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Abstract—Network anomaly detection has become very popu-
lar in recent years because of the importance of discoveringey
regions of structural inconsistency in the network. In addtion
to application-specific information carried by anomalies, the
presence of such structural inconsistency is often an impéaent
to the effective application of data mining algorithms suchas
community detection and classification. In this paper, we stdy
the problem of detecting structurally inconsistent nodes hat
connect to a number of diverse influential communities in lage
social networks. We show that the use of a network embedding
approach, together with a novel dimension reduction techmjue, .
is an effective tool to discover such structural inconsistecies. We ~ F'9ure 1. Example of anomalous (red) nodes _
also experimentally show that the detection of such anomals  the problem of community detection. For example, the notion
nodes has significant applications: one is the specific use of of homophily which assumes that linked nodes have similar
detected anomalies, and the other is the improvement of the properties, is fundamental to the design of a wide variety of

effectiveness of community detection. algorithms in network science. However, nodes suchAdas
B and C in Fig. 1 are connected to many diverse regions
. INTRODUCTION in the network, and, hence, the homophily assumption is

] ] _violated by many of the incident links. In those cases, the
~ The problem of anomaly detection has been studied widelyresence of such nodes is also likely to lead to challenges
in the literature in the context of different data domainstsu gy |abel propagation algorithms. The principle of homdyphi
as multidimensional, time-series and network data. Inmece \yhich is violated by such nodes, is in fact fundamental to the
years, the detection of anomalies in networks has starteghfective design of algorithms such as community detection
attracting significant attention [1], [3], [5], [7], [15].1F].  collective classification, link prediction, and influenceadysis.
[24], [27], [30], because of the increasing attention oni@oc Therefore, the detection of such anomalous nodes, from its
network analysis models. Network anomalies are useful t@wn right, has rather broad potential applicability from an
discover, both from the perspective of their applicatipreific  gpplication-specific perspective, such as structural hokker

significance, and the possibility to improve the perform@nc getection [10] and spam node detection in large networks [5]
of other network-centric data mining tasks such as comnunit o ) i )
detection and classification. Contributions. In this paper, we will design an approach

to detecting anomalous nodes in large networks, based on e
Networks are inherently complex entities, and, hencenetwork embedding methodology.

anomalies may be defined in a wide variety of ways. In thi
paper, our goal is to discovetructural inconsistencies, i.e.,
the anomalous nodes that connect to a number of diverse infl A s .

preserve (global) pairwise similarities and are not optedi

ential communitigsinspired by the concept of social brokers ;
&sinsp y b to networks and the problem of anomaly detection. Hence,

across groups, which provide social capital in networkd.[10 X .
group b b 3 yhey cannot be directly used for the detection of structural

The presence of such structural inconsistencies may hay ¢ . d.in thi Theref |
a substantial impact on the structure of original networks!Nconsistencies proposed in this paper. Therefore, a nove

and prevent the effective application of the methods such agmt_)edd(ijng rfnethod W”rl] be develloped, (\;vhic_h lis specificall)k/
community detection to a variety of data mining problems. d€signed to ferret out the anomalous nodes in large networks

S(1) While a variety of graph embeddings, such as multidimen-
gional scaling [8], are available in the literature, thegnab

The embedding approach is based on a model, in which
each dimension of the embedding corresponds to a clusterec
region in the network. In other words, the similarity of eifént
nodes along a particular dimension, indicates their siihjla
o a particular clustered region. Therefore, this embegldin
Iretains a very high level of interpretability in terms of the
original graph data, which is very useful from an applicatio
specific perspective. The nature of the embedding also make:
it possible to detect anomalous nodes, by examining the
interaction of each node with the different regions in terms
of the embedding. In particular, we measure tlegel of
The challenge caused by such nodes is not restricted @nomalousnessf a node in terms of the embedding imposed

To better understand structural inconsistencies, wetliites
with an example in Fig. 1. The red nodes labeldd B
and C in the network tend to connect with many different
communities, instead of a single community. As a joint regsul
one of the common observations in many community detectio

through preferential attachment to anomalous nodes, alyd on
very careful tuning of the algorithms is able to achieve mean
ingful clusters [2]. Note that clusters, groups and comriesi
are used alternatively in this paper.



on the node and its neighbors. preserving certain properties. For instance, the metho{

14] preserve global Euclidean distances over the entaplgr

nd the one in [29] preserves the shortest path distances ove
derived neighborhood graph. Both can not be directly used

or detecting structural inconsistencies. While the mdthim
1, [26], [31] do preserve local structure, they are, how-
er, designed to preserve relationships between nodes an

(2) Such an approach is however rather hard to apply t
the case of large networks, because the complexity of th
approach is in proportion to the square of the number o
nodes when optimizing the embedding and because the nois
in the embedding seriously impair the accuracy of detecte
anomalous nodes. Hence, we incorporate the sampling an

e . eir k-nearest neighbors [26], [31] or the probability that a
g_raph partltlonlng.technlqugs, and, moreover, proposevaino node chooses another as its neighbor [18], which are not for
dimension reduction technique to make the approach mor '

. etecting structural inconsistencies as well.
scalable and effective for large networks. 9

) , Graph embedding based anomaly detectianThere already
(3) Using both real-life data (BLP and AMAZON) and  have heen works investigating graph embedding for anomaly
syn_thetlc data ($NTHET_|C), we conduct an extensive ex- {etection [4], [15], [27]. While [4] shows the possibilityf o
perimental study. We find that our embedding approach tQsing embedding for outlier detection, an automatic ditact
network anor_naly detectlo_n is both effective and efficiea). ( method remains missing. [27] uses the commute time dis-
The modularity [11] was increased about 2.9% and 2.4% fofance for detecting anomalies in dynamic graphs, where the
AMAZON, 4.9% and 4.2% for BLP and 6.3% and 4.2% for  gjgenspace embedding only serves to approximately compute
SYNTHETIC, with our approach an@ddBall [5], respectively;  the commute time distance, and [15] proposes to use the
(b) The F; measure was abo#8% and70% for SYNTHETIC  ghaciral embedding to reveal anomalous community struc-
with our approach andddBall, respectively; And (c) the ;e across multiple sources. Different from these works,
running time of our embedding approach increases reaspnabﬁ)ur approach adopts a new measure to evaluate the level o
with the increase of graph sizes, even with large numbegnomalousness, incorporates the graph partitioning tgeen
of communities, while traditional multidimensional seai 5,4 proposes a novel dimension reduction technique to make
approach [8] ran out of memory. the approach more scalable and effective for large networks

Organization. Section Il reviews the related work. The basic other related concepts Structural inconsistencies that we
intuition and model behind the approach are discussed igonsider bear similarities with betweenness centrality[B!],
Section ll. The algorithm and its optimizations for node e the number of shortest paths among all node pairs that pas:
anomaly detection are discussed in Sections IV and V, remrough that node. However, structural inconsistenciessmn
spectively. Experiments are discussed in Section VI, Vol node anomalies caused by edges across distinct communities

by conclusions in Section VII. while betweenness centrality does not distinguish edges in
across communities. Further, structural hole spannediestu
II. RELATED WORK in [22] are those nodes whose removal disconnects groups

. . . . significantly different from structural inconsistencies.
Anomaly detection While, the problem of outlier detection g y

is well studied in its own right [1], the problem in graph data
has only recently started receiving attention in the liema[5],
[24]. Many of these graph anomaly detection techniques use The major problem caused by the nodes of anomalous
specific models for anomaly detection, such as the low randonstructure is that they “bring together” diverse nodes, Wwhic
walk-based similarity between neighbors of a given nodé, [28 “ought not” be connected together by short paths. So the
the violation of specific power laws in the locality of a question here is to decide how to identify such nodes which
node [5], the heavy entries in the non-negative residuatimat bring together diverse portions of the network, itegse nodes

of matrix factorization [30], and the detection of “groups”  that connect to a number of diverse influential communities
anomalous nodes [16]. Recent work has also investigated tt@ne problem, which is unique to network data (with respect
impact of temporal aspects of the data on outlier detectiomo multidimensional data), is that the nodes are not astmstia
[71, [17], [25], [28]. However, none of these methods modelwith any inherent positional information, as a result of ehit
anomalous nodes in terms of their impact on network minings much harder to assess the diversity or similarity of theeun
algorithms because of the inconsistency in the link stmestu  lying representation, and which portions of the network may
The impact of anomalous nodes on network mining techniquelse structurally inconsistent with others. A natural apptoa
has been observed in numerous recent works [2], [19]. Thede to use embedding in order to associate each node with &
methods show that the presence of such anomalies can hawsultidimensional position, and to determine the nodes twhic
a very detrimental impact on locality-centric network migi  cause high level of&nomalousnesswith the embedding.
algorithms. However, a principled approach to discoverin
such nodes is not discussed by these methods.

IIl. NODEANOMALY DETECTION: BASIC MODEL

gGraph embedding While existing graph embedding ap-
proaches, such as multidimensional scaling, are commonly
Graph embedding Traditional graph embedding is an ap- used in the literature for low dimensional representations
proach to finding the desired low-dimensional represesati of networks, the approach is not designed for identification
of a graph that best characterize the similarity relatigpgsh of anomalous nodes. This is because the approach works
between node pairs [32]. Many methods have been proposedth a (global) distance matrix, rather than tloeal linkage

for graph embedding, including multidimensional scali8f [ structure and community structurewhich are the key to the
fastmap [14], isomap [29], locally linear embedding [26], identification of inconsistencies. Therefore, we will dgsia
stochastic neighbor embedding [18] and spectral methdds [3 novel embedding approach, which is specifically designed fo
However, they are designed for compressing graph whiléhe problem of structural anomaly detection.



@_@_® Here « is a balancing factor, which regulates the impor-
tance of the constraints associated with the edges and the no

Figure 2. A simple network containing three nodes edges as vv_eII. Note that it is typically desirable to pickuml_
Before introducing the model in detail, we will introduce °f @ < dl n orderhto ekl)"!sur_e thfat the non'qui constraints
some notations and definitions. We assume that we have not dominate the objective functiof. Typically, most

undirected graptt; = (V, E), with node set/’, and edge set real netv_vorks are sparse, an_d the non-edges c_ontributeeto_th
E. The cardinality of the node stis n, and the cardinality of YaSt majority of the constraints. Therefore, this problesn i

the edge seF is m. The nodes iri/ are consecutively labeled formulated as an optimization problem, which can be solved
integers in the range ofl...n} for notational convenience. N order to determine the optimal values of the embedding.

Anomaly detection with embedding We now formally in-
fdroduce how to detect structural inconsistencies using the
eémbedding of a node and its neighbors. For each noite
graphG, let its neighbors bV B(i) = {j | (i,j) € E}, and
its embedding beX; = (z},...,29).

?

Each nodei € V is associated with d-dimensional data
point X;, which corresponds to its embedded representatio
The d dimensions of the embedding are denoted Xy =
(z},...,2%), where z¥ represents the correlation between

nodei and communityk. In this model, communities are not

restricted to real-life ones. Hence, numheis essentially not Firstly, we define the embeddirﬂgT(i) of NB(i) as the
required to be equal to the number of communities in ”et""orkﬁleighted,sum of the embedding of all neighbors of nade
detected by some algorithms. The goal in this embedding is to

ensure that connected data points (nodes) have similaesalu
of X;, and data points, which are not connected, have diverse
values ofX;. Thus, thegoal of the embedding would be to find

a multidimensional representatiof, . . ., X,, for the nodes in ; - Sl o
V. so that the following holds true- space have a higher weight, ajjd; — X || is the square root

o of stressS(X;, X;) that measures the distance between nodes

X — X5 = {O Gi)er (1) i andj. Intuitively, we useN B(i) to represent the correlation
_ W GneE of nodei with the d communities (instead of using’; for

__Note that here (a)|.X|| is the (Euclidean) norm of vector nodei alone), and the higher the valyé is, the more node

X; (b) The embedding ensures that the norm of any two; tends to belong to community (k € [1, d]). Hence, N B(i)

vectors' difference is always equal to or less thanby s aple to be used to detect the node anomalies that connec

imposing non-negative constraints o ...,z and an upper g a number of diverse influential communities.

bound of valuey/2/2 for ||X;||; (c) The embedding aims _ I

to directly preserve local linkage structure rather thaas th  Then, given the embeddiny B(i) = (v}, . ..,y;) of node

pairwise distance of multidimensional scaling [8]; And {d@ ¢, we introduce a measure, referred toAScore, to indicate

embedding initialization is based on graph partitions ating  the (normalized) anomalousness level of nede

NB() = (y},--vh = DY, —-IX-XI)-X; (5
JENB(i)

Note that the neighbors closer to nodm the embedding

the community structures, to be seen in Section IV. d_ gk
o ) ) ) AScore(i) = Z =yl = max{y},...,v¢} (6)
While it is the goal to obtain such an embedding, it would =1 Yi

almost always be infeasible, to derive such an embedding in We further refine the above equation to deal wiibises
practice, even for very small networks. In order to illustra and to distinguislinfluential communitiega) Obviously nodes
this point, consider the simple network illustrated in F&J. connect to communities to which they belong with a certain
containing three nodes labeled 1, 2, and 3. Since the thrasortion of edges. However, they often connect to commuitie
nodes are connected, they ought to have the same embedagdwhich they do not belong with a small number of (noisy)
representation, in order to ensure thd{ = X, = X3.  edges as well, and these communities moe-influential To
However, since nodes 1 and 3 are not connected, which meaasieviate this noisy situation, for each neighjor N B(i), the
IX1 — Xsf| = 1, there is no way to find an embedding entries inX; whose values fall below the average oneXof
which will exactlysatisfy both constraints. However, a good are regarded as non-influential and are replaced witAnd
1-dimensionakeal embedding, whictapproximatelysatisfies  (b) to distinguish influential communities from non-influieh
the goals of the ideal embeddingis = 0, z2 = 1/3, and  gnes, we also replace those entrigsin NB(i) (k € [1,d])

z3 = 2/3. ThestressS(X;, X;) along a node pair in such an with 0 if y* < 6 -y, whered is a parameter if0, 1]. That
approximate embedding, is the amount by which the goals of, only those non-noisy communities that play a significant

the ideal embedding are violated: impact onN B(i) areinfluential communitiesf nodei.
— 5 _ X = X1 (,4) €E . ‘ .
S(Xi, X;) = {(E—lel 12 () ¢E @ Finally, when AScore(i) > thre, node: is treated as an

- o nomaly, which indi hat n nn number
The stress indicates how poorly the node pair fails toa omay., ch indicates that nodeconnects toa numbe

achieve the goals of the embedding. Therefore, the proble of diverse influential communitietntuitively, thresholdthre

f determining th i beddi be f lated flects the diversity of influential communities, and it®icke
of aetermining the optimum embedding can be formulated agepends on the strength of community structures in networks
a minimization problem over the objective function

i.e., the proportion of inner-community and inter-community

O= > SXi,Xj)+a- > SX;,X;) (3) edges. Networks with strong community structures have a
(i,4)€B (i,§)¢E smaller thre, since the maximum entry;” is very large

= Y X -XP+a Y (1% - X1 - 1)? @) because of a_Iarge number of inner-community edges, while

(i.)EE (i )EE the other entries are very small as a result of a small number

of inter-community edges. On the other hand, networks with



pairs. This can be very expensive for large networks. Furthe
the optimization ofO typically requires a gradient descent
method, which can be very expensive in practice, when the
number of variables to be optimized is large. Another prable

is the choice of the balancing facter. As it turns out,
these two aspects are related, since the size of the problen
can be reduced, depending upon the choice of the paramete
«. Finally, it is important to develop a fast solution of the
optimization problem, in order to ensure an efficient soluti
These issues will be addressed in the next two sections.

Figure 3. Anomalous (red) nodes in embedding IV. DETERMINING OPTIMAL EMBEDDING EFFICIENTLY
weak community structures have a largéire. Typically, The major step in the modeling process discussed in the
thresholdthre falls in [1.5,10]. previous section lies in finding the optimal embedding value

In order to determine the optimal embedding, the objective

We illustrate our node anomaly detection model with an . . ; ) =
y function O discussed in the last section needs to be optimized.

example as follows.
The objective functiorD includes the use of a balancing
arametera. How should this parametes be decided in
%ractice? An immediate observation is that most real graphs

Example 1: Consider the toy example in Fig. 3, a simplified
version of the earlier example in Fig. 1. This graph contain
fourUght]y knitting communities (almost cll_quesl), B, ¢, D, .are sparse, and therefore, if the balancing parametaere

all of which are connected to the central inconsistent nade i\ 1sed the objective functio® would be dominated by
red color. Also consider the case, where the dimensionalityhe stresées on the non-edges. As a result, the impact of the
of embedding IS equal to fc.’l.”’ which is also equal to the dges themselves would be very limited. Therefore, theevalu
number of real-life communities. In such a case, the ideals ', should be picked less than 1. Furthermore, since it is
embedding would require that all nodes in the same comMUgggjrape to provide equal weights to the edges and nonsedge

nities A, B, C, D have the same embedded value. At the samM@,e hajancing parameter should be picked, so that these twe
time, different communities should be separated from eaCEomponents have approximately equal weights.

other by exactly one unit. Consider the embedding in whith al
nodes in communityd have the valug1/+/2, 0,0,0), those The number of edges in the networkiis << (%) for

in B, C and D have the value§), 1/+/2, 0,0), (0,0,1/+/2,0)  sparse networks, and the number of non-edge node pairs i
and(0,0,0,1/+/2), respectively. While the embedding for the (5) — m. These represent the numbers of each type of the

central red node should have equal values in all dimension§omponents in the objective functiad. Hence, to provide
i.e., (z,z,z,r) wherex = /2/4. each component with approximately similar weights, theigal

o o ~ of a should be picked as follows:
It can be shown in this case, by optimizing the objective

n
function O, that (a) there will be small stresses within a O‘:m/(<2> -m) )
community because of missing edges, (b) no stresses across Thjs choice ensures that the contributions of both compo-
communities, because the difference in embedded values jents are approximately similar. Note that the valuevofill
exactly one unit, and (c) it is impossible to find an embedding,ary with the level of sparsity of the underlying graph.
for the red node, without causing stresses, as it connects to ) ) )
four nodes coming from distinct communities. Indeed, it is  While this choice ofa ensures that the two components

this abnormal phenomenon in the embedding that helps us @€ equally weighted, it does not solve the problem that the
detect anomalous nodes, usiAgcore. objective functionO has O(n?) terms in total. This can be

extremely inefficient whenn << n2. It turns out that it is

We next explain how to detect the anomalous central regyossible to approximately represedtusing sampling.
node with the above derived embedding, in which M8 (i) _ . .
for a nodes within a community has a dominant dimension and L€t U be the set of universdl;) node pairs, which can be
small values in other dimensionsg.,(2.93,0.10,0.10,0.10)  constructed by choosing any two distinct nodesVin Then,
for the node within communityl that connects to the central for any graphG = (V, E), the set of non-edges,, can be
red node, and, thus, it4Score(i) is very close tol. However, ~epresented by the following set:
the N B(red) for the red node has almost equal values in the Bn=U-FE ®)
four dimensions, thus thﬁScore(red) is close t04, and is An equivalent Way to use a We|ght of for each non_edge
much larger than the rest of nodes, and, thus, the central rggoyid be to sample a sé, C E,, of sizea- |E,|, and rewrite
node is detected as an anomaly. 0 the sampledobjective functionO approximatelyas follows:

In the above example, the numbeis equal to the number

of real-life communities, which is hard to obtain in praetic o~ Z S(Xe, X) + Z S( X X;) ©)
However, we argue that a reasonable choicel alffices to Gpee— GaEB

detect anomalies for our embedding approach, as will be show = D> IK-XIP+ > (IK-X11-1)* @0
in the experimental study (Section VI). (L.)eE (LI)EEs

Discussions The objective functionO is expressed as a Note that the parameteris missing in the above representa-
summation of all theO(n?) possibilities for different node tion of the objective functioi®), since the set of non-edges has



already been down-sampled in order to re-weight the objecti embedding of a network af communities is constructed in
function O appropriately. such a way, that each of thedimensions of the embedding
represents a closely clustered set of nodes. Specifically, a

bechi?r? ?/Z?%avggé ?; [()) pt,[igztiigg)itigstzr':gnﬁ;égfn r.od rem_mi similar value on theith component of the embedding for
9 y 9 programmi 5 set of nodes, reflects the propensity of that set of nodes

optimization problem. Such a problem can be optimized with, “yo 54 1o theith community. This is illustrated from
the use of the gradient descent method for non-linear fonsti the example of Fig. 3 Therefo.re a natural solution is to

However, for exact objective functions, it has been showr'[J S : .
' . . " se an ensemble of graph-partitioning algorithms in order t
that the gradient descent method is typically not scalable f initialize the embedding. Of course, graph-partitioniagtself

large networks. Hence we adopt the approximate appraach,
. L . o an NP-hard problem, and the use of such a slow method for
Es'?ﬁetge n:g;:iﬁztt%ho%r'zglt(ievr: fduiscis)nr: meéhﬂgt%ﬁ] (?S 'm the initialization defeats the purpose of a more sophitita
y PP . q : approach in the first place. A key observation here is that

be shown in the experimental study (Section V1), the MIN35is ot necessary for each of these algorithms to return a

tbhagcgﬁ?(!%ﬂg;tadnzsgighrrgig‘Od reaches a good tradE()ffm‘*’t\'\“aprecisely optimized partitioning (NP-hard). Rather, a estty

good partitioning, which can be determined quickly, is egfou
Gradient descent optimization requires the determinatioto be used for initialization.

of the gradient vectorfor O with respect to the underlying |nitializing embedding with partitionsConsider a partitioning
problem variables. The gradient 6fis a vector, each compo- with d clusters produced by a graph partitioning approach. For
nent of which is a partial derivative @ with respect to each the embedding(; = (z!,...,z¢) of each node € V, the jth
of the variables (the - d coordinates in the embedding) . component:’ may be defined as follows:
Thus, the gradient will be a vector of length d: !

Vo= Y VSX, X))+ >, VS(X.,X;) (1) o = {1/\/5 if node i belongs to clustey

_ (i))EE ) (i.5) € Es . @ 0 otherwise (16)
_Each individual term in the gradient above can be Sim-  pigarent from traditional graph embeddings, such as multi
plified. The simplification of the term is slightly different qyinensional scaling, this initial embedding provides aurt
depending on whether it corresponds to an edge or a non-edgjerstanding of the underlying community structure and a

node pair. high quality initialization for the gradient descent meaiho

VS(X, X;) = {QHXZ' Kl - VX = X[ forG,j) € - 10 METIS The algorithms implemented in #t1s are based on
2(11Xi = X511 = 1) - VIIXi = X]| else the multilevel graph partitioning paradigm [20], and haeeb
Therefore, the overall gradient for the objective function ~Shown to quickly produce high-quality partitionings.Evis
can be expressed as follows: can partition large irregular graphs into a user-specifigdper
- - d of groups, and it has been developed at the University of
Vo= > 2/X;—X||- VI[X; - X;||+ (13)  Minnesota, and is freely distributed. Hence, we adofETh
(L)HEE to produce a modestly good partitioning.

+ > 21X - Xl - 1) VIIXi - X

w528 Remarks. It should be pointed out that our embedding tends
2,7 s

to preserve the local linkage structure of a graph, and can
The value ofV||X; — X;|| can be evaluated to a gradient therefore be used as a multidimensional representatioheof t
vector, by using the partial derivative with respect to eath graph in conjunction with any application, which is depemtde
the n - d embedding variables® (wherei € {1,...,n}, k €  on the concept of homophily, as discussed in Section I.

{1,...,d}) of the expression:
V. REDUCING DIMENSIONS FORBETTER

d
1X: = X511 = | Dk —af)? (14) As analyzed in Sections Ill and IV, our algorithm, referred
k

et : 0 as Embed, essentially computes an optimal embedding,
The overall approach for gradient descent starts off with arlLiJsing the gradient descent method in Section 1V, to detect

initi i 0 0 1 i t

|n|t|ed_(embedd1|1?(X1 ’ "'t—fl(n> qnd |terat|vely_ updatele., anomalous nodes in a graph. To do this, each riddle [1,n])

. XE) o (X7, ..., Xn") using the following formula:  is associated with three-dimensional vectorsCurrent;,

Next; and Direction;, which represent the current embed-

ding (z},...,z%), the next embeddingy},...,y¢) and the
Note that here each iteration uses a new sampling sgfartial derivative(p}, ..., p¢) of the objective functior© with

in order to decrease the loss of the approximate rewrite imespect to pointCurrent;, respectively. Note that here &

Equation (9), andy; is the step-size in theth iteration. dimensional vector is essentially a point in th&imensional

A variety of off-the-shelf methods such as the line-searchembedding space.

method, or the Newton's method can be used in order to

determine the step sizes for the iterations.

(XL XEY « (X, X)) — - VO (15)

We first explain the detailed process in a single iteration
of algorithm Embed. For each nodé (i € [1,n]), its Next;
Incorporating graph partitions into embedding. The de- s computed as follows:

tection of network anomalies using the gradient method is
critically dependent on determining a good initializatifor

the method. According to the embedding model and Fig. 3where is the step size. To satisfy the embedding constraint
a natural solution is to use an ensemble of graph-partitpni of Equation (1), vectoiVext; = (y,,...,y¢) is further nor-
algorithms in order to initialize the embedding. Intuitiyehe  malized such that: (a) for each € [1,d], v/ is set to0 if

Next; = Current; — v - Direction; a7



yf < 0, and (b) Next; is scaled properly to be of length
1/3/2 if || Next;|| > 1/+/2. It's possible to quickly derive that

d

(1) For all the vectorCurrent; = (x},...,z¢) and Next;

= (y},..., yd) (i € [1,n]), we only maintain the tog + 3

the norm of the difference of any two embedding vectors idargest values, instead of allvalues, fora:{ andy{ (j € [L,d]).

equal to or less tha.

In each iteration, the step sizeis determined by using
backtracking (inexact) line searcf23] with the Armijo rule
constraint [6] such that

O(Next) < O(Current) — ¢ -~ - || Direction||?, (28)

where O is the objective functiong is a constant parameter,
andNext, Current, andDirection are three:-d-dimensional
vectors defined as follows:

Next = (Nexty,..., Nexty) (29)
Current = (Currenty,...,Currenty) (20)
Direction = (Directiont, . .., Directiony) (21)

For all the vectorDirection; = (p},...,p?) (i € [1,n]), we
maintain the values of the+ 3 dimensions olC'urrent;, and
the topk + 3 smallest values in the remaining— (k + 3)
values ofp!. Here we keep the small values Bfirection; to
derive large values oNext;, as shown by Equation (17).

(2) When computing the partial derivativésirection; (i €
[1,7n]), we only use the tog largest values ilCurrent; and in
all the involved vector€'urrent; such thatS(X;, X,) appears
in the objective functionO in Equation (9). We then keep
2 - (k + B) values forDirection;: the firstk + 8 values are
from the same dimensions a%urrent;, and the rest are the
top k£ + 5 smallest values from the remaining dimensions.

The above process repeats until the change of the objective

function O is equal to or less than a pre-defined threshipld
or the iteration number exceeds a pre-defined threshold

Main challenges It is easy to see that algorithBmbed takes
O(3n - d) space for a graph with nodes andi communities,
and the objective functiorD involves with n - d variables.
Indeedd can be large in practice.g.,8,385 for YouTube and
6,288,363 for Orkut [33]. Hence, it could be computatiopall

(3) When computing the vectordext; (i € [1,n]) using
Equation (17), we first extendVext; and Current; with
anotherk + 8 dimensions with valuesero since Direction;
has2 - (k + ) dimensions. We finally reduc¥ext; to k +
dimensions, by keeping its top+ 3 largest values.

(4) When determining the step sizeusing Equation (18), we
use the topt largest values o€urrent; and Next;, and all

expensive folEmbed on large graphs. the2 - (k + ) values of Direction; (i € [1,n]), respectively.

k + B reduction. Observe that anomalous nodes typically  With the k + 3 reduction, the space cost and the number
connect to a limited number of communities, but not all the of variables in the objective function dmbed are reduced
communities. Furthermore, our goal is to identify anomalouto O(4 - n - (k + 8)) andn - k, respectively. We also denote
nodes, and, it often suffices to ascertain anomalous nodes Whthe algorithmEmbed without and withk + /3 reduction as
they are found connected to a certain number of influentiatmbed(d) and Embed(k + ), respectively. Here (a) the
communities. In other words, there is no need to use thgarameter3 provides the opportunity to tolerate mistakes for
completed-dimensions. determining thek communities to which a node belongs. (b)
As analyzed abovek + S reduction reduces the space and
time costs in the same time. (c) We will also experimentally
verify these, and, better still, show that this techniquehfer
Hmproves the effectiveness of anomaly detection due to the
removal of noises in the experimental study (Section VI).

This motivates us to propose the usage &f+ 5)-
dimensions, instead af-dimensions, for vector&€'urrent;,
Neat; and Direction; (i € [1,n]). Intuitively, parameterk
represents the maximum number of communities to whic
anomalous nodes connect, afids a tolerance parameter. In
practice k andg are typically smallge.g.,10 and 2 for a social

¢ SP Remarks. By now we have introduced the entire framework
network with more than 1 million nodes.

of our embedding approach to network anomaly detection. We
The k + 8 reduction obviously reduces the space cost angonclude the framework from the following aspects.

!mproves the efficiency in the same time. Moreover, it furthe (1) We give an analysis on the structurally inconsistentamo
improves the effectiveness of anomaly detectthre to the |ies in networks, both from the perspective of application-

removal of non-influential communitiese., noises. Below we specific significance and the performance of network analyse
give an informal analysis.

. . . . .. (2) We propose a nhew embedding technique that aims to pre-

As we analyzed in Section Il only influential communities garye |ocal linkage structure and community structure @ ne
play a role in the detection of anomalous nodes in networksyorks, and cast such a problem into an optimization problem.
By the definition of N B(i), every nodej within NB(i) has & | the embedding model, each dimension represents a @dster
contribution to N B(i), no matter whether nodg belongs to  region of networks, and graph partitions are incorporated t
influential communities or non-influential ones. Thus, ti@§  obtain a high quality initial embedding.
embedding of non-influential communities may accumulate
and finally make theAScore(i) of nodei large enough so (3) The AScore metric is well established, which seamlessly
that nodei is mistakenly marked as an anomaly. By using theassociates structural inconsistencies with the embedding
k + B reduction, only the topk(+ /) entries are kept in an makes use of a single parametgrre to distinguish the
embedding, and, hence, the above situation is alleviateal to anomalies from normal nodes.
large extent. As a result, the+ S reduction further improves
the effectiveness of anomaly detection, as will be showmhén t
experimental study.

(4) We present two algorithmse., Embed(d) andEmbed(k+

B), under the framework. The space and time complexities
are O(3n - d) and O(t - m - d), respectively, forEmbed(d),
while reducing toO(4n - (k + 3)) andO(t - m - (k + 3))) for
Embed(k+ ). By thek+ 3 reduction, our algorithm can scale

Details. We next present the detailed process of ther(5)
reduction optimization technique.



o ] Table I. SUMMARY OF MAIN PARAMETER SETTINGS
up to large networks, and, better still, it further improtke

. > ; P Descriph Defaul
effectiveness because of the explicit removal of noises. [_Parameter | Description _ | Defaut |
d number of communities or clusters n /500
k community number in thé + 3 reduction avgD
VI. EXPERIMENTAL STUDY Il tolerance pargmeter_in the+ 3 rgduction [k/4]
0 threshold for influential communities 0.1
In this section, we present an extensive experimental study "¢ :)h;f;:g'ti roifnd;i‘;?gni;g;“a"es —
of our embedding approach to detecting network anomalies—— change threshold in gradient descent 5.001
Using both real-life and synthetic data, we conducted fou t fteration threshold in gradient descent 50
sets of experiments to evaluate: (1) the application of aom L s;%egg'ggrgﬁqgmi'y'gi ;”E\TEINCTHET'C 11»(1?
lies found by our embedding approach with a case study—/ TiXINg parameter TN SNTHETIC W
(2) the improvement of community detection by evaluating B negative exponent of power law IIVBTHETIC 3
modularity after removing anomalies found by our algorithm t2 negabtlve Efxpogemt Ofbpowef 'adW_'mgTHET'C - 221]
. . q number of nodes to be merged IIYRBIHETIC s
Embed (d> andEmbed(k + ﬂ>' (3) the qua“ty of anomalies by r number of nodes to generate anomalies WSHETIC ——

evaluating theF; measure of anomalies found IBmbed(d)

and Embed(k + ), and (4) the efficiency of our algorithms ¢ Nodes are less than or equal 20 avgD, such that these

Embed(d) and Embed(k + 3) for detecting anomalies. new nodes are tending to be anomalies as they connect tc
diverse influential communities. Here the parametesaries

from 2 to 21 with an increment ofl, thus the parameter is
(23-n-p)/4. Besides these agglomerated anomalies, we further
We first introduce the settings of our experimental study. injected anotheln - p)/2 nodes, each of which connects to
nodes of original network randomly, and their degrees fall i
[avgD, maz D] and satisfy the power law of exponent

A. Experimental Settings

Datasets We chose three datasets to test our approach.

(1) AMAZON records a product co-purchasing network with Algorithms and implementation. We compared our embed-

334,863 product nodes and 925,872 product-product édges . :
is based on th€ustomers Who Bought This Item Also Boughtdlrlg approach wittBET [9], MDS(d) [8] and OddBall [5].

feature. That is, an edge from productto y indicates that (1) AlgorithmBET is the approximate solution in [34] to detect
if people buyz, then they will also buyy with a very high  the nodes with the highest betweenness centrality as aresnal
probability. The graph has a single connected component. whose number of hyperedges was fixedl € 000.

(2) DBLP contains scientific publication information in the (2) Algorithm MDS(d) is similar to our Embed(d) except

i i using multi-dimensional scaling8] for obtaining the em-
computer science domain from years 1936 to Z0We further bed ingH which aims to preserve global pairwise similesiti

processed the dataset to compose a co-author graph fram it, b graphs. We exploited Landmark MDS [13] to efficiently
which each node is an author, and an edge between two nodesmpute embedding for large graphs. For a target space of
i and j indicates that authors and j are co-authors in at dimensionalityd, we randomly selectefd- d landmark points.
least one publication. The generated complete co-autta@hgr The computation of embedding’B(i) in Equation (5) is
consists of 115,305 connected components. The largest omeodified as follows: -

has 1,150,852 nodes while the second largest one has only 32 NB(i) = (yi,---.9d) = > ep{l-|Xi =X} - X; (22)

nodes. Hence we choose the largest connected component WEh . . JENBG) .
1,150,852 nodes and 5,098,175 edges as therllataset quation (22) remains the intuition that neighbors closer t
B B ' node: have a higher weight whehX; — X || is not guaranteed

(3) SYNTHETIC graphs with community structures vary from to be equal to or less thananymore.
10° to 4 x 10% nodes, and are produced according to the3 Algorithm OddBall di | | it
LFR-benchmark graph [21], which includes heterogeneou3) Algorithm all dISCOVers several power law patierns

distributions of node degree and community size, and pesvid governing the ego-nets of all nodés., subgraphs of nodes
a more severe test of community detection methods and their neighbors, and uses them for anomaly detection [5]
' More specifically, OddBall first computes a Least Squares

The implementatiohis controlled by five key parameters: fitting line for a power law, and measures the anomalousness
(&) the numbern of nodes; (b) the average degreegD of each node according to its distance to the fitting line. We
of nodes to generate* edges; (c) the mixing parametgr  adopted theEgonet Density Power Lawwhich defines the
such that each node shares- i of its links with the other relation between the number of nodgs;| and the number
nodes in its community; (d) the exponents and ¢, that of edges/E;| of the ego-neG;:
correspond to the power laws of the degree and community size |Ei| o [Ni|?,1 < ¢ <2 (23)
distributions, respectively; (e) the maximum degreexD,  And the fitting line is in the form of([E;| = C - |N;|%,
given byn'/("=1. To produce a network of size- (1 +p),  where values ofE;| of structural inconsistencies are typically
wherep - n nodes are anomaliesve first produced a network |ess than the expected values ©f- |N;|¢ as the neighbors
with n + nodes, in which- nodes were further processed to of structural inconsistencies are from a number of diverse
generatgn - p)/2 anomalies using an agglomerative operationcommunities. As social networks are sparse, we also extende
as follows: A group ofy nodes was replaced by a single new || to the number of edges in 2 hops, and the intermediate

node such that all edges connecting to theseodes in the nodes of 2-hop paths were not limited in the node sefpf

network were re-connected to the new node. The degrees of ) ) ) ) ]
(4) All algorithms were implemented with Microsoft Visual

Lhttp://snap.stanford.edu/data/index.html C++. We adopted thélewman algorithm in the igraph li-
2http:/www.informatik.uni-trier.déey/db/ brary (ttp://igraph.sourceforge.ngtfor computing communities
3http://homes.soic.indiana.eduffiliradi/Resourceslhtm and modularity [11]. We also implemented an algorithm for




Table II. Embed(d) vs. MDS(d) USING MODULARITY AND F| MEASURE

Modularity F, measure
Dataset AMAZON (87.6%) || DBLP (56.8%) [[ SYNTHETIC (47.1%) SYNTHETIC
Algorithm || MDS(d) | Embed(d) || MDS(d) | Embed(d) || MDS(d) | Embed(d) || MDS5(d) | Embed(d)
d = 200 94.6% 95.1% 62.4% 62.6% 47.9% 53.4% 11.3% 89.4%
d = 400 94.9% 95.6% 61.5% 61.0% 47.5% 53.8% 13.6% 90.6%
d = 600 94.9% 95.8% 62.4% 62.5% 47.6% 54.3% 12.7% 89.8%
d = 800 94.9% 96.0% 60.9% 61.8% 47.4% 53.9% 11.2% 88.9%
d = 1000 95.2% 96.2% 59.6% 62.1% 47.3% 54.0% 7.9% 85.5%
Avgerage 94.9% 95.7% 61.4% 62.0% 47.5% 53.9% 11.3% 88.8%

generating subgraphs of MazoN, DBLP and SYNTHETIC: Exp-1.3. Undetected different people with the same name

we started with a node with high degree, and then producedor instanceJian Li was detected as an anomaly. We did

graph withn nodes using the breadth-first search strategy. a careful check and found that there were quite a few

All experiments were run on a PC with an Intel Core i5- people with name “Jian Li", while DBLP mistakenly treats
’.Erem as the same person. For instance, there are distinc

\ZIIA:tOO ICrrl?Um@rsl\}VOG?zrba;gg %]Gi(n;B"Of n:?m?ry.lr']l'he usa\(;;v(ra] 0 eople from IBM Austin Research Laboratory, University
ual memory was 1o € all our tesls. In cases wherge Florida, Tsinghua University, Dalian University of

gegpgt%wgsrgen%sgggrgsgg are report?d(,j tk?e test wasteepea-ro i nology, Chinese Academy of Sciences, Hubei University
ge IS reported here. of Education, Southwest Petroleum University, Concordia

) University, Beihang University, Harbin Institute of Teaiagy
B. Experimental Results etc.. As shown in DBLP, these people are treated as the sam

We tested the effectiveness and efficiency of our embedding€rson. and belong to 24 different community groups.

approach using MAZON, DBLP and SYNTHETIC datasets. (||) Effectiveness Study For the effectiveness study, we (1)
Since the numbed of communities typically increases along compared our embedding approach with betweenness central
with the increase of graph sizes, we simply dixo /500 by ty, (2) used the modularity to evaluate the improvementef t
default in our tests, wherg00 is the average community size effectiveness of community detection, and (3) adopted/he

in our tested networks. As for the numbemn £+ reduction,  measure to evaluate the quality of anomalous nodes found.
we find that a good selection fdt is to use the average ) ) ) -

node degree of networks, a bound of the average number &) Modularity. Itis the fraction of the edges that fall wiitithe
communities to which a node connects. All parameters anéliven groups minus the expected such fraction if edges were

their default settings are summarized in Table I. distributed at random. It is designed to measure the sthengt
o of division of a network into communities, and is often used
We next present our findings. in community detection optimizations. The rational behisd

(I) Case Study|n the first set of experimentas an application ~the removal of anomalies results in better communities.
of node anomaly detectiome show three interesting examples (2) F, measure. It is a measure of a test's accuracy, and we

found in DBLP since it is the only available one with such ;seq it to further measure the quality of anomalous nodes
details in our tested datasets. found. As this needs the ground truth of anomalies, which

Exp-1.1. Different people with the same nanfor instance, is hard to obtain in real life networks, we used the anomaly
Wei Wangand Wei Li were detected anomalies. There areinjection technique on theY&ITHETIC dataset [28], [30].

51 people with name “Wei Wang” and 43 people with name Here we chose small datasets to test modularity nds

“Wei Li” in D BLP, which are unanimously treated as individual Embed(d) did not scale to large datasets, and parameter
persons, and are connected to many communitiesgfrD for AMAZON, DBLP and SYNTHETIC was empirically fixed

Exp-1.2. People with many collaborators in diverse ingtigu  to 2.0, 3.0 and 3.3, respectively, by default.
For instanceAjith Abrahamand Vincent Poorwere detected &/

: Xp-2: Structural inconsistency vs. betweenness central-
as anomalies. These people only belong to a very sma

number of community arouns. due to the simple strateay usey - To clarify these two different notions, we first detected
Y groups, b 9y ructural inconsistencies usifignbed(d), and then computed

to identify communities by DBLP. (a) Dr. Ajith Abraham is the same number of nodes with the highest betweennes:

the current director of machine intelligence research,labsCentrality USingBET on AMAZON, DBLP and SYNTHETIC.

T he total number of nodes was fixed 460K for DBLP and

works in a multi-disciplinary environment involving maalei SYNTHETIC, and the entire MAZON, respectively.

(network) intelligence, cyber security, sensor netwoidata
mining and applied to various real world problems, and he The fraction of common nodes that were both detected
has been associated with the teaching and research with By Embed(d) and BET was 18.2% on AMAZON, 16.4% on
universities all around the world. He has 502 co-authorPsLP, and37.1% on SYNTHETIC, respectively. Moreover, the
in DBLP. (b) Dr. H. Vincent Poor is the George Van Nessaverage degrees of nodes detectedtwi{ed(d), BET) were
Lothrop Professor at Princeton University, and he is widely(5.3, 13.6) on AMAZON, (22.3, 62.6) on DBLP, and 04.7,
recognized as one of the world’s leading educators and76.1) on SYNTHETIC, respectively. Finally, thé"; scores of
researchers in wireless communications, signal proagssimodes found by Embed(d), BET) were §8.9%, 39.8%) on
and related fields. He has 548 co-authors in DBLP. SYNTHETIC. These together show that structural inconsistency

These two researchers have a lot of collaborators whé)s significantly different from betweenness centrality.

work in different institutes and form many different comnityn ~ Exp-3: Embed(d) vs. MDS(d). Our embedding method is
groups, and hence they were detected as anomalies. specifically designed to ferret out the anomalous nodesgela
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Figure 6. Impacts on the quality’{ measure): SNTHETIC dataset

networks. To show this, we comparEchbed(d) with MDS(d)  appropriate, and our embedding appro&shbed(d) clearly
using both modularity and’} measure. outperformsMDS(d), especially for theF; scores. Thus, we

Exp-3.1 We first tested the modularity of the community did not report the rest effectiveness comparisons M5 (d).

structure using algorithiNewman directly, and then tested the Exp-4: Modularity evaluation. In the fourth set of experi-
modularity after removing node anomalies foundiaybed(d)  ments, we usedhodularityto evaluate the improvement of the
andMDS(d), respectively. For the sake of fairness, we simplyeffectiveness of community detection.

fixed the number of anomalies removed kDS(d) the same . .
asEmbed(d), and variedd from 200 to 1000, while fixed the ~EXP-4.1 To evaluate the impacts of the + 5 reduction
number of graph nodes.e., graph size, tol00K for DBLP technique, we first tested the modularity of the community

and SNTHETIC, and the largest siz&34.8 for AMAZON. structure using algorithniNewman directly, and then tested
' the modularity after removing node anomalies detected by

The results are reported in Table Il. In all cases, our embeddddBall, Embed(d) and Embed(k + f3), respectively. Since
ding methodEmbed(d) andMDS(d) consistently improve the Embed(d) andEmbed(k+(3) find different numbers of anoma-
modularity, compared with usingewman directly (results are lies, for the sake of fairness, we fixed the number of anomalie
in the second row of Table Il). The improvementdofibed(d) to be the small one. We varied the graph sizes, fi®®K to
with respect tod are also better thaMDS(d) for almost all 400K or the largest siz834.8K for AMAZON, while fixed d
cases. In deed, the modularity was increased abpatiy = n/500. The results are reported in Fig. 4.

8.1%) for AMAZON, (4.6%, 5.2%) for DBLP and (0.4%, 6.8%) _ ) ) )
for SYNTHETIC on average, after the anomalies were removed When varying the graph sizes, the modularity using

by MDS(d) and Embed(d), respectively, in our tests. Embed(k + ) was consistently close to the one using
Embed(d) for AMAZON, DBLP and SNTHETIC data. Their

Exp-3.2 We then tested the” score of node anomalies modularity differences were only 0.34% forMhzoN, 1.5%

detected byEmbed(d) and MDS(d), respectively. Similar to  for DeLP and 0.61% for SNTHETIC, respectively, in our tests.
using modularity, we varied from 200 to 1000 while fixed In most cases, the modu|arity usuﬁynbed(k; + 6) was even
graph size and number of anomalies. better than the one usingmbed(d), which may be caused

. he removal of noises of embedding. In all cases, both
The results are reported in Table II. In all cases, thebyt - §
F) scores ofEmbed(d) with respect tod were better than °ur émbedding methodsmbed(d) andEmbed(k + 5) consis-
MDS(d). In deed, theF, scores ofMDS(d) and Embed(d) tently improve the modularity, compared with usiNgwman

: : directly. The improvements dimbed(d) and Embed(k + 3)
were (L1.3%, 88.8%) on average, respectively, in our tests. were also better tha@ddBall in most cases. In deed, the mod-

These experimental results show that the direct use dflarity was increased abou.( %, 2.8%, 3.0%) for AMAZON,
MDS for the detection of structural inconsistencies is not(4.2%, 4.1%, 5.6%) for DBLP, and ¢.2%, 6.1%, 6.5%) for




SYNTHETIC on average, after the anomalies were removed by:/500, 200, 600 and 1000 were (0%, 89%, 91%, 88%, 86%)
OddBall, Embed(d) and Embed(k + (), respectively. on average for 8NTHETIC, respectively. When varying the
Sgraph sizes, thé', scores usingEmbed(k + ) with different
humbersd of dimensions were consistently close to each
other. TheirF; score difference was only.5% on average
in our tests. In almost all cases, our methbdbed(k + )

is consistently better tha@ddBall. Indeed, theF; scores of
Embed(k+ 3) with d = n/500, 200, 600 and1000 were (9%,
21%, 18%, 16%) larger thanOddBall on average, respectively.

Exp-4.2 To evaluate the impacts of the dimension number
we first tested the modularity of the community structuregsi
algorithm Newman directly, and then tested the modularity
after removing node anomalies found ©gdBall, Embed(k+

B) with d = n/500, 200, 600 and 1000, respectively. When
varying d, Embed(k + /3) would also detect different counts
of anomalies, although embedding approach &t were
fixed the same. Similar to the settingBxp-4.1 we varied the  Exp-5.3 To evaluate the impacts of the mixing parameter, we
graph sizes, while fixe@mbed(k + 3) and used the minimum variedy from 0.1 to 0.6, while fixed the graph size 600K,
number of anomalies with differemnt d =n/500, p = 1.0% and the number of anomalies removed

A . as the smaller one detected Byhbed(d) and Embed(k + 3).
The results are reported in Fig. 5. When varying the grap%inceﬁhre is affected byu, we fg:edtlgrza to 1.8, 2.5, (2.5, 3@)

sizes, the modularities usingmbed(k + ) with different 1.5, 6.1 when varyingy from 0.1 to 0.6, respectively. Note

numbers/ of dimensions were consistently clos_e to each .mhe[hat wheny is closer tol, the generated graphs are closer to
for AMAZON, DBLP and SYNTHETIC data. Their modularity .0 graphs, ang — 0.6 is a higher value for real-life

differences were only 0.76% for MAZON, 1.6% for DBLP o \qeq” The results are reported in Fig. 6(c).
and 0.85% for SNTHETIC on average, respectively, in our
tests. In all cases, our embedding methbdbed(k + ) The F; scores ofOddBall, Embed(d) and Embed(k + )
consistently improves the modularity, compared with usingwere (8%, 86%, 88%) on average for 8NTHETIC, re-
Newman directly. The improvements dimbed(k + ) with  spectively. When varying the mix parameter, thg score
differentd are also better tha@ddBall in most cases. In deed, using Embed(k + ) was consistently close to the one using
the modularity was increased about9%, 2.6%, 2.6%, 2.6%, Embed(d) for SYNTHETIC. Their F; score difference was only
2.5%) for AMAZON, (4.5%, 4.9%, 5.4%, 4.7%, 5.3%) for  2.2% on average in our tests. In almost all cases,fhscores
DeLP and ¢.3%, 6.5%, 6.6%, 6.4%, 6.1%) for SYNTHETIC  for both our embedding metho@enbed(d) andEmbed(k+53)

on average, after the anomalies were remove@#yBall and  were better tha®ddBall. In deed, the; scores ofEmbed(d)
Embed(k + 3) with d = n/500, 200, 600, 1000, respectively. and Embed(k + 3) were (18%, 20%) larger thanOddBall on

Exp-5: F}, measure evaluationIn the fifth set of experiments, average, respectively.

we used theF; measure to further measure the quality of Exp-5.4 To evaluate the impacts of the proportion of anoma-

anomalous nodes found. We compared fiemeasure of our lies, we varied the proportion froii1% to 2.0%, while fixed

embedding approach wit@ddBall [5]. graph size t0400K, d = n/500, © = 0.4 and the number
We chose small datasets to test the measure again, as of anomalies removed as the smaller quantity of anomalies

Embed(d) did not scale to large ones. We further tested the ©t€Cted byEmbed(d) andEmbed (k + ).
mixing parametery, and the proportion of anomaligs in The results are reported in Fig. 6(d). TH& scores of
addition to the two algorithm factors @xp-4 OddBall, Embed(d) andEmbed(k+3) were 3%, 89%, 91%)

Exp-5.1 To evaluate the impacts of the + 3 reduction ~ON @verage for $NTHETIC, respectively. When varying the
fechnique, we varied the graph sizes fra@0k to 400k, Proportion, ther, score usingembed(k + 5) was consistently
while fixed d = n/500, u = 0.4, p = 1.0% and the number Cclose to the one usingmbed(d) for SYNTHETIC. Their [

of anomalies removed as the smaller quantity of anomalieScore difference was onlg.7% on average in our tests. In
detected byEmbed(d) and Embed(k + ). all cases, thef; scores for both our embedding methods

Embed(d) and Embed(k + 3) were better tharOddBall. In

The results are reported in Fig. 6(a). Ti& scores of deed, theF; scores ofEmbed(d) and Embed(k + 3) were
OddBall, Embed(d) andEmbed(k+ /) were (0%, 88%, 89%)  (26%, 28%) larger thanOddBall on average, respectively.
on average for 8NTHETIC, respectively. When varying the
graph sizes, thé” score usingEmbed(k + /3) is consistently
close to the one usingmbed(d). Their F; score difference
was only 1.6% on average in our tests. In all cases, the
Fy scores for both our embedding methoBsibed(d) and
Embed(k+3) were better tha®ddBall. In deed, the; scores
of Embed(d) andEmbed(k+ 3) were (8%, 19%) larger than
the I} score ofOddBall on average, respectively.

(1) Efficiency Study. In the last set of tests, we evaluated the
efficiency of our algorithms. Here we chose larger datasets t
test the efficiency, and evaluated the impacts of three facto
that affect the efficiency of our embedding approach:ithes
reduction, number of dimensions and numbern k& +
reduction. We produced anothev$rHETIC dataset with size
4,000K, by setting the other parameters with default values,
and generated subgraphs of different sizes with the same
Exp-5.2 To evaluate the impacts of the dimension numbers, walgorithm as the one onMazoN and DsLP. Here we plotted
variedd with n/500, 200, 600 and1000, respectively. Similar ~ with (red) markersx in the figures when algorithnt&mbed(d)

to the setting ofExp-5.1 we varied the graph sizes, while and MDS(d) threw out a memory allocation exception.

fixed Embed(k + 3), u = 0.4, p = 1.0% and the number
of anomalies removed as the minimum quantity of anomalie
detected byEmbed(k + 3) with different dimension numbers.
The results are reported in Fig. 6(b).

Exp-6.1 To evaluate the impacts of the + § reduction
%echnique, we tested the efficiencydDS(d), Embed(d) and
Embed(k + 3), respectively. We varied the number of graph
nodes,i.e., graph sizes, fromd00K to 1,000K for DBLP,
The F; scores ofOddBall and Embed(k + ) with d =  from 400K to 4,000K for SYNTHETIC and from 100K to
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Figure 9. Impacts on the efficiency &mbed(k + /3): the numberk
the largest size for MAzON, respectively, while fixedi =  different selections off differed 54.5%, 14.2% and 24.5% on
n/500 andk = avgD. The results are reported in Fig. 7. AMAZON, DBLP and SYNTHETIC on average, respectively, in

. . L our tests. Although the proportion result omAzoON is large,
When varying the graph sizes, the running imétidS(d),  the running time difference was onfi8 seconds on average.

Embed(d) and Embed(k + ) increases with the increase The efficiency is indeed mainly affected by the convergence
of graph sizes. However, the running time &Mmbed(d)  gpeed of the gradient descent.

and Embed(k + /) was consistently smaller thaklDS(d). i .

Moreover, the running time ofmbed(k + 3) was also con- EXp-6.3 To evaluate the impacts of the numbeiin k + 3
sistently smaller tharEmbed(d). Indeed, the running time reduction, we tested the efficiency Binbed(k + 3) with & =

of Embed(k + 3) was only (35.3%, 25.0%), (23.4%,13.1%) 8, 12, 16, 20. Similar to the setting oExp-6.1 we varied the
and (25.6%, 13.2%) of Embed(d) andMDS(d) on Amazon,  graph sizes, while fixed = n/500.

DBLP and SYNTHETIC on average, respectively, in our tests.  The results are reported in Fig. 9. When varying the
The running time ofl, 000K on SYNTHETIC was much 1SS graph sizes, the running time &mbed(k + 3) with different
than expected, due to the gradient descent finished in aévang i,creases with the increase of graph sizes, as expected
when the change of objective functidn was less than the nigregver, its running time also decreases with the decreise
change threshold. Moreover, when the graph sizes were no;. The running time oEmbed(k+ 3) with & = (16, 12, 8) was
less thar600K on DBLP and SYNTHETIC, bothMDS(d) and (87.7%, 66.8%, 55.7%), (86.3%, 76.3%, 66.5%) and (85.2%,
Embed(d) ran out of memory, and could not finish the tests. gg goy 72.2%) of the one dmbed(k + 8) with k = 20 on

Exp-6.2 To evaluate the impacts of the number of dimensionsAMAZON, DBLP and SYNTHETIC on average.

we tested the efficiency dmbed(k + 3) with d = n/500 and  Summary. From these tests we find the followings.
(200, 600, 1000), (800, 1400, 2000), (2000, 6000, 10000) for
AMAZON, DBLP, SYNTHETIC, respectively. Here we chose
Embed(k+ ) instead ofEmbed(d), for larger graphs on BLP

(1) Our embedding approach to network anomaly detection is
both effective and efficient.

and S'NTHETIC. Similar to the setting oExp-6.1 we varied The effectiveness evaluation using modularity for the im-
the graph sizes, while fixeimbed(k + §) andk = avgD.  provement of community detection with algorithNewman
The results are reported in Fig. 8. shows that the modularity was increased about 2.9% and 2.4%

for AMAZON, 4.9% and 4.2% for BLP and 6.3% and 4.2%

When varying the graph sizes, the running time Offor SYNTHETIC, by our approach an@ddBall respectively.

Embed(k+ 3) with different dimensions increases with the in-
crease of graph sizes, as expected. Moreover, the runmireg ti The quality evaluation using thé; measure also shows
of Embed(k + ) with different dimensions was consistently that it was about88% and 70% for SYNTHETIC by our
close to each other. The running time bhbed(k + ) with  approach andddBall, respectively.



The efficiency evaluation shows the running time of [7]
Embed(k + ) increases reasonably with the increase of graph
sizes, even with large number of communities. .
(2) The direct use of multi-dimensional scaling fails to ef-
fectively detect structural inconsistencies. The modiylavas [9]
increased about 7.3% and 8.1% fomAzON, 4.6% and 5.2%

for DBLP, and 0.4% and 6.8% for®ITHETIC, by MDS(d) [10]
and Embed(d) respectively. Moreover, thé; measure was

only 11.3% forMDS(d), while it was 88.8% forEmbed(d).  [11]
Further, it ran out of memory for larger networks. 12

(3) Our k& + g reduction optimization technique reduces both
space and time costs, and slightly improves the quality. Thé3]
running time ofEmbed(k + ) was only 35.3%, 23.4% and

25.6% of its counterpafEmbed(d) on AMAzON, DBLP and  [14]
SYNTHETIC, respectively. MoreoverEmbed(d) already ran

out of memory on BLP and SYNTHETIC with sizes equal [15]
to or larger thar600K.

(4) While the numbersd and k£ of dimensions do have 116}

certain impacts on the quality and efficiency, their setiage
relatively easy as long as they fall into a reasonable ramge,
n/500 for d andavgD for k, compared with the real number ;7
of community groups that is often hard to determine.

VII.

In this paper, we presented an embedding approach t@g
detecting structurally inconsistent nodes (anomalougs)pih
massive social networks. The embedding approach is based
on a model, in which each dimension of the embedding20]
corresponds to a clustered region in the network, and the
embedding retains a very high level of interpretabilityenns
of the original graph data. We utilize the gradient descent?!l
method to compute an embedding, and propose optimization
techniques to make the approach more scalable for larger ngpy;
works. Our extensive experimental results have demomsitrat
the effectiveness and efficiency of our approach to networles)
anomaly detection, which also brings significant applaagiin = [24]
social networks, such as the specific use of detected aresnali
and the improvement of community detection. We are also
exploring other possible applications of our approach.

CONCLUSIONS [18]
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