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Abstract. This paper proposes a natural extension of conditional func-
tional dependencies (cfds [14]) and conditional inclusion dependencies
(cinds [8]), denoted by cfdps and cindps, respectively, by specifying pat-
terns of data values with 6=, <,≤, > and ≥ predicates. As data quality
rules, cfdps and cindps are able to capture errors that commonly arise
in practice but cannot be detected by cfds and cinds. We establish two
sets of results for central technical problems associated with cfdps and
cindps. (a) One concerns the satisfiability and implication problems for
cfdps and cindps, taken separately or together. These are important
for, e.g., deciding whether data quality rules are dirty themselves, and
for removing redundant rules. We show that despite the increased ex-
pressive power, the static analyses of cfdps and cindps retain the same
complexity as their cfds and cinds counterparts. (b) The other concerns
validation of cfdps and cindps. We show that given a set Σ of cfdps
and cindps on a database D, a set of sql queries can be automatically
generated that, when evaluated against D, return all tuples in D that
violate some dependencies in Σ. This provides commercial dbms with an
immediate capability to detect errors based on cfdps and cindps.
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1 Introduction

Extensions of functional dependencies (fds) and inclusion dependencies (inds),
known as conditional functional dependencies (cfds [14]) and conditional in-
clusion dependencies (cinds [8]), respectively, have recently been proposed for
improving data quality. These extensions enforce patterns of semantically related
data values, and detect errors as violations of the dependencies. Conditional de-
pendencies are able to capture more inconsistencies than fds and inds [14, 8].

Conditional dependencies specify constant patterns in terms of equality (=).
In practice, however, the semantics of data often needs to be specified in terms of
other predicates such as 6=, <,≤, > and ≥, as illustrated by the example below.

Example 1. An online store maintains a database of two relations: (a) item for
items sold by the store, and (b) tax for the sale tax rates for the items, except
artwork, in various states. The relations are specified by the following schemas:

item (id: string, name: string, type: string, price: float, shipping: float,
sale: bool, state: string)

tax (state: string, rate: float)
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id name type price shipping sale state
t1: b1 Harry Potter book 25.99 0 T WA
t2: c1 Snow White CD 9.99 2 F NY
t3: b2 Catch-22 book 34.99 20 F DL
t4: a1 Sunflowers art 5m 500 F DL

(a) An item relation

state rate
t5: PA 6
t6: NY 4
t7: DL 0
t8: NJ 3.5
(b) tax rates

Fig. 1. Example instance D0 of item and tax

where each item is specified by its id, name, type (e.g., book, cd), price, shipping
fee, the state to which it is shipped, and whether it is on sale. A tax tuple specifies
the sale tax rate in a state. An instance D0 of item and tax is shown in Fig. 1.

One wants to specify dependencies on the relations as data quality rules to
detect errors in the data, such that inconsistencies emerge as violations of the
dependencies. Traditional dependencies (fds, inds; see, e.g., [1]) and conditional
dependencies (cfds, cinds [14, 8]) on the data include the following:

cfd1: item (id → name, type, price, shipping, sale)
cfd2: tax (state → rate)
cfd3: item (sale = ‘T’ → shipping = 0)

These are cfds: (a) cfd1 assures that the id of an item uniquely determines the
name, type, price, shipping, sale of the item; (b) cfd2 states that state is a key for
tax, i.e., for each state there is a unique sale tax rate; and (c) cfd3 is to ensure
that for any item tuple t, if t[sale] = ‘T’ then t[shipping] must be 0; i.e., the store
provides free shipping for items on sale. Here cfd3 is specified in terms of patterns
of semantically related data values, namely, sale = ‘T’ and shipping = 0. It is to
hold only on item tuples that match the pattern sale = ‘T’. In contrast, cfd1 and
cfd2 are traditional fds without constant patterns, a special case of cfds. One
can verify that no sensible inds or cinds can be defined across item and tax.

Note that D0 of Fig. 1 satisfies cfd1, cfd2 and cfd3. That is, when these
dependencies are used as data quality rules, no errors are found in D0.

In practice, the shipment fee of an item is typically determined by the price
of the item. Moreover, when an item is on sale, the price of the item is often in
a certain range. Furthermore, for any item sold by the store to a customer in a
state, if the item is not artwork, then one expects to find the sale tax rate in the
state from the tax table. These semantic relations cannot be expressed as cfds

of [14] or cinds of [8], but can be expressed as the following dependencies:
pfd1: item (sale = ‘F’ & price ≤ 20 → shipping = 3)
pfd2: item (sale = ‘F’ & price > 20 & price ≤ 40 → shipping = 6)
pfd3: item (sale = ‘F’ & price > 40 → shipping = 10)
pfd4: item (sale = ‘T’ → price ≥ 2.99 & price < 9.99)
pind1: item (state; type 6= ‘art’) ⊆ tax (state; nil)

Here pfd2 states that for any item tuple, if it is not on sale and its price is in the
range (20, 40], then its shipment fee must be 6; similarly for pfd1 and pfd3. These
dependencies extend cfds [14] by specifying patterns of semantically related
data values in terms of predicates <,≤, >, and ≥. Similarly, pfd4 assures that
for any item tuple, if it is on sale, then its price must be in the range [2.99, 9.99).
Dependency pind1 extends cinds [8] by specifying patterns with 6=: for any item
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tuple t, if t[type] is not artwork, then there must exist a tax tuple t′ such that
t[state] = t′[state], i.e., the sale tax of the item can be found from the tax relation.

Using pfd1–pfd4 and pind1 as data quality rules, we find that D0 of Fig. 1 is
not clean. Indeed, (a) t2 violates pfd1: its price is less than 20, but its shipping
fee is 2 rather than 3; similarly, t3 violates pfd2, and t4 violates pfd3. (b) Tuple
t1 violates pfd4: it is on sale but its price is not in the range [2.99, 9.99). (c) The
database D0 also violates pind1: t1 is not artwork, but its state cannot find a
match in the tax relation, i.e., no tax rate for WA is found in D0. 2

None of pfd1–pfd4 and pind1 can be expressed as fds or inds [1], which do
not allows constants, or as cfds [14] or cinds [8], which specify patterns with
equality (=) only. While there have been extensions of cfds [7, 18], none of
these allows dependencies to be specified with patterns on data values in terms
of built-in predicates 6=, <,≤, > or ≥. To the best of our knowledge, no previous
work has studied extensions of cinds (see Section 6 for detailed discussions).

These highlight the need for extending cfds and cinds to capture errors
commonly found in real-life data. While one can consider arbitrary extensions,
it is necessary to strike a balance between the expressive power of the extensions
and their complexity. In particular, we want to be able to reason about data
quality rules expressed as extended cfds and cinds. Furthermore, we want to
have effective algorithms to detect inconsistencies based on these extensions.

Contributions. This paper proposes a natural extension of cfds and cinds,
provides complexity bounds for reasoning about the extension, and develops
effective sql-based techniques for detecting errors based on the extension.

(1) We propose two classes of dependencies, denoted by cfdps and cindps, which
respectively extend cfds and cinds by supporting 6=, <,≤, >,≥ predicates. For
example, all the dependencies we have encountered so far can be expressed as
cfdps or cindps. These dependencies are capable of capturing errors in real-
world data that cannot be detected by cfds or cinds.

(2) We establish complexity bounds for the satisfiability problem and the impli-
cation problem for cfdps and cindps, taken separately or together. The satisfia-
bility problem is to determine whether a set Σ of dependencies has a nonempty
model, i.e., whether the rules in Σ are consistent themselves. The implication
problem is to decide whether a set Σ of dependencies entails another dependency
ϕ, i.e., whether the rule ϕ is redundant in the presence of the rules in Σ. These
are the central technical problems associated with any dependency language.

We show that despite the increased expressive power, cfdps and cindps do
not increase the complexity for reasoning about them. In particular, we show
that the satisfiability and implication problems remain (a) np-complete and
conp-complete for cfdps, respectively, (b) in O(1)-time (constant-time) and
exptime-complete for cindps, respectively, and (c) are undecidable when cfdps

and cindps are taken together. These are the same as their cfds and cinds

counterparts. While data with linearly ordered domains often makes our lives
harder (see, e.g., [21]), cfdps and cindps do not complicate their static analyses.

(3) We provide sql-based techniques to detect errors based on cfdps and cindps.
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(1) ϕ1 = tax (state → rate, T1) (2) ϕ2 = item (sale → shipping, T2)
state rate

T1:
sale shipping

T2: = T = 0

(3) ϕ3 = item (sale, price →shipping, T3) (4) cfdp ϕ4 = item (sale → price, T4)
sale price shipping
= F > 20 = 6

T3: = F ≤ 40 = 6

sale price
= T ≥ 2.99

T4: = T < 9.99

Fig. 2. Example cfdps

Given a set Σ of cfdps and cindps on a database D, we automatically generate
a set of sql queries that, when evaluated on D, find all tuples in D that violate
some dependencies in Σ. Further, the sql queries are independent of the size
and cardinality of Σ. No previous work has been studied error detection based
on cinds, not to mention cfdps and cindps taken together. These provide the
capability of detecting errors in a single relation (cfdps) and across different
relations (cindps) within the immediate reach of commercial dbms.

Organizations. Sections 2 and 3 introduce cfdps and cindps, respectively.
Section 4 establishes complexity bounds for reasoning about cfdps and cindps.
Section 5 provides sql techniques for error detection. Related work is discussed
in Section 6, followed by topics for future work in Section 7.

2 Incorporating Built-in Predicates into CFDs

We now define cfdps, also referred to as conditional functional dependencies, by
extending cfds with predicates (6=, <,≤, >,≥) in addition to equality (=).

Consider a relation schema R defined over a finite set of attributes, denoted
by attr(R). For each attribute A ∈ attr(R), its domain is specified in R, denoted
as dom(A), which is either finite (e.g., bool) or infinite (e.g., string). We assume
w.l.o.g. that a domain is totally ordered if <,≤, > or ≥ is defined on it.

Syntax. A cfdp ϕ on R is a pair R(X → Y, Tp), where (1) X, Y are sets of
attributes in attr(R); (2) X → Y is a standard fd, referred to as the fd embedded
in ϕ; and (3) Tp is a tableau with attributes in X and Y , referred to as the pattern
tableau of ϕ, where for each A in X ∪ Y and each tuple tp ∈ Tp, tp[A] is either
an unnamed variable ‘ ’ that draws values from dom(A), or ‘op a’, where op is
one of =, 6=, <,≤, >,≥, and ‘a’ is a constant in dom(A).

If attribute A occurs in both X and Y , we use AL and AR to indicate the
occurrence of A in X and Y , respectively, and separate the X and Y attributes
in a pattern tuple with ‘‖’. We write ϕ as (X → Y, Tp) when R is clear from
the context, and denote X as LHS(ϕ) and Y as RHS(ϕ).
Example 2. The dependencies cfd1–cfd3 and pfd1–pfd4 that we have seen in
Example 1 can all be expressed as cfdps. Figure 2 shows some of these cfdps:
ϕ1 (for fd cfd2), ϕ2 (for cfd cfd3), ϕ3 (for pfd2), and ϕ4 (for pfd4). 2

Semantics. Consider cfdp ϕ = (R : X → Y, Tp), where Tp = {tp1, . . . , tpk}.
A data tuple t of R is said to match LHS(ϕ), denoted by t[X] ³ Tp[X], if for

each tuple tpi in Tp and each attribute A in X, either (a) tpi[A] is the wildcard ‘ ’
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(which matches any value in dom(A)), or (b) t[A] op a if tpi[A] is ‘op a’, where
the operator op (=, 6=, <,≤, > or ≥) is interpreted by its standard semantics.
Similarly, the notion that t matches RHS(ϕ) is defined, denoted by t[Y ] ³ Tp[Y ].

Intuitively, each pattern tuple tpi specifies a condition via tpi[X], and t[X] ³
Tp[X] if t[X] satisfies the conjunction of all these conditions. Similarly, t[Y ] ³
Tp[Y ] if t[Y ] matches all the patterns specified by tpi[Y ] for all tpi in Tp.

An instance I of R satisfies the cfdp ϕ, denoted by I |= ϕ, if for each pair
of tuples t1, t2 in the instance I, if t1[X] = t2[X] ³ Tp[X], then t1[Y ] = t2[Y ] ³
Tp[Y ]. That is, if t1[X] and t2[X] are equal and in addition, they both match
the pattern tableau Tp[X], then t1[Y ] and t2[Y ] must also be equal to each other
and they both match the pattern tableau Tp[Y ].

Observe that ϕ is imposed only on the subset of tuples in I that match
LHS(ϕ), rather than on the entire I. For all tuples t1, t2 in this subset, if t1[X] =
t2[X], then (a) t1[Y ] = t2[Y ], i.e., the semantics of the embedded fds is enforced;
and (b) t1[Y ] ³ Tp[Y ], which assures that the constants in t1[Y ] match the
constants in tpi[Y ] for all tpi in Tp. Note that here tuples t1 and t2 can be the
same.

An instance I of R satisfies a set Σ of cfdps, denoted by I |= Σ, if I |= ϕ
for each cfdp ϕ in Σ.

Example 3. The instance D0 of Fig. 1 satisfies ϕ1 and ϕ2 of Fig. 2, but neither
ϕ3 nor ϕ4. Indeed, tuple t3 violates (i.e., does not satisfy) ϕ3, since t3[sale] = ‘F’
and 20 < t3[price] ≤ 40, but t3[shipping] is 20 instead of 6. Note that t3 matches
LHS(ϕ3) since it satisfies the condition specified by the conjunction of the pattern
tuples in T3. Similarly, t1 violates ϕ4, since t1[sale] = ‘T’ but t1[price] > 9.99.
Observe that while it takes two tuples to violate a standard fd, a single tuple
may violate a cfdp. 2

Special cases. (1) A standard fd X → Y [1] can be expressed as a cfd (X →
Y, Tp) in which Tp contains a single tuple consisting of ‘ ’ only, without constants.
(2) A cfd (X → Y, Tp) [14] with Tp = {tp1, . . . , tpk} can be expressed as a set
{ϕ1, . . . , ϕk} of cfdps such that for i ∈ [1, k], ϕi = (X → Y, Tpi), where Tpi

contains a single pattern tuple tpi of Tp, with equality (=) only. For example,
ϕ1 and ϕ2 in Fig. 2 are cfdps representing fd cfd2 and cfd cfd3 in Example 1,
respectively. Note that all data quality rules in [10, 18] can be expressed as cfdps.

3 Incorporating Built-in Predicates into CINDs

Along the same lines as cfdps, we next define cindps, also referred to as condi-
tional inclusion dependencies. Consider two relation schemas R1 and R2.

Syntax. A cindp ψ is a pair (R1[X; Xp] ⊆ R2[Y ; Yp], Tp), where (1) X, Xp and
Y, Yp are lists of attributes in attr(R1) and attr(R2), respectively; (2) R1[X] ⊆
R2[Y ] is a standard ind, referred to as the ind embedded in ψ; and (3) Tp

is a tableau, called the pattern tableau of ψ defined over attributes Xp ∪ Yp,
and for each A in Xp or Yp and each pattern tuple tp ∈ Tp, tp[A] is either an
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(1) ψ1 = (item [state; type] ⊆ tax [state; nil], T1),

(2) ψ2 = (item [state; type, state] ⊆ tax [state; rate], T2)

T1:
type nil

6= art
T2:

type state rate

6= art = DL = 0

Fig. 3. Example cindps

unnamed variable ‘ ’ that draws values from dom(A), or ‘op a’, where op is one
of =, 6=, <,≤, >,≥ and ‘a’ is a constant in dom(A).

We denote X ∪Xp as LHS(ψ) and Y ∪ Yp as RHS(ψ), and separate the Xp

and Yp attributes in a pattern tuple with ‘‖’. We use nil to denote an empty list.

Example 4. Figure 3 shows two example cindps: ψ1 expresses pind1 of Exam-
ple 1, and ψ2 refines ψ1 by stating that for any item tuple t1, if its type is not
art and its state is DL, then there must be a tax tuple t2 such that its state is
DL and rate is 0, i.e., ψ2 assures that the sale tax rate in Delaware is 0. 2

Semantics. Consider cindp ψ = (R1[X; Xp] ⊆ R2[Y ; Yp], Tp). An instance
(I1, I2) of (R1, R2) satisfies the cindp ψ, denoted by (I1, I2) |= ψ, iff for each
tuple t1 ∈ I1, if t1[Xp] ³ Tp[Xp], then there exists a tuple t2 ∈ I2 such that t1[X]
= t2[Y ] and moreover, t2[Yp] ³ Tp[Yp].

That is, if t1[Xp] matches the pattern tableau Tp[Xp], then ψ requires the
existence of t2 such that (1) t1[X] = t2[Y ] as required by the standard ind
embedded in ψ; and (2) t2[Yp] must match the pattern tableau Tp[Yp]. In other
words, ψ is “conditional” since its embedded ind is applied only to the subset
of tuples in I1 that match Tp[Xp], and moreover, the pattern Tp[Yp] is enforced
on the tuples in I2 that match those tuples in I1. As remarked in Section 2, the
pattern tableau Tp specifies the conjunction of patterns of all tuples in Tp.

Example 5. The instance D0 of item and tax in Fig. 1 violates cindp ψ1. Indeed,
tuple t1 in item matches LHS(ψ1) since t1[type] 6= ‘art’, but there is no tuple t in
tax such that t[state] = t1[state] = ‘WA’. In contrast, D0 satisfies ψ2. 2

We say that a database D satisfies a set Σ of cinds, denoted by D |= Σ, if
D |= ϕ for each ϕ ∈ Σ.

Safe CINDps. We say a cindp (R1[X; Xp] ⊆ R2[Y ; Yp], Tp) is unsafe if there
exist pattern tuples tp, t

′
p in Tp such that either (a) there exists B ∈ Yp, such

that tp[B] and t′p[B] are not satisfiable when taken together, or (b) there exist
C ∈ Y, A ∈ X such that A corresponds to B in the ind and tp[C] and t′p[A] are
not satisfiable when taken together; e.g., tp[price] = 9.99 and t′p[price] ≥ 19.99.

Obviously unsafe cindps do not make sense: there exist no nonempty database
that satisfies unsafe cindps. It takes O(|Tp|2)-time in the size |Tp| of Tp to decide
whether a cindp is unsafe. Thus in the sequel we consider safe cindp only.

Special cases. Observe that (1) a standard cind (R1[X] ⊆ R2[Y ]) can be
expressed as a cindp (R1[X; nil] ⊆ R2[Y ; nil], Tp) such that Tp is simply a
empty set; and (2) a cind (R1[X; Xp] ⊆ R2[Y ; Yp], Tp) with Tp = {tp1, . . . , tpk}
can be expressed as a set {ψ1, . . . , ψk} of cindps, where for i ∈ [1, k], ψi =
(R1[X; Xp] ⊆ R2[Y ; Yp], Tpi) such that Tpi consists of a single pattern tuple
tpi of Tp defined in terms of equality (=) only.
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4 Reasoning about CFDps and CINDps

The satisfiability problem and the implication problem are the two central tech-
nical questions associated with any dependency languages. In this section we
investigate these problems for cfdps and cindps, separately and taken together.

4.1 The Satisfiability Analysis

The satisfiability problem is to determine, given a set Σ of constraints, whether
there exists a nonempty database that satisfies Σ.

The satisfiability analysis of conditional dependencies is not only of theoret-
ical interest, but is also important in practice. Indeed, when cfdps and cindps

are used as data quality rules, this analysis helps one check whether the rules
make sense themselves. The need for this is particularly evident when the rules
are manually designed or discovered from various datasets [10, 18, 15].

The satisfiability analysis of CFDps. Given any fds, one does not need to
worry about their satisfiability since any set of fds is always satisfiable. However,
as observed in [14], for a set Σ of cfds on a relational schema R, there may not
exist a nonempty instance I of R such that I |= Σ. As cfds are a special case
of cfdps, the same problem exists when it comes to cfdps.

Example 6. Consider cfdp ϕ = (R : A → B, Tp) such that Tp = {( ‖= a), ( ‖6=
a)}. Then there exists no nonempty instance I of R that satisfies ϕ. Indeed, for
any tuple t of R, ϕ requires that both t[B] = a and t[B] 6= a. 2

This problem is already np-complete for cfds [14]. Below we show that it
has the same complexity for cfdps despite their increased expressive power.

Proposition 1. The satisfiability problem for cfdps is np-complete. 2

Proof sketch: The lower bound follows from the np-hardness of their cfds

counterparts [14], since cfds are a special case of cfdps. The upper bound is
verified by presenting an np algorithm that, given a set Σ of cfdps defined on
a relation schema R, determines whether Σ is satisfiable. 2

It is known [14] that the satisfiability problem for cfds is in ptime when the
cfds considered are defined over attributes that have an infinite domain, i.e., in
the absence of finite domain attributes. However, this is no longer the case for
cfdps. This tells us that the increased expressive power of cfdps does take a toll
in this special case. It should be remarked that while the proof of Proposition 1
is an extension of its counterpart in [14], the result below is new.

Theorem 2. In the absence of finite domain attributes, the satisfiability problem
for cfdps remains np-complete. 2

Proof sketch: The problem is in np by Proposition 1. Its np-hardness is shown
by reduction from the 3SAT problem, which is np-complete (cf. [17]). 2

The satisfiability analysis of CINDps. Like fds, one can specify arbitrary
inds or cinds without worrying about their satisfiability. Below we show that
cindps also have this property, by extending the proof of its counterpart in [8].
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Proposition 3. Any set Σ of cindps is always satisfiable. 2

Proof sketch: Given a set Σ of cindps over a database schema R, one can
always construct a nonempty instance D of R such that D |= Σ. 2

The satisfiability analysis of CFDps and CINDps. The satisfiability prob-
lem for cfds and cinds taken together is undecidable [8]. Since cfdps and cindps

subsume cfds and cinds, respectively, from these we immediately have:

Corollary 4. The satisfiability problem for cfdps and cindps is undecidable.2

4.2 The Implication Analysis

The implication problem is to determine, given a set Σ of dependencies and
another dependency φ, whether or not Σ entails φ, denoted by Σ |= φ. That is,
whether or not for all databases D, if D |= Σ then D |= φ.

The implication analysis helps us remove redundant data quality rules, and
thus improve the performance of error detection and repairing based on the rules.

Example 7. The cfdps of Fig. 2 imply cfdps ϕ = item (sale, price→ shipping, T ),
where T consists of a single pattern tuple (sale =‘F’, price = 30 ‖ shipping = 6).
Thus in the presence of the cfdps of Fig. 2, ϕ is redundant. 2

The implication analysis of CFDps. We first show that the implication
problem for cfdps retains the same complexity as their cfds counterpart. The
result below is verified by extending the proof of its counterpart in [14].

Proposition 5. The implication problem for cfdps is conp-complete. 2

Proof sketch: The lower bound follows from the conp-hardness of their cfds

counterpart [14], since cfds are a special case of cfdps. The conp upper bound
is verified by presenting an np algorithm for its complement problem, i.e., the
problem for determining whether Σ 6|= ϕ. 2

Similar to the satisfiability analysis, it is known [14] that the implication
analysis of cfds is in ptime when the cfds are defined only with attributes that
have an infinite domain. Analogous to Theorem 2, the result below shows that
this is no longer the case for cfdps, which does not find a counterpart in [14].

Theorem 6. In the absence of finite domain attributes, the implication problem
for cfdps remains conp-complete. 2

Proof sketch: It is in conp by Proposition 5. The conp-hardness is shown by
reduction from the 3SAT problem to its complement problem, i.e., the problem
for determining whether Σ 6|= ϕ. 2

The implication analysis of CINDps. We next show that cindps do not
make their implication analysis harder. This is verified by extending the proof
of their cinds counterpart given in [8].

Proposition 7. The implication problem for cindps is exptime-complete. 2
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General setting Infinite domain only
Σ

Satisfiability Implication Satisfiability Implication

cfds [14] np-complete conp-complete ptime ptime

cfdps np-complete conp-complete np-complete conp-complete

cinds [8] O(1) exptime-complete O(1) pspace-complete

cindps O(1) exptime-complete O(1) exptime-complete

cfds + cinds [8] undecidable undecidable undecidable undecidable

cfdps + cindps undecidable undecidable undecidable undecidable

Table 1. Summary of complexity results

Proof sketch: The implication problem for cinds is exptime-hard [8]. The
lower bound carries over to cindps since cindps subsume cinds. The exptime
upper bound is shown by presenting an exptime algorithm that, given a set
Σ ∪ {ψ} of cindps over a database schema R, determines whether Σ |= ψ. 2

It is known [8] that the implication problem is pspace-complete for cinds

defined with infinite-domain attributes. Similar to Theorem 6, below we present
a new result showing that this no longer holds for cindps.

Theorem 8. In the absence of finite domain attributes, the implication problem
for cindps remains exptime-complete. 2

Proof sketch: The exptime upper bound follows from Proposition 7. The
exptime-hardness is shown by reduction from the implication problem for cinds

in the general setting, in which finite-domain attributes may be present; the
latter is known to be exptime-complete [8]. 2

The implication analysis of CFDps and CINDps. When cfdps and cindps

are taken together, their implication analysis is beyond reach in practice. This is
not surprising since the implication problem for fds and inds is already undecid-
able [1]. Since cfdps and cindps subsume fds and inds, respectively, from the
undecidability result for fds and inds, the corollary below follows immediately.

Corollary 9. The implication problem for cfdps and cindps is undecidable. 2

Summary. The complexity bounds for reasoning about cfdps and cindps are
summarized in Table 1. To give a complete picture we also include in Table 1
the complexity bounds for the static analyses of cfds and cinds, taken from [14,
8]. The results shown in Table 1 tell us the following.

(a) Despite the increased expressive power, cfdps and cindps do not complicate
the static analyses: the satisfiability and implication problems for cfdps and
cindps have the same complexity bounds as their counterparts for cfds and
cinds, taken separately or together.

(b) In the special case when cfdps and cindps are defined with infinite-domain
attributes only, however, the static analyses of cfdps and cindps do not get
simpler, as opposed to their counterparts for cfds and cinds. That is, in this
special case the increased expressive power of cfdps and cindps comes at a price.
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5 Validation of CFDps and CINDps

If cfdps and cindps are to be used as data quality rules, the first question we have
to settle is how to effectively detect errors and inconsistencies as violations of
these dependencies, by leveraging functionality supported by commercial dbms.
More specifically, consider a database schema R = (R1, . . . , Rn), where Ri is a
relation schema for i ∈ [1, n]. The error detection problem is stated as follows.

The error detection problem is to find, given a set Σ of cfdps and cindps

defined on R, and a database instance D = (I1, . . . , In) of R as input, the subset
(I ′1, . . . , I

′
n) of D such that for each i ∈ [1, n], I ′i ⊆ Ii and each tuple in I ′i violates

at least one cfdp or cindp in Σ. We denote the set as vio(D, Σ), referred to it
as the violation set of D w.r.t. Σ.

In this section we develop sql-based techniques for error detection based on
cfdps and cindps. The main result of the section is as follows.

Theorem 10. Given a set Σ of cfdps and cindps defined on R and a database
instance D of R, where R = (R1, . . . , Rn), a set of sql queries can be automat-
ically generated such that (a) the collection of the answers to the sql queries in
D is vio(D, Σ), (b) the number and size of the set of sql queries depend only
on the number n of relations and their arities in R, regardless of Σ. 2

We next present the main techniques for the query generation method. Let
Σi

cfdp be the set of all cfdps in Σ defined on the same relation schema Ri, and
Σ

(i,j)
cindp the set of all cindps in Σ from Ri to Rj , for i, j ∈ [1, n]. We show the

following. (a) The violation set vio(D, Σi
cfdp) can be computed by two sql queries.

(b) Similarly, vio(D, Σ
(i,j)
cindp) can be computed by a single sql query. (c) These sql

queries encode pattern tableaux of cfdps (cindps) with data tables, and hence
their sizes are independent of Σ. From these Theorem 10 follows immediately.

5.1 Encoding CFDps and CINDps with Data Tables

We first show the following, by extending the encoding of [14, 7]. (a) The pattern
tableaux of all cfdps in Σi

cfdp can be encoded with three data tables, and (b) the
pattern tableaux of all cindps in Σ

(i,j)
cindp can be represented as four data tables,

no matter how many dependencies are in the sets and how large they are.

Encoding CFDps. We encode all pattern tableaux in Σi
cfdp with three ta-

bles encL, encR and enc 6=, where encL (resp. encR) encodes the non-negation
(=, <,≤, >,≥) patterns in LHS (resp. RHS), and enc 6= encodes those negation
(6=) patterns. More specifically, we associate a unique id cid with each cfdps in
Σi

cfdp , and let encL consist of the following attributes: (a) cid, (b) each attribute
A appearing in the LHS of some cfdps in Σi

cfdp , and (b) its four companion at-
tributes A>, A≥, A<, and A≤. That is, for each attribute, there are five columns
in encL, one for each non-negation operator. Similarly, encR is defined. We use
an enc 6= tuple to encode a pattern A 6= c in a cfdp, consisting of cid, att, pos,
and val, encoding the cfdp id, the attribute A, the position (‘LHS’ or ‘RHS’),
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(1) encL (2) encR (3) enc6=
cid sale price price> price≤
2 T null null null
3 F 20 40
4 T null null null

cid shipping price price≥ price<

2 0 null null null
3 6 null null null
4 null 2.99 9.99

cid pos att val

Fig. 4. Encoding example of cfdps

and the constant c, respectively. Note that the arity of encL (encR) is bounded
by 5 ∗ |Ri|+ 1, where |Ri| is the arity of Ri, and the arity of enc 6= is 4.

Before we populate these tables, let us first describe a preferred form of cfdps

that would simplify the analysis to be given. Consider a cfdp ϕ = R(X → Y, Tp).
If ϕ is not satisfiable we can simply drop it from Σ. Otherwise it is equivalent to
a cfdp ϕ′ = R(X → Y, T ′p) such that for any pattern tuples tp, t

′
p in T ′p and for

any attribute A in X ∪Y , (a) if tp[A] is op a and t′p[A] is op b, where op is not 6=,
then a = b, (b) if tp[A] is ‘ ’ then so is t′p[A]. That is, for each non-negation op
(resp. ), there is a unique constant a such that tp[A] = ‘op a’ (resp. tp[A] = ) is
the only op (resp. ) pattern appearing in the A column of T ′p. We refer to tp[A]
as T ′p(op, A) (resp. T ′p( , A)), and consider w.l.o.g. cfdps of this form only. Note
that there are possibly multiple tp[A] 6= c patterns in T ′p,

We populate encL, encR and enc 6= as follows. For each cfdp ϕ = R(X →
Y, Tp) in Σi

cfdp , we generate a distinct cid idϕ for it, and do the following.

– Add a tuple t1 to encL such that (a) t[cid] = idϕ; (b) for each A ∈ X, t[A]
= if T ′p( , A) is ‘ ’, and for each non-negation predicate op, t[Aop] = ‘a’ if
T ′p(op, A) is ‘op a’; (c) we let t[B] = ‘null’ for all other attributes B in encL.

– Similarly add a tuple t2 to encR for attributes in Y .
– For each attribute A ∈ X ∪ Y and each 6= a pattern in Tp[A], add a tuple t

to enc 6= such that t[cid] = idϕ, t[att] = ‘A’, t[val] = ‘a’, and t[pos] = ‘LHS’
(resp. t[pos] = ‘RHS’) if attribute A appears in X (resp. Y ).

Example 8. Recall from Fig. 2 cfdps ϕ2, ϕ3 and ϕ4 defined on relation item.
The three cfdps are encoded with tables shown in Fig. 4: (a) encL consists of
attributes: cid, sale, price, price> and price≤; (b) encR consists of cid, shipping,
price, price≥ and price<; those attributes in a table with only ‘null’ pattern values
do not contribute to error detection, and are thus omitted; (c) enc 6= is empty
since all these cfdps have no negation patterns. One can easily reconstruct these
cfdps from tables encL, encR and enc 6= by collating tuples based on cid. 2

Encoding CINDps. All cindps in Σ
(i,j)
cindp can be encoded with four tables enc,

encL, encR and enc 6=. Here encL (resp. encR) and enc 6= encode non-negation
patterns on relation Ri (resp. Rj) and negation patterns on relations Ri or Rj ,
respectively, along the same lines as their counterparts for cfdps. We use enc to
encode the inds embedded in cindps, which consists of the following attributes:
(1) cid representing the id of a cindp, and (2) those X attributes of Ri and Y

attributes of Rj appearing in some cindps in Σ
(i,j)
cindp . Note that the number of

attributes in enc is bounded by |Ri|+ |Rj |+ 1, where |Ri| is the arity of Ri.
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(1) enc (2) encL (3) encR (4) enc6=
cid stateL stateR

1 1 1
2 1 1

cid type state

1 null
2 DL

cid rate

1 null
2 0

cid pos att val

1 LHS type art
2 LHS type art

Fig. 5. Encoding example of cindps

For each cindp ψ = (Ri[A1 . . . Am; Xp] ⊆ Rj [B1 . . . Bm; Yp], Tp) in Σ
(i,j)
cindp ,

we generate a distinct cid idψ for it, and do the following.

– Add tuples t1 and t2 to encL and encR based on attributes Xp and Yp,
respectively, along the same lines as their cfdp counterpart.

– Add tuples to enc 6= in the same way as their cfdp counterparts.
– Add tuple t to enc such that t[cid] = idψ. For each k ∈ [1,m], let t[Ak] =

t[Bk] = k, and t[A] = ‘null’ for the rest attributes A of enc.

Example 9. Figure 4 shows the coding of cindps ψ1 and ψ2 given in Fig. 3.
We use stateL and stateR in enc to denote the occurrences of attribute state in
item and tax, respectively. In tables encL and encR, attributes with only ‘null’
patterns are omitted, for the same reason as for cfdps mentioned above. 2

Putting these together, it is easy to verify that at most O(n2) data tables
are needed to encode dependencies in Σ, regardless of the size of Σ. Recall that
n is the number of relations in database R.

5.2 SQL-based Detection Methods

We next show how to generate sql queries based on the encoding above. For
each i ∈ [1, n], we generate two sql queries that, when evaluated on the Ii table
of D, find vio(D, Σi

cfdp). Similarly, for each i, j ∈ [1, n], we generate a single sql

query Q(i,j) that, when evaluated on (Ii, Ij) of D, returns vio(D, Σ
(i,j)
cindp). Putting

these query answers together, we get vio(D, Σ), the violation set of D w.r.t. Σ.
Below we show how the sql query Q(i,j) is generated for validating cindps

in Σ
(i,j)
cindp), which has not been studied by previous work. For the lack of space

we omit the generation of detection queries for cfdps, which is an extension of
the sql techniques for cfds discussed in [14, 7].

The query Q(i,j) for the validation of Σ
(i,j)
cindp is given as follows, which capital-

izes on the data tables enc, encL, encR and enc 6= that encode cindps in Σ
(i,j)
cindp .

select Ri.∗
from Ri, encL L, enc6= N
where Ri.X ³ L and Ri.X ³ N and not exists (

select Rj .∗
from Rj , enc H, encR R, enc6= N
where Ri.X = Rj .Y and L.cid = R.cid and L.cid = H.cid and

Rj .Y ³ R and Rj .Y ³ N)

Here (1) X = {A1, . . . ,Am1} and Y = {B1, . . . ,Bm2} are the sets of attributes of
Ri and Rj appearing in Σ

(i,j)
cindp , respectively; (2) Ri.X ³ L is the conjunction of
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L.Ak is null or Ri.Ak = L.Ak or (L.Ak = ‘ ’
and (L.Ai> is null or Ri.Ak > L.Ai>) and (L.Ai≥ is null or Ri.Ak ≥ L.Ak≥)

and (L.Ak< is null or Ri.Ak < L.Ak<) and (L.Ai≤ is null or Ri.Ak ≤ L.Ai≤))

for k ∈ [1,m1]; (3) Rj .Y ³ R is defined similarly for attributes in Y ; (4) Ri.X ³
N is a shorthand for the conjunction below, for k ∈ [1,m1]:

not exists (select ∗ from N where L.cid = N.cid and N.pos = ‘LHS’ and
N.att = ‘Ak’ and Ri.Ak = N.val);

(5) Rj .Y ³ N is defined similarly, but with N.pos = ‘RHS’ ; (6) Ri.X = Rj .Y
represents the following: for each Ak (k ∈ [1,m1]) and each Bl (l ∈ [1,m2]),
(H.Ak is null or H.Bl is null or H.Bl 6= H.Ak or Ri.Ak = Rj .Bl).

Intuitively, (1) Ri.X ³ L and Ri.X ³ N ensure that the Ri tuples selected
match the LHS patterns of some cindps in Σ

(i,j)
cindp ; (2) Rj .Y ³ R and Rj .Y ³ N

check the corresponding RHS patterns of these cindps on Rj tuples; (3) Ri.X =
Rj .Y enforces the embedded inds; (4) L.cid = R.cid and L.cid = H.cid assure
that the LHS and RHS patterns in the same cindp are correctly collated; and
(5) not exists in Q ensures that the Ri tuples selected violate cindps in Σ

(i,j)
cindp .

Example 10. Using the coding of Fig. 5, an sql query Q for checking cindps ψ1

and ψ2 of Fig. 3 is given as follows:

select R1.∗ from item R1, encL L, enc6= N
where (L.type is null or R1.type = L.type or L.type = ‘ ’) and not exist (

select * from N
where N.cid = L.cid and N.pos = ‘LHS’ and N.att = ‘type’)
and (L.state is null or R1.state = L.state or L.state = ‘ ’) and not exist (
select * from N
where N.cid = L.cid and N.pos = ‘LHS’ and N.att = ‘state’ and R1.state =N.val)

and not exists (
select R2.∗ from tax R2, enc H, encR R
where (H.stateL is null or H.stateR is null or H.stateL! = H.stateR or

R2.state = R1.state) and L.cid = H.cid and L.cid = R.cid and
(R.rate is null or R2.rate = R.rate or R.rate = ‘ ’) and not exist (
select * from N
where N.cid = R.cid and N.pos = ‘RHS’ and N.att = ‘rate’ and R2.rate =N.val))

The sql queries generated for error detection can be simplified as follows.
As shown in Example 10, when checking patterns imposed by enc, encL or encR,
the queries need not consider attributes A if t[A] is ‘null’ for each tuple t in
the table. Similarly, if an attribute A does not appear in any tuple in enc 6=, the
queries need not check A either. From this, it follows that we do not even need
to generate those attributes with only ‘null’ patterns for data tables enc, encL

or encR when encoding cindps or cfdps. 2

6 Related Work

Constraint-based data cleaning was introduced in [2], which proposed to use
dependencies, e.g., fds, inds and denial constraints, to detect and repair errors
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in real-life data (see, e.g., [11] for a comprehensive survey). As an extension of
traditional fds, cfds were developed in [14], for improving the quality of data.
It was shown in [14] that the satisfiability and implication problems for cfds

are np-complete and conp-complete, respectively. Along the same lines, cinds

were proposed in [8] to extend inds. It was shown [8] that the satisfiability and
implication problems for cinds are in constant time and exptime-complete,
respectively. sql techniques were developed in [14] to detect errors by using
cfds, but have not been studied for cinds. This work extends the static analyses
of conditional dependencies of [14, 8], and has established several new complexity
results, notably in the absence of finite-domain attributes (e.g., Theorems 2, 6,
8). In addition, it is the first work to develop sql-based techniques for checking
violations of cinds and violations of cfdps and cindps taken together.

Extensions of cfds have been proposed to support disjunction and nega-
tion [7], cardinality constraints and synonym rules [9], and to specify patterns
in terms of value ranges [18]. While cfdps are more powerful than the extension
of [18], they cannot express disjunctions [7], cardinality constraints and synonym
rules [9]. To our knowledge no extensions of cinds have been studied. This work
is the first full treatment of extensions of cfds and cinds by incorporating built-
in predicates (6=, <,≤, >,≥), from static analyses to error detection.

Methods have been developed for discovering cfds [10, 18, 15] and for repair-
ing data based on either cfds [13], traditional fds and inds taken together [5],
denial constraints [4, 12], or aggregate constraints [16]. We defer the treatment
of these topics for cfdps and cindps to future work.

A variety of extensions of fds and inds have been studied for specifying
constraint databases and constraint logic programs [3, 6, 19, 20]. While the lan-
guages of [3, 19] cannot express cfds, constraint-generating dependencies (cgds)
of [3] and constrained tuple-generating dependencies (ctgds) of [20] can express
cfdps, and ctgds can also express cindps. The increased expressive power of
ctgds comes at the price of a higher complexity: both their satisfiability and im-
plication problems are undecidable. Built-in predicates and arbitrary constraints
are supported by cgds, for which it is not clear whether effective sql queries
can be developed to detect errors. It is worth mentioning that Theorems 2 and 6
of this work provide lower bounds for the consistency and implication analyses
of cgds, by using patterns with built-in predicates only.

7 Conclusions

We have proposed cfdps and cindps, which further extend cfds and cinds,
respectively, by allowing patterns on data values to be expressed in terms of
6=, <,≤, > and ≥ predicates. We have shown that cfdps and cindps are more
powerful than cfds and cinds for detecting errors in real-life data. In addition,
the satisfiability and implication problems for cfdps and cindps have the same
complexity bounds as their counterparts for cfds and cinds, respectively. We
have also provided automated methods to generate sql queries for detecting
errors based on cfdps and cindps. These provide commercial dbms with an
immediate capability to capture errors commonly found in real-world data.
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One topic for future work is to develop a dependency language that is capable
of expressing various extensions of cfds (e.g.,cfdps, ecfds [7] and cfdcs [9]),
without increasing the complexity of static analyses. Second, we are developing
effective algorithms for discovering cfdps and cindps, along the same lines as
[10, 18, 15]. Third, we plan to extend the methods of [5, 13] to repair data based
on cfdps and cindps, instead of using cfds [13], traditional fds and inds [5],
denial constraints [4, 12], and aggregate constraints [16].
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