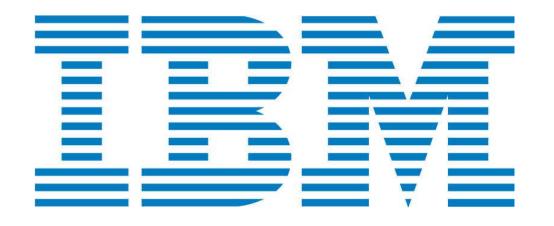


An Embedding Approach to Anomaly Detection

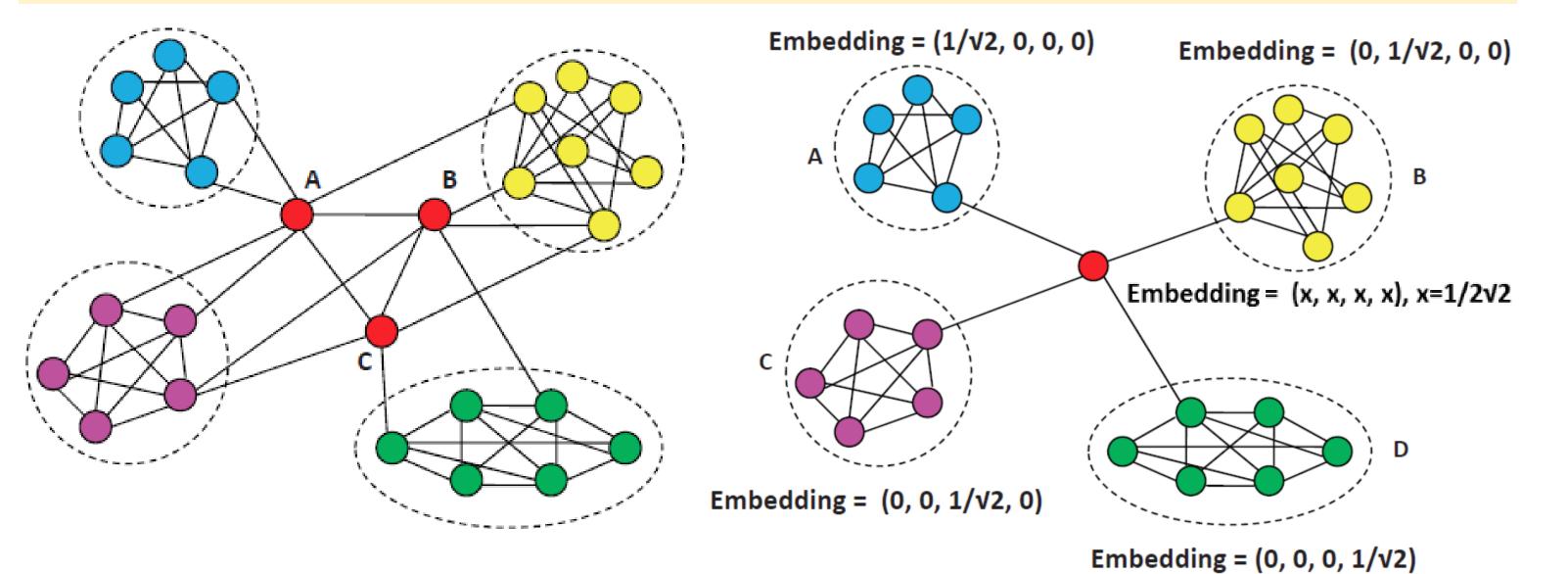
Renjun Hu¹, Charu Aggarwal², Shuai Ma^{1,*}, Jinpeng Huai¹ ¹SKLSDE Lab, Beihang University, China {hurenjun, mashuai, huaijp}@buaa.edu.cn

²IBM T. J. Watson Research Center, USA charu@us.ibm.com



Introduction

In this paper, we are to discover structural inconsistencies, i.e., nodes that connect to a number of diverse influential communities in the network (Fig. 1).



Algorithm Optimizations

By now, the $O(n^2)$ terms in O make our approach hard to be applied to large networks. Hence, we further use the sampling and graph partitioning, and propose a novel dimension reduction technique, to make our approach more scalable and effective for large networks.

Sampling. It is very inefficient to express O as a sum of $O(n^2)$ terms. An observation here is that α is typically picked close to 0 and it is possible to approximately represent O by sampling a subset E_s of size |E| for the second component:

Figure 1: anomalous (red) nodes Figure 2: nodes in embedding

Relationship with structural hole brokers. In Burt's structural hole theory, an individual (broker) who acts as a mediator between two or more groups of people (*e.g.*, A-C in Fig. 1) would gain important social capital such as novel ideas [1]. In this sense, structural inconsistencies also provide a formal definition for structural hole brokers.

Impacts of anomalies. Since the anomalous nodes connect to diverse regions in the network, the incident links violates the notion of *homophily* [2], which assumes that linked nodes have similar properties. Because of this inconsistency in the link structures, the presence of such anomalies may:

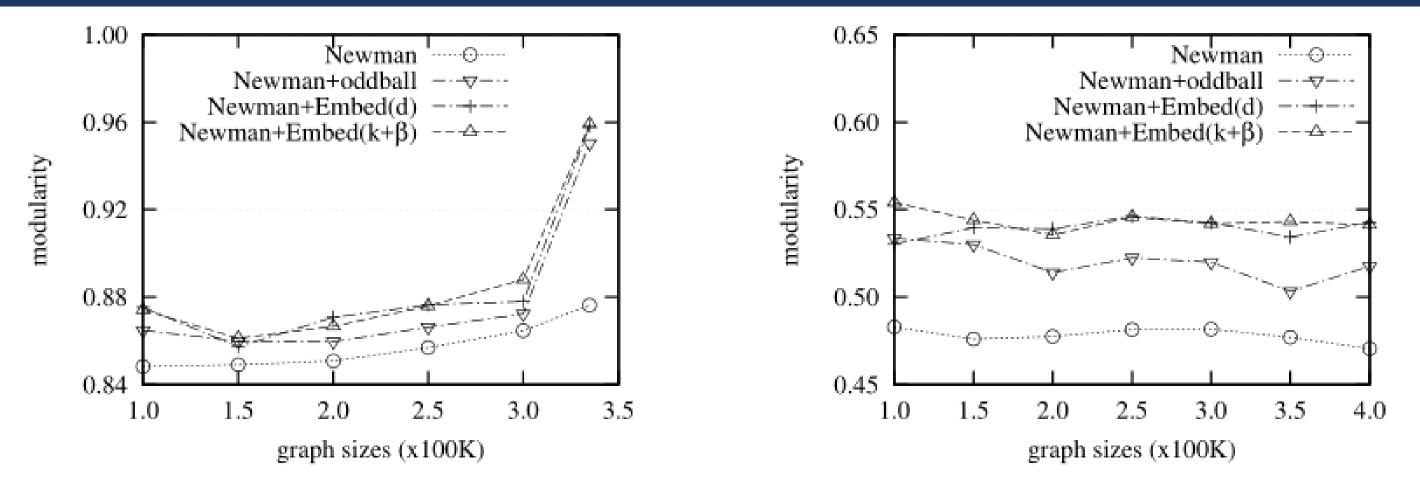
- have a substantial impact on network structure, e.g., nodes from four groups tend to form one large group in Fig. 1;
- prevent effective application of many network mining

 $O \approx \sum \|X_i - X_j\|^2 + \sum (1 - \|X_i - X_j\|)^2, E_s \subset \{(i, j) \mid (i, j) \notin E\}$ $(i, j) \in E$ $(i,j) \in E_s$

Graph partitioning based initialization. We use a gradient descent method to optimize O, which is critically dependent on a good initialization. Thus, we incorporate graph partitioning for initialization such that densely connected nodes are initialized with similar embedding values (Fig. 2).

Dimension reduction. The number d can be large in practice, while anomalies typically connect to a limited number of communities. This motivate us to only maintain $(k+\beta)$ -dimensions for embedding of each node. Numbers k and β could be much smaller, *e.g.*, 10 and 2.

Experimental Results



algorithms, *e.g.*, hard to achieve meaningful clusters.

Graph Embedding

detect structural inconsistencies, we first use 10 graph embedding to associate each node with a multidimensional position. In the embedding model, each dimension corresponds to a clustered region in the network.

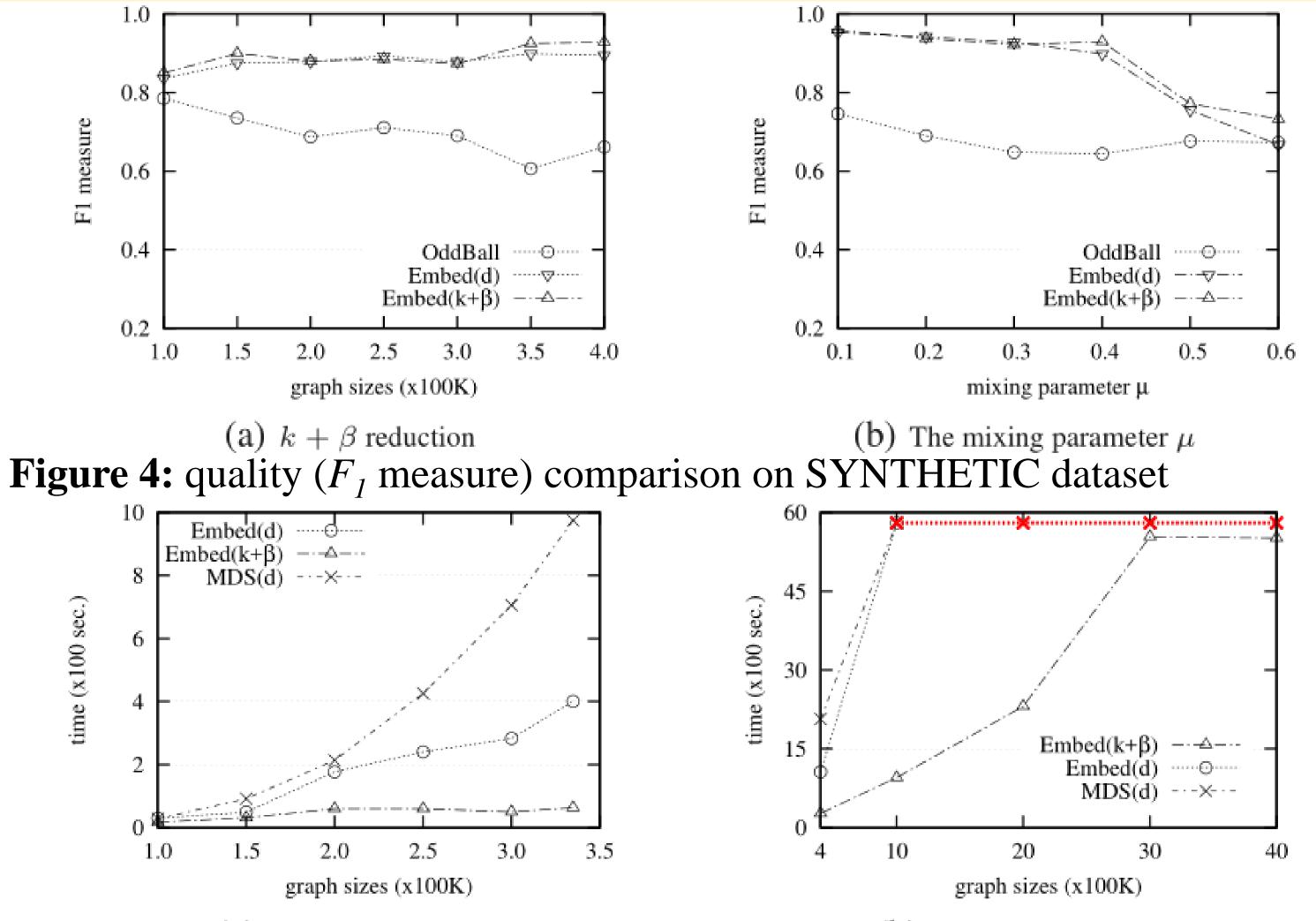
Given an undirected graph G=(V,E), associate each node *i* with a d-dimensional vector X_i , which represents the correlation between node *i* and the *d* communities (Fig. 2). The *goal* in this embedding is to preserve linkage structure of the network. Finally, the embedding is determined by *minimizing the* objective function O:

$$O = \sum_{(i,j)\in E} \|X_i - X_j\|^2 + \alpha \cdot \sum_{(i,j)\notin E} (1 - \|X_i - X_j\|)^2,$$

where α is a balancing factor, which regulates the importance of the two components in O.

A Quantitative Measure of Anomaly

(b) SYNTHETIC dataset (a) AMAZON dataset Figure 3: improvement on effectiveness of community detection (modularity) The removal of detected anomalies helps improve the effectiveness of community detection.



After deriving the embedding, anomalous nodes are determined using the embedding together with a quantitative measure.

We first define NB(i) to evaluate the correlation of node i with the *d* communities (instead of using X_i alone):

$$NB(i) = \left(y_i^1, ..., y_i^d\right) = \sum_{(i,j)\in E} \left(1 - \left\|X_i - X_j\right\|\right) \cdot X_j$$

Given NB(i), we introduce the AScore measure to indicate the anomalousness level of node *i*:

$$AScore(i) = \sum_{k=1}^{d} \frac{y_i^k}{y_i^*}, y_i^* = \max\left\{y_i^1, ..., y_i^d\right\}$$

Finally, node *i* is detected as an anomaly if AScore(*i*)>thre. In fact, AScore measure is also a quantitative measure for detecting structural hole brokers.

(b) SYNTHETIC dataset (a) AMAZON dataset **Figure 5:** efficiency comparison *w.r.t* the graph sizes

Our embedding approach to anomaly detection is both effective and efficient. Moreover, the $(k+\beta)$ reduction technique reduces space cost and improves efficiency in the same time, and slightly improves effectiveness.

References

[1] R. S. Burt. Structural holes and good ideas. *American Journal of Sociology*, 110(2): 349-399, 2004.

[2] M. McPherson, L. Simth-lovin, and J. Cook. Birds of a feather: Homophily in social networks. Annual review of sociology, Vol. 27: 415-444, 2001.