpose.

2 QUERY APPROXIMATION

Query approximation deals with complex queries involved
with big data analytic tasks. Given a class Q of data ana-
lytic queries with high a computational complexity, query
approximation is to transform into another class Q′ of
queries with a low computational complexity and satisfiable
approximate answers, as depicted in Fig. 1 in which Q, Q′,
D and R denote the original query, approximate query, data
and query result, respectively. Query approximation needs
to reach a balance between the query efficiency and answer
quality when approximating Q with Q′.

The rationale behind query approximation lies in that
inexact or approximate answers are sufficient or acceptable
for many big data analytic tasks. On one hand, when the
volume of data is extremely large, it may be impossible or
not necessary to compute the exact answers. Observe that
nobody would try each and every store to find a pair of
shoes with the best cost-performance ratio. That is, inexact
(approximate) solutions are good enough for certain cases.
On the other hand, when taking noises (very common for
big data) into account, it may not always be a good idea
to compute exact answers for those data analytic tasks
whose answers are rare or hard to identify, such as the
detection of homegrown violent extremists (HVEs) who
seek to commit acts of terrorism in the United States and
abroad [26], as finding exact solutions may have a high
chance to miss/ignore possible candidates.

We next explain query approximation computation in
more detail using three different data analytic tasks.

(1) Strong Simulation [33], [34]. Given a pattern graph Q
and a data graph G, graph pattern matching is to find all
subgraphs ofG that matchQ, and is being increasingly used
in various applications, e.g., biology and social networks.

Here matching is typically defined in terms of subgraph
isomorphism [19]: a subgraphGs ofGmatchesQ if there exists
a bijective function f from the nodes of Q to the nodes in Gs

such that (a) for each pattern node u in Q, u and f(u) have
the same label, and (b) there exists an edge (u, u′) in Q if
and only if there exists an edge (f(u), f(u′)) in Gs.

The goodness of subgraph isomorphism is that all
matched subgraphs are exactly the same as the pattern
graph, i.e., completely preserving the topology structure
between the pattern graph and data graph. However, sub-
graph isomorphism is NP-complete, and may return expo-
nentially many matched subgraphs. Further, subgraph iso-
morphism is too restrictive to find sensible matches in cer-
tain scenarios, as observed in [17]. Even worse, online data
in many cases only represents a partial world (e.g., terrorist
collaboration networks and homosexual networks are often
accompanied with a large amount of offline data). Exact
computations on online data, whose offline counterpart is
extremely hard to collect, typically decreases the chance of
identifying candidate answers. These hinder the usability of
graph pattern matching in emerging applications.

To lower the high complexity of subgraph isomorphism,
substitutes for subgraph isomorphism [16], [17], which al-
low graph pattern matching to be conducted in cubic-time,
have been proposed by extending graph simulation [23].
However, they fall short of capturing the topology of data
graphs, i.e., graphs may have a structure drastically different
from pattern graphs that they match, and the matches found
are often too large to analyze.

To rectify these problems, strong simulation, an “approx-
imate” substitute for subgraph isomorphism, is proposed
for graph pattern matching [34], which (a) theoretically
preserves the key topology of pattern graphs and finds a
bounded number of matches, (b) retains the same com-
plexity as earlier extensions of graph simulation [16], [17],
by providing a cubic-time algorithm for strong simulation
compuation, and (c) has the locality property that allows
us to develop an effective distributed algorithm to conduct
graph pattern matching on distributed graphs.

Strong simulation is experimentally verified that it is
able to identify sensible matches that are not found by
subgraph isomorphism, and it finds high quality matches
that retain graph topology. Indeed, 70%-80% of matches
found by subgraph isomorphism are retrieved by strong
simulation. Further, strong simulation is over 100 times
faster than subgraph isomorphism, and has a bounded
number of matches.

(2) One-Pass Trajectory Compression [31]. Trajectory com-
pression (a.k.a. trajectory simplification) is to compress data
points in a trajectory to a set of continuous line segments,
and is commonly used in practice.

The compression ratios of lossless methods are poor, and
querying on the compressed data is time consuming due
to the reconstruction of the original data [43]. Hence, lossy
techniques, which provide approximate solutions with good
compression ratios and bounded errors, are the mainstream.

Piece-wise line simplification (LS) comes from the com-
putational geometry, whose target is to approximate a given
finer piece-wise linear curve by another coarser piece-wise
linear curve (normally a subset of the former), such that the



3

maximum distance of the former from the later is bounded
by a user specified constant (i.e., error bound). It is widely
used due to its distinct advantages: (a) simple and easy to
implement, (b) no need extra knowledge and suitable for
freely moving objects, and (c) bounded errors with good
compression ratios.

LS algorithms fall into two categories: optimal and ap-
proximate. Optimal methods [27] are to find the minimum
number of points or segments to represent the original
polygonal lines w.r.t. an error bound ε. They have higher
time and space complexities, and are not practical for large
trajectory data. Hence, various approximate LS algorithms
have been developed, from batch algorithms (e.g., [12]) to
online algorithms (e.g., [32]) and to one-pass algorithms
(e.g., [31]).

An LS algorithm is one-pass if it processes each point
in a trajectory once and only once when compressing the
trajectory. Obviously, one-pass algorithms have low time
and space complexities, and are more appropriate for online
processing. The difficulty comes from the need to achieve
effective compression ratios. Existing trajectory simplifica-
tion algorithms (e.g., [12]) and online algorithms (e.g., [32])
essentially employ global distance checking, although on-
line algorithms restrict the checking within a window. That
is, whenever a new line segment is formed, these algorithms
always check its distances to all or a subset of data points,
and, therefore, a data point is checked multiple times, de-
pending on its order in the trajectory and the number of
directed line segments formed. Hence, an appropriate local
distance checking approach is needed in the first place for one-pass
trajectory simplification..

We develop a local distance checking method, referred
to as fitting function, such that a data point is checked only
once in the entire process. Based on the fitting function,
we develop one-pass error bounded trajectory simplification
algorithms OPERB and OPERB-A that scan each data point
in a trajectory once and only once, allowing interpolating
new data points or not, respectively. By comparing our algo-
rithms with FBQS (the fastest existing LS online algorithm
[32]) and DP (the best existing LS batch algorithm in terms
of compression ratio [12]), our one-pass algorithms OPERB
and OPERB-A are over four times faster than FBQS, and
have comparable compression ratios with DP.

(3) Dense Temporal Subgraph Computation [39]. We study
dense subgraphs in a special type of temporal networks whose
nodes and edges are kept fixed, but edge weights constantly
and regularly vary with timestamps [39]. Essentially, a
temporal network with T timestamps can be viewed as T
snapshots of a static network such that the network nodes
and edges are kept the same among these T snapshots,
while the edge weights vary with network snapthots. Road
traffic networks typically fall into this category of temporal
networks, and dense subgraphs are used for road traffic
analyses that are of particular importance for transportation
management of large cities.

Dense subgraphs are a general concept, and their con-
crete semantics highly depends on the studied problems and
applications. Though dense subgraphs have been widely
studied in static networks, how to properly define their
semantics over temporal networks is still in the early stage,

not to mention effective and efficient analytic algorithms.
We adopt the form of dense temporal subgraphs initially

defined and studied in [5], such that a temporal subgraph
corresponds to a connected subgraph measured by the sum
of all its edge weights in a time interval, i.e., a continuous
sequence of timestamps. Intuitively, a dense subgraph that
we consider corresponds to a collection of connected highly
slow or jam roads (i.e., a jam area) in road networks, lasting
for a continuous sequence of snapshots.

The problem of finding dense subgraphs in temporal
networks is non-trivial, and it is already NP-complete even
for a temporal network with a single snapshot and with +1
or −1 edge weights only, as observed in [5]. Even worse,
it remains hard to approximate for temporal networks with
single snapshots [39]. Moreover, given a temporal network
with T timestamps, there are a total number of T ∗(T +1)/2
time intervals to consider, which further aggravates the
difficulty. The state of the art solution MEDEN [5] adopts
a Filter-And-Verification (FAV) framework that even if a large
portion of time intervals are filtered, there often remain a large
number of time intervals to verify. Hence, this method is
not big data friendly, and is not scalable when temporal
networks have a large number of nodes/edges or a large
number T of timestamps.

We develop a data-driven approach (referred to as
FIDES), instead of filter-and-verification, to identifying the
most possible k time intervals from T × (T + 1)/2 time
intervals, in which T is the number of snapshots and k
is a small constant, e.g., 10. This is achieved by exploring
the characteristics of time intervals involved with dense
subgraphs based on the observation of evolving convergence
phenomenon in traffic data, inspired by the convergent evolu-
tion in nature11. That is, our method provides time intervals
with probabilistic guarantees, instead of exact ones as FAV.
Using both real-life and synthetic data, we experimentally
show that our method FIDES is over 1000 times faster than
MEDEN [5], while the quality of dense subgraphs found is
comparable with MEDEN .

3 DATA APPROXIMATION

Big data has a large volume, and, hence, the space com-
plexity [11] of big data analytic tasks starts raising more
concerns. Given a class Q of queries on data D, data ap-
proximation is to transform D into smaller D′ such that Q
on D′ returns a sufficient or satisfiable approximate answer
in a more efficient way. Further, it is typically common that
query Q needs to be (slightly) modified to Q′ to accommo-
date the changes of D to D′, as shown in Fig. 2. Similar to
query approximation, data approximation needs to reach a
balance between the query efficiency and answer quality.

The rationale behind data approximation has roots in the
Pareto principle12 that “states that, for many events, roughly
80% of the effects come from 20% of the causes”. The critical
thing for data approximation is to determine which part
of data is relevant to tasks (belong to the 20%). By this
principle, for many big analytic tasks, one may only need
to keep a small amount of the data to derive high quality

11. https://en.wikipedia.org/wiki/Convergent evolution
12. https://en.wikipedia.org/wiki/Pareto principle



4

Figure 2. Data approximation

answers. For example, when we are to build a predictive
model on the stock of razers for an online store based on
the order history of customers, orders from men are good
enough. While on the stock of lipsticks, those from women
are good enough. That is to say, it is not necessary to use the
entire data for certain data analytic tasks.

However, it should be pointed out that there are data
analytic tasks such that data approximation could not work
well. For example, an online store needs to count the total
number of goods in its catalog. Essentially entire goods
should be considered for this task, and if a (small) portion
of goods are chosen, it is hard to have a satisfiable result.

We next explain data approximation computation in
more detail using three different data analytic tasks.

(1) Proxies for Shortest Paths and Distances [36], [37].
Computing shortest paths and distances is one of the fun-
damental problems on graphs. We study the node-to-node
shortest path (distance) problem on large graphs: given a
weighted undirected graphG(V,E) with non-negative edge
weights, and two nodes of G, the source s and the target t,
find the shortest path (distance) from s to t in G. The Dijk-
stra’s algorithm with Fibonacci heaps runs inO(n log n+m)
due to Fredman & Tarjan [11], where n and m denote the
numbers of nodes and edges in a graph, respectively, which
remains asymptotically the fastest known solution on ar-
bitrary undirected graphs with non-negative edge weights.
However, computing shortest paths and distances remains
a challenging problem, in terms of both time and space cost,
on large-scale graphs. Hence, various optimizations have
been developed to speed-up the computation.

To speed-up shortest path and distance queries, we
propose proxies that have the following properties: (a) each
proxy captures a set of nodes in a graph, referred to as
DRA, (b) a small number of proxies can represent a large
number of nodes in a graph, (c) shortest paths and distances
involved within the set of nodes being represented by the
same proxies can be answered efficiently, and, (d) the prox-
ies and the set of nodes being represented can be computed
efficiently in linear time.

The framework for speeding-up shortest path and dis-
tance queries with proxies consists of two module, prepro-
cessing and query answering, as follows.
(a) Preprocessing: Given graph G(V,E), it first computes
all DRAs and their maximal proxies in linear time, then it
computes and stores all the shortest paths and distances
between any node and its proxy. It finally computes the
reduced subgraph G′ by removing all DRAs from graph G,
i.e., keeping the proxies only.

(b) Query answering. Given two nodes s and t in graph G(V ,
E) and the pre-computed information, the query answering
module essentially executes the following.

The shortest path path(s, t) = path(s, us)/ path(us, ut)/
path(ut, t), where us and ut are the proxies of s and t, re-
spectively. As path(s, us) and path(ut, t) are pre-computed,
and path(us, ut) can be computed on the reduced subgraph
G′ by invoking any existing algorithms (e.g.,AH [49]). The
shortest distance dist(s, t) = dist(s, us) + dist(us, ut) +
dist(ut, t) can be computed along the same line.

Essentially, we propose a light-weight data reduction
technique for speeding-up (exact) shortest path and distance
queries on large weighted undirected graphs [36]. We exper-
imentally show that about 1/3 nodes of real-life social and
road networks are captured by proxies.

(2) Network Anomaly Detection [25] Anomaly (or outlier)
detection aims at identifying those objects in a dataset that
are unusual, i.e., different than the majority and there-
fore suspicious resulting from a contamination, error, or
fraud [50]. Network anomaly detection has become very
popular recently because of the importance of discovering
key regions of structural inconsistency in the network. In ad-
dition to application-specific information carried by anoma-
lies, the presence of such structural inconsistency is often
an impediment to the effective application of data mining
algorithms such as community detection and classification.

Networks are inherently complex entities, and, hence,
anomalies may be defined in a wide variety of ways. Our
goal is to discover structural inconsistencies, i.e., the anomalous
nodes that connect to a number of diverse influential communities,
inspired by the concept of social brokers across groups,
which provide social capital in networks [7]. While a variety
of graph embeddings, such as multidimensional scaling [6],
are available in the literature, they aim to preserve (global)
pairwise similarities and are not optimized to networks
and the problem of anomaly detection. Hence, they cannot
be directly used for the detection of structural inconsis-
tencies proposed in this paper. We propose a novel graph
embedding method, specifically designed to ferret out the
anomalous nodes in large networks.

Our embedding approach is based on a model, in which
each dimension of the embedding corresponds to a clus-
tered region in the network. In other words, the similarity
of different nodes along a particular dimension, indicates
their similarity to a particular clustered region. Therefore,
this embedding retains a very high level of interpretability
in terms of the original graph data, which is very useful
from an application-specific perspective. The nature of the
embedding also makes it possible to detect anomalous
nodes, by examining the interaction of each node with the
different regions in terms of the embedding. In particular,
we measure the level of anomalousness of a node in terms of
the embedding imposed on the node and its neighbors.

Each node in graph embedding is represented as a d-
dimensional vector, and the dimensionality d can be large.
Hence, such an approach is rather hard to apply to the
case of large networks, because the complexity of the ap-
proach is in proportion to the square of the number of
nodes when optimizing the embedding and because the
noises in the embedding seriously impair the accuracy of



5

detected anomalous nodes. Hence, we incorporate data ap-
proximation techniques (sampling, graph partitioning, and,
moreover, a novel dimension reduction technique) to make
the approach more scalable and effective for large networks.

Essentially, in our graph embedding, d represents the
number of communities. As the anomalous nodes are only
determined by influential communities and nodes typically
connect to a limited number of communities, the complete
d-dimensions are unnecessary, and a limited number of
communities suffice to ascertain anomalies. Thus, our di-
mension reduction technique (referred to as k+β reduction)
only maintains (k + β)-dimensions for embedding of each
node, where k is the maximum number of communities to
connect, β is to tolerate mistakes when determining the k
communities and is removed after the computation process.
Here k, β � d, e.g., k = 10 and β = 2 and d = 600 for a
network with 106 nodes.

Using both real-life data and synthetic data , we conduct
an extensive experimental study. (a) The modularity [10]
was increased about 4.9% and 3.6% with our approach and
OddBall [3], respectively; (c) Our approach scales to graph
graphs with large number of communities, while traditional
multidimensional scaling approach [6] ran out of memory.

(3) Ensemble Enabled Link Prediction [13], [14]. Link
prediction is the task to predict the formation of future links
in a dynamic and evolving network, and has been exten-
sively studied due to its numerous applications, such as the
recommendation of friends in a social network, images in a
multimedia network, or collaborators in a scientific network.

Link prediction methods are often applied to very large
and sparse networks, which have a large search space O(n2),
where n is the number of nodes. Hence, the scalability is a
big challenge. In fact, an often overlooked fact is that most
exiting link prediction algorithms evaluate the link propensities
only over a subset of possibilities rather than all propensities
over the entire network. Consider a large network with 108

nodes. Its number of possibilities for links is of the order of
1016. Therefore, a 3GHz processor would require at least 35
days just to allocate one machine cycle to every pair of nodes.
This implies that in order to determine the top-ranked link
predictions over the entire network, the running time would
be much more than 35 days.

It is noteworthy that most existing link prediction algo-
rithms are not designed to search over the entire O(n2) pos-
sibilities. A closer examination of the relevant studies shows
that even for networks of modest size, these algorithms per-
form benchmark evaluations over a sample of the possibilities
for links. In other words, the complete ranking problem for link
prediction in very large networks remains challenging at least
from a computational point of view.

Latent factor models have proven a great success for
collaborative filtering, but not link prediction in spite of the
obvious similarity and the obvious effectiveness of latent
factor models. One of the reasons why latent factor models
are rarely used for link prediction is due to their complexity.
In collaborative filtering applications, items have a few
hundred thousand dimensions, whereas even the smallest
real-world networks contain more than a million nodes.
Even worse, we also experientially verify that the quality
of link prediction for latent factor models decreases with

the increase of data sparsity, and networks typically become
sparser when their sizes grow larger.

We explore an ensemble approach to making latent fac-
tor models practical for link prediction by decomposing
the search space into a set of smaller matrices with three
structural bagging methods with performance guarantees,
which has obvious effectiveness advantages. In this way,
latent factor models only need to deal with networks with
small sizes (and denser), and retain their effectiveness and
efficiency. By incorporating with the characteristics of link
prediction, the bagging methods maintain high prediction
accuracy while reducing the network size via graph sam-
pling techniques. Further, the use of an ensemble approach
has obvious robustness advantages as well.

We experimentally show that our ensemble approach
is over 50 times faster and over 20% more accurate than
BIGCLAM [47] using real-life social networks.

4 BEYOND APPROXIMATION TECHNIQUES

For big data analytics, there are no one-size-fits-all tech-
niques, and it is often necessary to combine different tech-
niques to obtain good solutions.

We have seen that sampling helps to achieve a balance
between efficiency and effectiveness for approximate query
processing [9], [21], [30], [42] and link prediction [13], [14],
and other techniques such as incremental computation [17],
[38], [44], distributed computing [18], [35], and system
techniques e.g., caching [46], hardware [1], [22] can also be
unitized for big data analytics, and can even be combined
for designing query and data approximation techniques for
big data analytics.

It is worth pointing out that (1) for all kind of techniques
big data analytics, various computing resources should be
seriously considered, e.g., using bounded resources for ap-
proximation [8] and for incremental computation [40], and
(2) theoretical analyses are also important for developing
approximation techniques. For instance, our query and data
approximation techniques are based serious theoretical re-
sults [31], [33], [34], [36], [37].

5 CONCLUSIONS

In this article we have systematiclly introduced approxi-
mation computation techniques for efficient and effective
big data analytics. Furthermore, although approximate com-
putation does not put theoretical bounds with respect to
optimal solutions, it does expect a balance between effi-
ciency and effectiveness. Indeed, (a) our query approxima-
tion techniques [31], [33], [34], [39] show that efficiency can
be obtained with high accuracy in practice, and (b) our data
approximation techniques [13], [14], [25], [36], [37] show
that efficiency and accuracy can be obtained simultaneously
for certain data analytic tasks. That is, though approximate
computation is for a situation where an approximate result
is sufficient for a purpose, its design policy is not always to
sacrifice effectiveness for efficiency.

Acknowledgement. This work is supported in part by 973
program (2014CB340300), NSFC (U1636210 & 61421003). We
would also thank our colleagues Charu Aggarwal, Wenfei
Fan, Xuelian Lin and our students Yang Cao, Liang Duan,
Kaiyu Feng, Renjun Hu, Han Zhang for their joined efforts.



6

REFERENCES

[1] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré.
Emptyheaded: A relational engine for graph processing. ACM
Trans. Database Syst., 42(4):20:1–20:44, 2017.

[2] A. Agrawal, J. Choi, K. Gopalakrishnan, S. Gupta, R. Nair, J. Oh,
D. A. Prener, S. Shukla, V. Srinivasan, and Z. Sura. Approximate
computing: Challenges and opportunities. In ICRC, 2016.

[3] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly
detection and description: a survey. Data Min. Knowl. Discov.,
29(3):626–688, 2015.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, Marchetti-
Spaccamela, and M. A., Protasi. Complexity and Approximation:
Combinatorial Optimization Problems and Their Approximability Prop-
erties. Springer, 1999.

[5] P. Bogdanov, M. Mongiovı̀, and A. K. Singh. Mining heavy
subgraphs in time-evolving networks. In ICDM, 2011.

[6] I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory
and Applications (2nd ed.). Springer, 2005.

[7] R. S. Burt. Structural holes and good ideas. American Journal of
Sociology, 110(2):349–399, 2004.

[8] Y. Cao and W. Fan. Data driven approximation with bounded
resources. PVLDB, 10(9):973–984, 2017.

[9] S. Chaudhuri, B. Ding, and S. Kandula. Approximate query
processing: No silver bullet. In SIGMOD, 2017.

[10] A. Clauset, M. E. J. Newman, and C. Moore. Finding community
structure in very large networks. Physical Review E, 70:066111,
2004.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduc-
tion to Algorithms. The MIT Press, 2001.

[12] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of
the number of points required to represent a digitized line or its
caricature. The Canadian Cartographer, 10(2):112–122, 1973.

[13] L. Duan, C. C. Aggarwal, S. Ma, R. Hu, and J. Huai. Scaling up
link prediction with ensembles. In WSDM, 2016.

[14] L. Duan, S. Ma, C. Aggarwal, T. Ma, and J. Huai. An ensemble
approach to link prediction. TKDE, 29(11):2402–2416, 2017.

[15] W. Fan, F. Geerts, and F. Neven. Making queries tractable on big
data with preprocessing. PVLDB, 6(9):685–696, 2013.

[16] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regular
expressions to graph reachability and pattern queries. In ICDE,
2011.

[17] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern
matching: From intractable to polynomial time. PVLDB, 3(1), 2010.

[18] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, Z. Zheng, B. Zhang, Y. Cao,
and C. Tian. Parallelizing sequential graph computations. In
SIGMOD, 2017.

[19] B. Gallagher. Matching structure and semantics: A survey on
graph-based pattern matching. AAAI FS., 2006.

[20] M. R. Garey, R. L. Graham, and J. D. Ullman. Worst-case analysis
of memory allocation algorithms. In STOC, 1972.

[21] M. N. Garofalakis and P. B. Gibbons. Approximate query process-
ing: Taming the terabytes. In VLDB, 2001.

[22] S. Han, L. Zou, and J. X. Yu. Speeding up set intersections in graph
algorithms using SIMD instructions. In SIGMOD, 2018.

[23] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing
simulations on finite and infinite graphs. In FOCS, 1995.

[24] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems.
Springer, 1996.

[25] R. Hu, C. C. Aggarwal, S. Ma, and J. Huai. An embedding
approach to anomaly detection. In ICDE, 2016.

[26] B. W. K. Hung and A. P. Jayasumana. Investigative simulation:
Towards utilizing graph pattern matching for investigative search.
In ASONAM, 2016.

[27] H. Imai and M. Iri. Computational-geometric methods for polygo-
nal approximations of a curve. Computer Vision, Graphics, and Image
Processing, 36:31–41, 1986.

[28] D. S. Johnson. Approximation algorithms for combinatorial prob-
lems. J. Comput. Syst. Sci., 9(3):256–278, 1974.

[29] M. I. Jordan. Computational thinking, inferential thinking and
“big data”. In PODS, 2015.

[30] T. Kraska. Approximate query processing for interactive data
science. In SIGMOD, 2017.

[31] X. Lin, S. Ma, H. Zhang, T. Wo, and J. Huai. One-pass error
bounded trajectory simplification. PVLDB, 10(7):841–852, 2017.

[32] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, and R. Jurdak.
Bounded quadrant system: Error-bounded trajectory compression
on the go. In ICDE, 2015.

[33] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Capturing topology in
graph pattern matching. PVLDB, 5(4):310–321, 2011.

[34] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong simulation:
Capturing topology in graph pattern matching. TODS, 39(1):4:1–
4:46, 2014.

[35] S. Ma, Y. Cao, J. Huai, and T. Wo. Distributed graph pattern
matching. In WWW, 2012.

[36] S. Ma, K. Feng, J. Li, H. Wang, G. Cong, and J. Huai. Proxies for
shortest path and distance queries. TKDE, 28(7):1835–1850, 2016.

[37] S. Ma, K. Feng, J. Li, H. Wang, G. Cong, and J. Huai. Proxies for
shortest path and distance queries. In ICDE, 2017.

[38] S. Ma, C. Gong, R. Hu, D. Luo, C. Hu, and J. Huai. Query
independent scholarly article ranking. In ICDE, 2018.

[39] S. Ma, R. Hu, L. Wang, X. Lin, and J. Huai. Fast computation of
dense temporal subgraphs. In ICDE, 2017.

[40] S. Ma, J. Li, C. Hu, X. Liu, and J. Huai. Graph pattern matching
for dynamic team formation. CoRR, abs/1801.01012, 2018.

[41] S. Mittal. A survey of techniques for approximate computing.
ACM Comput. Surv., 48(4):62:1–62:33, 2016.

[42] B. Mozafari. Approximate query engines: Commercial challenges
and research opportunities. In SIGMOD, 2017.

[43] A. Nibali and Z. He. Trajic: An effective compression system for
trajectory data. TKDE, 27(11):3138–3151, 2015.

[44] G. Ramalingam and T. Reps. On the computational complexity of
dynamic graph problems. TCS, 158(1-2), 1996.

[45] V. V. Vazirani. Approximation Algorithms. Springer, 2003.
[46] J. Wang, Z. Liu, S. Ma, N. Ntarmos, and P. Triantafillou. GC: A

graph caching system for subgraph/supergraph queries. PVLDB,
11(12):2022–2025, 2018.

[47] J. Yang and J. Leskovec. Overlapping community detection at
scale: A nonnegative matrix factorization approach. In WSDM,
2013.

[48] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica. Apache spark: a unified
engine for big data processing. Commun. ACM, 59(11):56–65, 2016.

[49] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest
path and distance queries on road networks: towards bridging
theory and practice. In SIGMOD, 2013.

[50] A. Zimek and E. Schubert. Outlier Detection, pages 1–5. Springer
New York, 2017.

PLACE
PHOTO
HERE

Shuai Ma is a professor at the School of Com-
puter Science and Engineering, Beihang Univer-
sity, China. He obtained his PhD degrees from
University of Edinburgh in 2010, and from Peking
University in 2004, respectively. He was a post-
doctoral research fellow in the database group,
University of Edinburgh, a summer intern at Bell
labs, Murray Hill, USA and a visiting researcher
of MRSA. He is a recipient of the best paper
award for VLDB 2010 and the best challenge pa-
per award for WISE 2013. His current research

interests include database theory and systems, social data and graph
analysis, and data intensive computing.

PLACE
PHOTO
HERE

Jinpeng Huai is a professor at the School of
Computer Science and Engineering, Beihang
University, China. He received his Ph.D. degree
in computer science from Beihang University,
China, in 1993. Prof. Huai is an academician of
Chinese Academy of Sciences and the vice hon-
orary chairman of China Computer Federation
(CCF). His research interests include big data
computing, distributed systems, virtual comput-
ing, service-oriented computing, trustworthiness
and security.


