
Y. Lee et al. (Eds.): DASFAA 2004, LNCS 2973, pp. 824–830, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Incremental Maintenance of Discovered Mobile User
Maximal Moving Sequential Patterns ∗

Shuai Ma, Shiwei Tang, Dongqing Yang, Tengjiao Wang, and Chanjun Yang

Department of Computer Science, Peking University, Beijing 100871, China
{mashuai,tjwang,cjyang}@db.pku.edu.cn

{tsw,dqyang}@pku.edu.cn

Abstract. In the context of mobile computing, a special sequential pattern,
moving sequential pattern that reflects the moving behavior of mobile users at-
tracted researchers’ interests recently. While there have been a number of effi-
cient moving sequential pattern mining algorithms reported, this paper concen-
trates on the maintenance of mined maximal moving sequential patterns. In
particular, we developed an incremental approach, where maximal moving se-
quential patterns are stored in prefix trees, and new moving sequences can be
easily combined with the existing patterns. A performance study indicated that
the proposed approach performs significantly faster than straightforward ap-
proaches that mine from the whole updated database.

Keywords. Moving sequential pattern, Incremental maintenance, Data mining

1 Introduction

Mining moving sequential patterns has great significance for effective and efficient
location management in wireless communication systems. We systematically describe
the problem of mining moving sequential patterns as a special case of mining se-
quential patterns with the extension of support [1]. There are mainly four differences
between mining conventional sequential patterns and moving sequential patterns.
Firstly, if two items are consecutive in a moving sequence α, and α is a subsequence
of β, those two items must be consecutive in β. This is because we care about what
the next move is for a mobile user in mining moving sequential patterns. Secondly, in
mining moving sequential patterns the support considers the number of occurrences
in a moving sequence, so the support of a moving sequence is the sum of the number
of occurrence in all the moving sequences of the whole moving sequence database.
Thirdly, the Apriori property plays an important role for efficient candidate pruning
in mining sequential patterns. For example, suppose <ABC> is a frequent length-3

∗ Supported by the National High Technology Development 863 Program of China under

Grant No. 2002AA4Z3440; the National Grand Fundamental Research 973 Program of
China under Grant No. G1999032705; the Foundation of the Innovation Research Institute
of PKU-IBM.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 1800 dpi Downsampling für Bilder über: 2700 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: NeinSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages false /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Average /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Average /DetectBlends true /GrayImageDownsampleType /Average /PreserveEPSInfo true /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 1800 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Incremental Maintenance of Discovered Mobile User 825

sequence, and then all the length-2 subsequences {<AB>, <AC>, <BC>} must be
frequent in mining sequential patterns. In mining moving sequential patterns <AC>
may not be frequent. This is because a mobile user can only move into a neighboring
cell in a wireless system and items must be consecutive in mining moving sequential
patterns. In addition, <AC> is not a subsequence of <ABC> any more in mining
moving sequential patterns and that any subsequence of a frequent moving sequence
must be frequent is still fulfilled from that meaning, which is called Pseudo-Apriori
property. The last difference is that a moving sequence is an order list of items, but
not an order list of itemsets, where each item is a cell id.

Wen-Chih Peng et al. presented a data-mining algorithm, which involves mining
for user moving patterns in a mobile computing environment in [2]. Moving pattern
mining is based on a roundtrip model [3], and their LM algorithm selects an initial
location S, which is either VLR or HLR whose geography area contains the homes of
the mobiles users. Suppose a mobile user goes to a strange place for one month or
longer, the method in [2] cannot find the proper moving pattern to characterize the
mobile user. A more general method should not give any assumption of the start point
of a moving pattern. Basically, algorithm LM is a variant one from GSP [4]. The
Apriori-based methods can efficiently prune candidate sequence patterns based on
Aprior property, but in moving sequential pattern mining we cannot prune candidate
sequences efficiently because the moving sequential pattern only preserves Pseudo-
Apriori property. In the meanwhile Apriori-based algorithms still encounter problem
when a sequence database is large and/or when sequential patterns to be mined are
numerous and/or long [5]. Based on the idea of projection and Pseudo-Apriori prop-
erty, we propose a novel and efficient moving sequential pattern mining algorithm
PrefixTree based on a key tree structure prefix trees, which can effectively represent
candidate frequent moving sequences in [1]. The performance study shows that Pre-
fixTree outperforms LM of our version.

It is a nontrivial work to maintain the discovered mobile user maximal moving se-
quential patterns because the moving sequence of a mobile user will frequently up-
date every day and such updates may not only invalidate some existing frequent
moving sequence but also turn some infrequent moving sequences into frequent ones.
Wen-Chih Peng et al. also slightly revised LM in [6], but we should point out that the
LM algorithm revised is not a real algorithm that incrementally mines the moving
sequences. Firstly it relies on another algorithm MM for the calculation of Length-2
moving sequence; secondly, algorithm LM is executed to obtain new moving sequen-
tial patterns for every ω moving sequences as a solution for incremental update prob-
lem, thus LM is not designed for finding the moving sequential patterns of the up-
dated database.

In this paper we propose an efficient algorithm called PrefixTree+, which takes the
advantage of PrefixTree algorithm and avoids rerunning the mining algorithm from
scratch each time.

The rest of the paper is organized as follows. In section 2, we briefly describe the
algorithm of PrefixTree. Section 3 describes our incremental mining algorithm Pre-
fixTree+. The experimental results are given in section 4. Discussion and future work
are made in section 5.

826 S. Ma et al.

2 PrefixTree Algorithm

In this section, we will briefly describe PrefixTree algorithm, which forms the basis
for our incremental algorithm.

For each item Ci, we call the items that may appear just after it candidate consecu-
tive items. It is easy to know that only the items after Ci in a moving sequence may be
the consecutive items of Ci, denoted by CCI(Ci). And for any item Cj∈CCI(Ci),
length-2 moving sequence <CiCj> is frequent. Mobile user can only move into a
neighboring cell in a wireless system, so the unbound of the number of candidate
consecutive items for an item is the number of neighbor cells. Though there maybe be
a huge number of cells, the number of neighboring cells is often small. For example it
is two in one-dimension model, and six in two-dimension hexagonal model, and eight
in two-dimension mesh model, and is relative small even in graph model [7]. And the
other concepts of Prefix, Projection and Postfix are similar to the ones in PrefixSpan
[5], and are changed according to the characteristics of moving sequences.

PrefixTree algorithm only need scan the database three times, and the key idea of
PrefixTree is the use of prefix trees. Prefix tree is a compact representation of candi-
date moving sequential patterns. The root is the frequent item, and is defined at depth
one. Each node contains three attributes: one is the item, one is the count attribute
which means the support of the item, and the last one is the flag indicating whether
the node is traversed. The items of a node’s children are all contained in its candidate
consecutive items. In the first two scans PrefixTree generates the frequent itmes,
frequent length-2 moving sequential patterns and CCIs of each frequent item, and the
prefix trees are constructed in the third scan. It is easy for us to generate the moving
sequential patterns based on the prefix trees. Every moving sequence from the root
node to the leaf node is a candidate frequent moving sequences. We can get all the
moving sequential patterns by scanning all the prefix trees once. The support of each
node decreases with the depth increase, so a new frequent moving sequence is gener-
ated when we traverse the prefix trees from the root to the leaves when encountering
a node whose count is less than the support threshold.

3 PrefixTree+ Algorithm

In this section, we firstly describe the basic theory of incremental mining moving
sequences, and then present PrefixTree+ algorithm for computing the maximal mov-
ing sequential patterns in the updated database.

A. Sarasere et al. presented an efficient algorithm called Partition for mining asso-
ciation rules in [8]. The key to correctness of the Partition algorithm is that any po-
tential large itemset appears as a large itemset in at least one of the partitions, and
similarly we have the following lemma for mining moving sequential patterns, which
is also similar to the Partition algorithm, and it is easy to know the following lemma
is true. Interesting readers could see [8] for more information.

Incremental Maintenance of Discovered Mobile User 827

Lemma 1: Any moving sequence that is potential frequent with respect to the
updated database D′ must occur as a frequent moving sequence in at least one of the
partitions: the original database D and the incremental part ∆+.

Based on the above lemma, we modify the PrefixTree algorithm to PrefixTree+ for
computing the maximal moving sequential patterns in the updated database, which is
shown as below,

We keep the prefix trees of the original database by materializing them, and we
can construct the prefix trees again based on the materialized moving sequential pat-
terns. Thus the prefix trees of the original moving sequence database are not need to
mine any more, in the meanwhile we can get the their supports of the updated data-
base by scanning the incremental part once. After constructing the prefix trees of the
incremental part, we can get their supports of the updated database by scanning the
original moving sequence database once. Based on the prefix trees of the original
database and the incremental part separately, we could get the maximal moving se-
quential patterns. The materialized sequential patterns of the prefix trees for the up-
dated database, which will be used for the next time mining, is the union of the mate-
rialized prefix trees of D and ∆+, so we can easily get the materialized prefix trees of
D′ even if we do not know the prefix trees of D′ at all.

4 Experimental Results and Performance Study

All experiments are performed on a 1.7GHz Pentium 4 PC machine with 512M main
memory and 60G hard disk, running Microsoft Windows 2000 Professional. All the
methods are implemented using JBuilder 6.0.

The synthetic datasets used for our experiments come from SUMATRA (Stanford
University Mobile Activity TRAces) [9]. BALI-2: Bay Area Location Information
(real-time) dataset records the mobile users’ moving and calling activities in a day.
The mobile user averagely moves 7.2 times in a day in 90 zones, so the average

Algorithm PrefixTree+
Input: D, ∆+, Materialized prefix trees of D, Minimum support threshold
min_sup
Output: The complete set of maximal moving sequential patterns of D′
1: Reconstructing the prefix trees of D by scanning the materialized sequential
patterns of the prefix trees once.
2: Adding the count of prefix trees of D by scanning ∆+ once.
3: Constructing the prefix trees of ∆+ by scanning ∆+ three times.
4: Adding the count of prefix trees of ∆+ by scanning D once.
5: Generating moving sequential patterns based on the prefix trees of D and ∆+.
6: Generating maximal moving sequential patterns.
7: Generating the materialized prefix trees of D′ based on the prefix trees of D
and ∆+.

828 S. Ma et al.

length of moving sequence is 8.2. We extract about 42,000 moving sequences from
BALI-2 used for our experiments.

Let reading a moving sequence in a data file costs 1 unit of I/O. Let ρs be the sup-
port threshold (percentage), L be the length of the longest moving sequential pattern,
and N be the number of the materialized moving sequential patterns of the prefix
trees. The I/O cost of LM is equal to L(|∆+|+|D|); the I/O cost of PrefixTree is equal to
3(|∆+|+|D|); and the I/O cost of PrefixTree+ is approximately equal to 4|∆+|+|D|+2N. N
is usually is a small number, and N is about 500~2,500 in all our experiments. If L is
bigger than 3, the I/O cost of LM is bigger than the one of PrefixTree; otherwise, a
reverse conclusion. If the result of subtracting (4|∆+|+|D|+2N) from 3(|∆+|+|D|) is
bigger than zero, i.e. (2|D|-|∆+|-2N)>0, the I/O cost of PrefixTree is bigger than the
one of PrefixTree+; otherwise, a reverse conclusion. From the I/O costs analysis we
could get a coarse conclusion that PrefixTree+ is more efficient than PrefixTree only
if |∆+| is about less two times of |D|, which give a condition when to use PrefixTree+
algorithm. In fact, in most cases |∆+| is much smaller than |D|, so PrefixTree+ is good
approach from this view. And even when |∆+| is around two times of |D|, PrefixTree+
is still nearly as efficient as PrefixTree in our experiments.

Fig. 1. CPU Costs Fig. 2. CPU Costs Fig. 3. CPU Costs

Fig. 1 shows the run time of LM, PrefixTree, and PrefixTree+ according to the
support threshold, where |D| is 40,000 and |∆+| is 2,000. When the support is high,
there is only a limited number of moving sequential patterns, and the length of pat-
terns is short, PrefixTree and LM are close to each other according to their runtime.
However as the support threshold decreases, PrefixTree is more efficient than LM.
Compared with LM and PrefixTree, PrefixTree+ results in the run time improvement
of up to about two orders of magnitude.

Fig. 2 shows the run time of LM, PrefixTree, and PrefixTree+ according to the
support threshold, where |D| is 14,000 and |∆+| is 28,000. Now the ratio of |∆+|/|D| is 2.
The efficiency of PrefixTree+ is between LM and PrefixTree at first, and is a little
worse than the ones of LM and PrefixTree as the support threshold increases. This
experiment proves our analysis that PrefixTree+ is still nearly as efficient as Prefix-
Tree in our experiments when |∆+| is around two times of |D|, and also give the condi-
tion that when PrefixTree+ should be used for the problem of maintaining maximal
moving sequential patterns.

The above experiments also show that the CPU cost of PrefixTree+ is insensitive
to the change of support threshold, and the reason is that the change of support
threshold affects little to the I/O cost for algorithm PrefixTree+.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
80

90

100

110

120

130

Support Threshold (%)

R
u

n
tim

e
(S

e
co

n
d

s)

PrefixTree
PrefixTree+

LM

10 15 20 25 30 35 40
0

50

100

150

200

Increment Size (% of |D|)

R
u

n
tim

e
 (

S
e

co
n

d
s)

PrefixTree
PrefixTree+

LM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-20

0

20

40

60

80

100

120

140

Support Threshold (%)

R
u

n
tim

e
 (

S
e

co
n

d
s)

PrefixTree
PrefixTree+

LM

Incremental Maintenance of Discovered Mobile User 829

We use a database D of 30,000 moving sequences and support threshold ρs of
0.125%. We vary the size of ∆+ to show the algorithms’ scalability. Fig. 3 shows the
run time of LM, PrefixTree, and PrefixTree+ according to the size of ∆+. When the
size of ∆+ increases, the run time of all the three algorithms increases. PrefixTree is
more efficient than LM, and PrefixTree+ results in the run time improvement of up to
about two orders of magnitude compared with LM and PrefixTree.

In summary, our performance study shows that PrefixTree+ is more efficient and
scalable than LM and PrefixTree in most and reasonable cases. Compared with LM
and PrefixTree, PrefixTree+ results in the run time improvement much. In addition,
we give the condition that when PrefixTree+ should be used for the problem of
maintaining maximal moving sequential patterns.

5 Discussion and Future Work

This paper studies an efficient, fast, and incremental updating technique for mainte-
nance of maximal moving sequential patterns. We propose an incremental mining
algorithm PrefixTree+, which strives to use the mining results of last time and im-
prove the mining efficiency. Its novelty is materializing prefix trees, and using the
lemma that any moving sequence that is potential frequent with respect to database D
must occur as a frequent moving sequence in at least one of the partitions. Our per-
formance study shows that PrefixTree+ is more efficient and scalable than LM and
PrefixTree.

Another interesting and important study is when to update the mining results again,
such as the problem in association rules [10]. Our next step will focus on the problem
of when to update the discovered maximal moving sequential patterns.

Acknowledgement. We are very thankful to Professor Lu Hong Jun for giving us
many good suggestions and advices, which help improve the quality of this paper.

References

1. Shuai Ma, Tengjiao Wang, Shiwei Tang, Dongqing Yang, and Jun Gao. Mining Mobile
User Maximal Moving Sequential Patterns. Technical report PKU_CS_DB_TR20030601,
Department of Computer Science, Peking University, Beijing, China, 2003.

2. Wen-Chih Peng, Ming-Syan Chen. Mining User Moving Patterns for Personal Data Allo-
cation in a Mobile Computing System. Proc. of the ICPP Conference, pp. 573-580, 2000.

3. N. Shivakumar, J. Jannink, and J. Widom. Per-user Profile Replication in Mobile Environ-
ments: Algorithms Analysis and Simulation Result. ACM/Baltzer Journal of Mobile Net-
works and Applications, v.2 n.2, p.129-140, 1997.

4. Ramakrishnan Srikant, Rakesh Agrawal. Mining Sequential Patterns: Generalizations and
Performance Improvements. Proc. of the 5th EDBT Conference, pp. 3-17, 1996.

830 S. Ma et al.

5. J. Pei, J. Han, B. Mortazavi-Asl et al. PrefixSpan: Mining Sequential Patterns Efficiently
by PrefixProjected Pattern Growth. Proc. of the 17th ICDE Conference, pp. 215-224,
2001.

6. Wen-Chih Peng, Ming-Syan Chen. Developing Data Allocation Schemes by Incremental
Mining of User Moving Patterns in a Mobile Computing System. IEEE Transactions on
Knowledge and Data Engineering, 15(1): 70-85 (2003).

7. Vincent W. S. Wong and Victor C. M. Leung. Location Management for Next Generation
Personal Communication Networks. IEEE network, special issue on next generation wire-
less broadband networks, vol. 14, no. 5, pp. 8-14 2000.

8. A. Sarasere, E. Omiecinski, and S. Navathe. An Efficient Algorithm for Mining Associa-
tion Rules in Larges Databases. Proc. of the 21st VLDB Conference, pp. 432-444, 1995.

9. SUMATRA: Stanford University Mobile Activity TRAces.
http://www.db.stanford.edu /sumatra/.

10. S. Lee and D. Cheung. Maintenance of Discovered Association Rules: When to Update?
Proc. of SIGMOD DMKD Workshop, 1997.

	1 Introduction
	2 PrefixTree Algorithm
	3 PrefixTree+ Algorithm
	4 Experimental Results and Performance Study
	5 Discussion and Future Work
	References

