
Detecting Inconsistencies in Distributed Data

Wenfei Fan1,2 Floris Geerts1 Shuai Ma1 Heiko Müller1

1University of Edinburgh 2Bell Laboratories

{wenfei,fgeerts,sma1,hmueller}@inf.ed.ac.uk wenfei@research.bell-labs.com

Abstract— One of the central problems for data quality is
inconsistency detection. Given a database D and a set Σ of
dependencies as data quality rules, we want to identify tuples
in D that violate some rules in Σ. When D is a centralized
database, there have been effective SQL-based techniques for
finding violations. It is, however, far more challenging when
data in D is distributed, in which inconsistency detection often
necessarily requires shipping data from one site to another.

This paper develops techniques for detecting violations of
conditional functional dependencies (CFDs) in relations that
are fragmented and distributed across different sites. (1) We
formulate the detection problem in various distributed settings as
optimization problems, measured by either network traffic or re-
sponse time. (2) We show that it is beyond reach in practice to find
optimal detection methods: the detection problem is NP-complete
when the data is partitioned either horizontally or vertically,
and when we aim to minimize either data shipment or response
time. (3) For data that is horizontally partitioned, we provide
several algorithms to find violations of a set of CFDs, leveraging
the structure of CFDs to reduce data shipment or increase
parallelism. (4) We verify experimentally that our algorithms are
scalable on large relations and complex CFDs. (5) For data that
is vertically partitioned, we provide a characterization for CFDs
to be checked locally without requiring data shipment, in terms
of dependency preservation. We show that it is intractable to
minimally refine a partition and make it dependency preserving.

I. INTRODUCTION

Data quality is recognized as one of the most impor-

tant problems for data management [1]. A central technical

problem for data quality concerns inconsistency detection, to

identify errors in the data. More specifically, given a database

D and a set Σ of dependencies serving as data quality rules,

the detection problem is to find all the violations of Σ in D,

i.e., all the tuples in D that violate some rules in Σ. For a data

quality tool to be effective in practice, it is a must to support

automated and efficient inconsistency detection methods.

When D is a centralized database, the detection problem is

not very hard. Consider, for example, conditional functional

dependencies (CFDs) that were recently proposed as data

quality rules [2]. For CFDs, SQL-based detection techniques

are already in place [2]: from a set Σ of CFDs, a fixed number

of SQL queries can be automatically generated that, when

evaluated on D, return all the violations of Σ in D.

In practice, however, a relation is often fragmented and

distributed across different sites [3]. Indeed, many commercial

systems support fragmentation (a.k.a. partition), horizontally

or vertically, e.g., MySQL [4], Oracle [5], [6], SQL Server [7],

and column-oriented DBMS (e.g., [8]). In these settings the

detection problem makes our lives much harder.

Example 1: Consider a relation specified by the schema:

EMP(id, name, title, CC, AC, phn, street, city, zip, salary)

Each EMP tuple specifies an employee’s id, name, title, salary,

phone number (country code CC, area code AC, phone phn)

and address (street, city, zip code). Here id is a key of EMP.

An instance D0 of the EMP schema is shown in Fig. 1(a).

To detect inconsistencies, the following CFDs are defined as

data quality rules on the EMP relation:

cfd1: ([CC = 44, zip] → [street])
cfd2: ([CC = 31, zip] → [street])
cfd3: ([CC, title] → [salary])
cfd4: ([CC = 44, AC = 131] → [city = ‘EDI’])

cfd5: ([CC = 01, AC = 908] → [city = ‘MH’])

Here cfd1 asserts that for employees in the UK (i.e., when CC

= 44), zip code uniquely determines street. It is a functional

dependency (FD) imposed on the subset of tuples that satisfy

the pattern “CC = 44”, e.g., {ti ∈ D0 | i ∈ [1, 5]}; similarly

for cfd2 on employees in the Netherlands (when CC = 31).

These CFDs are not required to hold on the entire relation D0

(in the US, for example, zip code does not determine street).

In contrast, cfd3 is a traditional FD. It states that for employees

in the same country, title uniquely determines salary. The last

two CFDs specify the semantic bindings between (CC, AC)

and city: cfd4 assures that in any UK employee tuple, if its

area code is 131 then its city must be EDI; similarly for cfd5.

We want to find the violations of cfd1–cfd5 in D0, i.e., tuples

in D0 that violate at least one of the CFDs. Let ti denote the

tuple in D0 identified by id = i. Then the violations consist

of t2–t6, t8 and t9. Indeed, while D0 satisfies cfd3, t2–t5
violate cfd1: they represent UK employees and have identical

zip, but they differ in streets. Similarly, t8 and t9 violate cfd2.

Moreover, each of t2 and t3 violates cfd4: CC = 44 and AC =

131, but city 6= EDI. Similarly, t6 violates cfd5.

The violating tuples in D0 can be found by a set of SQL

queries generated from cfd1–cfd5. To find inconsistencies in

D0, one simply needs to evaluate these queries on D0. When

D0 is partitioned–horizontally or vertically–and distributed,

however, it is often necessary to ship data from one site to

the other to detect inconsistencies in D0.

(a) Horizontal partitions. As shown in Fig. 1(b), consider D0

partitioned into three fragments DH1, DH2 and DH3 residing

at sites S1, S2 and S3, and consisting of employees having

title = ‘MTS’ , title = ‘DMTS’, and title = ‘VP’, respectively.

Then to detect violations of cfd1, one either has to (i) ship

(part of) tuple t2 from S1 to S2, and tuple t5 from S3 to

id name title CC AC phn street city zip salary
t1: 1 Sam DMTS 44 131 8765432 Princess Str. EDI EH2 4HF 95k
t2: 2 Mike MTS 44 131 1234567 Mayfield NYC EH4 8LE 80k
t3: 3 Rick DMTS 44 131 3456789 Mayfield NYC EH4 8LE 95k
t4: 4 Philip DMTS 44 131 2909209 Crichton EDI EH4 8LE 95k
t5: 5 Adam VP 44 131 7478626 Mayfield EDI EH4 8LE 200k
t6: 6 Joe MTS 01 908 1416282 Mtn Ave NYC 07974 110k
t7: 7 Bob DMTS 01 908 2345678 Mtn Ave MH 07974 150k
t8: 8 Jef DMTS 31 20 8765432 Muntplein AMS 1012 WR 90k
t9: 9 Steven MTS 31 20 1425364 Spuistraat AMS 1012 WR 75k
t10: 10 Bram MTS 31 10 2536475 Kruisplein ROT 3012 CC 75k

(a) An EMP relation D0

id name title CC AC phn street city zip salary
t2: 2 Mike MTS 44 131 1234567 Mayfield NYC EH4 8LE 80k

DH1: t6: 6 Joe MTS 01 908 1416282 Mtn Ave NYC 07974 110k
t9: 9 Steven MTS 31 20 1425364 Spuistraat AMS 1012 WR 75k
t10: 10 Bram MTS 31 10 2536475 Kruisplein ROT 3012 CC 75k

id name title CC AC phn street city zip salary
t1: 1 Sam DMTS 44 131 8765432 Princess Str. EDI EH2 4HF 95k
t3: 3 Rick DMTS 44 131 3456789 Mayfield NYC EH4 8LE 95k

DH2: t4: 4 Philip DMTS 44 131 2909209 Crichton EDI EH4 8LE 95k
t7: 7 Bob DMTS 01 908 2345678 Mtn Ave MH 07974 150k
t8: 8 Jef DMTS 31 20 8765432 Muntplein AMS 1012 WR 90k

id name title CC AC phn street city zip salary
DH3: t5: 5 Adam VP 44 131 7478626 Mayfield EDI EH4 8LE 200k

(b) A horizontal partition of D0

Fig. 1. An EMP relation and its horizontal partitions.

S2, or (ii) ship all relevant tuples from S2 and S3 to S1, or

(iii) ship all relevant tuples from both S1 and S2 to S3.

(b) Vertical partitions. The relation D0 may be vertically

partitioned into three fragments residing at different sites (not

shown due to the lack of space). These fragments contain,

apart from the key attribute id, information about name, title

and address (DV 1 at site S1), phone number (DV 2 at S2)

and salary (DV 3 at S3), respectively. Then to inspect each

and every CFD of cfd1–cfd5, one needs to ship data from one

site to another. For instance, to check cfd3 one has to gather

information from both fragments DV 1 and DV 3. 2

The example tells us that the detection techniques for CFDs

on centralized databases no longer work on data that is frag-

mented and distributed. Previous work on integrity enforce-

ment in distributed systems mostly studies either sufficient

conditions for local validation of constraints (i.e., violations

can be detected without data shipment) [9], [10], [11], or

triggers to handle inconsistencies incurred by updates [12].

Contributions. This paper establishes complexity bounds and

provides practical algorithms for detecting violations of CFDs

in relations that are fragmented and distributed.

(1) Our first contribution consists of characterizations of the

detection problem in various distributed settings. We formulate

CFD violation detection for data that is partitioned either

horizontally or vertically, as optimization problems measured

by either response time or data shipment (i.e., the amount of

data shipped from one site to another).

(2) Our second contribution consists of complexity bounds for

detecting violations in distributed databases. We show that all

of these optimization problems are NP-complete. Worse, some

of the problems, e.g., those for minimizing data shipment,

remain NP-hard even for a fixed set of traditional FDs, a fixed

schema, and a fixed partition, no matter whether horizontal or

vertical. These intractability results tell us that it is beyond

reach in practice to find detection methods for distributed data

with either minimal response time or minimal network traffic.

(3) Our third contribution is a set of algorithms for detecting

CFD violations in horizontally partitioned data. We identify

CFDs that can be checked locally at individual sites without

data shipment. To detect CFD violations that necessarily re-

quire data shipment, we develop algorithms for a single CFD

and for multiple CFDs. Our algorithms aim to minimize either

data shipment or response time by making use of fragment

statistics and CFD patterns, and by distributing detection pro-

cesses to multiple sites. For each single CFD, our algorithms

guarantee that each tuple attribute is shipped at most once.

(4) Our fourth contribution is a characterization of CFDs that

can be checked locally in a vertically partitioned relation,

based on dependency preservation. We also study refinement

of vertical partitions to check CFDs locally. For a set of CFDs

and a vertical partition, we want to find a minimum number

of attributes to augment vertical fragments such that all the

CFDs can be checked locally. While such refinement minimizes

the communication cost and response time for CFD violation

detection, the problem for finding the minimum refinement is

nontrivial: we show that the problem is NP-complete. Due to

the space constraint we defer to a later report the development

of effective algorithms for finding minimum refinements and

for checking CFD violations in vertical fragments.

(5) Our fifth contribution is an experimental study of our

detection algorithms for horizontally partitioned data. We

evaluate the algorithms with both real-life genome data and

data scraped from the Web. We find that the algorithms scale

well with the data size, the number of fragments, and the

number of patterns of CFDs. For example, for a database of

1.6 million tuples that is partitioned into 8 fragments, some of

the algorithms take less than 80 seconds to find all violations

of a CFD with 250 patterns. In addition, we find that our

techniques for reducing data shipment and response time are

quite effective: the improvement over the naive approach in

many cases is by a factor of more than two for response time

and up to a factor of six when it comes to data shipment.

We contend that our algorithms provide the first effective

methods for detecting inconsistencies in distributed databases

based on CFDs. Our NP-completeness results demonstrate the

inherent difficulty of inconsistency detection in distributed

systems, extending the intractability results already known for

distributed query processing (e.g., [13]).

Organization. Section II reviews CFDs and data fragmenta-

tion. Section III states optimization problems for CFD vio-

lation detection and establishes their intractability. Section IV

provides detection algorithms for horizontally partitioned data.

Section V presents the characterization for CFDs to be checked

locally in vertically partitioned data, and studies the minimum

refinement problem. Experimental results are presented in

Section VI, followed by related work in Section VII and topics

for future work in Section VIII. All proofs are in [14].

II. CFDS AND RELATION FRAGMENTATION

In this section we review conditional functional dependen-

cies (CFDs) [2], and fragmentation of relations [3].

A. Conditional Functional Dependencies

A CFD is defined on a single relation. Consider a relation

schema R defined over a set of attributes, denoted by attr(R).
For each attribute A ∈ attr(R), its domain is denoted by

dom(A). For a tuple t of R, we use t[A] to denote the value

of the A attribute of t, and for a list X of attributes in attr(R),
we use t[X] to denote the projection of t onto X .

Syntax. A CFD ϕ defined on R is a pair R(X → Y , Tp),

where (1) X,Y are sets of attributes from attr(R), (2) X → Y
is a standard FD, referred to as the FD embedded in ϕ, and

(3) Tp is a tableau with attributes in X and Y , referred to

as the pattern tableau of ϕ, where for each A in X ∪ Y and

each pattern tuple tp ∈ Tp, tp[A] is either a constant ‘a’ in

dom(A), or an unnamed (yet marked) variable ‘ ’ that draws

values from dom(A). We write ϕ as (X → Y, Tp) when R
is clear from the context.

If A occurs in both X and Y , we use t[AL] and t[AR] to

indicate the occurrence of A in X and Y , respectively. We

separate the X and Y attributes in a pattern tuple with ‘‖’.

For a pattern tuple tp, we refer to tp[X] as the LHS of tp.

Example 2: Formally, the dependencies we have seen in

Example 1 can be expressed as the following three CFDs:

ϕ1: ([CC, zip] → [street], T1), where T1 consists of

two pattern tuples: (44, ‖), and (31, ‖).
ϕ2: ([CC, title] → [salary], T2), where T2 = {(, ‖)}
ϕ3: ([CC,AC] → [city], T3), where T3 consists of

two pattern tuples: (44, 131 ‖ EDI), (01, 908 ‖ MH).

Here both cfd1 and cfd2 are expressed as ϕ1, in which its

pattern tableau T1 consists of two tuples, one for each of cfd1

and cfd2. Similarly, both cfd4 and cfd5 are expressed as ϕ3.

Finally, ϕ2 expresses cfd3. 2

Note that traditional FDs are a special case of CFDs, in which

the pattern tableau consists of a single tuple, containing ‘ ’

only. For example, ϕ2 expresses the FD cfd3.

Semantics. We define an operator ≍ on constants and ‘ ’:

η1 ≍ η2 if either η1 = η2, or one of η1, η2 is ‘ ’. The operator

≍ naturally extends to tuples, e.g., (Mayfield, EDI) ≍ (, EDI)

but (Mayfield, EDI) 6≍ (, NYC). An instance D of schema R
satisfies the CFD ϕ, denoted by D |= ϕ, if for each tuple tp in

the pattern tableau Tp of ϕ, and for each pair of tuples t1, t2 ∈
D, if t1[X] = t2[X] ≍ tp[X], then t1[Y] = t2[Y] ≍ tp[Y].
Intuitively, each tuple tp in the pattern tableau Tp of ϕ is a

constraint defined on a subset Dtp
of tuples rather than on the

entire D, where Dtp
= {t | t ∈ D, t[X] ≍ tp[X]} such that

for any t1, t2 ∈ Dtp
, if t1[X] = t2[X], then (a) t1[Y] = t2[Y],

and (b) t1[Y] ≍ tp[Y]. Here (a) enforces the semantics of the

FD embedded in ϕ, and (b) assures that the constants in tp[Y]
match their counterparts in t1[Y].

As illustrated in Example 1, while the instance D0 of

Fig. 1(a) satisfies the CFD ϕ2, it satisfies neither ϕ1 nor ϕ3.

B. Fragmented Relations

We consider relations D of schema R that are partitioned

into fragments either horizontally or vertically.

Horizontal partitions. Relation D may be partitioned (frag-

mented) into (D1, . . . ,Dn) such that ([3], [4], [5], [8])

Di = σFi
(D), D =

⋃

i∈[1,n] Di,

where Fi is a Boolean predicate such that the selection σFi
(D)

identifies fragment Di. These fragments are disjoint, i.e., no

tuple t in fragment Di also appears in fragment Dj if i 6= j;

i.e., no tuple in D satisfies both Fi and Fj when i 6= j. The

original relation D can be reconstructed by the union of these

fragments. Observe that all Di’s share the same schema R.

For example, Figure 1(b) shows a horizontal partition of

D0 of Fig. 1(a) into three fragments DH1, DH2 and DH3,

by grouping tuples by the title attribute, i.e., with predicates

title = ‘MTS’, title = ‘DMTS’, and title = ‘VP’, respectively.

Vertical partitions. In some applications one may want to

partition D into (D1, . . . ,Dn) such that (see [3], [6], [7])

Di = πXi
(D), D = 1i∈[1,n] Di,

where Xi ⊆ attr(R) is a set of attributes on which D is

projected. We assume that Xi contains the key attributes of R
(or the system assigned tuple IDs), denoted by key(R). The

relation D can be reconstructed by the join operation on the

key attributes.

In contrast to horizontal fragments, each vertical fragment

Di has its own schema Ri such that attr(Ri) = Xi,

and attr(R) =
⋃

i∈[1,n] attr(Ri). In addition, we assume

w.l.o.g. that tuples in each Di are non-redundant, i.e., for any

i ∈ [1, n] and any t ∈ Di, t[key(R)] is a key that identifies a

tuple in the original relation D. In other words, each tuple in

Di comes from the decomposition of a tuple in D.

Recall the vertical partition of D0 into three fragments

DV 1,DV 2 and DV 3 described in Example 1. The original D0

can be recovered by the join of these fragments on the key

attribute id. Note that each DV i has its own schema Ri for

i ∈ [1, 3], e.g., R2 = (id,CC,AC, phn), and attr(EMP) is the

union of R1, R2 and R3.

C. Violations of CFDs

Given a CFD ϕ = R(X → Y , Tp) and an instance D of R,

we want to find the set of all tuples (ids) in D that violate ϕ,

denoted by Vio(ϕ,D). We refer to Vio(ϕ,D) as the violations

of ϕ in D. More specifically, t ∈ Vio(ϕ,D) iff there exist a

tuple t′ ∈ D and a pattern tuple tp ∈ Tp such that t[X] =
t′[X] ≍ tp[X] but either t[Y] 6= t′[Y] or t[Y] = t′[Y] 6≍ tp[Y].
For a set Σ of CFDs, we define Vio(Σ,D) to be the union of

Vio(ϕ,D) when ϕ ranges over all CFDs in Σ.

In practice, however, one often cares about the patterns of

tuples that violate a CFD, rather than entire violating tuples.

We define Vioπ(ϕ,D) to be πXVio(ϕ,D), i.e., the projection

of Vio(ϕ,D) onto the X attributes, augmented with null in

all the other attributes in attr(R) \ X . That is, for each tuple

t in Vioπ(ϕ,D), (a) t[X] ∈ πXVio(ϕ,D), and (b) for each

attribute A ∈ attr(R) \ X , t[A] is null. Note that Vioπ(ϕ,D)
is also an instance of the schema R.

The set Vioπ(ϕ,D) is often significantly smaller than

Vio(ϕ,D). For instance, consider the CFD ϕ2 of Example 2

and an instance D1 of EMP such that D1 consists of (a) a

tuple t with t[CC, title] = (44, MTS) and t[salary] = 80k,

and (b) K distinct tuples t′ with t′[CC, title] = (44, MTS) but

t[salary] = 85k. Then Vio(ϕ2,D1) consists of at least K + 1
tuples, whereas Vioπ(ϕ2,D1) consists of a single tuple t such

that t(CC, title) = (44, MTS). Here Vioπ(ϕ2,D1) indicates

that there exist tuples t in D1 such that t(CC, title) = (44,

MTS) and they violate ϕ2. We use Vioπ(ϕ,D) and Vio(ϕ,D)
interchangeably when it is clear in the context.

Recall that horizontal fragments have the same schema as

the original database. Thus, for any CFD ϕ it holds that, if ϕ is

defined on D then ϕ is also defined on any horizontal fragment

Di of D. In contrast, in the vertical case, a CFD ϕ defined on

D can have attributes that are not in the schema of the vertical

fragment. We therefore define Vio(ϕ,Di) to be the violations

of ϕ in Di if ϕ involves only the attributes in Di. Otherwise

Vio(ϕ,Di) is the empty set ∅. Similarly, Vioπ(ϕ,Di) is

defined as the augmented projection of Vio(ϕ,Di) onto the

X attributes if ϕ involves only the attributes in Di. Otherwise

Vioπ(ϕ,Di) again is defined as the empty set ∅.

III. INCONSISTENCY DETECTION IN DISTRIBUTED DATA

In this section we formulate optimization problems asso-

ciated with detection of CFD violations in distributed and

fragmented relations, aiming to minimize either data shipment

or response time. We also demonstrate the inherent difficulty

of these problems by establishing their intractability. For the

lack of space we only provide proof sketches in this section,

but we encourage the reader to consult [14] for detailed proofs.

We consider instances D of a relation schema R that are

partitioned into fragments (D1, . . . ,Dn), either horizontally

or vertically. We assume w.l.o.g. that these fragments are

distributed across distinct sites, i.e., Di resides at site Si for

i ∈ [1, n], and Si and Sj are distinct if i 6= j.

The detection problem for CFDs is to find, given a set

Σ of CFDs defined on schema R and an instance D of R
that is fragmented and distributed as described above, the set

Vioπ(Σ,D) of the violations of the CFDs in Σ.

A. Minimizing Data Shipment

We say that a CFD ϕ can be checked (validated) locally if

Vioπ(ϕ,D) =
⋃

i∈[1,n] Vioπ(ϕ,Di), i.e., all violations of ϕ in

D can be found at individual sites without any data shipment.

However, as shown by Example 1, to detect CFDs violations

in a fragmented and distributed relation, it is often necessary

to ship tuples from one site to the other.

A naive detection algorithm is to ship all the fragments of

D to a coordinator site, reconstruct D from the fragments, and

then find Vioπ(Σ,D) by capitalizing on methods for detecting

CFD violations in centralized databases. Nevertheless this

approach often incurs excessive network traffic and suggests

the development of detection algorithms that minimize the

communication cost.

To characterize communication overhead we use m(i, j, t)
to denote a communication primitive that ships tuple t to site

Si from Sj , referred to as a tuple shipment. A distributed

detection algorithm often necessarily incurs a set M of ship-

ments. To minimize network traffic we want to minimize M . It

is, however, nontrivial to detect inconsistencies with minimum

data shipments. Below we study this issue for horizontally

partitioned data and vertically partitioned data. Consider a set

Σ of CFDs defined on a schema R.

Horizontal partitions. Consider an instance D of R hori-

zontally partitioned into (D1, . . . ,Dn), and a set M of tuple

shipments. For each i ∈ [1, n], we use M(i) to denote the set

of tuples of the form m(i, j, t) in M , i.e., all the tuples in M
that are shipped to site Si. We use D′

i to denote Di ∪ M(i).
We say that a CFD ϕ can be checked locally after data

shipments M if Vioπ(ϕ,D) =
⋃

i∈[1,n] Vioπ(ϕ,D′
i). We say

that the set Σ can be checked locally after data shipments M
if each ϕ in Σ can be checked locally after M .

In the horizontal setting, the CFD detection problem with

minimum data shipment is to find, given a set Σ of CFDs and

a horizontally partitioned relation D as input, a set M of data

shipments such that (1) Σ can be checked locally after M ,

and (2) the size |M | of M is minimum. Intuitively, the aim is

to detect violations of Σ in D with minimum network traffic.

No matter how desirable, it is beyond reach in practice to

find a detection algorithm with minimum network traffic.

Theorem 1: In the horizontal setting, the CFD detection

problem with minimum data shipment is NP-complete. It is

already NP-hard when the schema R is fixed and the set Σ
consists of fixed FDs. 2

Proof: The problem is in NP: one can guess a set M of a

certain size and then inspect whether Σ can be checked locally

after M ; the inspection can be done in PTIME. Its NP-hardness

is verified by reduction from the minimum set cover problem,

which is NP-complete (cf. [15]). The reduction is constructed

with four fixed FD and a fixed schema with six attributes. 2

Vertical partitions. It gets no better when D is vertically

partitioned into (D1, . . . ,Dn). To see this, we first present

some notations. Given a set M of shipments, we use M(i,j)

to denote the set of tuples of the form m(i, j, t) in M , i.e., all

the tuples in M that are shipped to site Si from Sj . For each

i ∈ [1, n], we use D′
i to denote Di 1j∈[1,n]∧M(i,j) 6=∅ M(i,j).

Along the same lines as its horizontal counterpart, we define

the notion that the set Σ can be checked locally after M ,

and formulate the CFD detection problem with minimum data

shipment in the vertical setting.

Theorem 2: In the vertical setting, the CFD detection problem

with minimum data shipment is NP-complete. It is NP-hard

even when the schema R is fixed and is vertically partitioned

into two fragments, and when Σ is a set of fixed FDs. 2

Proof: The upper bound is verified by presenting an NP

detection algorithm. We show that it is NP-hard by reduction

from the minimum set cover problem. The reduction is defined

with a fixed schema, a vertical partition of two fragments and

four fixed FDs (in addition to the key). 2

B. Minimizing Response Time

In practice a user is often interested in minimizing the

response time when detecting CFD violations in distributed

data. It is, however, also infeasible to find optimal detection

methods when the response time is concerned. We next present

the optimization problems for minimizing the response time,

and show the intractability of these problems.

Horizontal partitions. We use a simple cost model to estimate

response time, in terms of the communication cost and the

cost for checking CFD violations at individual sites. Consider

a set Σ of CFDs, a horizontally partitioned relation D =
(D1, . . . ,Dn), and a set M of data shipments such that Σ
can be checked locally after M . We estimate the response

time, denoted by cost(D,Σ,M), as follows:

1

ct

· max
j∈[1,n]

{sumi∈[1,n]|M(i,j)|/p} + max
i∈[1,n]

{check(D′
i,Σ)},

where ct denotes the data transfer rate, p denotes the size of

a packet, D′
i = Di ∪ M(i), and check(D′

i,Σ) is the time

taken for finding the violations of Σ in the local fragment

D′
i by invoking detection algorithms for centralized data [2]

(see, e.g., [3] for details about data transfer rate and packets).

Intuitively, cost(D,Σ,M) is determined by (1) the maximum

time taken by each site to send data to other sites, and (2) the

maximum time for each site to detect violations in its local

fragment. Observe that each site sends data to other sites in

parallel. In addition, upon receiving data shipped from other

sites, each site detects violations in its fragment in parallel.

In the horizontal setting, the CFD detection problem with

minimum response time is to find, given a set Σ of CFDs and

a horizontally partitioned relation D as input, a set M of data

shipments such that (1) Σ can be checked locally after M , and

(2) cost(D,Σ,M) is minimum. Unfortunately, this problem

is intractable even for the simple cost model. Worse still, the

intractability is rather robust: the problem is already NP-hard

even for a fixed schema and a fixed set of FDs.

Theorem 3: In the horizontal setting, the CFD detection

problem with minimum response time is NP-complete. It is

NP-hard even for a fixed schema and a fixed set of FDs. 2

Proof: The upper bound is verified by giving a simple NP

detection algorithm. The lower bound is verified by reduction

from the minimum set cover problem, constructed in terms of

a fixed schema and a set of fixed FDs. 2

Vertical partitions. When D is partitioned vertically, we

define cost(D,Σ,M) in the same way as its horizontal coun-

terpart, except that D′
i denotes Di 1j∈[1,n]∧M(i,j) 6=∅ M(i,j) as

remarked earlier. Along the same lines, we formulate the CFD

detection problem with minimum response time in this setting.

Theorem 4: In the vertical setting, the CFD detection problem

with minimum response time is NP-complete. It is already NP-

hard even for FDs. 2

Proof: The upper bound can be verified in the same way as in

the proof of Theorem 3. The NP-hardness is also verified by

reduction from the minimum set cover problem. The reduction

is constructed by using FDs only. 2

Theorems 1, 2, 3 and 4 tell us that any efficient distributed

detection algorithm is necessarily heuristic.

IV. VALIDATION IN HORIZONTALLY PARTITIONED DATA

In this section we investigate the problem for detecting

violations of CFDs in a relation that is horizontally frag-

mented and is distributed across different sites. This problem

introduces several challenges that we do not encounter when

validating CFDs in a centralized database. In the distributed

setting one needs to decide what tuples are necessarily shipped

and to which sites they should be sent. These issues are

already nontrivial for a single CFD, which may carry a set

of pattern tuples, each of which is a constraint itself. Add

to this the complication of validating a set of CFDs with

various interactions between their attributes. As shown by

Theorems 1 and 3, it is infeasible to find a detection algorithm

with minimum network traffic or minimum response time.

Techniques and results. Nevertheless we provide effective

techniques to detect inconsistencies in this setting. (a) We

reduce the amount of data shipped by leveraging both the

statistics of the data in the fragments and the patterns of

the input CFDs. (b) We distribute the workload of violation

detection to different sites to increase parallelism.

We first identify two cases in which data shipment can

be avoided altogether. We then present three algorithms for

detecting violations of a single CFD. All of these algorithms

guarantee that each tuple or attribute is shipped at most once,

i.e., no tuple t or attribute t[A] is sent more than once from

a site to another no matter how many pattern tuples it may

violate. Finally, we extend the techniques to detect violations

of a set of CFDs, which guarantee that each tuple or attribute

is shipped at most once for each CFD.

A. Local Validation of CFDs

We first identify two cases where data shipping can be

avoided when detecting violations in horizontal fragments.

Constant CFDs. It is known [2] that a CFD (X → Y , Tp)

can be readily converted to an equivalent set of CFDs of the

form (X → A, tp), where A ∈ Y and tp is the projection of

a pattern tuple in Tp on X and A.

We call (X → A, tp) a constant CFD if tp[A] is a constant,

and a variable CFD if tp[A] is ‘ ’. It has also been shown [2]

that every constant CFD is equivalent to a constant CFD in

which no wildcard ‘ ’ appears in the pattern tuple.

Example 3: CFD ϕ3 of Example 2 is equivalent to two

constant CFDs ψ1 and ψ2, where ψ1 and ψ2 share the same FD

embedded in ϕ3, and contain pattern tuples (44, 131 ‖ EDI)

and (01, 908 ‖ MH), respectively. In contrast, ϕ1 and ϕ2 of

Example 2 are variable CFDs. 2

We do not need to ship data for checking constant CFDs.

Proposition 5: Every constant CFD can be checked locally in

horizontally partitioned fragments. 2

Proof: While it takes two tuples to violate a variable CFD,

a single tuple may violate a constant CFD [2]. Thus we can

find violations of constant CFDs by inspecting whether each

individual tuple violates the CFDs locally at each site. 2

Example 4: Referring to the horizontal partition of D0 in

Fig. 1(b), the violations of constant CFDs ψ1 and ψ2 can both

be checked locally at DH1, DH2 and DH3. Indeed, tuples t2
and t3 (individually) violate ψ1, and tuple t6 violates ψ2. No

other violations in D0 for these CFDs exist. 2

Hence when detecting CFD violations in horizontally parti-

tioned data, it is sufficient to consider variable CFDs.

Partitioning condition. Consider a variable CFD ϕ = (X →
Y , tp), where tp is a pattern tuple. Let Fϕ be the conjunction

of all atoms B = ‘b’ when tp[B] = ‘b’ and B ∈ X . Recall that

each horizontal fragment Di is defined as σFi
(D) (Section II),

i.e., Di contains only tuples that satisfies Fi.

Obviously if Fi ∧ Fϕ is inconsistent, i.e., if it is not

satisfiable, then no tuples in Di possibly match tp[X]. That

is, ϕ is not applicable to Di. Hence when checking ϕ, there is

no need to ship tuples from or to Si if Fi∧Fϕ is inconsistent.

B. Detection Algorithms for a Single CFD

We next present algorithms for detecting violations of a

single CFD in horizontal fragments. All these algorithms

leverage the statistics of the data in the fragments. They differ,

however, in how they select the sites at which the detection is

conducted and hence to which the relevant data is shipped.

The first algorithm, CTRDETECT, is a naive approach: it re-

duces the detection problem for distributed data to its counter-

part for centralized databases. More specifically, CTRDETECT

first collects the statistics of the data in all the fragments, and

based on the statistics, it then selects a single site to which

the relevant data of the other sites is shipped, and at which

the violations of the CFD are detected.

The other two algorithms aim to increase parallelism by

distributing the detection processes to various sites, selected

based on the pattern tuples in the CFD. While algorithm

PATDETECTS aims to reduce the total shipment of tuples,

algorithm PATDETECTRT aims to reduce the response time.

Let D be an instance of schema R, and (D1, . . . ,Dn) be

a horizontal partition of D. Let ϕ = R(X → A, Tp) be the

CFD to be validated. By Proposition 5 we may assume that

each pattern tuple tp ∈ Tp is of the form (tp[X] ‖).

Algorithm CTRDETECT. This algorithm first identifies a

single site Sj , referred to as the coordinator of ϕ. All relevant

tuples located at the other sites are then sent to Sj , at which

the violations of ϕ are locally checked. The coordinator of ϕ
is chosen to be the site that has the largest number of tuples

matching any of the LHS of pattern tuples in Tp. The rationale

behind this is that this site, if not selected as coordinator,

would need to ship the largest number of tuples, and thus

increase the network traffic the most. Observe that since any

site, when selected as the coordinator, has to execute the same

detection query on a database of the same size, the choice

of the coordinator based on matching tuples also reduces the

response time the most. Hence in the central approach there is

no need to distinguish between shipment and response time.

More precisely, algorithm CTRDETECT works as follows:

(1) Each site gathers its local statistics in parallel: for all i ∈
[1, n], Si counts the number of tuples in its fragment Di that

match the LHS of any of the pattern tuples in Tp. That is, it

computes lstati = cnt(πX∪A(Di[Tp[X]])), where Di[Tp[X]]
denotes the set of tuples matching the LHS of a pattern in Tp.

(2) Each site Si sends its local count lstati to all other sites.

(3) Upon receiving the local counts, each site Si identifies, in

parallel, the site Sj with the maximum lstatj as the coordinator

(in the presence of multiple sites with the maximum count,

a tiebreaker rule is to pick the “smallest” site based on a

predefined order on the sites). Hence the same site Sj is picked

independently by all the sites.

(4) Each site Si 6= Sj sends M(j, i) = πX∪A(Di[Tp[X]]) to

the coordinator Sj .

(5) Upon receiving these shipments, the coordinator

Sj computes D′
j = πX∪A(Dj [Tp[X]]) ∪ M(j), where

M(j) =
⋃

i∈[1,n] M(j, i) and then locally finds the set

Vioπ(ϕ,D′
j) of violations by employing the SQL techniques

for identifying violations in centralized databases [2]. The

result is returned as the output of the algorithm.

Observe that CTRDETECT ships each tuple at most once.

Example 5: Consider the horizontal partition of Fig 1(b) and

ϕ1 = ([CC, zip] → [street], Tp = {(44, ‖), (31, ‖)}).
The coordinator of ϕ1 is S2 since DH2 has four tuples (all

except t7) that have either 44 or 31 as CC, whereas DH1 and

DH3 have three and one such matching tuples, respectively.

Hence S1 ships the CC, zip and street attributes of the tuples

{t2, t9, t10} to S2, and S3 sends t5[CC, zip, street] to S2. This

amounts to a total shipment of four tuples. Picking S1 or S3

as the coordinator would result in more tuples shipped. 2

Algorithms PATDETECTS and PATDETECTRT. When a

large number of tuples are sent to the same coordinator

site (like in CTRDETECT), this site may become a system

bottleneck. By using multiple coordinators, we can distribute

the workload and increase parallelism. Furthermore, the use

of multiple coordinators may also reduce data shipment.

Example 6: Consider again the partition and CFD ϕ1 of

Example 5. Observe that both DH1 and DH3 only contain a

single tuple with CC = 44, whereas DH2 has three such tuples.

Similarly, whereas DH1 has two tuples with CC = 31, DH2

has only one and DH3 has none. By treating the two pattern

tuples in T 1
p of ϕ1 separately, we assign S2 as the coordinator

for pattern tuple (44, ‖) and S1 as the coordinator for

(31, ‖). This reduces the total shipment. Indeed, S1 and

S3 only need to send two tuples with CC = 44 to S2, and

S2 needs to send its single tuple with CC = 31 to S1. Thus,

a total of three tuples are shipped (opposed to four of the

central approach). The reduction in shipment becomes more

evident when larger instances and larger pattern tableaux are

considered. Better still, by employing multiple coordinators

we can also reduce the response time. Indeed, upon receiving

the two tuples with CC = 44 at S2, S2 can start checking the

violations of ([CC, zip] → [street], {(44, ‖)}). Similarly,

after S1 receives the tuple with CC = 31 from S2, S1

can validate ([CC, zip] → [street], {(31, ‖)}). These two

checking processes are conducted in parallel. 2

The example suggests to designate coordinators for each

pattern tuple individually. We therefore partition the data in

the horizontal fragments based on the pattern tuples in the

CFD, and select a coordinator for each partition, such that

violations can be checked for each partition at its coordinator.

To do so, we first sort the pattern tuples in Tp based on their

“generality”. That is, we sort Tp as (t1p, . . . , t
k
p) such that if

i < j then tip has a less or equal number of wildcards in its

LHS attributes than tjp. We then partition each fragment Di of

D by using a function: σ : Di → Tp. For each tuple t in Di,

σ(t) = j, where tjp is the first pattern tuple in the sorted Tp

such that t[X] ≍ tjp[X]. The function σ induces a partition of

Di into H1
i ∪· · ·∪Hk

i , where Hj
i = {t ∈ Di | σ(t) = j}. The

lemma below tells us that the violations of ϕ can be detected

independently for each (X → Y, {tjp}) by using σ.

Lemma 6: Given ϕ, σ and Di =
⋃

j∈[1,k] H
j
i as described

above, Vioπ(ϕ,D) =
⋃

j∈[1,k] Vioπ
(

ϕj ,
⋃

i∈[1,n] H
j
i

)

, where

ϕj = (X → Y, {tjp}). 2

Procedure PATDETECTS

Input: A CFD ϕ = (X → Y, Tp = {t1p, . . . , tk
p}), and a

horizontally fragmented relation D = (D1, . . . , Dn).
Output: Vioπ(ϕ, D).

/* At each site Si, perform the following in parallel: */
1. Compute σi : Di → Tp;
2. for each l ∈ [1, k] do
3. Hil := {πX∪A(t) | t ∈ Di, σi(t) = l};
4. lstat[i, l] := cnt(Hil);
5. send lstat[i, l] to other sites Sj ; /* exchange local statistics */

6. for each l ∈ [1, k] do /* upon receiving all lstat[j, l]’s */
7. pick site Stl

p
= Sj with the maximum lstat[j, l];

8. send Hil to site Stl
p

; /* send data to coordinators */

/* At the coordinator sites Stl
p

for pattern tl
p, in parallel: */

9. return Vioπ((X → Y, tl
p),

S

i∈[1,n] Hil).

Fig. 2. Algorithm PATDETECTS

In light of the lemma, to compute Vioπ(ϕ,D) it suffices

to assign for each pattern tuple tjp ∈ Tp a coordinator

site at which Vioπ
(

(X → Y, {tjp}),
⋃

i∈[1,n] H
j
i

)

is detected.

Algorithms PATDETECTS and PATDETECTRT are based on

this idea. The algorithms differ only in how they select the

coordinator for each pattern tuple in Tp. Below we give algo-

rithm PATDETECTS in detail, followed by a brief description

of how PATDETECTRT differs from it.

Algorithm PATDETECTS. Algorithm PATDETECTS is shown

in Fig. 2. It assigns a coordinator for each pattern tuple in Tp

independently. It first computes the partitions induced by the

ordering on Tp at each site in parallel (lines 1, 3). Similar to

algorithm CTRDETECT, local statistics are gathered at each

site (line 4) and distributed across all the other sites (line 5).

Upon receiving the statistics information, for each pattern tlp ∈
Tp, a coordinator site Stl

p
is designated (line 7).

To select the coordinator site Stl
p

for tlp, PATDETECTS uses

a simple heuristic based on a cost function for estimating the

total data shipment. To illustrate the cost function, let λ : Tp →
{1, . . . , n} be an arbitrary assignment of coordinators to each

pattern tuple. Consider a site, say Si. Then each other site Sj ,

for j 6= i, sends its tuples in M(i, j) =
⋃

tl
p∈Tp,λ(tl

p)=i Hjl

to Si. Hence the total set of tuples sent to Si under the

assignment λ is given by M(i) =
⋃

j∈[1,n] M(i, j). We define

the shipment cost of assignment λ as

costS(λ) = sumn
i=1|M(i)| = sumn

i=1sumn
j=1|M(i, j)|.

Since |M(i, j)| = sumk
l=1lstat[j, l], it is easily verified that

this cost function is optimized by setting λ(tlp) = m, where

Sm is the site that needs to ship the largest number of tuples

for validating tlp, i.e., it is the site with the largest lstat[m, l]
among all the sites. It is precisely this site that is selected for

pattern tuple tlp.

The algorithm then proceeds by sending the (X,A) at-

tributes of all the tuples that match tlp[X] to the coordinator

for tlp, for all pattern tuples tlp of ϕ and at each site in parallel

(line 8). At the coordinator site for tlp, local violation detection

of (X → Y, tlp) is conducted after the site receives the relevant

tuples from all the other sites by executing an SQL query, and

the results are returned (line 9).

Algorithm PATDETECTRT. This algorithm heuristically mini-

mizes the response time. It differs from PATDETECTS of Fig. 2

only in the selection of coordinators (lines 6-7).

In contrast to PATDETECTS, algorithm PATDETECTRT uses

the following cost function. As before, let λ : Tp → {1, . . . , n}
denote an assignment of coordinators to pattern tuples. For

any λ, the tuples shipped from Sj to Si is given by M(i, j) =
⋃

tl
p∈Tp,λ(tl

p)=i H(j, l) and hence, M(i) =
⋃

j∈[1,n] M(i, j).

Note again that |M(i, j)| and |M(i)| can be computed from

the local statistics lstat[j, l] collected at all sites. To minimize

the response time (see Section III) we have to select λ such

that costRS(λ) is minimized, where costRS(λ) is:

1

ct

· max
j∈[1,n]

˘

sumi∈[1,n]|M(i, j)|/p
¯

+ max
j∈[1,n]

˘

check(Dj∪M(j), ϕ)
¯

.

As shown in [2], violations at each site can be detected by

an SQL query, which is defined in terms of a single GROUP

BY statement. Thus we approximate the cost of the function

check by |Dj ∪ M(j)| · log(|Dj ∪ M(j)|).
In light of this, algorithm PATDETECTRT greedily optimizes

costRS by ranging over the k pattern tuples in Tp. Let λl−1

be a partial assignment of coordinators for the first (l − 1)
pattern tuples in Tp. Let tlp be the l-th pattern tuple. Then λl

coincides with λl−1 on the first (l−1) pattern tuples and λl(t
l
p)

is set to the coordinator site that increases costRS the least. The

final assignment is then given by λk. Algorithm PATDETECTRT

adopts this greedy assignment (replacing line 7 of Fig. 2).

Remarks. We highlight the following properties of the three

algorithms we have seen so far. (1) Each tuple in the database

is shipped at most once, irrespectively of whether we aim

to minimize shipment cost or response time. In CTRDETECT

this trivially follows from the fact that we designate a single

coordinator. For the other two algorithms this is warranted by

the partitioning strategy (Lemma 6). (2) Algorithms PATDE-

TECTS and PATDETECTRT increase parallelism. As verified by

our experimental study, they outperform the central approach.

(3) All algorithms correctly output the violations of the given

CFD. This can be readily verified using Lemma 6. (4) All

algorithms run in polynomial time. As will be seen shortly in

Section VI, these algorithms scale well with the size of the

data and the number of pattern tuples in the input CFD.

Impact of the presence of wildcards. A subtle issue arises

when it comes to CFDs whose pattern tuples have a large

number of wildcards in their LHS attributes. For instance,

recall that a traditional FD X → A is a CFD with a single

pattern tuple consisting of wildcards (‘ ’) only. When the FD

is considered, all tuples in Di are in the same partition (all

tuples match the pattern tuple). In this case PATDETECTS

and PATDETECTRT degrade to the naive CTRDETECT.

To provide a finer partitioning strategy in this case, we

employ a preprocessing step that instantiates wildcards with

frequent pattern tuples found in the database. More specifi-

cally, let θ ∈ (0, 1] be a frequency threshold. Consider the FD

ϕ = (X → A). Before running our algorithms, we first mine

each Di for patterns tp[X] that occur in Di at least θ · |Di|
times. Then, instead of using ϕ as the input to our algorithms,

we use the CFD ϕ′ = (X → A, T θ
p), where T θ

p consists

of (1) all pattern tuples of the form (tp[X] ‖) such that

tp[X] is a frequent pattern, and (2) an additional pattern tuple

tw consisting of wildcards only. Obviously ϕ′ is equivalent

to ϕ. Based on the ordering on T θ
p , the partitioning strategy

now leverages the presence of the pattern tuples. Indeed, the

pattern tuple consisting of wildcards will be only matched by

infrequent tuples. As will be seen in Section VI, this approach

substantially reduces the total shipment of tuples. Furthermore,

the overhead in response time incurred by the preprocessing

step is often small enough to be negligible.

C. Detection Algorithms for a Set of CFDs

We next outline two algorithms for detecting violations

of multiple CFDs. Both algorithms invoke algorithms for

detecting violations of a single CFD given above.

The first algorithm, SEQDETECT, follows a naive approach.

It processes CFDs one by one, by sequentially executing

an algorithm for detecting violations of a single CFD (ei-

ther PATDETECTS or PATDETECTRT). The algorithm is based

on pipelined processing: as soon as a site is done with pro-

cessing the current CFD (i.e., partitioning tuples or detecting

violations), it starts checking the violations for the next CFD,

such that no site is idle before it processes all of the CFDs.

Algorithm SEQDETECT, however, may incur unnecessary

network traffic: the same tuple may be shipped multiple times,

once for each matching CFD.

The second algorithm, CLUSTDETECT, aims to reduce

unnecessary data shipment by leveraging common attributes

of the input CFDs. To do this, CLUSTDETECT “merge” two

CFDs ϕ = (X → A, Tp) and ϕ′ = (X ′ → B, T ′
p) into one

if either X ⊆ X ′ or X ′ ⊆ X . More specifically, it first

partitions D based on the (sorted) projected pattern tableau

Tp[X ∩ X ′] ∪ T ′
p[X ∩ X ′] if the overlap condition above

holds. It then assigns a coordinator for each of the pattern

tuples in this projected tableau as described in PATDETECTS

and PATDETECTRT. Finally, at each site the violations of

the corresponding CFDs are checked locally by executing the

violation detection queries for each CFD.

Putting these together, given a set of CFDs, CLUSTDETECT

first employs a preprocessing step that clusters multiple CFDs.

The clustering is based on the overlap condition on the LHS-

attributes of the CFDs, as described above. It then processes

each cluster of the CFDs sequentially, instead of processing

each individual CFD as is done by SEQDETECT.

V. VALIDATION IN VERTICALLY PARTITIONED DATA

In contrast to its horizontal counterpart, one often cannot

check constant CFDs locally in vertically partitioned data.

Indeed, the constant CFDs of Example 3 cannot be checked

locally at the vertical fragments described in Example 1.

In a nutshell, a CFD (X → Y, Tp) can be checked locally at

site Si if ϕ is defined on the local fragment Di (Section II-B).

Given a set Σ of CFDs, a natural question concerns whether

all CFDs in Σ can be checked locally. This is related to our

familiar notions of dependency implication and preservation

(see, e.g., [16]), which we revise below.

A set Σ of CFDs implies another CFD ϕ, denoted by Σ |= ϕ,

if for any database D that satisfies Σ, D also satisfies ϕ.

The set Σ implies another set Γ of CFDs, denoted by Σ |= Γ,

if Σ |= ϕ for each ϕ in Γ.

Consider a set Σ of CFDs defined on schema R, and a

vertical partition of R into a set (R1, . . . , Rn) as described

in Section II-B. Let us use Γi to denote the set of CFDs

ϕ = (X → Y, Tp) such that (a) X ⊆ attr(Ri), Y ⊆ attr(Ri),
and (b) Σ |= ϕ. Denote ∪i∈[1,n]Γi as Γ. The vertical partition

of R is said to be dependency preserving w.r.t. Σ iff Γ |= Σ.

One can easily verify the following (see [14]).

Proposition 7: In a vertical partition of a relation schema R,

all CFDs of Σ can be checked locally for all instances of R
iff the partition is dependency preserving w.r.t. Σ. 2

Refinement. When a partition is not dependency preserving,

one may want to refine the partition by augmenting various

fragments with additional attributes. More specifically, an

augmentation to a partition (R1, . . . , Rn) of R is Z =
(Z1, . . . , Zn) such that each Zi is a set of attributes of R
to be added to Ri. The refinement of the partition by Z is

defined to be (R′
1, . . . , R

′
n), where attr(R′

i) is attr(R′
i) ∪ Zi.

We define the size of Z to be the sum of the cardinality of Zi,

i.e., the total number of attributes to be added to the partition.

One naturally wants to refine a partition with the minimum

augmentation such that the refined partition is CFD preserving.

More precisely, the problem is stated as follows.

The minimum refinement problem is to find, given a set Σ of

CFDs and a vertical partition of R, an augmentation Z such

that (1) the refinement of the partition by Z is dependency

preserving w.r.t. Σ and (2) the size of Z is minimum.

Example 7: Consider a set Σ0 consisting of ϕ1–ϕ3 of

Example 2, and the vertical partition given in Example 1. A

minimum augmentation is to add CC, salary to DV 1, and city

to DV 2. The refined partition preserves Σ0. 2

No matter how important, the problem is intractable.

Theorem 8: The minimum refinement problem is NP-hard for

CFDs. It is already NP-hard for FDs, 2

Proof: The intractability is verified by reduction from the

hitting set problem, which is NP-complete [15]. We encourage

the interested reader to consult [14] for a detailed proof. 2

VI. EXPERIMENTAL STUDY

In this section we present an experimental study of our

algorithms for detecting violations of CFDs in horizontally

fragmented data. We investigate the effect of the number of

fragments (sites), the complexity of CFDs (the size of the

pattern tableau), and the size of data on the response time and

the amount of tuples shipped. We also evaluate the benefit

of mining for pattern tuples when CFDs contain numerous

wildcards. We consider both single and multiple CFDs.

Experimental Setting. We use a set of eight machines con-

nected over a local area network. Each machine runs Linux

on an 1.86GHz Intel Core 2 CPU and 2GB of main memory.

On each machine we run MySQL Release 5.0.45 as the local

DBMS. All algorithms are implemented in Java SE 6.

(a) Data. We use two different types of data: (1) synthetic data

representing a company’s sales records, and (2) real-life data

containing entries from a genome database. The first dataset,

referred to as CUST, is the same as the one used in [2]. In

accordance with the example in Fig. 1(a), the CUST relation

has attributes CC, AC, street, city, and zip. In addition, the

relation has several attributes containing information about the

title, price, and quantity of items ordered by each customer. We

populated the relation using a data generator that was based on

real-life data scraped from the Web. We created two instances

of CUST containing 800K and 1, 600K tuples each. We refer

to these instance as cust8 and cust16, respectively.

The genome data was taken from the Ensembl genome

database project (http://www.ensembl.org). We created a rela-

tion XREF containing the cross-reference information attached

to genes and proteins in Ensembl. The schema of XREF

contains 16 attributes, such as organism, object type, and

object status. We downloaded the data for the organisms cow,

dog, and zebrafish to generate instance xref8 of 800K tuples.

(b) CFDs. For each relation we identified a set of CFDs

representing real-world constraints with varying number of

attributes and pattern tableau sizes. We found four CFDs for

XREF with 3-5 attributes, and tableau sizes between 11 and

67. The CFDs for CUST are similar to the CFDs used in the

examples throughout this paper.

Experimental results. We conducted six sets of experiments,

evaluating the single CFD algorithms CTRDETECT, PAT-

DETECTS and PATDETECTRT, and the multiple CFD algo-

rithms SEQDETECT and CLUSTDETECT. We varied the num-

ber of sites (|S|), size of the data (|D|), and the size of tableau

(|Tp|). All experiments report the average over five runs.

We first consider single CFD algorithms. For both datasets

one representative CFD is selected. The CFD for CUST has

four attributes and 255 pattern tuples; and the CFD for XREF

has five attributes and 11 pattern tuples.

Exp-1: Varying the number of fragments. To evaluate the

scalability of our algorithms with the number of fragments

(sites), we fixed the total data size and increased |S| from 2

to 8. We used datasets cust8 and xref8, and distributed the data

uniformly among the sites. Recall that the partitioning criteria

have impact on the number of CFDs that may be checked

locally and on the number of tuples shipped by PATDETECTRT

and PATDETECTS. Thus, by choosing a uniform distribution

we avoid to bias the fragmentation toward these approaches.

Figures 3(a) and 3(b) show response times for all three

algorithms. As expected, the response time decreases as |S|
increases. Recall that we run two queries for the following.

First, each site gathers statistics about the number of matching

tuples. Second, each site that acts as a coordinator validates the

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8

R
es

p
o
n
se

ti
m

e
(s

ec
s)

Number of sites

CTRDETECT

PATDETECTS

PATDETECTRT

(a) Scalability with |S| (cust8)

0

10

20

30

40

50

2 3 4 5 6 7 8

R
es

p
o
n
se

ti
m

e
(s

ec
s)

Number of sites

CTRDETECT

PATDETECTS

PATDETECTRT

(b) Scalability with |S| (xref8)

0

20

40

60

80

100

120

140

160

180

10987654321

R
es

p
o
n
se

ti
m

e
(s

ec
s)

Total number of tuples (× 160K)

CTRDETECT

PATDETECTRT

(c) Scalability with |D| (cust16)

0

20

40

60

80

100

50 100 150 200 250

R
es

p
o
n
se

ti
m

e
(s

ec
s)

Pattern tableau size

CTRDETECT

PATDETECTRT

(d) Scalability with |Tp| (cust8)

0

2

4

6

8

10

12

10.90.80.70.60.50.40.30.20.10.01

T
o
ta

l
d
at

a
sh

ip
m

en
t

(#
tu

p
le

s
×

1
0
0
K

)

Frequency threshold θ

PATDETECTS

PATDETECTS with mining

(e) Impact of mining on shipment (xrefh)

0

1

2

3

4

5

6

7

8765432

T
o
ta

l
d
at

a
sh

ip
m

en
t

(
#

tu
p
le

s
×

1
0
0
K

)

Number of sites

SEQDETECT

CLUSTDETECT

(f) Shipment with |S|, multiple CFDs (xref8)

0

10

20

30

40

50

60

8765432

R
es

p
o
n
se

ti
m

e
(s

ec
s)

Number of sites

SEQDETECT

CLUSTDETECT

(g) Scalability with |S|, multiple CFDs (xref8)

0

10

20

30

40

50

60

70

8765432

R
es

p
o
n
se

ti
m

e
(s

ec
s)

Number of sites

SEQDETECT

CLUSTDETECT

(h) Scalability with |S|, multiple CFDs (cust8)

0

5

10

15

20

25

30

35

10987654321

R
es

p
o
n
se

ti
m

e
(s

ec
s)

Total number of tuples (× 160K)

SEQDETECT

CLUSTDETECT

(i) Scalability with |D|, multiple CFDs (cust16)

Fig. 3. Experimental Evaluation

CFD on the local and the received tuples. When running these

queries on large local relations, query execution time becomes

the dominating factor. By increasing the number of sites, the

local fragment size decreases and the impact of the queries

is diminished. For example, the impact of query execution

for PATDETECTRT on xref8 decreases from 75% to 30% when

increasing |S| from 2 to 8. In general, CTRDETECT is outper-

formed by the other two although they ship approximately the

same amount of tuples. The reason is that for CTRDETECT the

local database at the coordinator site becomes much larger than

the other two approaches, and thus it takes much longer time

to validate the CFD. Recall that PATDETECTS is not primarily

for minimizing response time. Thus in the sequel, we will only

report response times for CTRDETECT and PATDETECTRT.

Exp-2: Varying data size. To evaluate the scalability of our

algorithms with |D|, we used dataset cust16 and increased the

percentage of tuples distributed uniformly to 8 sites from 10%

to 100%, hereby generating local fragments of size ranging

from 20K to 200K. As Fig. 3(c) shows, the run time increases

linearly for both CTRDETECT and PATDETECTRT as the size

of the fragments increases. This increase is mainly due to the

longer execution times of the local queries on larger datasets.

The impact is stronger for CTRDETECT: the response time

of PATDETECTRT becomes more than two times faster for the

largest dataset. The results verify scalability of PATDETECTRT

for validating CFDs over large fragmented data.

Exp-3: Varying the complexity of CFDs. Using cust8, we

fixed the number of sites to 8, while varying |Tp| from 55 to

255. Figure 3(d) shows the response times for CTRDETECT

and PATDETECTRT. Both increase linearly when increasing

|Tp|. Indeed, the more pattern tuples are involved, the more tu-

ples are shipped. Managing additional pattern tuples, however,

does not incur a response time penalty. Observe that PATDE-

TECTRT does much better than CTRDETECT, as expected.

Exp-4: The impact of mining patterns. We next evaluated

the effectiveness of the optimization technique given in Sec-

tion IV-B. For CFDs with a large number of wildcards in

their LHS attributes, we mine pattern tuples by employing an

existing data mining approach for closed frequent item sets at

each site. We experimented this with an FD and a dataset xrefH,

which consists of 2.7 million cross-references for human

genome in Ensembl, and distributed it into 7 fragments based

on the type of the references. We compared the response times

of two algorithms: CTRDETECT and CTRDETECT with the

mining as a preprocessing step. The results are reported in

Fig. 3(e), which show that the discovered patterns effectively

reduce the amount of tuples shipped, up to 80%. The reduction

is sensitive to the frequency threshold: when the threshold is

above 0.6, the reduction is no longer very obvious. This is

because the larger the threshold is, the less patterns are found.

We next evaluate the algorithms for validating multiple

CFDs. For both datasets we choose a pair of overlapping CFDs.

The CFDs for CUST are similar to the CFDs used in [2]. For

XREF, we use the same CFD as before plus a second CFD

with three attributes and 26 pattern tuples. The LHS of the

second CFD is a subset of the LHS of the first one.

Exp-5: Varying the number of sites. In the same setting as

Exp-1, we evaluated the scalability of algorithms SEQDETECT

and CLUSTDETECT with |S|. Their shipment and response

time are reported in Figures 3(f), 3(g) and 3(h). The results

show that CLUSTDETECT outperforms SEQDETECT in re-

sponse time (Figures 3(g) and 3(h)) and more evidently in data

shipment (Fig.3(f)). Indeed, merging the CFDs constantly leads

to at least 100K tuples less to be shipped than SEQDETECT,

and this gap widens as the number of sites increases.

Exp-6: Varying the data size. In the same setting as Exp-2,

we evaluated the scalability of SEQDETECT and CLUSTDE-

TECT with |D|. Figure 3(i) shows the response times when

increasing the data size. Consistent with the single CFD case,

the response time is almost linear in |D| for multiple CFDs.

Observe that CLUSTDETECT outperforms SEQDETECT. In

addition, the larger the local fragments are, the gap between

the running times of CLUSTDETECT and SEQDETECT gets

larger. This is because when the local fragments get larger,

it is more costly to gather their statistics, a process that

SEQDETECT has to conduct more often than CLUSTDETECT.

Summary. From the experimental results we find the fol-

lowing: (a) The algorithms scale well with |S|, |D| and

|Tp|. (b) For a single CFD, PATDETECTS and PATDETECTRT

outperform CTRDETECT in response time by a factor of more

than two, and in data shipment by a factor up to six by

leveraging data mining techniques. In addition, PATDETECTS

does the best in data shipment, whereas PATDETECTRT is the

winner when the response time is concerned. (c) For multiple

CFDs, CLUSTDETECT constantly outperforms SEQDETECT in

both response time and data shipment. (d) The optimization

technique based on pattern mining is effective in reducing the

amount of data shipped.

VII. RELATED WORK

Conditional functional dependencies (CFDs) were proposed

in [2] for data cleaning. It was shown there that given a set

of CFDs, a fixed number of SQL queries can be automatically

generated, which are able to detect violations of the CFDs

in a centralized database in polynomial time. The SQL tech-

niques were generalized to detect violations of eCFDs [17], an

extension of CFDs by supporting disjunctions and negations.

As remarked earlier, the SQL techniques do not suffice to

detect CFD violations in fragmented and distributed relations,

a practical setting. There has also been work on discovering

CFDs [18], [19], data repairing with CFDs [20] and CFD

propagation via views [21]. However, no previous work has

studied how to detect CFD violations in distributed databases,

an issue far more challenging than its centralized counterpart.

Closely related to our work is integrity checking (enforce-

ment) in distributed databases [9], [10], [11]. The constraints

studied there are defined in terms of conjunctive queries (CQs)

and union of CQs, and are more powerful than CFDs. It was

observed there that it is challenging to check constraints across

multiple fragments. To cope with this, certain conditions were

proposed in [9], [10], [11] such that the constraints could

be checked locally at individual sites. As observed earlier,

however, for detecting CFD violations it is often necessary to

ship data from one site to another. In this work we also identify

conditions for CFDs to be checked locally (Sections IV-A and

V). In addition, we provide algorithms for checking CFDs

when data shipment is inevitable. Furthermore, we formulate

CFD violation detection as optimization problems to minimize

either data shipment or response time. Moreover, we establish

the NP-completeness of these optimization problems when the

data is partitioned either vertically or horizontally.

Recently, there has been work on detecting distributed

constraint violations for monitoring distributed systems [22].

While aiming to minimize communication cost, the work

differs substantially from our work in that the constraints

in [22] are defined on system states and cannot express CFDs;

in contrast, CFDs are to detect errors in data, which is typically

much larger than system states. Thus, the algorithm in [22] is

not applicable for CFD violation detection in distributed data.

There has been a host of work on query processing (see, e.g.,

[23]) and distributed query processing (see [24] for a survey).

A number of algorithms have been developed for generating

(distributed) query plans, mostly focusing on how to efficiently

perform joins. Checking CFD violations in horizontally parti-

tioned data does not involve join operations, and thus we do

not have to pay the price of full-fledged query plan generators

in this context. Nevertheless, (distributed) query processing

techniques can be applied to violation detection in vertically

partitioned data, for which joins are often necessary. In par-

ticular, query optimization techniques, such as semiJoins [25],

bloomJoins [26], recent join processing methods [27], [28],

[29], [30], and some techniques developed for C-Store [8] can

be employed by detection algorithms for vertical fragments,

which we defer to a later report due to the lack of space.

The main idea of multi-query optimization, in either cen-

tralized databases [31], [32] or distributed databases [33],

[27], is to extract and group common sub-queries to reduce

evaluation cost, and to schedule data movement to minimize

the communication cost. Similarly, when dealing with multiple

CFDs, we merge CFDs with overlapping patterns into one.

Further, we distribute detection processes to multiple sites

to increase the parallelism. As remarked earlier, the join

techniques of multi-query optimization can be used when

detecting violations of multiple CFDs in vertical fragments.

Dependency preservation has been studied for lossless de-

compositions of relational schemas (see, e.g., [16]). In this

work we revisit the issue for characterizing locally check-

able CFDs in vertical fragments. A number of NP-complete

results have been established for distributed query processing

(e.g., [27], [13]). These results are established for problems

different from CFD violation detection. There is no immediate

reduction from these problems to our problem, and vice versa.

VIII. CONCLUSION

We studied the problem of detecting CFD violations in

distributed databases. The novelty of our work consists in

(1) a formulation of CFD violation detection as optimization

problems to minimize data shipment or response time, (2)

the NP-completeness of these optimization problems when

the data is partitioned either vertically or horizontally, (3)

algorithms to detect CFD violations in horizontally partitioned

data, aiming to minimize either data shipment or response

time, (4) a characterization of locally checkable CFDs for

vertically partitioned data in terms of dependency preservation,

and the intractability of minimally refining a vertical partition

to make it dependency preserving. As verified by our experi-

mental results, the algorithms scale well w.r.t. the size of data,

the number of fragments, and the complexity of CFDs, and

hence provide effective methods for catching inconsistencies

in distributed data.

Due to the lack of space, we have only presented algo-

rithms for detecting CFD violations in horizontally partitioned

databases. While we shall report our findings about detection

methods for vertically partitioned data later, a more interesting

topic is to develop techniques for detecting errors in distributed

databases that are both vertically and horizontally partitioned

(a.k.a. hybrid fragmentation [3]). In the distributed setting

it is also common to find replicated data [3]. It is more

interesting yet more challenging to develop detection algo-

rithms that capitalize on data replication to increase parallelism

and reduce response time. Furthermore, load balancing has

proved effective for reducing the response time of distributed

query processing [3]. While our detection algorithms distribute

detecting processes to distinct sites to balance the workload

and explore parallel executions, this issue deserves a full

treatment for violation detection in distributed databases.

ACKNOWLEDGMENT

Wenfei Fan, Floris Geerts, and Shuai Ma are supported in

part by EPSRC EP/E029213/1. Wenfei Fan is a Yangtze River

Scholar at Harbin Institute of Technology.

REFERENCES

[1] Gartner, “Forecast: Data quality tools, worldwide, 2006-2011,” 2007.
[2] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Conditional func-

tional dependencies for capturing data inconsistencies,” TODS, vol. 33,
no. 2, 2008.

[3] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems

(2nd edition). Prentice-Hall, 1999.
[4] MySQL, http://dev.mysql.com/doc/refman/5.1/en/

partitioning-limitations.html.
[5] Oracle, http://download.oracle.com/docs/cd/B28359 01/server.111/

b32024/partition.htm.
[6] Oracle, http://download.oracle.com/docs/cd/A87860 01/doc/server.817/

a76959/dt conc .htm#27231.
[7] SQL Server, http://msdn.microsoft.com/en-us/library/ms178148.aspx.
[8] M. Stonebraker et al, “C-store: A column-oriented DBMS,” in VLDB,

2005.
[9] A. Gupta, Y. Sagiv, J. D. Ullman, and J. Widom, “Constraint checking

with partial information,” in PODS, 1994.
[10] A. Gupta and J. Widom, “Local verification of global integrity con-

straints in distributed databases,” in SIGMOD, 1993.
[11] N. Huyn, “Maintaining global integrity constraints in distributed

databases,” Constraints, vol. 2, no. 3/4, pp. 377–399, 1997.
[12] B. Dahav and O. Etzion, “Distributed enforcement of integrity con-

straints,” Distributed and Parallel Databases, vol. 13, no. 3, pp. 227–
249, 2003.

[13] C. Wang and M.-S. Chen, “On the complexity of distributed query
optimization,” TKDE, vol. 8, no. 4, pp. 650–662, 1996.

[14] Full version, http://homepages.inf.ed.ac.uk/sma1/det.pdf.
[15] M. Garey and D. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.
[16] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.

Addison-Wesley, 1995.
[17] L. Bravo, W. Fan, F. Geerts, and S. Ma, “Increasing the expressivity of

conditional functional dependencies without extra complexity,” in ICDE,
2008.

[18] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu, “On generat-
ing near-optimal tableaux for conditional functional dependencies,” in
VLDB, 2008.

[19] F. Chiang and R. Miller, “Discovering data quality rules,” in VLDB,
2008.

[20] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, “Improving data quality:
Consistency and accuracy,” in VLDB, 2007.

[21] W. Fan, S. Ma, Y. Hu, J. Liu, and Y. Wu, “Propagating functional
dependencies with conditions,” in VLDB, 2008.

[22] S. Agrawal, S. Deb, K. V. M. Naidu, and R. Rastogi, “Efficient detection
of distributed constraint violations,” in ICDE, 2007.

[23] S. Chaudhuri, “An overview of query optimization in relational systems,”
in PODS, 1998.

[24] D. Kossmann, “The state of the art in distributed query processing,”
ACM Comput. Surv., vol. 32, no. 4, pp. 422–469, 2000.

[25] P. A. Bernstein and D.-M. W. Chiu, “Using semi-joins to solve relational
queries,” J. ACM, vol. 28, no. 1, pp. 25–40, 1981.

[26] L. F. Mackert and G. M. Lohman, “R* optimizer validation and
performance evaluation for distributed queries,” in VLDB, 1986.

[27] J. Li, A. Deshpande, and S. Khuller, “Minimizing communication cost
in distributed multi-query processing,” in ICDE, 2009.

[28] D. DeHaan and F. W. Tompa, “Optimal top-down join enumeration,” in
SIGMOD, 2007.

[29] G. Moerkotte and T. Neumann, “Dynamic programming strikes back,”
in SIGMOD, 2008.

[30] X. Wang, R. C. Burns, A. Terzis, and A. Deshpande, “Network-aware
join processing in global-scale database federations,” in ICDE, 2008.

[31] T. K. Sellis, “Multiple-query optimization,” ACM Trans. Database Syst.,
vol. 13, no. 1, pp. 23–52, 1988.

[32] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Efficient and exten-
sible algorithms for multi query optimization,” in SIGMOD, 2000.

[33] A. Kementsietsidis, F. Neven, D. V. de Craen, and S. Vansummeren,
“Scalable multi-query optimization for exploratory queries over feder-
ated scientific databases,” in VLDB, 2008.

