
Increasing the Expressivity of Conditional Functional

Dependencies without Extra Complexity

Loreto Bravo 1, Wenfei Fan 1,2, Floris Geerts 1, Shuai Ma 1

1School of Informatics, University of Edinburgh, UK
2Bell Laboratories, USA

{lbravo,wenfei,fgeerts,sma1}@inf.ed.ac.uk

Abstract— The paper proposes an extension of CFDs [1],
referred to as extended Conditional Functional Dependencies
(eCFDs). In contrast to CFDs, eCFDs specify patterns of seman-
tically related values in terms of disjunction and inequality, and
are capable of catching inconsistencies that arise in practice
but cannot be detected by CFDs. The increase in expressive
power does not incur extra complexity: we show that the
satisfiability and implication analyses of eCFDs remain NP -
complete and coNP -complete, respectively, the same as their
CFDs counterparts. In light of the intractability, we present an
algorithm that approximates the maximum number of eCFDs
that are satisfiable. In addition, we revise SQL techniques for
detecting CFD violations, and show that violations of multiple
eCFDs can be captured via a single pair of SQL queries. We
also introduce an incremental SQL technique for detecting eCFD
violations in response to database updates. We experimentally
verify the effectiveness and efficiency of our SQL -based detection
methods.

I. INTRODUCTION

Conditional functional dependencies (CFDs) have recently
been introduced in [1] for data cleaning. CFDs extend func-
tional dependencies (FDs) by enforcing patterns of seman-
tically related values, and have proved more effective in
catching data inconsistencies than FDs, which were currently
the basis of many data-cleaning tools [2], [3], [4], [5], [6].

To capture inconsistencies that commonly arise in real-
life data, however, one often needs to use more expressive
constraints, as illustrated by the following example.

Example 1.1: Let us consider a schema similar to the one
used in [1]: cust(AC,PN,NM,STR,CT,ZIP). It specifies a
customer in New York State in terms of the customer’s phone
(area code (AC), phone number (PN)), name (NM), and
address (street (STR), city (CT), zip code (ZIP)). An instance
D0 of cust is shown in Fig. 1.

One may want to specify the CFD below on cust:

φ1: (CT → AC, {(Albany ‖ 518), (Troy ‖ 518), (Colonie ‖ 518)})

The CFD is a pair consisting of an embedded standard FD and
a pattern tableau. It states that the FD CT → AC (city uniquely
determines area code) holds if CT is Albany, Troy or Colonie;
and in addition, the pattern tableau refines the FD by enforcing
bindings between cities and area codes: if CT is one of these
cities, then AC must be 518. This CFD identifies tuple t1 in

AC PN NM STR CT ZIP
t1: 718 1111111 Mike Tree Ave. Albany 12238
t2: 518 2222222 Joe Elm Str. Colonie 12205
t3: 518 2222222 Jim Oak Ave. Troy 12181
t4: 100 1111111 Rick 8th Ave. NYC 10001
t5: 212 3333333 Ben 5th Ave. NYC 10016
t6: 646 4444444 Ian High St. NYC 10011

Fig. 1. Instance D0 of the cust relation

Fig. 1 as an error: CT is Albany but AC is not 518. This error
cannot be caught by traditional FDs.

A cursory examination of New York area codes reveals
that most cities in the state have a unique area code, except
NYC and LI (Long Island). Such situations commonly arise in
practice, and it is useful to capture this as constraints when
checking inconsistencies of the data. Unfortunately, it cannot
be defined as a standard FD or even a CFD.

This, however, can be expressed as the constraint below:

φ2: CT 6∈ {NYC, LI} → AC

which assures that the FD CT → AC holds if CT is not in the
set {NYC, LI}, instead of on the entire cust database.

For NYC, one can write the following constraint:

φ3: CT ∈ {NYC} → ∅ with AC ∈ {212, 718, 646, 347, 917}

This asserts that when CT is NYC, AC must be either 212,
718, 646, 347, or 917. That is, here CT is associated with
a disjunction of options rather than with a single value, and
chooses one from the multiple choices. Again this is common
in practice. With φ3 we can identify tuple t4 of Fig. 1 as an
error: 100 is not one of the area codes associated with NYC.
Similarly one can specify the area codes for LI.

However, these constraints cannot be defined as CFDs: they
are specified with inequality (φ2) and disjunction (φ3), which
are beyond the expressive power of CFDs. 2

A more powerful language is necessary to express these
constraints. However, increased expressive power often comes
with the extra charge for complexity.

Contribution. The first contribution of the paper is a CFD ex-
tension, well-balanced between expressiveness and complex-
ity, referred to extended Conditional Functional Dependencies
(eCFDs). eCFDs support disjunction and inequality, and can

express all the constraints we have encountered so far. They
include CFDs as a special case, and can catch inconsistencies,
as violations of eCFDs, that commonly arise in real-life data
but cannot be detected by CFDs.

Our second contribution consists of complexity bounds of
two central technical problems associated with eCFDs: the
satisfiability problem is to determine whether or not an input
set of eCFDs makes sense, i.e., whether there exists a nonempty
database that satisfies the eCFDs; and the implication problem
is to determine whether or not an eCFD is entailed by a
given set of eCFDs. These are important in validation and
optimization of data-cleaning processes in practice. We show
that despite the increased expressive power, eCFDs do not
make our lives harder: for eCFDs these problems remain NP-
complete and coNP-complete, respectively, the same as their
CFD counterparts.

Our third contribution is an approximation-preserving
reduction from the maximum satisfiability problem of
eCFDs to the maximum generalized satisfiability problem
(MAXGSAT) [7]. As a result we can apply existing approxima-
tion algorithms for MAXGSAT to find an approximation of the
largest possible subset of satisfiable eCFDs in a given input set
Σ. This not only allows to efficiently detect the unsatisfiability
of Σ with some certainty, but also provides the user with a
set of satisfiable eCFDs that can serve as a starting point to
inspect the remaining eCFDs in Σ.

Our fourth contribution consists of two algorithms for de-
tecting data inconsistencies. The first one is a batch algorithm
that, given a dataset D and a set Σ of eCFDs, finds all tuples
that violate some eCFDs in Σ. We revise the SQL detection
technique developed in [1] and show that a single pair of
SQL queries suffices to find all violations of Σ despite that Σ
may consist of multiple eCFDs. The second one is a novel
incremental algorithm: in response to updates ∆D to the
database D, the algorithm efficiently finds all violations of Σ
in the updated dataset D ⊕∆D, by updating violations of Σ
in D and minimizing unnecessary recomputation. This again
uses SQL queries only.

Our fifth contribution is an experimental study of the
performance of our batch and incremental detection methods.
We find that our methods scale well when the data size gets
large and eCFDs (pattern tuples in the eCFDs) get complicated;
in addition, the incremental method outperforms the batch one
in response to reasonably-sized database updates.

Organization. Section II formally defines eCFDs. The satis-
fiability and implication problems of eCFDs are studied in
Section III, followed by our approximation analysis of the sat-
isfiabilty problem in Section IV. Next, Section V presents the
batch and incremental detection techniques, followed by their
experimental study in Section VI. Related work is discussed
in Section VII and Section VIII presents some concluding
remarks.

ψ1 = (cust: [CT] → [AC], ∅, T1), where the pattern
tableau T1 is

CT AC ∅
{NYC, LI}

{Albany, Troy, Colonie} {518}
ψ2 = (cust: [CT] → ∅, AC, T2), where the pattern tableau
T2 is

CT ∅ AC
{NYC} {212, 718, 646, 347, 917}

Fig. 2. Example eCFDs

II. EXTENDED CFDS

We now define extended Conditional Functional Dependen-
cies (eCFD). Consider a relation schema R defined over a finite
set of attributes, denoted by attr(R). For each A in attr(R)
we denote by dom(A) the domain of attribute A, which can
be infinite or finite (with at least two elements).

Syntax. An eCFD ϕ is a triple (R : X → Y, Yp, Tp), where
(1) X,Y, Yp ⊆ attr(R), and Y ∩ Yp = ∅; (2) X → Y
is a standard FD, referred to as the embedded functional
dependency of ϕ; and (3) Tp is a pattern tableau consisting
of a finite number of pattern tuples over the attributes in
X ∪ Y ∪ Yp, such that for any tuple tp ∈ Tp and for each
attribute A in X ∪Y ∪Yp, tp[A] is either an unnamed variable
‘ ’, a set S or a complement set S, where S is a finite subset
of dom(A). If A appears in both X and Y ∪Yp, we use tp[AL]
and tp[AR] to indicate the A field of tp corresponding to A
in X and Y ∪ Yp, respectively. We denote X by LHS(ϕ) and
Y ∪ Yp by RHS(ϕ).

Example 2.1: Constraints φ1 – φ3 of Example 1.1 can be
expressed as the eCFDs shown in Fig. 2. In ψ1, X = {CT},
Y = {AC} and Yp = ∅. In ψ2, X = {CT}, Y = ∅ and
Yp = {AC}. Here ψ1 expresses φ1 and φ2, while ψ2 represents
φ3. We use ‖ to separate X,Y and Yp. 2

Observe that each pattern tuple is actually a constraint that
enforces binding of semantically related values, and is referred
to as a pattern constraint in the eCFD.

Semantics. Let us consider Z ⊆ X ∪ Y ∪ Yp, a tuple t in
an instance I of R, and a pattern tuple tp ∈ Tp. We say that
the data tuple t[Z] matches the pattern tuple tp[Z], denoted
by t[Z] � tp[Z], if for each A ∈ Z, (1) if tp[A] = ‘ ’, then
t[A] ∈ dom(A), i.e., an arbitrary value; (2) if tp[A] = S, then
t[A] ∈ S; and (3) if tp[A] = S, then t[A] 6∈ S.

For example, consider t1, t4 of Fig. 1 and the first pattern
tuple tp of ψ1 in Fig. 2. Then t1[CT,AC] � tp[CT,AC] since
t1[CT] 6∈ {NYC, LI}, and t1[AC] �‘ ’. However, t4[CT,AC] 6�
tp[CT,AC] since t4[CT] ∈ {NYC, LI}.

A relation I of R satisfies eCFD ϕ, denoted by I |= ϕ,
if for each pattern tuple tp ∈ Tp, the following holds. Let
I(tp) = {t ∈ I | t[X] � tp[X]}, which is the set of tuples t
in I such that t[X] matches tp[X]. Then (1) I(tp) must satisfy
the embedded FD X → Y , i.e., for any two tuples t1, t2 in

I(tp), if t1[X] = t2[X], then t1[Y] = t2[Y]; and furthermore,
(2) for each tuple t ∈ I(tp), t[Y, Yp] � tp[Y, Yp], i.e., all tuples
t in I(tp) must match the pattern tp[Y, Yp].

Intuitively, I(tp) identifies the set of tuples on which the
constraint tp is defined, i.e., the constraint only applies to the
tuples in I that match the pattern tp[X]. Both, the embedded
FD X → Y and the pattern tp[Y, Yp], are enforced on the
tuples in I(tp).

Example 2.2: Consider the database D0 of Fig. 1 and the
first pattern tuple tp in ψ1. Here D0(tp) = {t1, t2, t3}, i.e.,
the tuples whose CT attribute is neither NYC nor LI. In other
words, the constraint specified by tp does not apply to the
entire D0; it holds conditionally on D0, i.e., only on D0(tp).

The database D0 satisfies neither ψ1 nor ψ2. Even though
t1[CT] � t′p[CT] and t1 does not violate the FD CT → AC,
where t′p is the second pattern tuple of ψ1, t1 violates ψ1 since
t1[AC] 6� t′p[AC]. The tuple t4 violates ψ2 since t1[AC] 6�
t
′′

p [AC] although t1[CT] � t
′′

p [CT], where t
′′

p is the pattern
tuple of ψ2 (here CT is the Yp attribute of ψ2). These tell
us that a single tuple may violate an eCFD while it takes two
tuples to violate a standard FD. 2

An instance I of R satisfies a set Σ of eCFDs, denoted by
I |= Σ, if I |= ϕ for each ϕ ∈ Σ.

Remarks. (1) eCFDs support inequality (S, e.g., the first
pattern tuple of ψ1) and disjunction (S, e.g., ψ2 in which
the area code for NYC is specified as either 212, 718, 646,
347 or 917). (2) Conditional functional dependencies (CFDs)
introduced in [1] are a special case of eCFDs. Recall that a
CFD is of the form (R : X → Y, Tp), in which each pattern
tuple consists of either ‘ ’ or a single constant value. Hence,
a CFD can be written as an eCFD ϕ = (R : X → Y, ∅, T ′p),
where T ′p is identical to Tp except that each constant a in Tp

is replaced with {a} in T ′p. That is, a CFD is an eCFD with
neither inequality nor disjunction. Since CFDs extend standard
FDs, so do eCFDs.

III. SATISFIABILITY AND IMPLICATION OF eCFDS

In this section we investigate the satisfiability and implica-
tion analyses of eCFDs. These are classical decision problems
associated with any constraint language.

The satisfiability problem for eCFDs is to decide, given a
set Σ of eCFDs on a relation schema R, whether or not there
exists a nonempty instance I of R such that I |= Σ.

The implication problem for eCFDs is to determine, given
a set Σ of eCFDs and another eCFD ϕ defined on the same
relation schema R, whether or not Σ |= ϕ, i.e., whether for
every instance I of R, if I |= Σ then also I |= ϕ.

The main result of this section is that despite the increased
expressive power of eCFDs, they retain the same complexity
bounds for these static analyses as CFDs.

Satisfiability. As shown in [1], CFDs may not be satisfiable.
It is thus not surprising that the same holds for eCFDs.

Example 3.1: Consider an eCFD ψ3 on cust databases: (cust:
[CT] → [CT], ∅, {({NYC} ‖ {NYC} ‖ ∅), ({NYC} ‖ {LI}‖

∅)}). This eCFD is not satisfiable. Indeed, for any cust instance
I and any tuple t in I , if t[CT] = NYC, then ψ3 requires it to
be LI; but ψ3 forces it to be NYC again. 2

This highlights the need for the satisfiability analysis of
eCFDs: it is necessary to determine whether or not the given
eCFDs are not dirty themselves before one uses the eCFDs to
detect inconsistencies in a database, which is typically much
larger than the set of constraints.

It is known that the satisfiability problem for CFDs is NP-
complete [1]. The result below tells us that eCFDs do not make
the satisfiability analysis more complicated.

Proposition 3.1: The satisfiability problem for eCFDs is NP-
complete.

Proof: The lower bound follows from the NP hardness
of the CFD counterpart, since CFDs are a special case of
eCFDs. For the upper bound, the satisfiability problem has the
following small model property: For any given set Σ of eCFDs,
if Σ is satisfiable, then there exists a database consisting of a
single tuple that satisfies Σ. Thus an NP algorithm for checking
eCFD satisfiability (i) guesses a database I with a single tuple
and (ii) then checks whether I |= Σ; the latter can be done in
PTIME.

Implication. Due to the presence of pattern tuples in eCFDs,
one expects the number of eCFDs to be larger than their FD
counterparts. A natural optimization strategy for cleaning data
with eCFDs is by removing redundancies in a given set of
eCFDs, i.e., by removing eCFDs and pattern tuples that are
entailed by other eCFDs. This calls for the implication analysis
of eCFDs.

The implication problem is coNP-complete for CFDs [1].
The complexity remains unchanged for eCFDs:

Proposition 3.2:. The implication problem for eCFDs is coNP-
complete.

Proof: The coNP-hardness follows from the lower bound
for CFD implication. For the upper bound, the complement
of the implication problem has the following small model
property: for any given set Σ of eCFDs and a single eCFD
ϕ on a schema R, Σ 6|= ϕ iff there exists an instance I of
R such that I |= Σ but I 6|= ϕ, and moreover, I consists
of at most two tuples. Thus an NP algorithm for checking the
complement of eCFD implication (i) guesses a database I with
two tuples and (ii) checks whether I |= Σ and I 6|= ϕ. The
latter can be done in PTIME.

Special case. A tractable special case is identified in [1]: if
the given CFDs involve no attributes that have a finite domain,
then the satisfiability and implication analyses are in PTIME.
This is not longer the case for eCFDs, since we can enforce,
via eCFDs, an attribute A to draw values from a finite set only,
no matter whether dom(A) is infinite or not.

Proposition 3.3: The satisfiability and implication problems
for eCFDs remain NP-complete and coNP-complete, respec-
tively, in the absence of finite-domain attributes.

Proof: For the satisfiability problem, the NP-hardness
is by reduction from CFD satisfiability with finite-domain
attributes. Given any CFDs Σ on schema R, we define another
schema R′ with only infinite-domain attributes: for each
A ∈ attr(R) with a finite domain we replace A with A′ of
an infinite domain; in addition, we define Σ′ to be the set
consisting of CFDs in Σ and an eCFD ψA = (R′ : [A′] →
∅, A′, {(‖ ∅ ‖ dom(A))}) for each such attribute A. The
eCFD ψA forces A′ to take value only from dom(A). Clearly,
Σ′ is satisfiable iff Σ is. Similarly we can show the coNP-
hardness of the implication of eCFDs with infinite-domain
attributes only.

IV. APPROXIMATION ALGORITHM FOR SATISFIABILITY

In light of the intractability of the eCFD satisfiability analy-
sis, it is beyond reach to find an efficient algorithm that, given
a set Σ of eCFDs, returns true iff Σ is satisfiable.

This motivates us to consider the maximum satisfiable subset
problem (MAXSS): given a set Σ of eCFDs, it is to find a
maximum subset of Σ that is satisfiable. Although this prob-
lem is also intractable, we develop an approximation factor
preserving reduction to a well-studied NP-complete problem,
called Maximum Generalized Satisfiability (MAXGSAT), for
which a number of approximation algorithms are already in
place (see, e.g., [7]). The MAXGSAT problem is, given a set
Φ = {φ1, . . . , φn} of Boolean expressions, to find a truth
assignment that satisfies the maximum number of expressions
in Φ.

Given this reduction and an ε-approximation algorithm
for MAXGSAT, we obtain an ε-approximation algorithm for
MAXSS that, given Σ, finds a satisfiable subset Σm of Σ
such that card(Σm) ≥ (1 − ε) · card(OPTmaxss(Σ)), where
OPTmaxss(Σ) denotes a maximum satisfiable subset of Σ,
and card(S) denotes the cardinality of S.

Clearly, if |Σm| = |Σ| then we may conclude that Σ
is satisfiable. Moreover, if |Σm| < (1 − ε)|Σ| then Σ is
unsatisfiable. Therefore, only when |Σ| > |Σm| ≥ (1 − ε)|Σ|
we cannot conclude whether Σ is satisfiable or not.

Approximation factor preserving reduction. An approxi-
mation factor preserving reduction from MAXSS to MAXGSAT
consists of two PTIME functions f and g such that for any set
Σ of eCFDs,

1) f(Σ) is an MAXGSAT instance ΦΣ, and g(Φm) is a
satisfiable set in Σ if Φm is a set of satisfied formulas
in ΦΣ;

2) card(OPTmaxgsat(f(Σ))) ≥ card(OPTmaxss(Σ));
3) card(g(Φm)) ≥ card(Φm), where OPTmaxgsat(f(Σ))

is the maximum set of satisfied expressions in ΦΣ. Thus
g is guaranteed to return a feasible MAXSS solution for
Σ.

Such a reduction ensures that MAXSS has an ε-factor
approximation algorithm if MAXGSAT has one. Indeed, if
card(Φm) ≥ (1 − ε) · card(OPTmaxgsat(f(Σ))), then from
(2) and (3) above, it follows that card(g(Φm)) ≥ (1 − ε) ·
card(OPTmaxss(Σ)). In particular, one can verify that if Φm

is the optimal solution of MAXGSAT for f(Σ), then g(Φm) is
the optimal solution of MAXSS for Σ.

Reduction. We give a reduction by leveraging the small model
property shown in the proof of Proposition 3.1. We define
an R-tuple template t such that Σ is satisfiable iff there is a
valuation ρ for variables in t with {ρ(t)} |= Σ.

We first introduce variables used in the reduction. Consider
a set Σ of eCFDs defined on a relation schema R, where
attr(R) = {A1, . . . , An}. For each i ∈ [1, n], we define the
active domain adom(Ai) of Ai to be the set consisting of
(1) all the constants appearing in tp[Ai] for some pattern tuple
tp in Σ; (2) a value in dom(Ai) that is not yet in dom(Ai) if
there exists any (if dom(Ai) is a finite domain, there may not
exist such a value). Let k be the size of Σ. Then adom(Ai) has
at most k+1 values. For each i ∈ [1, n] and a ∈ adom(Ai), we
introduce a Boolean variable x(i, a) such that x(i, a) = true
iff t[Ai] = a. We use the Boolean expression below to ensure
that t[Ai] has a unique value:

ϕi =
∨

a∈adom(Ai)

x(i, a) ∧
∧

a,b∈adom(Ai)∧b 6=a

((x(i, a) → x(i, b))

Let ΦR be the conjunction of all ϕi for i ∈ [1, n]. Then ΦR

guarantees that t is characterized by these variables.
We define the reduction function f to characterize eCFDs.

For each ψ = (R : X → Y, Yp, Tp) ∈ Σ and each tp ∈ Tp,
we define a Boolean expression ξ(ψ, tp):

∨
B∈X

t[B] 6� tp[B] ∨ (
∧

A∈Y

t[A] � tp[A] ∧
∧

A∈Yp

t[A] � tp[A])

where t[B] � tp[B] can be written as

1) the disjunction of x(i, a) for all a ∈ S if tp[B] = S;
2) the conjunction of x(i, a) all a ∈ S if tp[B] = S; and
3) true if tp[B] = ‘ ’. Similarly t[B] 6� tp[B] can be

expressed as a Boolean expression with variables given
above. We define f(Σ) = ΦΣ = {ξ(ψ, tp) ∧ ΦR | ψ ∈
Σ, tp ∈ ψ}, with |ΦΣ| in O(k).

Finally we define the reduction function g. For a truth
assignment ρ for ΦΣ, let Φm be the set of expressions in
ΦΣ satisfied by ρ. We instantiate t based on ρ as follows:
t[Ai] = a if and only if ρ(x(i, a)) = true. Then g(Φm) is
defined to be the set of eCFDs satisfied by t. It is easy to
verify that card(Φm) = card(g(Φm)).

Proposition 4.1: The reduction given above is approximation
factor preserving from MAXSS to MAXGSAT.

Proof: First, functions f and g can be computed in
PTIME in k and n. Second, card(OPTmaxgsat(f(Σ))) =
card(OPTmaxss(Σ)). Third, for any truth assignment ρ for
ΦΣ, if Φm is the set of formulas in ΦΣ satisfied by ρ, then
card(Φm) = card(g(Φm)). Taken together, the reduction is
indeed approximation factor preserving.

V. DETECTING eCFD VIOLATIONS

In this section, we develop techniques for detecting viola-
tions in a database D w.r.t. a given set Σ of eCFDs. We consider
static and dynamic settings, stated as follows:

Given a database D and a set Σ of eCFDs, a batch detection
algorithm is to find the violation set vio(D) w.r.t. Σ, i.e., the
set of all tuples in D that violate some eCFDs in Σ.

Given D, Σ, the violation set vio(D) of D w.r.t. Σ, and
updates ∆D to the database D, an incremental detection algo-
rithm is to find the set ∆vio(D) such that ∆vio(D)⊕vio(D) is
the violation set vio(∆D⊕D) w.r.t. Σ, where ∆S⊕S denotes
applying the updates ∆S to the set S. Here the updates ∆D
can be either a set of tuple insertions or deletions, denoted by
∆D+ and ∆D−, respectively.

In Sections V-A and V-B, we develop a batch and an
incremental detection algorithm, referred to as BATCHDETECT
and INCDETECT, respectively. Both algorithms only generate
SQL queries to detect violations. This is important since eCFD
violation detection can then be directly implemented on top of
RDBMS, and we can therefore benefit from existing optimiza-
tion techniques of RDBMS. Better still, in both settings, only a
fixed number of SQL queries are needed, no matter how many
eCFDs are in Σ, how many pattern tuples are in the eCFDs,
and how large the sets are in each pattern-tuple attribute. The
key idea is to treat pattern tableaux in Σ as data tables, rather
than as meta-data.

Before we present our detection algorithms we decide on a
uniform way of representing the set of violations. Instead of
simply returning the tuples in D that violate some eCFD in
Σ, we explicitly store whether a tuple in D is a violation or
not. More precisely, we extend the schema R of D with two
Boolean attributes: SV (for “Single tuple Violation”) and MV
(for “Multiple tuple Violation”). That is, t.SV = 1 if t violates
an eCFD in Σ all by itself; and t.SV = 0 otherwise. Similarly,
t.MV = 1 if t violates an embedded FD for an eCFD in Σ; and
t.MV = 0 otherwise. Hence, t ∈ vio(D) if either t.SV = 1 or
t.MV = 1.

A. A Batch Algorithm

We first consider the static case and outline algorithm
BATCHDETECT. Here we extend the approach proposed in [1]
and generate a pair of SQL queries for violation detection and
corresponding update statements:

1) Query Qsv finds all single-tuple violations due to vio-
lations of the pattern constraints enforced by eCFDs in
Σ;

2) Query Qmv identifies multiple-tuple violations caused
by a violation of an FD embedded in some eCFD in Σ.

3) Given these two queries, BATCHDETECT performs up-
date statements to D and sets the SV (resp. MV) attribute
to 1 for those tuples returned by Qs (resp. Qv).

Encoding of eCFDs. To achieve this, we encode Σ with
several auxiliary relations. This encoding is also used in the
incremental detection algorithm and therefore we explain it
in detail. We start by encoding the attribute structure of the

enc

CID ACR

2 518
3 212
3 718
3 646
3 347
3 917

TACRTCTL

CID CTL ACL CTR ACR

1 2 0 0 3
2 1 0 0 2
3 1 0 0 -2

CID CTL

1 NYC
1 LI
2 Albany
2 Troy
2 Colony
3 NYC

Fig. 3. Encoding of eCFDs.

eCFDs with a relation enc, and the patterns in the eCFDs in
terms of separate relations, as will be explained below. The
relation enc is a relation of arity 2|attr(R)| + 1 consisting
of (i) an attribute CID that stores an identifier of the eCFDs
in Σ; and (ii) attributes AL (for “left”) and AR (for “right”)
for each attribute in A ∈ attr(R). We may assume that the
eCFDs in Σ all contain a single pattern tuple only. Indeed,
we can always split an eCFD with multiple patterns into a set
of eCFDs with only a single pattern tuple. Consider a single
eCFD ϕ = (R : X → Y, Yp, Tp = {tp}) in Σ. We now
encode whether an attribute is part of X , Y or Yp and whether
the pattern tuple for that attribute is of the form S, S or ‘ ’,
using integers in {−3,−2,−1, 0, 1, 2, 3} as follows: we add
a tuple tϕ to enc such that tϕ[CID] is an identifier for ϕ;
the other attributes of tϕ are defined as follows: tϕ[AL] = 0
(resp. tϕ[AR] = 0) in case that A does not appear on the
LHS(ϕ) (resp. RHS(ϕ)); tϕ[AL] = 1 (resp. tϕ[AR] = 1)
in case that A does appear in X (resp. Y) and moreover
tp[A] = S. Similarly, tϕ[AL] = 2 (resp. tϕ[AR] = 2) in case
that A does appear in X (resp. Y) and tp[A] = S. Moreover,
tϕ[AL] = 3 (resp. tϕ[AR] = 3) in case that A does appear
in X (resp. Y) and tp[A] =‘ ’. Finally, for attributes AR that
appear in Yp, we use a similar encoding but use the negative
integers −1, −2, and −3 instead. We illustrate the relation enc
encoding of ψ1 and ψ2 of Example 2.1 in Fig. 3 (top). We
only show some attributes relevant for these eCFDs. The tuples
have zeroes for all other attributes. Note that enc encodes all
eCFDs in Σ uniformly in the single relation, one tuple for each
pattern tuple in Σ.

We also need to store the tuples in the pattern tableaux of
the eCFDs in Σ. For this, we create 2|attr(R)| binary relations
as follows: For each attribute A ∈ attr(R), we define TAL

(resp. TAR
) as the relation consisting pairs (cid, a) where cid

is an identifier of an eCFD in Σ and a ∈ S or a ∈ S, where S
is such that tp[AL] = S or tp[AL] = S (resp. tp[AR] = S or
tp[AR] = S). Figure 3 (bottom) shows these relations for the
eCFDs of Example 2.1.

Algorithm BATCHDETECT. The following SQL queries are
employed by BATCHDETECT.

(1) We first detect single-tuple violations that are caused by

pattern constraints, i.e., tuples in D that satisfy the pattern
constraints of the LHS of an eCFD in Σ but do not satisfy
those of its RHS. The encoding is similar to the one for
CFDs presented in [1], by literally expressing pattern-constraint
violation in SQL. In contrast to CFDs, patterns are now sets (or
the complement thereof). For this, we need to express the fact
that an element is in (resp. not in) a set by means of EXISTS
(resp. NOT EXISTS). Figure 4 (top) shows the query Qsv for
the example eCFDs given in Fig. 2 In the queries in Fig. 4, µ
stands for a mapping defined by µ(AL) = A and µ(AR) = A
for all A ∈ attr(R). We omit parts of the queries addressing
irrelevant attributes.

(2) We next detect the multiple-tuple violations that are caused
by violations of the embedded FDs in the eCFDs in Σ. Similar
to [1], detection of such violations can be readily expressed
using GROUP BY in SQL. However, we have to group by
different attributes depending on the eCFD under consideration.
This can be achieved by blanking out (using a constant “@”
not appearing in any database) those attributes that are not
relevant. Attributes irrelevant to the embedded FD have non-
positive entries in the relation enc. We use the CASE construct
in the SELECT statement to replace the attributes values of
tuples in D by ‘@’ if the attribute is irrelevant to the embedded
FD; otherwise we return the attribute value of the tuple instead.
We provide an example query Qmv in Fig. 4 (bottom). Note
that Qmv returns tuples of the form (cid, p), where cid is
an identifier for an eCFD (as given by enc) and p is a tuple
consisting of constant values and “@”s. Intuitively, if a tuple
t ∈ D matches p for some (cid, p) ∈ Qmv(D) then it violates
the embedded FD of the eCFD identified by cid.

(3) We set the SV attribute to “1” for tuples returned by Qsv .
For the MV-attribute, note that a tuple t in D is involved in a
multiple tuple violation iff there exists a (cid, p) ∈ Qmv(D)
such that t matches p. An additional SQL query identifies these
tuples and updates their MV-attribute to “1”.

Putting these together, given schema R and set Σ of
eCFDs defined on R, algorithm BATCHDETECT generates SQL
queries and update statements for detecting pattern-constraint
violations and embedded FD violations, respectively, by capi-
talizing on the encoding given above.

Remarks. (1) The schema of the encoding relations, namely,
enc and the binary relations TA, is determined by the schema
R rather than Σ. (2) The entire encoding relations are linear
in the size of the input eCFDs Σ. (3) The detection SQL
queries conduct two passes of the database D, regardless of
the number of eCFDs and the size of pattern tuples in Σ.
That is, they have the same data complexity as detection
queries for CFDs [1]. Note that these queries necessarily use
EXISTS and NOT EXISTS; but these operations are only
applied to auxiliary relations that encode the sets of constants
mentioned in the eCFD patterns, rather than to the underlying
database. Indeed, for each data tuple Qsv conducts a linear
scan of Σ, the same as its CFD counterpart; similarly for
Qmv . It is also worth remarking that the coding of eCFDs for
algorithm BATCHDETECT is more involved than that of [1],

Qmv =(SELECT m.CID,m.CTL, COUNT(∗) FROM macro m
GROUP BY m.CID,m.CTL

HAVING COUNT(∗) > 1)
where macro stands for:

(SELECT DISTINCT c.CID, (CASE c.CTL WHEN > 0 THEN
t.CT ELSE @ END) AS CTL · · ·
(CASE c.ACR WHEN > 0 THEN
t.AC ELSE @ END) AS ACR

FROM cust t, enc c
WHERE (c.CTL "= 1 OR ((EXISTS QCTL) AND c.CTL = 1))
AND (c.CTL "= 2 OR ((NOT EXISTS QCTL) AND c.CTL = 2)))

Qsv =(SELECT t.AC, t.PN, t.NM, t.STR, t.CT, t.ZIP
FROM cust t, enc c
WHERE (c.CTL != 1 OR ((EXISTS QCTL) AND c.CTL = 1))
AND (c.CTL != 2 OR ((NOT EXISTS QCTL) AND c.CTL = 2))
AND (((NOT EXISTS QACR) AND ABS(c.ACR) = 1)
OR ((EXISTS QACR) AND ABS(c.ACR) = 2)))

where for any attribute A, QA stands for
(SELECT TA.A FROM TA

WHERE c.CID = TA.CID AND t.µ(A) = TA.A).

Fig. 4. Batch detection of violations.

in order to cope with the set elements in pattern tuples. A
direct extension of the technique of [1] may lead to excessive
space overhead, as opposed to the linear space taken by
BATCHDETECT.

B. An Incremental Algorithm

We next present incremental algorithm INCDETECT in
response to database updates ∆D. Of course, BATCHDETECT
can be directly applied to the new database obtained by
updating the database D with ∆D. We want to incrementally
detect violations because the deletion or insertion of a small
number of tuples only affects a small part of D and as a result,
one only needs to identify violations in the affected part rather
than inspect the entire database. Algorithm INCDETECT aims
to minimize unnecessary recomputation conducted for finding
violations.

Like BATCHDETECT, Algorithm INCDETECT also gener-
ates SQL queries to identify changes to the violations of pattern
constraints and changes to the violations of embedded FDs
in Σ. In addition, it maintains an auxiliary relation in order
to reuse previous computations. Observe that tuple deletions
∆D− may remove violations from D but do not introduce new
violations; on the other hand, tuples insertions ∆D+ may add
new violations introduced by inserted tuples alone or together
with tuples in D.

Auxiliary relation. We maintain an auxiliary relation Aux(D),
initialized by storing the query result of Qmv from BATCHDE-
TECT on D. Recall that Aux(D) consists of tuples of the
form (cid, p) where cid is an eCFD identifier and p is a tuple
consisting of constants and “@”. As noted above, each (cid, p)
corresponds to the set of tuples that are involved in a multiple-
tuple violation of the eCFD identified by cid and that match p.
We next describe how Aux(D) is maintained during updates
on D and how it can be used to incrementally compute the
updated set of violations.

Algorithm INCDETECT. Due to space limitations, we only
provide a high-level description of INCDETECT. Initially, we
are given (i) D in which the SV and MV attributes correctly
indicate the violations of Σ (this can be obtained by running
algorithm BATCHDETECT); (ii) the set of updates ∆D; and
(iii) the auxiliary relation Aux(D) (initialized as described
above).

Algorithm INCDETECT needs to perform several tasks: it
needs to compute D⊕∆D, correctly update the SV and MV
attributes for the tuples in D ⊕ ∆D, and update Aux(D) to
Aux(D ⊕∆D). Moreover, INCDETECT performs these tasks
using SQL statements only. Since deletions and insertions are
dealt with in different ways, we treat them separately. We first
consider the case of deletions.

Tuple deletions. Let ∆D− be the set of tuples that are
to be deleted from D. We first explain how Aux(D) is
updated and then show how it is used to correctly update the
multiple violation attribute MV in D. Because deletions do
not eliminate single tuple violations (except for those that are
in ∆D−), we do not need to update the SV attribute.

(1) To update Aux(D), observe the following: a tuple (cid, p)
can be removed from Aux(D) if it either does not match any
tuple in D ⊕ ∆D−, or all matching tuples in D ⊕ ∆D−

do not violate the embedded FD of the eCFD identified by
cid. It suffices to only consider (cid, p)’s that are potentially
affected by the update ∆D−, i.e., those (cid, p)’s that match
a tuple in ∆D−, and thus avoid unnecessary computations
After removing these (cid, p)’s from Aux(D), we obtain the
updated Aux(D ⊕D−).

(2) In order to update the MV attribute, we first observe that
it is sufficient to only consider tuples t in D with t.MV = 1.
For each such t, we check whether it does not match any p
in (cid, p) ∈ Aux(D ⊕∆D−), and if so, update t.MV to 0.

Tuple insertions. Let ∆D+ be the set of tuples to be inserted
into D. We perform the following steps:

(1) We first detect the single-tuple violations in ∆D+. That
is, we apply Qsv of BATCHDETECT on ∆D+ and update the
SV-attribute in ∆D+ accordingly.

(2) Next, we identify new multiple-tuple violations in D ⊕
∆D+ by performing the following steps:

(2.a) Update the MV attribute of tuples in ∆D+ that violate
an eCFD together with a tuple in D. These can be easily found
by matching tuples in Aux(D) with tuples in ∆D+.

(2.b) Update Aux(D). Denote by Dclean the set of tuples in
D satisfying Σ, which can be easily identified using the MV
attribute. We insert tuples (cid, p) into Aux(D) that correspond
to violations between (previously clean) tuples in D and tuples
in ∆D+.

(2.c) We then update the MV attribute for tuples in Dclean ⊕
∆D+ that match some tuple (cid, p) in Aux(D).

(2.d) To account for multiple-tuple violations caused by tuples
in ∆D+ alone, we have to update Aux(D) again. For this, we

run Qmv on ∆D+ and insert the result tuples into Aux(D).
After this step, Aux(D) becomes Aux(D ⊕∆D+).

(2.e) Finally, we add ∆D+ to D and update the MV-attribute
of tuples in ∆D+ that match a (cid, p) tuple in Aux(D ⊕
∆D+).

It is easily verified that the above steps correctly maintain
both the auxiliary relation and violation set for both tuple
deletions and insertions. Moreover, they can all be performed
using SQL statements.

Remarks. (1) Algorithm INCDETECT uniformly employs an
auxiliary relation and SQL queries to handle multiple tuple
deletions and insertions, for the entire set Σ of eCFDs. This
is the first SQL-based technique for incrementally detecting
violations of multiple eCFDs. (2) Recomputation is avoided by
only considering relevant tuples in D using both the auxiliary
relation and the update set.

VI. EXPERIMENTAL STUDY

Our experimental study focuses on the SQL-based algo-
rithms BATCHDETECT and INCDETECT for detecting data
inconsistencies. We evaluate (1) the scalability of BATCHDE-
TECT and INCDETECT w.r.t. the size of databases, the com-
plexity of eCFDs and the error rate in the databases, and
(2) the performance of INCDETECT versus BATCHDETECT
in response to database updates.

Experimental setting. Our experiments are based on an exten-
sion of the cust relation shown in Fig. 1, that adds information
about items bought by different customers. We scraped real-
life CT,AC,ZIP data for cities and towns in the US and
different items, such as books, CDs and DVDs, from online
stores. Using this, we wrote a program to generate synthetic
datasets, denoted by D. We considered two parameters of the
datasets D: |D| for the number of tuples in D, ranging from
10k to 100k, and noise% for the percentage of tuples in D that
were modified to violate an eCFD, ranging from 0% to 9%.
The modification consists of changing tuples in D in attributes
in the right-hand side of some eCFDs from a correct to an
incorrect value.

We used a set Σ consisting of 10 eCFDs to express real-
life semantics of the real-life data, including the two eCFDs of
Fig. 2. We measured the complexity of the eCFDs in terms of
the |Tp|, i.e., the number of tuples in the pattern tableaux Tp,
ranging from 10 to 500 pattern tuples. Note that each tuple
itself is a constraint. The number of wildcards (‘ ’), positive
domain constraints (S) and negative domain constraints (S) in
the pattern tuples are uniformly distributed.

Our experiments were conducted on an Apple Xserve with
2.3GHz PowerPC dual CPU and 4GB of memory, and with
a commercial DBMS installed. Each experiment was run five
times and the average is reported here.

Experiment 1: Scalability. In the first set of experiments we
evaluated the scalability of BATCHDETECT.

We first set |Tp| = 10 and investigated the effect of varying
|D| and noise% on the performance of BATCHDETECT. Fixing

 0

 50

 100

 150

 200

 250

 300

 350

100K90K80K70K60K50K40K30K20K10K

R
un

tim
e(

se
c.

)

Number of tuples in relation

(a) Scalability in |D|

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1 2 3 4 5 6 7 8 9

R
un

tim
e(

se
c.

)

Noise(%)

(b) Scalability in noise

 0

 100

 200

 300

 400

 500

 600

 700

 50 100 150 200 250 300 350 400 450 500

R
un

tim
e(

se
c.

)

Size of eCFD (|Tp|)

(c) Scalability in number of constraints

Fig. 5. BATCHDETECT

noise% = 5%, we varied |D| from 10k to 100k in 10k
increments. Moreover, fixing |D| = 100k, we varied noise%
from 0% to 9% in 1% increments. The results are presented
in Figs. 5(a) and 5(b). As expected, BATCHDETECT scales
well w.r.t. the size of the datasets and the error rate.

We then set |D| = 100k and noise% = 5%, and studied the
impact of varying the complexity of eCFDs of Σ on the cost of
BATCHDETECT. We selected an eCFD from Σ and varied its
|Tp| from 50 to 500 in 50 increments. As shown in Fig. 5(c)
BATCHDETECT scales linearly in |Tp|.

 0

 50

 100

 150

 200

 250

 300

 350

100K90K80K70K60K50K40K30K20K10K

R
un

tim
e(

se
c.

)

Number of tuples in relation

BatchDetect
IncDetect

(a) Scalability in |D|

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6 7 8 9

R
un

tim
e(

se
c.

)

Noise(%)

BatchDetect
IncDetect

(b) Scalability in noise

 0

 100

 200

 300

 400

 500

 600

 700

 50 100 150 200 250 300 350 400 450 500

R
un

tim
e(

se
c.

)

Size of eCFD (|Tp|)

BatchDetect
IncDetect

(c) Scalability in number of constraints

Fig. 6. BATCHDETECT vs INCDETECT

Experiment 2: Incremental vs. Batch. In the second set of
experiments we compared the cost of incremental detection
vs. its batch counterpart in response to database updates. We
use |∆D+| and |∆D−| to indicate the number of tuples to
be inserted into and deleted from D, respectively. We always
ensure that ∆D+ and ∆D− do not overlap. As opposed to
the first set of experiments, here BATCHDETECT was applied
to the data after database updates are executed.

First, we fixed |∆D+| = 10k and |∆D−| = 10k and repeated
the same set of experiment sets as above, i.e., we investigated

 250

 300

 350

 400

 450

 500

 550

60K50K40K30K20K10K

R
un

tim
e(

se
c.

)

Size of updates

BatchDetect
IncDetect

(a) Scalability in size of updates

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

60K50K40K30K20K10K

G
ro

w
th

 o
f

N
o.

 o
f

vi
ol

at
io

ns

Size of updates

DSV
DMV

(b) Effect on number of violation changes.

Fig. 7. Effect of updates

the scalability of INCDETECT in response to the size of
datasets, the error rate and the complexity of eCFDs. The
results are shown in Figs. 6(a), 6(b), and 6(c). In each figure we
show the running time of INCDETECT and BATCHDETECT, in
response to both tuple insertions and deletions. The results tell
us that INCDETECT scales well w.r.t. |D|, noise% and |Tp| and
more importantly, performs better than BATCHDETECT. We
note that the running time, reported in Figs. 6(a) and 6(b), not
only depend on the size of the updates but also on which tuples
are part of the update. This explains why the curves show
some irregular behavior, although we averaged over different
updates.

Second, we fixed |D| = 100K, noise% = 5%, |Tp| = 10 and
varied |∆D+| and |∆D−| from 2k to 12k in 2k increments
and from 20k to 60k in 20k increments. Note that |D| is
indeed fixed, since we delete and insert the same number
of tuples. We compared the cost of INCDETECT vs. the cost
of BATCHDETECT in response to the number of updates. As
shown in Fig. 7(a), INCDETECT outperforms BATCHDETECT
when the size of the updates is relatively small, and is slightly
better for larger ones. However, as expected, BATCHDETECT
outperforms INCDETECT for very large updates. Indeed, in
our experiments this happens when around 50% of the data
is updated. Overall, we may conclude that INCDETECT works
extremely well and scales up in a similar way as BATCHDE-
TECT.

Finally, in Fig. 7(b), we report the growth of the number
of single (resp. multiple) tuple violations, denoted by DSV
(resp. DMV), in the database before and after updates, for an
increasing number of updates. On our datasets, we observed
that the number of single-tuple violations grows linearly in
the number of updates. However, the number of multiple-
tuple violations increases dramatically for large updates. This
also explains why BATCHDETECT performs better for large
updates (see Fig. 7(a)). Indeed, maintaining the auxiliary
information by INCDETECT incurs a large overhead when the
number of violations changes too much.

Summary. We may conclude the following from our ex-
perimental evaluation. (1) BATCHDETECT and INCDETECT

scale well w.r.t. when the dataset size, the error rate and
the complexity of eCFDs increase. (2) INCDETECT signifi-
cantly outperforms BATCHDETECT in response to both tu-
ple insertions and deletions, for reasonably-sized updates.
(3) BATCHDETECT performs better than INCDETECT when
more than 50% of the data is updated.

VII. RELATED WORK

Conditional functional dependencies (CFDs) were proposed
in [1] for data cleaning. In [1], the intractability of the
satisfiability and implication problems for CFDs is proved, and
a batch algorithm for detecting inconsistencies based on CFDs
and SQL is developed. In [8], approximation of the satisfiability
analysis and incremental inconsistency detection are addressed
for CFDs. This work differs from [1], [8] in that we study
eCFDs, a class of dependencies more expressive than CFDs, and
show that the complexity bounds for CFDs carry over to these
dependencies. In addition, we develop effective techniques to
tackle detection issues for eCFDs; in particular, incremental
detection methods were not considered in [1], [8] for multiple
CFDs. Database repairing techniques were developed in [9]
based on CFDs, which we do not consider in this paper.

As observed in [1], previous work on constraint-based data
cleaning has mostly focused on two topics, both introduced
in [2]: repairing is to find another database that is consistent
and minimally differs from the original database (e.g., [3],
[4], [5]); and consistent query answering is to find an answer
to a given query in every repair of the original database
(e.g., [2], [6]). A variety of constraint formalisms have been
used in data cleaning, ranging from standard FDs and inclusion
dependencies [2], [3], [4], denial constraints [10] to logic
programs (see [11] for a survey). To our knowledge, except [1],
[9] no prior work on data cleaning has studied pattern tableaux
as those embedded in eCFDs.

Closer to eCFDs are dependencies of [12], [13], [14], [15]
developed for constraint databases. Constraints of [13], also
referred to as conditional functional dependencies, are of
the form (X → Y) → (Z → W), where X → Y and
Z → W are standard FDs. Constrained dependencies of [14]

extend [13] by allowing ξ → (Z → W), where ξ is an
arbitrary constraint that is not necessarily an FD. In a nutshell,
these dependencies are to apply FD Z → W only to the
subset of a relation that satisfies X → Y or ξ. They cannot
express even CFDs since Z → W does not allow patterns
with constants as found in CFDs and eCFDs. More expressive
are constraint-generating dependencies (CGDs) of [12] and
constrained tuple-generating dependencies (CTGDs) of [15],
of the form ∀x̄(R1(x̄) ∧ . . . ∧ Rk(x̄) ∧ ξ(x̄) → ξ′(x̄)) and
∀x̄(R1(x̄) ∧ . . . Rk(x̄) ∧ ξ → ∃ȳ(R′

1(x̄, ȳ) ∧ . . . ∧ R′
s(x̄, ȳ) ∧

ξ′(x̄, ȳ)), respectively, where Ri, R
′
j are relation symbols, and

ξ, ξ′ are arbitrary constraints. While both CGDs and CTGDs can
express CFDs and eCFDs, little is known about the complexity
of their satisfiability and implication analyses, or effective
algorithms for checking these dependencies. Indeed, for CGDs,
the complexity of these analyses is an open issue in the
presence of constants or finite-domain attributes, even when
ξ and ξ′ are (=, 6=) constraints; for CTGDs the satisfiability
and implication problems are already undecidable even in
the absence of ξ, ξ′ and constants. That is, the expressive
power of these dependencies comes with the price of high
complexity. Furthermore, none of the prior results applies to
CFDs or eCFDs. We are not aware of any applications of these
constraints in data cleaning.

Codd tables, variable tables and conditional tables have
been studied for incomplete information [16], [17], which
also allow both variables and constants in the specifications.
As clarified in [1], these formalisms differ from eCFDs and
CFDs in that each of these tables is used as a representation
of possibly infinitely many relation instances, one instance
for each instantiation of variables in the table. No instance
represented by these table formalisms can include two tuples
that result from different instantiations of a table tuple. In
contrast, all pattern tuples in a pattern tableau of an eCFD or
CFD constrain a single relation instance, which can contain
any number of tuples that are all instantiations of unnamed
variables in the same pattern tuple.

The satisfiability problem is not an issue for standard FDs:
one can specify arbitrary FDs without worrying about their
satisfiability. There has been work on heuristic algorithms
for the satisfiability analysis of first-order logic constraints
(see, e.g., [18], [19]), but attributes with finite domains were
not considered there, and those algorithms do not yield an
effective method for eCFD satisfiability checking.

Incremental methods have been studied for checking con-
straints (see, e.g., [20] for a survey). However, we are not
aware of any previous work on incrementally checking multi-
ple constraints via a fixed number of SQL queries.

VIII. CONCLUSIONS

We have proposed eCFDs, an extension of CFDs that can
capture more errors in real-life data than CFDs. We have shown
that the satisfiability and implication analyses of eCFDs have
the same complexity bounds as their CFD counterparts. We
have also revised the detection technique for CFD violations [1]
such that eCFD violations can also be handled efficiently using

SQL. Thus, despite the increased expressive power, eCFDs
incur no extra complexity in static analyses or inconsistency
detection. Moreover, we have developed an incremental SQL-
based technique for eCFD violation detection, as well as
an approximation algorithm for the satisfiability analysis of
eCFDs, the most important decision problem for eCFDs. Our
experimental results show that our batch and incremental
detection methods are effective.

One topic for future work is to develop algorithms for elim-
inating eCFD violations and repairing data. Another practical
topic is to find effective methods for automatically discovering
eCFDs from data samples; we defer the full treatment of eCFD
discovery to another publication.

ACKNOWLEDGMENT

Wenfei Fan is supported in part by EPSRC GR/S63205/01,
GR/T27433/01 and EP/E029213/1.

REFERENCES

[1] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis,
“Conditional functional dependencies for data cleaning,” in ICDE, 2007.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki, “Consistent query answers
in inconsistent databases,” in PODS, 1999.

[3] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi, “A cost-based model
and effective heuristic for repairing constraints by value modification,”
in SIGMOD, 2005.

[4] J. Chomicki and J. Marcinkowski, ““Minimal-Change Integrity Mainte-
nance Using Tuple Deletions”,” Information and Computation, vol. 197,
no. 1-2, pp. 90–121, 2004.

[5] E. Franconi, A. L. Palma, N. Leone, S. Perri, and F. Scarcello, “Census
data repair: a challenging application of disjunctive logic programming,”
in LPAR, 2001.

[6] J. Wijsen, “Condensed representation of database repairs for consistent
query answering,” in ICDT, 2003.

[7] C. H. Papadimitriou, Computational Complexity. Addison Wesley,
1994.

[8] Anonymous, “Conditional functional dependencies for capturing data
inconsistencies,” Submitted for journal publication, 2007.

[9] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, “Improving data quality:
Consistency and accuracy,” in VLDB, 2007.

[10] A. Lopatenko and L. Bertossi, “Complexity of consistent query an-
swering in databases under cardinality-based and incremental repair
semantics,” in ICDT, 2007.

[11] L. Bertossi, “Consistent query answering in databases,” SIGMOD Rec.,
vol. 35, no. 2, pp. 68–76, 2006.

[12] M. Baudinet, J. Chomicki, and P. Wolper, “Constraint-Generating De-
pendencies,” JCSS, vol. 59, no. 1, pp. 94–115, 1999.

[13] P. D. Bra and J. Paredaens, “Conditional dependencies for horizontal
decompositions,” in Colloquium on Automata, Languages and Program-
ming, 1983.

[14] M. J. Maher, “Constrained dependencies,” Theoretical Computer Sci-
ence, vol. 173, no. 1, pp. 113–149, 1997.

[15] M. J. Maher and D. Srivastava, “Chasing Constrained Tuple-Generating
Dependencies,” in PODS, 1996.

[16] T. Imieliński and W. L. Jr, “Incomplete information in relational
databases,” JACM, vol. 31, no. 4, pp. 761–791, 1984.

[17] G. Grahne, The Problem of Incomplete Information in Relational
Databases. Springer, 1991.

[18] F. Bry, N. Eisinger, H. Schütz, and S. Torge, “SIC: Satisfiability checking
for integrity constraints,” in DDLP, 1998.

[19] R. Manthey, “Satisfiability of integrity constraints: Reflections on a
neglected problem,” in FMLDO, 1990.

[20] G. Ramalingam and T. W. Reps, “A categorized bibliography on
incremental computation,” in POPL, 1993.

