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Abstract—With the rapid development of fast and byte-
addressable non-volatile memories (NVMs), hybrid NVM/DRAM
storage systems become promising for computer systems. Existing
NVM file systems have already been optimized around the NVM
properties. However, they inherit some design choices of block-
oriented storage devices that lead to scalability bottlenecks and
data copy overhead for ensuring data consistency.

In this paper, we present noseFS, a highly non-volatile memory
scalable and efficient File System. It is designed to achieve
high performance through a bundle of novel techniques: (1) a
scalable lightweight naming integrating VFS with the underlying
file system namespace, (2) a fine-grained byte-unit file index
tree avoiding redundant copy overhead introduced by Copy-
On-Write, (3) a lightweight journaling providing atomicity and
scalability on many-core platforms, and (4) a lightweight atomic-
mmap providing strong consistency guarantee with low overhead
by tracking dirty pages. Experimental results show that noseFS
performs much better than the state-of-the-art file systems with
equally strong data consistency guarantees, and achieves near-
linear scalability on a 40-core machine.

I. INTRODUCTION

Emerging non-volatile memories (NVMs) such as Phase

Change Memory (PCM) [1] and Spin-Transfer Torque Mem-

ory (STT-RAM) [2] provide high performance comparable

with DRAM and support fast and byte-addressable accesses

through memory bus. The advent of the fast non-volatile

memory technologies is expected to completely revolutionize

the landscape of existing storage systems, and to deliver

extremely high parallelism and low-latency data accesses.

Designing a highly scalable, efficient and consistent file

system for emerging NVMs raises several challenges that need

to be solved by fully exploiting NVMs characteristics such

as byte-addressability. As the processor supports only 64-bit

atomic writes, existing mainstream file systems use shadow

paging, log-structured or journaling techniques to provide con-

sistency guarantee, which requires ordered memory writes [3].

However, modern processors may reorder store operations to

improve performance. Although the x86 architecture provides

cacheline flush (CLFLUSH) and memory fence (SFENCE)

instructions to enforce write ordering, flushing the CPU cache-

line incurs a substantial performance overhead [4]–[6].

To overcome the above issues and to exploit the high

performance offered by NVMs, existing NVM file systems
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(NVMFSs) [5]–[9] enhance the traditional disk-based file sys-

tem designs by employing NVMs characteristics, and reduce

the number of CLFLUSH by applying improved consistency

techniques. However, they still retain the following drawbacks.

First, VFS, as the abstraction layer of underlying file

systems, becomes cumbersome on NVMs when performing

directory operations (i.e., metadata intensive operations) [6].

VFS supports generic semantics through in-memory objects,

hierarchical naming, and synchronization. Specifically, in-

memory inodes and dentries need to be allocated, initialized,

and destroyed; the hierarchical naming resolves each pathname

component; synchronization supports concurrent operations by

using locks. However, supporting generic semantics causes

performance bottlenecks [9], and the global rename lock used

in synchronization leads to scalability bottlenecks [10].

With the development of fast and byte-addressable NVMs,

the in-memory caches in VFS (including the in-memory

objects, and the dentry hashtable and the inode hashtable in

hierarchical namespace) are no longer necessary, as they are

introduced due to the slow data access of traditional block-

based storage devices. In fact, the underlying file systems on

NVMs are able to organize their directory structures in a fine

granularity and support fast lookups.

Second, supporting data consistency guarantee is a perfor-

mance killer for common file system operations. It comes at

the price of the write amplification when using the journaling

technique to guarantee data consistency. Moreover, the copy

overhead introduced by adopting Copy-On-Write (COW) for

file data updates and providing consistency for memory-

mapped files is heavy for file operations.

Existing journal-based NVMFSs [6], [7] adopt COW for

file data updates, and log only metadata to avoid writing

data twice. However, the journaling overhead increases pro-

portionally with the size of the metadata to be modified; COW

requires copying the unmodified data in the overwritten block

to the new allocated space (as the file data is organized in block

granularity), which introduces heavy copy overhead when the

application overwrites only a few bytes in each block.

The byte-addressable NVMs make the DAX-mmap come

true, and applications can access NVMs directly by mapping

the physical address in NVMs to the virtual address in DRAM.

Unfortunately, the DAX-mmap cannot provide consistency

guarantee for memory-mapped files when system crashes. The

existing NVM-based file system NOVA [6] uses COW for
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memory-mapped file updates, and atomically copies the entire

memory-mapped pages to data blocks in NVMs when syn-

chronizing files, to provide consistency guarantee for memory-

mapped files (which is called as atomic-mmap). However, it

introduces heavy copy overhead for msync operation when an

application modifies only a small portion of a memory-mapped

region, as the unmodified memory-mapped pages that are read

only do not need to be synchronized at all.

Contributions & Organizations To address the above

issues, we propose a highly non-volatile memory scalable and

efficient File System (noseFS).

(1) We design a lightweight naming to fully exploit the char-

acteristics of NVMs by integrating conventional VFS with the

namespace of underlying file systems (Sections III-B and C).

The lightweight naming merges the double lookup, insertion

and removal of file system objects launched by VFS and

the underlying file system into a single one, and enables the

careful crafting of DRAM data structures such as separating

the global locks that cause scaling bottlenecks.

(2) We develop Non-Copy-On-Write by using the fine-grained

byte-unit file index tree for the file structure to avoid redundant

copy overhead introduced by Copy-On-Write (Sections III-B

and D), and the lightweight journaling by logging only the

address of the metadata to reduce logging overhead when

providing consistency guarantee (Section III-B and E).

noseFS manages the extent in byte granularity instead of

block granularity. When performing overwrite operation, it

splits the associated extent into multiple ones, and writes only

the updated data without copying unmodified data to the new

allocated space. In addition, noseFS logs the metadata address

only instead of the metadata content, reducing the overhead

introduced by double metadata writing and cacheline flushing.

(3) We develop a lightweight atomic-mmap to achieve the

data consistency guarantee with low overhead by tracking

dirty pages (Section III-D). noseFS tracks the process of page

fault interrupts, and records dirty pages. When synchronizing

memory-mapped pages by msync, noseFS writes only the dirty

pages to NVMs instead of the whole memory-mapped pages.

(4) We implement a highly scalable, efficient and consistent

file system noseFS, and experimentally demonstrate that it out-

performs the state-of-the-art NVM-based file systems NOVA

[6] and PMFS [7] (Section IV).

II. DESIGN PRINCIPLES

Our work aims to design a file system that provides highly

efficient, concurrent and atomic common system calls for user

applications, and achieves high performance and scalability

together with strong consistency guarantees on many-core

systems by fully exploiting the NVMs characteristics. In this

section, we discuss the design principles that guided this work.

(1) A dedicated lightweight naming to support efficient and
scalable directory operations on NVMs.

We bypass the in-memory cache in VFS and redesign the

file system namespace by fully exploiting NVMs characteris-

tics, and propose the lightweight naming to offer hierarchical

naming and synchronization like VFS. We unify inode and

dentry into a single structure, and use the simple and efficient

global hash table in NVMs to organize it, improving the per-

formance of directory operations. The redesigned namespace

enables the use of fine-grained locks (local locks) on each

hash bucket instead of the global lock on the global hash table,

supporting high concurrent directory operations.

(2) A lightweight consistency mechanism to improve the per-
formance of file system operations on NVMs.

We present the lightweight journaling to provide data con-

sistency for efficient file system operations, and propose the

Non-Copy-On-Write (NCOW) and the lightweight atomic-
mmap, to reduce copy overhead and support highly efficient

file operations. The lightweight journaling logs only the meta-

data address instead of the metadata content in NVMs to

further reduce the overhead introduced by the double metadata

writing and the cacheline flushing. The NCOW is implemented

by the fine-grained byte-unit file index tree to substitute the

conventional block-grained organization (the size is typically

4KB or larger), and it aims to eliminate copy overhead when

updating file data by COW. The lightweight atomic-mmap
tracks the process of accessing memory-mapped pages, and

records the dirty pages to synchronize only the modified pages

instead of the whole memory-mapped pages, reducing the copy

overhead when performing msync operation.

III. SYSTEM IMPLEMENTATION

Based on the previous design principles, we now present the

implementation details of noseFS, a highly scalable, efficient

and consistent file system for NVMs. noseFS is implemented

on Linux 4.6.5 kernel. It is not implemented as a Linux kernel

module, as it bypasses the conventional VFS. Instead, it is

combined with the Linux kernel by intercepting system calls to

check whether the pathname is under noseFS, and, therefore,

it performs its own operations to handle system calls.

A. Overview

In noseFS, all the file system metadata is stored in a single

fixed-size structure called pinode, and pinodes are organized

with a global hash table. This approach has three important

advantages. First, since the two structures (i.e., inode and

dentry) are unified into a single one, the in-NVMs data

structures are simple and efficient. Second, since there is only

one structure that needs to be persisted, the number of high

latency CLFLUSH is reduced. Third, since the in-memory

cache provided by VFS is bypassed, the highly concurrent path

resolution, which is frequently used by directory operations

such as create, delete and rename, becomes possible, and can

be supported by the global hash table.

The file structure in noseFS is organized by the widely

used extent-based B+ tree (or simply file index tree). As a file

index tree can be rebuilt from its leaf nodes, noseFS builds it

in DRAM, and only keeps its leaf nodes (extents) in NVMs,

making the in-NVMs data structures simple and efficient.
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Consistency in noseFS is enforced by using redo journaling,

which means the updates are atomically logged, and made

durable before being committed to the file system. To reduce

the journaling overhead, noseFS uses Copy-On-Write for

modified file data, and records to the journal only the metadata

about the updates (i.e., pinodes and extents). To further reduce

the overhead, noseFS records only the address of the metadata

instead of the content. Specially, it first allocates new metadata

with the latest contents, and keeps them still invalid before

committing log entries atomically. Then noseFS records only

the addresses of the latest versions metadata, and commits the

updates to the file system only after finishing logging.

In addition, NCOW is proposed in noseFS to eliminate the

copy overhead introduced by COW. noseFS adopts the fine-

grained byte-unit file index tree, which consists of fine-grained

byte-unit leaf nodes and internal nodes, to support NCOW.

B. Layout and Data Structures

The overall architecture of noseFS is shown in Figure 1. The

layout consists of five parts: superblock, metadata structure,

file structure, journal and space management.

Superblock The superblock contains the global file system

information, e.g., a pointer to the root directory of a file

system, and a pointer to the first log of a journal.

Metadata structure noseFS uses a dedicated array of

128-byte pinodes, referred to as the pinode table, to manage

all pinodes, and it can easily locate a pinode given its number.

Each pinode represents a file or directory in the file system. It

contains (a) a 4-byte unique identification number (pino), (b)

a valid bit, so that invalid ones can be reused for new files or

directories, (c) file properties, including filename, (d) pointers

to its file index tree, parent, children list, and file log list, and

(e) pointers to the previous and next nodes in the associated

lists (that is, hash table, directory and hard linking lists).

The global hash table in noseFS is an array of buckets,

which has the same amount (128M) as the dentry hashtable
in VFS. Each bucket points to a list of pinodes with the same

hash value, which is calculated with the corresponding file

name and the pino of their parent directory.

noseFS keeps a mirror of the global hash table in DRAM for

fast search. It adopts per-bucket locks to protect the updates

of each bucket and further keeps the synchronization of the

two hash tables in DRAM and NVMs. As will be seen in

Section III-C, it uses per-bucket seqlocks to protect the updates

of multiple buckets in an operation.

For a file with multiple filenames caused by hard links,

which are created by link operations, each filename is stored

in an individual pinode instead of dentry. All the pinodes of

the file form a linked list, and each pinode contains a pointer

to the first created pinode, which means the pino of the first

created pinode will be provided when the inode number of a

file is required. Only the first created pinode maintains the file

data information, such as file size and the pointer to the file

index tree, and the file and the first created pinode cannot be

deleted unless there are no other hard links.

Fig. 1. Overall architecture of noseFS.

To alleviate the scalability bottleneck, noseFS uses a list of

pinodes in DRAM for each CPU to manage the allocation and

deallocation of pinodes in NVMs.

File structure noseFS uses a dedicated array of 40-byte

extents, referred to as the extent table, to manage all extents,

and it can easily locate an extent given its number. Each extent,
as a leaf node of file index tree, represents a continuous region

of file data in NVMs in byte granularity. It contains (a) a 4-

byte unique identification number (eno), (b) a valid bit, so

that invalid ones can be reused, (c) the start block number

and length of the continuous 4KB data blocks, (d) the start

offset and size of file data in the region in bytes, (e) a pointer

to the pinode of its file, and (f) pointers to other extents.

The file index tree uses the start offset in extents as the

search key, and each of its internal nodes holds at most 64

child nodes (Figure 1 only shows two for simplicity). noseFS
stores only the extents in NVMs and organizes them with a

linked list. The pinode of the file records the eno of the list

head as the pointer to the file index tree. Each extent contains

pointers to its neighbor extents in the list. As will be seen in

Section III-D, the write operations are performed on the file

index tree in DRAM only, and the synchronization of extents
between DRAM and NVMs is executed by the fsync operation.

To alleviate the scalability bottleneck, noseFS uses a list of

extents in DRAM for each CPU to manage the allocation and

deallocation of extents in NVMs.

Journal noseFS provides directory and file journals

separately for directory and file operations, and both journals

use multiple logs to allow concurrent operations. It atomically

records all the updates of an operation to a single log instead

of multiple logs to avoid recovery ordering. The directory or

file journal is a dedicated array of 512-byte logs, and each log

is an array of 8-byte log entries. noseFS can easily locate a

log or a log entry given its number.

All logs in the directory journal, as shown in Figure 2,

evenly record the updates of pinodes in all hash buckets, as

directory operations only involve the updates of the pinodes.

The updates of pinodes in each hash bucket are only logged

into a single corresponding log. For the updates of pinodes in

multiple buckets in an operation, which may be logged into

multiple corresponding logs, noseFS records the updates only
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Fig. 2. Mapping of hash buckets to directory logs.

to the log with the largest log number, simultaneously holding

multiple locks of logs sorted in ascending order of the log

numbers, to guarantee the atomicity of the updates.

The first log entry of a log in the directory journal records

the log tail, which stores the amount of the committed log

entries. Each of the other log entries records the operation

type and the pino of the updated or deleted pinode.

A log in the file journal records only the updates of extents
of a single file. Although common file operations involve the

updates of both the extents and the pinode of the file, each

extent records a pointer to its corresponding pinode and the

pinode can be updated according to the extents. Specifically,

the file size recorded in the pinode can be calculated by the

size recorded in extents during recovery, and the modified time

is set as the recovery time. If the log of a pinode is full, noseFS
extends it by building a list of logs, and the pinode records

the pointer to the list.

The first log entry of a log in the file journal records the

valid bit, which enables the reuse of the invalid ones, and the

log tail, which stores the amount of the committed log entries.

The last log entry records a pointer to the next log in the pinode
log list. Each of the other log entries records the numbers of

the updated extents of the old and latest versions, so that the

updates can be performed according to the differences of the

two versions of the extent during recovery. A log entry for a

delete operation records the eno of the latest extent as MAX,

to distinguish it from an update operation.

Space management noseFS manages the data space in

NVMs using an array of 4KB data blocks, and uses the space-

saving bitmap in NVMs to record the usage of data blocks (that

is, each bit in the bitmap is corresponding to a data block).

To alleviate the allocation and deallocation contention of

data blocks, noseFS evenly divides the data space into multiple

regions, one per CPU, and uses a B+ tree in DRAM to organize

the addresses of the free data blocks for each region. noseFS
first allocates data blocks from the B+ tree of a current CPU.

If no blocks are available, it then allocates blocks from the B+

trees of other CPUs. noseFS uses per-region locks to support

concurrent operations.

The data blocks are deallocated to their allocated B+ trees

(the original data region), and the leaf nodes are merged if the

neighbor leaf nodes represent a continuous space, to increase

the possibility of large space allocations.

C. Directory Operations

The lightweight naming in noseFS offers hierarchical nam-

ing and synchronization by organizing pinodes with the global

hash table. We now explain how the lightweight naming in

noseFS provides high performance and concurrency for the

common directory operations.

When performing the path resolution, which is frequently

performed by common directory operations, to find the target

pinode of a file/directory, noseFS starts with the first compo-

nent of the pathname, and resolves it to a known pinode (i.e.,

root or cwd). Then noseFS finds the child directory of that

pinode according to the next component of the pathname, by

traversing the corresponding hash bucket in DRAM. noseFS
repeats the lookup of the child according to the next compo-

nents until the previous one of the last component is resolved

(that is, the corresponding pinode is found).

To support high concurrent operations, noseFS adopts per-

bucket Read-Copy-Update (RCU) locks to protect the insertion

and removal from each bucket of the global hash table and

its mirror (like VFS does [11]). For the updates of two

buckets caused by the rename operation, noseFS uses per-

bucket seqlocks for synchronization, instead of using the

global seqlock (rename lock) like VFS. Specifically, the two

buckets are locked simultaneously by the two seqlocks sorted

in ascending order of the hash values to avoid deadlocks.

Creating a file In the create system call, noseFS first

allocates a new pinode and inserts it into the mirror hash table

in DRAM. Then it allocates and initializes a new pinode in

NVMs, and logs the updates. After making the new pinode
and the log entry durable, noseFS atomically updates the log

tail to finish logging. Then it sets the valid bit of the new

pinode, and inserts the pinode into the hash table in NVMs.

Finally, it cleans the log by atomically updating the log tail.

Deleting a file In the unlink system call, noseFS first

removes the pinode from the mirror hash table in DRAM.

Then it logs the updates and makes the log entry durable.

After atomically updating the log tail, noseFS sets the pinode
invalid, and removes it from the hash table in NVMs. If there

are no other pinodes pointing to the same file, noseFS frees

the file index tree in DRAM and the extents in NVMs. Finally,

it atomically updates the log tail to clean the log.

Renaming a file In the rename system call, noseFS first

removes the pinode from its source bucket, and inserts the

updated pinode into its target bucket of the mirror hash table in

DRAM. Then noseFS allocates and initializes a new pinode in

NVMs. As the updates of two buckets may be logged into two

directory logs, the operation cannot be recovered atomically

if a crash happens after updating the log tails. noseFS then

encapsulates the two updates together as a transaction, and

commits it only to the log with the larger log number. After

making the new pinode and the log entries durable, noseFS
atomically updates the log tail, and updates the source and

target hash buckets in NVMs. Finally, it atomically updates

the log tail to clean the log.
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Fig. 3. The Non-Copy-On-Write mechanism.

D. File Operations

noseFS proposes Non-Copy-On-Write for updating file data

to eliminate the copy overhead, and achieves it using the

fine-grained byte-unit file index tree. For append operations,

noseFS simply allocates new data blocks to write data, and

inserts the corresponding extents into the file index tree. For

overwrite operations, as shown in Figure 3, noseFS first

searches the file index tree to find the original extent that

manages the overwritten data. It then allocates new data blocks

to write only the updated data, and inserts the corresponding

extents into the file index tree. For the unmodified part of the

data, noseFS splits the original extent into two new extents to

manage them, instead of copying them to the new data blocks.

Writing to a file In the write system call, noseFS first

searches the start extent in the file index tree with the write

position, then uses NCOW to perform the updates. It should

be pointed out that noseFS supports the batch-write operation,

and does not synchronize the updates of extents to NVMs

until the fsync system call is invoked. Specifically, noseFS
maintains a list of the updated extents of a file in DRAM, and

synchronizes the updates to NVMs in the fsync operation.

In the fsync system call, noseFS first allocates and initializes

the new extents in NVMs. Then it records the updates to the

log. After making the new extents and log entries durable,

noseFS atomically updates the log tail. Finally, it updates the

extents list and the bitmap in NVMs, and atomically updates

the log tail to clean the log.

Memory-mapped I/O noseFS proposes the lightweight

atomic-mmap to provide consistency for the memory-mapped

files and reduce the redundant copy overhead. When the mmap
operation is invoked, it allocates new data blocks from NVMs

and copies the file data to the new space. Then it maps the new

blocks into the user address space. When the msync operation

is invoked, it uses NCOW and the lightweight journaling to

atomically copy the data from the memory-mapped blocks

back to the file, as the write and fsync operations do.

To improve performance, noseFS tracks the process of the

page fault interrupt when applications access memory-mapped

files. It records the modified blocks and sets the dirty flags.

When the msync operation is invoked, noseFS synchronizes

only the dirty blocks instead of the whole memory-mapped

blocks to NVMs, and cleans the dirty flags of the blocks. If

there are no updates to these blocks before the next msync,

they will not be synchronized again.

E. Crash Consistency

A file system operation is atomic if and only if updates

made by the operation are committed in all or none. noseFS
supports the atomicity for the common file system operations.

Specifically, it adopts the 8-byte atomic updates technique as

previous work [6], [7], [12] to guarantee the atomicity for the

updates of no more than 8 bytes, and utilizes its lightweight

journaling technique to atomically log the updates of more

than 8 bytes. Then the file system can survive and recover to

maintain consistency upon crashes or power failures.

8-byte atomic updates Modern processors support 8-byte

atomic writes for DRAM, and the systems [6], [7] assume that

8-byte writes to NVMs are atomic as well. noseFS uses the 8-

byte atomic in-place write to update the pinode’s access time

for read and the 8-byte log tail for journaling.

Lightweight journaling noseFS adopts redo journaling to

support the recovery of file system operations, and it consists

of the following four steps. First, it allocates new data blocks,

pinodes and extents with invalid bits in NVMs to write the

new data, and logs the updates before updating the log tail.

Second, it atomically updates the log tail with the amount

of committed log entries to log the updates before committing

updates to the file system. Third, it updates the associated data

structures (i.e., the global hash table, the extents list of a file,

and the bitmap), and sets the valid bits of pinodes and extents
in NVMs before recycling the old data. Finally, it cleans the

log by atomically updating the log tail with 0 (i.e., there are no

log entries) to reduce the log size and simplify the recovery,

and then recycles the old data. In addition, the write ordering

of the above steps is guaranteed by orderly flushing the CPU

cacheline with CLFLUSH and SFENCE instructions.

Recovery As described above, the associated data struc-

tures (i.e., the global hash table, the extents list of a file and

the bitmap) and the valid bits of pinodes and extents in NVMs

are updated to the file system only after atomically committing

the entire log entries successfully. If a crash happens before

finishing the logging of a file system operation, the file

system in NVMs keeps consistent without being affected. If

a crash happens after the atomic update of a log tail, noseFS
reads the log entries in the directory journal and file journal,

respectively, to redo the updates. If a crash happens after

cleaning the log, all updates have been persisted.

For metadata recovery, noseFS first reads the log entries

recorded in the directory journal. Then it updates the hash

table in NVMs, and cleans the directory journal. Finally, it

rebuilds the mirror hash table in DRAM according to the hash

table in NVMs. For file data recovery, noseFS first reads the

log entries recorded in the file journal. Then it updates the

bitmap in NVMs and rebuilds the extent list in NVMs, and

then cleans the file journal. Finally, it rebuilds the file index

tree in DRAM according to the extent list in NVMs.

IV. EXPERIMENTAL STUDY

In this section, we evaluate the performance and scalability

of noseFS using a set of micro and macro benchmarks aiming

at answering the following questions. (1) Does noseFS perform

435



 0

 50

 100

 150

 200

 250

 300

100 1000 10000 100000 1000000

T
h
ro

u
g
h
p
u
t 

(1
0
0
0
 o

p
s/

s)

# of Files

Ext4-DAX

XFS-DAX

PMFS

NOVA

noseFS

(a) single thread

 0

 50

 100

 150

 200

 250

1 4 8 12 16 20 24 28 32 36 40

T
h
ro

u
g
h
p
u
t 

(1
0
0
0
 o

p
s/

s)

# of Threads

Ext4-DAX

XFS-DAX

PMFS

NOVA

noseFS

(b) multiple threads

Fig. 4. Average throughput of each thread performing create operations.
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Fig. 5. Average throughput of each thread performing unlink operations.
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Fig. 6. Average throughput of each thread performing rename operations.
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Fig. 7. Throughput of write operations (single thread).

better than the state-of-the-art file systems designed for disks

and NVMs? (2) What are the performance benefits of noseFS?

(3) How is the scalability of noseFS compared with the

existing file systems on many-core platforms?

A. Experimental Setup

We evaluate noseFS on Linux kernel 4.6.5 against four file

systems: NOVA [6], PMFS [7], Ext4-DAX [13] and XFS-DAX

[14], and the experiments of the four file systems are on the

original Linux kernel 4.6.5 without noseFS checking. NOVA

and PMFS are the open-source file systems that are specifically

designed for NVMs. Ext4-DAX(ordered) and XFS-DAX are

the traditional file systems designed for disk. NOVA is the only

file system in the group providing the same strong consistency

guarantees as noseFS for both metadata and data. The others

only guarantee metadata consistency and perform in-place

updates for file data. We mainly compare the performance and

scalability with NOVA.

The used Intel Xeon E7 server is configured with 4 pro-

cessors with 2.2GHz, and each processor has 10 cores. The

emulation of NVMs is based on a 150G DRAM that is treated

by OS as a persistent memory region.

B. Experimental Results with Micro-benchmarks

We use three micro-benchmarks: dirOps, fileOps and fio
[15] to evaluate the performance and scalability of noseFS.

The dirOps and fileOps, the benchmarks that we created, create

multiple threads (from 1 to 40), respectively, and perform the

corresponding operations in parallel.

(1) micro-benchmark dirOps
dirOps is to evaluate the effect of the lightweight naming

and the lightweight journaling. It contains three directory

operations: create, rename and unlink. For single thread bench-

mark, it creates a fixed number of files in one directory, and

then renames the files in the same directory, and finally deletes

all of them. We vary the number of files from 100 to 1000000

to evaluate the sensitivity of different directory structures. For

multiple threads benchmark, each thread handles 10000 files.

create operations Figure 4(a) shows that noseFS out-

performs NOVA by 0.42X to 0.58X in single thread, and

Figure 4(b) shows that both noseFS and NOVA support high

concurrent create operations. The improvement is mainly due

to the allocation and initialization of single pinode, and its

insertion of the efficient global hash table. While for other file

systems, they allocate and initialize both the inode and the

dentry, and insert them into dcache and icache respectively.

unlink operations Figure 5(a) shows that noseFS out-

performs NOVA by 1.07X to 1.79X in single thread, and

Figure 5(b) shows that both noseFS and NOVA support high

concurrent unlink operations. The improvement is mainly

because of the removal and destruction of single pinode instead

of both inode and dentry. In addition, NOVA commits the

updates to both directory log and file log, while noseFS only

logs the update to directory journal.

rename operations Figure 6(a) shows that noseFS out-

performs NOVA by 0.51X to 1.09X in a single thread, and it

is mainly because of the removal and insertion of both inodes
and dentries. Figure 6(b) shows that only noseFS supports

high concurrent rename operations because of the fine-grained

seqlocks (local lock), and all the other file systems encounter

the scalability bottleneck because of the global rename lock.

(2) micro-benchmark fileOps
fileOps is to evaluate the effect of NCOW and the

lightweight journaling. It contains three file operations: ap-
pend, random write and read. For single thread benchmark,

it appends to a file (the total write size is 16GB), and then

randomly overwrites the file (the random offsets of the 16GB

file are in byte granularity). We alter the I/O size (i.e., the

amount of data written per system call) from 1KB to 16KB to

compare the overhead of copy and extent fragments. Note that

we perform the fsync operation for noseFS after performing

each write operation, to synchronize the updates and guarantee

the same data consistency as NOVA. For multiple threads

benchmark, each thread writes to a 512MB file with I/O sizes

1KB and 4KB, respectively. In order to evaluate how extent

436



 0

 0.3

 0.6

 0.9

 1.2

 1.5

1 4 8 12 16 20 24 28 32 36 40

T
h
ro

u
g
h
p
u
t 

(G
B

/s
)

# of Threads

NOVA-4KB

NOVA-1KB

noseFS-4KB

noseFS-1KB

(a) append

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 4 8 12 16 20 24 28 32 36 40

T
h
ro

u
g
h
p
u
t 

(G
B

/s
)

# of Threads

NOVA-4KB

NOVA-1KB

noseFS-4KB

noseFS-1KB

(b) random write

Fig. 8. Throughput of write operations (multiple threads).
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Fig. 9. Throughput of read operations (single thread).
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Fig. 10. Average throughput of each thread performing Filebench.

fragments affect read operation, the single thread benchmark

also reads the 16GB file after appending and overwriting it

with 4KB I/O size. We alter the read size from 1KB to 256KB.

write operations in single thread Figures 7 shows that

noseFS provides the highest throughput. It outperforms NOVA

by 0.15X (with 12KB I/O size) to 9.14X (with 1KB I/O size)

for append, and 0.26X (with 14KB I/O size) to 0.97X (with

1KB I/O size) for random write. This is due to NCOW that

eliminates the copy overhead, and the lightweight journaling

that reduces the redundant metadata write. Specifically, as

can be seen in Figure 7(a), the 4KB-block-unaligned write
operations (with 1KB, 2KB, 6KB, 10KB and 14KB I/O sizes)

bring the obviously higher performance improvement than the

other 4KB-block-aligned write operations.

TABLE I
THROUGHPUT OF MEMORY-MAPPED I/O (IN MB/S).

1M 4M 8M 12M
NOVA 7.351 2.041 1.031 0.694
noseFS 204.8 250.98 303.907 271.087

In noseFS, the write offset and I/O size affect the scale of

the file index tree. Random write operations with small I/O

size bring a large number of extent fragments, which results

in the growth of the tree size and further leads to slow search,

insertion and removal. However, according to Figure 7(b) (with

1KB I/O size), the redundant copy overhead remains larger

than the overhead introduced by the heavy file index tree.

write operations in multiple threads Figures 8 shows

that both noseFS and NOVA provide good scalability for the

append and random write operations.

read operations in single thread Figure 9 shows that

the read performance of noseFS is approximately the same as

NOVA, and it is slightly lower than NOVA when there are

plenty of extent fragments as shown in Figure 9(b).

(3) micro-benchmark fio
fio is to evaluate the effort of the lightweight atomic-mmap.

We alter the file size from 1MB to 12MB. For each file, we

use fio to perform writes to the memory-mapped region with

a 4KB I/O size, and then use msync to synchronize the whole

file after performing each write operation.

Table I shows the total throughput of the write and msync
operations (memory-mapped I/O). noseFS provides 26.9X

to 389.6X throughput improvements compared with NOVA,

which provides the same mmap data consistency guarantees

as noseFS. The improvement is because of the lightweight

atomic-mmap that noseFS writes only the dirty pages to file

data when the system call msync is invoked.

C. Experimental Results with Macro-benchmarks

Filebench [16] is a file system benchmark that can simulate

a variety of complex workloads by specifying different models.

We use Varmail and Fileserver, which are write-intensive

workloads, to evaluate the performance of noseFS for real

world applications. Table II summarizes the characteristics of

the workloads. We run these benchmarks in each thread and

there are 1 to 40 threads performing concurrently.

TABLE II
FILEBENCH WORKLOAD CHARACTERISTICS.

Workload Average file size # of files I/O size R/W ratio
Fileserver 128KB 5K 1MB 1:2

Fileserver-1K 128KB 5K 1KB 1:2
Varmail 16KB 50K 16KB 1:1

Varmail-1K 16KB 50K 1KB 1:1

(1) macro-benchmark Fileserver
The average file size in Fileserver is 128KB, in which the

data write overhead dominates. As shown in Figure 10, noseFS
provides the highest throughput and achieves high scalability.

For the results shown in Figure 10(a), the throughput of

noseFS is approximately same as NOVA when performing

the 4KB-block-aligned writes. For the results shown in Figure

10(b), noseFS outperforms NOVA by 3.1X to 5.1X with 1KB

write size, which is mainly contributed by NCOW and the

lightweight journaling techniques.

(2) macro-benchmark Varmail
The Varmail acts as a mail server, and both directory and

file operations contribute to the performance improvements.
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For the workload performing 4KB-block-aligned writes shown

in Figure 10(c), noseFS outperforms NOVA by 0.25x to 0.36x

because of the faster create and unlink operations. For the

workload performing 4KB-block-unaligned writes shown in

Figure 10(d), noseFS outperforms NOVA by 0.59x to 0.87x.

As the file size is only 16KB in Varmail, the benefit of the

write operation is not as obvious as Fileserver.

V. RELATED WORK

NVM-based file systems. Existing NVMFSs are highly opti-

mized around the advanced properties of NVMs such as byte-

addressability. BPFS [5] proposes the short-circuit shadowing

paging to reduce the copy-on-write overhead for maintaining

consistency. SCMFS [17] utilizes the memory management

module and maps files to contiguous virtual address space,

making its implementation simplified and efficient. PMFS

[7] avoids the block layer and adopts fine-grained logging

combined with atomic updates for consistency. Aerie [9] offers

the file system interface in user space to provide higher

performance than a kernel implementation. NOVA [6] adopts

log-structuring to efficiently provide strong consistency for

conventional file operations and mmap-based access. NOVA-

Fortis [18] adds fault-tolerance to NOVA by taking consistent

snapshots. HiNFS [19] buffers the lazy-persistent writes in

DRAM temporarily to hide the long write latency of N-

VMs. SoupFS [8] revisits soft update and proposes pointer-

based dual views to guarantee the correctness and consistency

without synchronous cache flushes and page cache. However,

different from noseFS, they do not fully exploit the NVMs

characteristics, and still need the conventional VFS to provide

in-memory cache for file system objects.

Directory organization. Most existing NVMFSs pay close

attention to directory operations due to their significant im-

pacts on application performance [20]–[22]. NOVA [6] keeps

a radix tree in DRAM for each directory inode to speed up

the dentry lookups. SoupFS [8] uses hash tables to re-organize

directories, simplifying the dependencies caused by block-

oriented directory organization. However, they still improve

the performance within the confinement of the traditional I/O

stack architecture, and use conventional disk-oriented VFS to

provide hierarchical naming and access protection. In contrast,

noseFS integrates conventional VFS and the namespace of

underlying file systems into a single lightweight naming within

the I/O stack for NVMs.

NVM logging. As emerging NVMs are expected to offer

DRAM-like performance and data persistence, many recent

studies propose to deploy NVMs to perform database logging

[23]–[25]. Wang et al. [23] propose a distributed logging to

provide fast, scalable logging performance on many-core plat-

forms. The proposed distributed logging uses logical clocks

to track and resolve transaction dependencies among multiple

logs and update records. Our work also adopts the distributed

journaling mechanism to avoid global contention and improve

concurrency. However, in contrast to tracking transaction de-

pendencies, our work adopts scalable, persistent data structures

to eliminate dependencies between updates.

VI. CONCLUSIONS

In this paper, we present noseFS, a highly scalable and effi-

cient file system for NVMs. noseFS redesigns the lightweight

naming by organizing metadata structures with the global hash

table. It achieves the Non-Copy-On-Write by using the fine-

grained byte-unit file index tree, and the lightweight journaling

logs the address of the metadata only, reducing redundant

write overhead introduced by the data consistency guarantee.

It also provides the lightweight atomic-mmap to provide the

consistency guarantee for memory-mapped files with low

overhead. Evaluation results show that noseFS outperforms

existing NVMFSs with equally strong consistency guarantees,

and achieves near-linear scalability on a 40-core machine.
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