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Abstract—Network anomaly detection has become very popu-
lar in recent years because of the importance of discoveringkey
regions of structural inconsistency in the network. In addition
to application-specific information carried by anomalies, the
presence of such structural inconsistency is often an impediment
to the effective application of data mining algorithms suchas
community detection and classification. In this paper, we study
the problem of detecting structurally inconsistent nodes that
connect to a number of diverse influential communities in large
social networks. We show that the use of a network embedding
approach, together with a novel dimension reduction technique,
is an effective tool to discover such structural inconsistencies. We
also experimentally show that the detection of such anomalous
nodes has significant applications: one is the specific use of
detected anomalies, and the other is the improvement of the
effectiveness of community detection.

I. I NTRODUCTION

The problem of anomaly detection has been studied widely
in the literature in the context of different data domains such
as multidimensional, time-series and network data. In recent
years, the detection of anomalies in networks has started
attracting significant attention [1], [3], [5], [7], [15], [17],
[24], [27], [30], because of the increasing attention on social
network analysis models. Network anomalies are useful to
discover, both from the perspective of their application-specific
significance, and the possibility to improve the performance
of other network-centric data mining tasks such as community
detection and classification.

Networks are inherently complex entities, and, hence,
anomalies may be defined in a wide variety of ways. In this
paper, our goal is to discoverstructural inconsistencies, i.e.,
the anomalous nodes that connect to a number of diverse influ-
ential communities, inspired by the concept of social brokers
across groups, which provide social capital in networks [10].
The presence of such structural inconsistencies may have
a substantial impact on the structure of original networks,
and prevent the effective application of the methods such as
community detection to a variety of data mining problems.

To better understand structural inconsistencies, we illustrate
with an example in Fig. 1. The red nodes labeledA, B
and C in the network tend to connect with many different
communities, instead of a single community. As a joint result,
one of the common observations in many community detection
algorithms is that all nodes tend to form one large cluster
through preferential attachment to anomalous nodes, and only
very careful tuning of the algorithms is able to achieve mean-
ingful clusters [2]. Note that clusters, groups and communities
are used alternatively in this paper.

The challenge caused by such nodes is not restricted to
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Figure 1. Example of anomalous (red) nodes

the problem of community detection. For example, the notion
of homophily, which assumes that linked nodes have similar
properties, is fundamental to the design of a wide variety of
algorithms in network science. However, nodes such asA,
B and C in Fig. 1 are connected to many diverse regions
in the network, and, hence, the homophily assumption is
violated by many of the incident links. In those cases, the
presence of such nodes is also likely to lead to challenges
for label propagation algorithms. The principle of homophily,
which is violated by such nodes, is in fact fundamental to the
effective design of algorithms such as community detection,
collective classification, link prediction, and influence analysis.
Therefore, the detection of such anomalous nodes, from its
own right, has rather broad potential applicability from an
application-specific perspective, such as structural holebroker
detection [10] and spam node detection in large networks [5].

Contributions . In this paper, we will design an approach
to detecting anomalous nodes in large networks, based on a
network embedding methodology.

(1) While a variety of graph embeddings, such as multidimen-
sional scaling [8], are available in the literature, they aim to
preserve (global) pairwise similarities and are not optimized
to networks and the problem of anomaly detection. Hence,
they cannot be directly used for the detection of structural
inconsistencies proposed in this paper. Therefore, a novel
embedding method will be developed, which is specifically
designed to ferret out the anomalous nodes in large networks.

The embedding approach is based on a model, in which
each dimension of the embedding corresponds to a clustered
region in the network. In other words, the similarity of different
nodes along a particular dimension, indicates their similarity
to a particular clustered region. Therefore, this embedding
retains a very high level of interpretability in terms of the
original graph data, which is very useful from an application-
specific perspective. The nature of the embedding also makes
it possible to detect anomalous nodes, by examining the
interaction of each node with the different regions in terms
of the embedding. In particular, we measure thelevel of
anomalousnessof a node in terms of the embedding imposed



on the node and its neighbors.

(2) Such an approach is however rather hard to apply to
the case of large networks, because the complexity of the
approach is in proportion to the square of the number of
nodes when optimizing the embedding and because the noises
in the embedding seriously impair the accuracy of detected
anomalous nodes. Hence, we incorporate the sampling and
graph partitioning techniques, and, moreover, propose a novel
dimension reduction technique to make the approach more
scalable and effective for large networks.

(3) Using both real-life data (DBLP and AMAZON) and
synthetic data (SYNTHETIC), we conduct an extensive ex-
perimental study. We find that our embedding approach to
network anomaly detection is both effective and efficient. (a)
The modularity [11] was increased about 2.9% and 2.4% for
AMAZON, 4.9% and 4.2% for DBLP and 6.3% and 4.2% for
SYNTHETIC, with our approach andOddBall [5], respectively;
(b) TheF1 measure was about88% and70% for SYNTHETIC
with our approach andOddBall, respectively; And (c) the
running time of our embedding approach increases reasonably
with the increase of graph sizes, even with large number
of communities, while traditional multidimensional scaling
approach [8] ran out of memory.

Organization. Section II reviews the related work. The basic
intuition and model behind the approach are discussed in
Section III. The algorithm and its optimizations for node
anomaly detection are discussed in Sections IV and V, re-
spectively. Experiments are discussed in Section VI, followed
by conclusions in Section VII.

II. RELATED WORK

Anomaly detection. While, the problem of outlier detection
is well studied in its own right [1], the problem in graph data
has only recently started receiving attention in the literature [5],
[24]. Many of these graph anomaly detection techniques use
specific models for anomaly detection, such as the low random-
walk-based similarity between neighbors of a given node [28],
the violation of specific power laws in the locality of a
node [5], the heavy entries in the non-negative residual matrix
of matrix factorization [30], and the detection of “groups”of
anomalous nodes [16]. Recent work has also investigated the
impact of temporal aspects of the data on outlier detection
[7], [17], [25], [28]. However, none of these methods model
anomalous nodes in terms of their impact on network mining
algorithms because of the inconsistency in the link structures.
The impact of anomalous nodes on network mining techniques
has been observed in numerous recent works [2], [19]. These
methods show that the presence of such anomalies can have
a very detrimental impact on locality-centric network mining
algorithms. However, a principled approach to discovering
such nodes is not discussed by these methods.

Graph embedding. Traditional graph embedding is an ap-
proach to finding the desired low-dimensional representations
of a graph that best characterize the similarity relationships
between node pairs [32]. Many methods have been proposed
for graph embedding, including multidimensional scaling [8],
fastmap [14], isomap [29], locally linear embedding [26],
stochastic neighbor embedding [18] and spectral methods [31].
However, they are designed for compressing graph while

preserving certain properties. For instance, the methods in [8],
[14] preserve global Euclidean distances over the entire graph,
and the one in [29] preserves the shortest path distances over
a derived neighborhood graph. Both can not be directly used
for detecting structural inconsistencies. While the methods in
[18], [26], [31] do preserve local structure, they are, how-
ever, designed to preserve relationships between nodes and
their k-nearest neighbors [26], [31] or the probability that a
node chooses another as its neighbor [18], which are not for
detecting structural inconsistencies as well.

Graph embedding based anomaly detection. There already
have been works investigating graph embedding for anomaly
detection [4], [15], [27]. While [4] shows the possibility of
using embedding for outlier detection, an automatic detection
method remains missing. [27] uses the commute time dis-
tance for detecting anomalies in dynamic graphs, where the
eigenspace embedding only serves to approximately compute
the commute time distance, and [15] proposes to use the
spectral embedding to reveal anomalous community struc-
ture across multiple sources. Different from these works,
our approach adopts a new measure to evaluate the level of
anomalousness, incorporates the graph partitioning technique,
and proposes a novel dimension reduction technique to make
the approach more scalable and effective for large networks.

Other related concepts. Structural inconsistencies that we
consider bear similarities with betweenness centrality [9], [34],
i.e., the number of shortest paths among all node pairs that pass
through that node. However, structural inconsistencies focus on
node anomalies caused by edges across distinct communities,
while betweenness centrality does not distinguish edges inor
across communities. Further, structural hole spanners studied
in [22] are those nodes whose removal disconnects groups,
significantly different from structural inconsistencies.

III. N ODE ANOMALY DETECTION: BASIC MODEL

The major problem caused by the nodes of anomalous
structure is that they “bring together” diverse nodes, which
“ought not” be connected together by short paths. So the
question here is to decide how to identify such nodes which
bring together diverse portions of the network, i.e.,those nodes
that connect to a number of diverse influential communities.
One problem, which is unique to network data (with respect
to multidimensional data), is that the nodes are not associated
with any inherent positional information, as a result of which it
is much harder to assess the diversity or similarity of the under-
lying representation, and which portions of the network may
be structurally inconsistent with others. A natural approach
is to use embedding in order to associate each node with a
multidimensional position, and to determine the nodes which
cause high level of “anomalousness” with the embedding.

Graph embedding. While existing graph embedding ap-
proaches, such as multidimensional scaling, are commonly
used in the literature for low dimensional representations
of networks, the approach is not designed for identification
of anomalous nodes. This is because the approach works
with a (global) distance matrix, rather than thelocal linkage
structure and community structure, which are the key to the
identification of inconsistencies. Therefore, we will design a
novel embedding approach, which is specifically designed for
the problem of structural anomaly detection.
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Figure 2. A simple network containing three nodes

Before introducing the model in detail, we will introduce
some notations and definitions. We assume that we have an
undirected graphG = (V,E), with node setV , and edge set
E. The cardinality of the node setV is n, and the cardinality of
the edge setE is m. The nodes inV are consecutively labeled
integers in the range of{1 . . . n} for notational convenience.

Each nodei ∈ V is associated with ad-dimensional data
point Xi, which corresponds to its embedded representation.
The d dimensions of the embedding are denoted byXi =
(x1

i , . . . , x
d
i ), where xk

i represents the correlation between
nodei and communityk. In this model, communities are not
restricted to real-life ones. Hence, numberd is essentially not
required to be equal to the number of communities in networks
detected by some algorithms. The goal in this embedding is to
ensure that connected data points (nodes) have similar values
of Xi, and data points, which are not connected, have diverse
values ofXi. Thus, thegoalof the embedding would be to find
a multidimensional representationX1, . . . , Xn for the nodes in
V , so that the following holds true:

||Xi −Xj || =
{

0 (i, j) ∈ E

1 (i, j) 6∈ E
(1)

Note that here (a)||X|| is the (Euclidean) norm of vector
X; (b) The embedding ensures that the norm of any two
vectors’ difference is always equal to or less than1, by
imposing non-negative constraints onx1

i , . . . , x
d
i and an upper

bound of value
√
2/2 for ||Xi||; (c) The embedding aims

to directly preserve local linkage structure rather than the
pairwise distance of multidimensional scaling [8]; And (d)the
embedding initialization is based on graph partitions revealing
the community structures, to be seen in Section IV.

While it is the goal to obtain such an embedding, it would
almost always be infeasible, to derive such an embedding in
practice, even for very small networks. In order to illustrate
this point, consider the simple network illustrated in Fig.2
containing three nodes labeled 1, 2, and 3. Since the three
nodes are connected, they ought to have the same embedded
representation, in order to ensure thatX1 = X2 = X3.
However, since nodes 1 and 3 are not connected, which means
||X1 − X3|| = 1, there is no way to find an embedding
which will exactlysatisfy both constraints. However, a good
1-dimensionalreal embedding, whichapproximatelysatisfies
the goals of the ideal embedding isx1 = 0, x2 = 1/3, and
x3 = 2/3. ThestressS(Xi, Xj) along a node pair in such an
approximate embedding, is the amount by which the goals of
the ideal embedding are violated:

S(Xi,Xj) =

{

||Xi −Xj ||2 (i, j) ∈ E

(||Xi −Xj || − 1)2 (i, j) 6∈ E
(2)

The stress indicates how poorly the node pair fails to
achieve the goals of the embedding. Therefore, the problem
of determining the optimum embedding can be formulated as
a minimization problem over the objective functionO:

O =
∑

(i,j)∈E

S(Xi,Xj) + α ·
∑

(i,j) 6∈E

S(Xi,Xj) (3)

=
∑

(i,j)∈E

||Xi −Xj ||2 + α ·
∑

(i,j) 6∈E

(||Xi −Xj || − 1)2 (4)

Hereα is a balancing factor, which regulates the impor-
tance of the constraints associated with the edges and the non-
edges as well. Note that it is typically desirable to pick values
of α < 1, in order to ensure that the non-edge constraints
do not dominate the objective functionO. Typically, most
real networks are sparse, and the non-edges contribute to the
vast majority of the constraints. Therefore, this problem is
formulated as an optimization problem, which can be solved
in order to determine the optimal values of the embedding.

Anomaly detection with embedding. We now formally in-
troduce how to detect structural inconsistencies using the
embedding of a node and its neighbors. For each nodei in
graphG, let its neighbors beNB(i) = {j | (i, j) ∈ E}, and
its embedding beXi = (x1

i , . . . , x
d
i ).

Firstly, we define the embeddingNB(i) of NB(i) as the
weighted sum of the embedding of all neighbors of nodei:

NB(i) = (y1i , . . . , y
d
i ) =

∑

j∈NB(i)

(1− ||Xi −Xj ||) ·Xj (5)

Note that the neighbors closer to nodei in the embedding
space have a higher weight, and||Xi−Xj || is the square root
of stressS(Xi, Xj) that measures the distance between nodes
i andj. Intuitively, we useNB(i) to represent the correlation
of node i with the d communities (instead of usingXi for
nodei alone), and the higher the valueyki is, the more node
i tends to belong to communityk (k ∈ [1, d]). Hence,NB(i)
is able to be used to detect the node anomalies that connect
to a number of diverse influential communities.

Then, given the embeddingNB(i) = (y1i , . . . , y
d
i ) of node

i, we introduce a measure, referred to asAScore, to indicate
the (normalized) anomalousness level of nodei:

AScore(i) =
d

∑

k=1

yki
y∗i

, y∗i = max{y1i , . . . , ydi } (6)

We further refine the above equation to deal withnoises
and to distinguishinfluential communities. (a) Obviously nodes
connect to communities to which they belong with a certain
portion of edges. However, they often connect to communities
to which they do not belong with a small number of (noisy)
edges as well, and these communities arenon-influential. To
alleviate this noisy situation, for each neighborj ∈ NB(i), the
entries inXj whose values fall below the average one ofXj

are regarded as non-influential and are replaced with0. And
(b) to distinguish influential communities from non-influential
ones, we also replace those entriesyki in NB(i) (k ∈ [1, d])
with 0 if yki < θ · y∗i , whereθ is a parameter in[0, 1]. That
is, only those non-noisy communities that play a significant
impact onNB(i) are influential communitiesof nodei.

Finally, whenAScore(i) > thre, nodei is treated as an
anomaly, which indicates that nodei connects toa number
of diverse influential communities. Intuitively, thresholdthre
reflects the diversity of influential communities, and its choice
depends on the strength of community structures in networks,
i.e., the proportion of inner-community and inter-community
edges. Networks with strong community structures have a
smaller thre, since the maximum entryy∗i is very large
because of a large number of inner-community edges, while
the other entries are very small as a result of a small number
of inter-community edges. On the other hand, networks with
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Figure 3. Anomalous (red) nodes in embedding

weak community structures have a largerthre. Typically,
thresholdthre falls in [1.5, 10].

We illustrate our node anomaly detection model with an
example as follows.

Example 1: Consider the toy example in Fig. 3, a simplified
version of the earlier example in Fig. 1. This graph contains
four tightly knitting communities (almost cliques)A, B, C, D,
all of which are connected to the central inconsistent node in
red color. Also consider the case, where the dimensionality
of embedding is equal to four, which is also equal to the
number of real-life communities. In such a case, the ideal
embedding would require that all nodes in the same commu-
nitiesA,B,C,D have the same embedded value. At the same
time, different communities should be separated from each
other by exactly one unit. Consider the embedding in which all
nodes in communityA have the value(1/

√
2, 0, 0, 0), those

in B, C andD have the values(0, 1/
√
2, 0, 0), (0, 0, 1/

√
2, 0)

and(0, 0, 0, 1/
√
2), respectively. While the embedding for the

central red node should have equal values in all dimensions,
i.e., (x, x, x, x) wherex =

√
2/4.

It can be shown in this case, by optimizing the objective
function O, that (a) there will be small stresses within a
community because of missing edges, (b) no stresses across
communities, because the difference in embedded values is
exactly one unit, and (c) it is impossible to find an embedding
for the red node, without causing stresses, as it connects to
four nodes coming from distinct communities. Indeed, it is
this abnormal phenomenon in the embedding that helps us to
detect anomalous nodes, usingAScore.

We next explain how to detect the anomalous central red
node with the above derived embedding, in which theNB(i)
for a nodei within a community has a dominant dimension and
small values in other dimensions,e.g.,(2.93, 0.10, 0.10, 0.10)
for the node within communityA that connects to the central
red node, and, thus, itsAScore(i) is very close to1. However,
theNB(red) for the red node has almost equal values in the
four dimensions, thus theAScore(red) is close to4, and is
much larger than the rest of nodes, and, thus, the central red
node is detected as an anomaly. 2

In the above example, the numberd is equal to the number
of real-life communities, which is hard to obtain in practice.
However, we argue that a reasonable choice ofd suffices to
detect anomalies for our embedding approach, as will be shown
in the experimental study (Section VI).
Discussions. The objective functionO is expressed as a
summation of all theO(n2) possibilities for different node

pairs. This can be very expensive for large networks. Further,
the optimization ofO typically requires a gradient descent
method, which can be very expensive in practice, when the
number of variables to be optimized is large. Another problem
is the choice of the balancing factorα. As it turns out,
these two aspects are related, since the size of the problem
can be reduced, depending upon the choice of the parameter
α. Finally, it is important to develop a fast solution of the
optimization problem, in order to ensure an efficient solution.
These issues will be addressed in the next two sections.

IV. D ETERMINING OPTIMAL EMBEDDING EFFICIENTLY

The major step in the modeling process discussed in the
previous section lies in finding the optimal embedding value.
In order to determine the optimal embedding, the objective
functionO discussed in the last section needs to be optimized.

The objective functionO includes the use of a balancing
parameterα. How should this parameterα be decided in
practice? An immediate observation is that most real graphs
are sparse, and therefore, if the balancing parameterα were
not used, the objective functionO would be dominated by
the stresses on the non-edges. As a result, the impact of the
edges themselves would be very limited. Therefore, the value
of α should be picked less than 1. Furthermore, since it is
desirable to provide equal weights to the edges and non-edges,
the balancing parameter should be picked, so that these two
components have approximately equal weights.

The number of edges in the network ism <<
(

n
2

)

for
sparse networks, and the number of non-edge node pairs is
(

n
2

)

− m. These represent the numbers of each type of the
components in the objective functionO. Hence, to provide
each component with approximately similar weights, the value
of α should be picked as follows:

α = m/(
(n

2

)

−m) (7)

This choice ensures that the contributions of both compo-
nents are approximately similar. Note that the value ofα will
vary with the level of sparsity of the underlying graph.

While this choice ofα ensures that the two components
are equally weighted, it does not solve the problem that the
objective functionO hasO(n2) terms in total. This can be
extremely inefficient whenm << n2. It turns out that it is
possible to approximately representO using sampling.

Let U be the set of universal
(

n
2

)

node pairs, which can be
constructed by choosing any two distinct nodes inV . Then,
for any graphG = (V,E), the set of non-edgesEn can be
represented by the following set:

En = U − E (8)

An equivalent way to use a weight ofα for each non-edge
would be to sample a setEs ⊆ En of sizeα · |En|, and rewrite
the sampledobjective functionO approximatelyas follows:

O ≈
∑

(i,j)∈E

S(Xi,Xj) +
∑

(i,j)∈Es

S(Xi, Xj) (9)

=
∑

(i,j)∈E

||Xi −Xj ||2 +
∑

(i,j)∈Es

(||Xi −Xj || − 1)2 (10)

Note that the parameterα is missing in the above representa-
tion of the objective functionO, since the set of non-edges has



already been down-sampled in order to re-weight the objective
functionO appropriately.

The best way of optimizingO in terms of then · d em-
bedding variables is by treating it as a nonlinear programming
optimization problem. Such a problem can be optimized with
the use of the gradient descent method for non-linear functions.
However, for exact objective functions, it has been shown
that the gradient descent method is typically not scalable for
large networks. Hence we adopt the approximate approach,i.e.,
using the mini-batch gradient descent method [12] as indicated
by the approximate objective function in Equation (9). As will
be shown in the experimental study (Section VI), the mini-
batch gradient descent method reaches a good tradeoff between
the efficiency and accuracy.

Gradient descent optimization requires the determination
of the gradient vectorfor O with respect to the underlying
problem variables. The gradient ofO is a vector, each compo-
nent of which is a partial derivative ofO with respect to each
of the variables (then · d coordinates in the embedding) inO.
Thus, the gradient will be a vector of lengthn · d:

∇O =
∑

(i,j)∈E

∇S(Xi, Xj) +
∑

(i,j)∈Es

∇S(Xi,Xj) (11)

Each individual term in the gradient above can be sim-
plified. The simplification of the term is slightly different,
depending on whether it corresponds to an edge or a non-edge
node pair.

∇S(Xi,Xj) =

{

2||Xi −Xj || · ∇||Xi −Xj || for(i, j) ∈ E

2(||Xi −Xj || − 1) · ∇||Xi −Xj || else
(12)

Therefore, the overall gradient for the objective functionO
can be expressed as follows:

∇O =
∑

(i,j)∈E

2||Xi −Xj || · ∇||Xi −Xj ||+ (13)

+
∑

(i,j)∈Es

2(||Xi −Xj || − 1) · ∇||Xi −Xj ||

The value of∇||Xi − Xj || can be evaluated to a gradient
vector, by using the partial derivative with respect to eachof
the n · d embedding variablesxk

i (wherei ∈ {1, . . . , n}, k ∈
{1, . . . , d}) of the expression:

||Xi −Xj || =

√

√

√

√

d
∑

k=1

(xk
i − xk

j )
2 (14)

The overall approach for gradient descent starts off with an
initial embedding(X0

1 , . . . , X
0
n) and iteratively updates(Xt

1,
. . . , Xt

n) to (Xt+1
1 , . . . , Xt+1

n ) using the following formula:

(Xt+1
1 , . . . , Xt+1

n )← (Xt
1, . . . ,X

t
n) − γt · ∇O (15)

Note that here each iteration uses a new sampling set
in order to decrease the loss of the approximate rewrite in
Equation (9), andγt is the step-size in thetth iteration.
A variety of off-the-shelf methods such as the line-search
method, or the Newton’s method can be used in order to
determine the step sizes for the iterations.

Incorporating graph partitions into embedding . The de-
tection of network anomalies using the gradient method is
critically dependent on determining a good initializationfor
the method. According to the embedding model and Fig. 3,
a natural solution is to use an ensemble of graph-partitioning
algorithms in order to initialize the embedding. Intuitively, the

embedding of a network ofd communities is constructed in
such a way, that each of thed dimensions of the embedding
represents a closely clustered set of nodes. Specifically, a
similar value on theith component of the embedding for
a set of nodes, reflects the propensity of that set of nodes
to belong to theith community. This is illustrated from
the example of Fig. 3. Therefore, a natural solution is to
use an ensemble of graph-partitioning algorithms in order to
initialize the embedding. Of course, graph-partitioning is itself
an NP-hard problem, and the use of such a slow method for
the initialization defeats the purpose of a more sophisticated
approach in the first place. A key observation here is that
it is not necessary for each of these algorithms to return a
precisely optimized partitioning (NP-hard). Rather, a modestly
good partitioning, which can be determined quickly, is enough
to be used for initialization.
Initializing embedding with partitions. Consider a partitioning
with d clusters produced by a graph partitioning approach. For
the embeddingXi = (x1

i , . . . , x
d
i ) of each nodei ∈ V , thejth

componentxj
i may be defined as follows:

xj
i =

{

1/
√
2 if node i belongs to clusterj

0 otherwise
(16)

Different from traditional graph embeddings, such as multi-
dimensional scaling, this initial embedding provides a natural
understanding of the underlying community structure and a
high quality initialization for the gradient descent method.

METIS. The algorithms implemented in METIS are based on
the multilevel graph partitioning paradigm [20], and have been
shown to quickly produce high-quality partitionings. METIS
can partition large irregular graphs into a user-specified number
d of groups, and it has been developed at the University of
Minnesota, and is freely distributed. Hence, we adopt METIS
to produce a modestly good partitioning.

Remarks. It should be pointed out that our embedding tends
to preserve the local linkage structure of a graph, and can
therefore be used as a multidimensional representation of the
graph in conjunction with any application, which is dependent
on the concept of homophily, as discussed in Section I.

V. REDUCING DIMENSIONS FORBETTER

As analyzed in Sections III and IV, our algorithm, referred
to as Embed, essentially computes an optimal embedding,
using the gradient descent method in Section IV, to detect
anomalous nodes in a graph. To do this, each nodei (i ∈ [1, n])
is associated with threed-dimensional vectors:Currenti,
Nexti and Directioni, which represent the current embed-
ding (x1

i , . . . , x
d
i ), the next embedding(y1i , . . . , y

d
i ) and the

partial derivative(p1i , . . ., p
d
i ) of the objective functionO with

respect to pointCurrenti, respectively. Note that here ad-
dimensional vector is essentially a point in thed-dimensional
embedding space.

We first explain the detailed process in a single iteration
of algorithmEmbed. For each nodei (i ∈ [1, n]), its Nexti
is computed as follows:

Nexti = Currenti − γ ·Directioni (17)

whereγ is the step size. To satisfy the embedding constraint
of Equation (1), vectorNexti = (y1i , . . . , y

d
i ) is further nor-

malized such that: (a) for eachj ∈ [1, d], yji is set to0 if



yji < 0, and (b)Nexti is scaled properly to be of length
1/

√
2 if ||Nexti|| > 1/

√
2. It’s possible to quickly derive that

the norm of the difference of any two embedding vectors is
equal to or less than1.

In each iteration, the step sizeγ is determined by using
backtracking (inexact) line search[23] with the Armijo rule
constraint [6] such that

O(Next) ≤ O(Current)− c · γ · ||Direction||2, (18)

whereO is the objective function,c is a constant parameter,
andNext, Current, andDirection are threen·d-dimensional
vectors defined as follows:

Next = (Next1, . . . , Nextn) (19)

Current = (Current1, . . . , Currentn) (20)

Direction = (Direction1, . . . , Directionn) (21)

The above process repeats until the change of the objective
functionO is equal to or less than a pre-defined thresholdδ,
or the iteration number exceeds a pre-defined thresholdt.

Main challenges. It is easy to see that algorithmEmbed takes
O(3n · d) space for a graph withn nodes andd communities,
and the objective functionO involves with n · d variables.
Indeedd can be large in practice,e.g.,8,385 for YouTube and
6,288,363 for Orkut [33]. Hence, it could be computationally
expensive forEmbed on large graphs.

k + β reduction. Observe that anomalous nodes typically
connect to a limited number of communities, but not all thed
communities. Furthermore, our goal is to identify anomalous
nodes, and, it often suffices to ascertain anomalous nodes when
they are found connected to a certain number of influential
communities. In other words, there is no need to use the
completed-dimensions.

This motivates us to propose the usage of (k + β)-
dimensions, instead ofd-dimensions, for vectorsCurrenti,
Nexti and Directioni (i ∈ [1, n]). Intuitively, parameterk
represents the maximum number of communities to which
anomalous nodes connect, andβ is a tolerance parameter. In
practice,k andβ are typically small,e.g.,10 and 2 for a social
network with more than 1 million nodes.

The k+ β reduction obviously reduces the space cost and
improves the efficiency in the same time. Moreover, it further
improves the effectiveness of anomaly detection, due to the
removal of non-influential communities,i.e.,noises. Below we
give an informal analysis.

As we analyzed in Section III, only influential communities
play a role in the detection of anomalous nodes in networks.
By the definition ofNB(i), every nodej within NB(i) has a
contribution toNB(i), no matter whether nodej belongs to
influential communities or non-influential ones. Thus, the joint
embedding of non-influential communities may accumulate
and finally make theAScore(i) of node i large enough so
that nodei is mistakenly marked as an anomaly. By using the
k + β reduction, only the top-(k + β) entries are kept in an
embedding, and, hence, the above situation is alleviated toa
large extent. As a result, thek+ β reduction further improves
the effectiveness of anomaly detection, as will be shown in the
experimental study.

Details. We next present the detailed process of the (k + β)
reduction optimization technique.

(1) For all the vectorsCurrenti = (x1
i , . . . , x

d
i ) and Nexti

= (y1i , . . ., y
d
i ) (i ∈ [1, n]), we only maintain the topk + β

largest values, instead of alld values, forxj
i andyji (j ∈ [1, d]).

For all the vectorsDirectioni = (p1i , . . . , p
d
i ) (i ∈ [1, n]), we

maintain the values of thek+β dimensions ofCurrenti, and
the topk + β smallest values in the remainingd − (k + β)
values ofpji . Here we keep the small values ofDirectioni to
derive large values ofNexti, as shown by Equation (17).

(2) When computing the partial derivativesDirectioni (i ∈
[1, n]), we only use the topk largest values inCurrenti and in
all the involved vectorsCurrentj such thatS(Xi, Xj) appears
in the objective functionO in Equation (9). We then keep
2 · (k + β) values forDirectioni: the first k + β values are
from the same dimensions asCurrenti, and the rest are the
top k + β smallest values from the remaining dimensions.

(3) When computing the vectorsNexti (i ∈ [1, n]) using
Equation (17), we first extendNexti and Currenti with
anotherk + β dimensions with valueszero sinceDirectioni

has2 · (k+ β) dimensions. We finally reduceNexti to k+ β
dimensions, by keeping its topk + β largest values.

(4) When determining the step sizeγ using Equation (18), we
use the topk largest values ofCurrenti andNexti, and all
the 2 · (k + β) values ofDirectioni (i ∈ [1, n]), respectively.

With the k + β reduction, the space cost and the number
of variables in the objective function ofEmbed are reduced
to O(4 · n · (k + β)) andn · k, respectively. We also denote
the algorithmEmbed without and withk + β reduction as
Embed(d) and Embed(k + β), respectively. Here (a) the
parameterβ provides the opportunity to tolerate mistakes for
determining thek communities to which a node belongs. (b)
As analyzed above,k + β reduction reduces the space and
time costs in the same time. (c) We will also experimentally
verify these, and, better still, show that this technique further
improves the effectiveness of anomaly detection due to the
removal of noises in the experimental study (Section VI).

Remarks. By now we have introduced the entire framework
of our embedding approach to network anomaly detection. We
conclude the framework from the following aspects.

(1) We give an analysis on the structurally inconsistent anoma-
lies in networks, both from the perspective of application-
specific significance and the performance of network analyses.

(2) We propose a new embedding technique that aims to pre-
serve local linkage structure and community structure of net-
works, and cast such a problem into an optimization problem.
In the embedding model, each dimension represents a clustered
region of networks, and graph partitions are incorporated to
obtain a high quality initial embedding.

(3) TheAScore metric is well established, which seamlessly
associates structural inconsistencies with the embedding, and
makes use of a single parameterthre to distinguish the
anomalies from normal nodes.

(4) We present two algorithms,i.e.,Embed(d) andEmbed(k+
β), under the framework. The space and time complexities
are O(3n · d) and O(t · m · d), respectively, forEmbed(d),
while reducing toO(4n · (k + β)) andO(t ·m · (k + β))) for
Embed(k+β). By thek+β reduction, our algorithm can scale



up to large networks, and, better still, it further improvesthe
effectiveness because of the explicit removal of noises.

VI. EXPERIMENTAL STUDY

In this section, we present an extensive experimental study
of our embedding approach to detecting network anomalies.
Using both real-life and synthetic data, we conducted four
sets of experiments to evaluate: (1) the application of anoma-
lies found by our embedding approach with a case study,
(2) the improvement of community detection by evaluating
modularity after removing anomalies found by our algorithms
Embed(d) andEmbed(k+β), (3) the quality of anomalies by
evaluating theF1 measure of anomalies found byEmbed(d)
andEmbed(k + β), and (4) the efficiency of our algorithms
Embed(d) andEmbed(k + β) for detecting anomalies.

A. Experimental Settings

We first introduce the settings of our experimental study.

Datasets. We chose three datasets to test our approach.

(1) AMAZON records a product co-purchasing network with
334,863 product nodes and 925,872 product-product edges1. It
is based on theCustomers Who Bought This Item Also Bought
feature. That is, an edge from productx to y indicates that
if people buyx, then they will also buyy with a very high
probability. The graph has a single connected component.

(2) DBLP contains scientific publication information in the
computer science domain from years 1936 to 20142. We further
processed the dataset to compose a co-author graph from it, in
which each node is an author, and an edge between two nodes
i and j indicates that authorsi and j are co-authors in at
least one publication. The generated complete co-author graph
consists of 115,305 connected components. The largest one
has 1,150,852 nodes while the second largest one has only 32
nodes. Hence we choose the largest connected component with
1,150,852 nodes and 5,098,175 edges as the DBLP dataset.

(3) SYNTHETIC graphs with community structures vary from
105 to 4 × 106 nodes, and are produced according to the
LFR-benchmark graph [21], which includes heterogeneous
distributions of node degree and community size, and provides
a more severe test of community detection methods.

The implementation3 is controlled by five key parameters:
(a) the numbern of nodes; (b) the average degreeavgD
of nodes to generatenλ edges; (c) the mixing parameterµ
such that each node shares1 − µ of its links with the other
nodes in its community; (d) the exponentst1 and t2 that
correspond to the power laws of the degree and community size
distributions, respectively; (e) the maximum degreemaxD,
given byn1/(t1−1). To produce a network of sizen · (1 + p),
wherep · n nodes are anomalies, we first produced a network
with n+ r nodes, in whichr nodes were further processed to
generate(n ·p)/2 anomalies using an agglomerative operation
as follows: A group ofq nodes was replaced by a single new
node such that all edges connecting to theseq nodes in the
network were re-connected to the new node. The degrees of

1http://snap.stanford.edu/data/index.html
2http://www.informatik.uni-trier.de/l̃ey/db/
3http://homes.soic.indiana.edu/filiradi/Resources.html/

Table I. SUMMARY OF MAIN PARAMETER SETTINGS

Parameter Description Default

d number of communities or clusters n/500
k community number in thek + β reduction avgD
β tolerance parameter in thek + β reduction ⌊k/4⌋
θ threshold for influential communities 0.1

thre threshold of detecting anomalies −−
c parameter in Equation (18) 0.04
δ change threshold in gradient descent 0.001
t iteration threshold in gradient descent 50
p proportion of anomalies in SYNTHETIC 1.0%
λ degree parameter in SYNTHETIC 1.15
µ mixing parameter in SYNTHETIC 0.4
t1 negative exponent of power law in SYNTHETIC 3
t2 negative exponent of power law in SYNTHETIC 2
q number of nodes to be merged in SYNTHETIC [2, 21]
r number of nodes to generate anomalies in SYNTHETIC −−

q nodes are less than or equal to2 · avgD, such that these
new nodes are tending to be anomalies as they connect to
diverse influential communities. Here the parameterq varies
from 2 to 21 with an increment of1, thus the parameterr is
(23·n·p)/4. Besides these agglomerated anomalies, we further
injected another(n · p)/2 nodes, each of which connects to
nodes of original network randomly, and their degrees fall in
[avgD,maxD] and satisfy the power law of exponentt1.

Algorithms and implementation. We compared our embed-
ding approach withBET [9], MDS(d) [8] andOddBall [5].

(1) AlgorithmBET is the approximate solution in [34] to detect
the nodes with the highest betweenness centrality as anomalies,
whose number of hyperedges was fixed to16, 000.

(2) Algorithm MDS(d) is similar to ourEmbed(d) except
using multi-dimensional scaling[8] for obtaining the em-
bedding, which aims to preserve global pairwise similarities
of graphs. We exploited Landmark MDS [13] to efficiently
compute embedding for large graphs. For a target space of
dimensionalityd, we randomly selected2 · d landmark points.
The computation of embeddingNB(i) in Equation (5) is
modified as follows:

NB(i) = (y1i , . . . , y
d
i ) =

∑

j∈NB(i)

exp{1− ||Xi −Xj ||} ·Xj (22)

Equation (22) remains the intuition that neighbors closer to
nodei have a higher weight when||Xi−Xj|| is not guaranteed
to be equal to or less than1 anymore.

(3) Algorithm OddBall discovers several power law patterns
governing the ego-nets of all nodes,i.e., subgraphs of nodes
and their neighbors, and uses them for anomaly detection [5].
More specifically,OddBall first computes a Least Squares
fitting line for a power law, and measures the anomalousness
of each node according to its distance to the fitting line. We
adopted theEgonet Density Power Law, which defines the
relation between the number of nodes|Ni| and the number
of edges|Ei| of the ego-netGi:

|Ei| ∝ |Ni|
φ
, 1 ≤ φ ≤ 2 (23)

And the fitting line is in the form of|Ei| = C · |Ni|φ,
where values of|Ei| of structural inconsistencies are typically
less than the expected values ofC · |Ni|φ as the neighbors
of structural inconsistencies are from a number of diverse
communities. As social networks are sparse, we also extended
|Ei| to the number of edges in 2 hops, and the intermediate
nodes of 2-hop paths were not limited in the node set ofGi.

(4) All algorithms were implemented with Microsoft Visual
C++. We adopted theNewman algorithm in the igraph li-
brary (http://igraph.sourceforge.net/) for computing communities
and modularity [11]. We also implemented an algorithm for



Table II. Embed(d) VS. MDS(d) USING MODULARITY AND F1 MEASURE

Modularity F1 measure
Dataset AMAZON (87.6%) DBLP (56.8%) SYNTHETIC (47.1%) SYNTHETIC

Algorithm MDS(d) Embed(d) MDS(d) Embed(d) MDS(d) Embed(d) MDS(d) Embed(d)

d = 200 94.6% 95.1% 62.4% 62.6% 47.9% 53.4% 11.3% 89.4%
d = 400 94.9% 95.6% 61.5% 61.0% 47.5% 53.8% 13.6% 90.6%
d = 600 94.9% 95.8% 62.4% 62.5% 47.6% 54.3% 12.7% 89.8%
d = 800 94.9% 96.0% 60.9% 61.8% 47.4% 53.9% 11.2% 88.9%
d = 1000 95.2% 96.2% 59.6% 62.1% 47.3% 54.0% 7.9% 85.5%
Avgerage 94.9% 95.7% 61.4% 62.0% 47.5% 53.9% 11.3% 88.8%

generating subgraphs of AMAZON, DBLP and SYNTHETIC:
we started with a node with high degree, and then produced a
graph withn nodes using the breadth-first search strategy.

All experiments were run on a PC with an Intel Core i5-
2400 CPU @3.10GHz and 16GB of memory. The usage of
virtual memory was forbidden in all our tests. In cases when
quantitative measurements are reported, the test was repeated
over 3 times and the average is reported here.

B. Experimental Results

We tested the effectiveness and efficiency of our embedding
approach using AMAZON, DBLP and SYNTHETIC datasets.
Since the numberd of communities typically increases along
with the increase of graph sizes, we simply fixd to n/500 by
default in our tests, where500 is the average community size
in our tested networks. As for the numberk in k+β reduction,
we find that a good selection fork is to use the average
node degree of networks, a bound of the average number of
communities to which a node connects. All parameters and
their default settings are summarized in Table I.

We next present our findings.

(I) Case Study. In the first set of experiments,as an application
of node anomaly detectionwe show three interesting examples
found in DBLP since it is the only available one with such
details in our tested datasets.

Exp-1.1. Different people with the same name. For instance,
Wei Wangand Wei Li were detected anomalies. There are
51 people with name “Wei Wang” and 43 people with name
“Wei Li” in D BLP, which are unanimously treated as individual
persons, and are connected to many communities of DBLP.

Exp-1.2. People with many collaborators in diverse institutes.
For instance,Ajith Abrahamand Vincent Poorwere detected
as anomalies. These people only belong to a very small
number of community groups, due to the simple strategy used
to identify communities by DBLP. (a) Dr. Ajith Abraham is
the current director of machine intelligence research labs,
which has members from more than 100 countries. He
works in a multi-disciplinary environment involving machine
(network) intelligence, cyber security, sensor networks,data
mining and applied to various real world problems, and he
has been associated with the teaching and research with 23
universities all around the world. He has 502 co-authors
in DBLP. (b) Dr. H. Vincent Poor is the George Van Ness
Lothrop Professor at Princeton University, and he is widely
recognized as one of the world’s leading educators and
researchers in wireless communications, signal processing
and related fields. He has 548 co-authors in DBLP.

These two researchers have a lot of collaborators who
work in different institutes and form many different community
groups, and hence they were detected as anomalies.

Exp-1.3. Undetected different people with the same name.
For instance,Jian Li was detected as an anomaly. We did
a careful check and found that there were quite a few
people with name “Jian Li”, while DBLP mistakenly treats
them as the same person. For instance, there are distinct
people from IBM Austin Research Laboratory, University
of Florida, Tsinghua University, Dalian University of
Technology, Chinese Academy of Sciences, Hubei University
of Education, Southwest Petroleum University, Concordia
University, Beihang University, Harbin Institute of Technology
etc.. As shown in DBLP, these people are treated as the same
person, and belong to 24 different community groups.

(II) Effectiveness Study. For the effectiveness study, we (1)
compared our embedding approach with betweenness central-
ity, (2) used the modularity to evaluate the improvement of the
effectiveness of community detection, and (3) adopted theF1

measure to evaluate the quality of anomalous nodes found.

(1) Modularity. It is the fraction of the edges that fall within the
given groups minus the expected such fraction if edges were
distributed at random. It is designed to measure the strength
of division of a network into communities, and is often used
in community detection optimizations. The rational behindis
the removal of anomalies results in better communities.

(2) F1 measure. It is a measure of a test’s accuracy, and we
used it to further measure the quality of anomalous nodes
found. As this needs the ground truth of anomalies, which
is hard to obtain in real life networks, we used the anomaly
injection technique on the SYNTHETIC dataset [28], [30].

Here we chose small datasets to test modularity andF1, as
Embed(d) did not scale to large datasets, and parameterthre
for AMAZON, DBLP and SYNTHETIC was empirically fixed
to 2.0, 3.0 and3.3, respectively, by default.

Exp-2: Structural inconsistency vs. betweenness central-
ity . To clarify these two different notions, we first detected
structural inconsistencies usingEmbed(d), and then computed
the same number of nodes with the highest betweenness
centrality usingBET on AMAZON, DBLP and SYNTHETIC.
The total number of nodes was fixed to400K for DBLP and
SYNTHETIC, and the entire AMAZON, respectively.

The fraction of common nodes that were both detected
by Embed(d) andBET was 18.2% on AMAZON, 16.4% on
DBLP, and37.1% on SYNTHETIC, respectively. Moreover, the
average degrees of nodes detected by (Embed(d), BET) were
(5.3, 13.6) on AMAZON, (22.3, 62.6) on DBLP, and (94.7,
176.1) on SYNTHETIC, respectively. Finally, theF1 scores of
nodes found by (Embed(d), BET) were (88.9%, 39.8%) on
SYNTHETIC. These together show that structural inconsistency
is significantly different from betweenness centrality.

Exp-3: Embed(d) vs. MDS(d). Our embedding method is
specifically designed to ferret out the anomalous nodes in large
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Figure 4. Impacts on the effectiveness of community detection (modularity):k + β reduction
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(c) SYNTHETIC dataset

Figure 5. Impacts on the effectiveness of community detection (modularity): the numberd of dimensions
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Figure 6. Impacts on the quality (F1 measure): SYNTHETIC dataset

networks. To show this, we comparedEmbed(d) with MDS(d)
using both modularity andF1 measure.

Exp-3.1. We first tested the modularity of the community
structure using algorithmNewman directly, and then tested the
modularity after removing node anomalies found byEmbed(d)
andMDS(d), respectively. For the sake of fairness, we simply
fixed the number of anomalies removed byMDS(d) the same
asEmbed(d), and variedd from 200 to 1000, while fixed the
number of graph nodes,i.e., graph size, to400K for DBLP
and SYNTHETIC, and the largest size334.8K for AMAZON.

The results are reported in Table II. In all cases, our embed-
ding methodEmbed(d) andMDS(d) consistently improve the
modularity, compared with usingNewman directly (results are
in the second row of Table II). The improvements ofEmbed(d)
with respect tod are also better thanMDS(d) for almost all
cases. In deed, the modularity was increased about (7.3%,
8.1%) for AMAZON, (4.6%, 5.2%) for DBLP and (0.4%, 6.8%)
for SYNTHETIC on average, after the anomalies were removed
by MDS(d) andEmbed(d), respectively, in our tests.

Exp-3.2. We then tested theF1 score of node anomalies
detected byEmbed(d) andMDS(d), respectively. Similar to
using modularity, we variedd from 200 to 1000 while fixed
graph size and number of anomalies.

The results are reported in Table II. In all cases, the
F1 scores ofEmbed(d) with respect tod were better than
MDS(d). In deed, theF1 scores ofMDS(d) and Embed(d)
were (11.3%, 88.8%) on average, respectively, in our tests.

These experimental results show that the direct use of
MDS for the detection of structural inconsistencies is not

appropriate, and our embedding approachEmbed(d) clearly
outperformsMDS(d), especially for theF1 scores. Thus, we
did not report the rest effectiveness comparisons withMDS(d).

Exp-4: Modularity evaluation . In the fourth set of experi-
ments, we usedmodularityto evaluate the improvement of the
effectiveness of community detection.

Exp-4.1. To evaluate the impacts of thek + β reduction
technique, we first tested the modularity of the community
structure using algorithmNewman directly, and then tested
the modularity after removing node anomalies detected by
OddBall, Embed(d) and Embed(k + β), respectively. Since
Embed(d) andEmbed(k+β) find different numbers of anoma-
lies, for the sake of fairness, we fixed the number of anomalies
to be the small one. We varied the graph sizes, from100K to
400K or the largest size334.8K for AMAZON, while fixedd
= n/500. The results are reported in Fig. 4.

When varying the graph sizes, the modularity using
Embed(k + β) was consistently close to the one using
Embed(d) for AMAZON, DBLP and SYNTHETIC data. Their
modularity differences were only 0.34% for AMAZON, 1.5%
for DBLP and 0.61% for SYNTHETIC, respectively, in our tests.
In most cases, the modularity usingEmbed(k + β) was even
better than the one usingEmbed(d), which may be caused
by the removal of noises of embedding. In all cases, both
our embedding methodsEmbed(d) andEmbed(k+β) consis-
tently improve the modularity, compared with usingNewman

directly. The improvements ofEmbed(d) andEmbed(k + β)
were also better thanOddBall in most cases. In deed, the mod-
ularity was increased about (2.1%, 2.8%, 3.0%) for AMAZON,
(4.2%, 4.1%, 5.6%) for DBLP, and (4.2%, 6.1%, 6.5%) for



SYNTHETIC on average, after the anomalies were removed by
OddBall, Embed(d) andEmbed(k + β), respectively.

Exp-4.2. To evaluate the impacts of the dimension numbers,
we first tested the modularity of the community structure using
algorithmNewman directly, and then tested the modularity
after removing node anomalies found byOddBall, Embed(k+
β) with d = n/500, 200, 600 and 1000, respectively. When
varying d, Embed(k + β) would also detect different counts
of anomalies, although embedding approach andthre were
fixed the same. Similar to the setting ofExp-4.1, we varied the
graph sizes, while fixedEmbed(k+β) and used the minimum
number of anomalies with differentd.

The results are reported in Fig. 5. When varying the graph
sizes, the modularities usingEmbed(k + β) with different
numbersd of dimensions were consistently close to each other
for AMAZON, DBLP and SYNTHETIC data. Their modularity
differences were only 0.76% for AMAZON, 1.6% for DBLP
and 0.85% for SYNTHETIC on average, respectively, in our
tests. In all cases, our embedding methodEmbed(k + β)
consistently improves the modularity, compared with using
Newman directly. The improvements ofEmbed(k + β) with
differentd are also better thanOddBall in most cases. In deed,
the modularity was increased about (1.9%, 2.6%, 2.6%, 2.6%,
2.5%) for AMAZON, (4.5%, 4.9%, 5.4%, 4.7%, 5.3%) for
DBLP and (4.3%, 6.5%, 6.6%, 6.4%, 6.1%) for SYNTHETIC
on average, after the anomalies were removed byOddBall and
Embed(k + β) with d = n/500, 200, 600, 1000, respectively.

Exp-5: F1 measure evaluation. In the fifth set of experiments,
we used theF1 measure to further measure the quality of
anomalous nodes found. We compared theF1 measure of our
embedding approach withOddBall [5].

We chose small datasets to test theF1 measure again, as
Embed(d) did not scale to large ones. We further tested the
mixing parameterµ and the proportion of anomaliesp, in
addition to the two algorithm factors ofExp-4.

Exp-5.1. To evaluate the impacts of thek + β reduction
technique, we varied the graph sizes from100K to 400K,
while fixed d = n/500, µ = 0.4, p = 1.0% and the number
of anomalies removed as the smaller quantity of anomalies
detected byEmbed(d) andEmbed(k + β).

The results are reported in Fig. 6(a). TheF1 scores of
OddBall, Embed(d) andEmbed(k+β) were (70%, 88%, 89%)
on average for SYNTHETIC, respectively. When varying the
graph sizes, theF1 score usingEmbed(k + β) is consistently
close to the one usingEmbed(d). Their F1 score difference
was only 1.6% on average in our tests. In all cases, the
F1 scores for both our embedding methodsEmbed(d) and
Embed(k+β) were better thanOddBall. In deed, theF1 scores
of Embed(d) andEmbed(k+β) were (18%, 19%) larger than
theF1 score ofOddBall on average, respectively.

Exp-5.2. To evaluate the impacts of the dimension numbers, we
variedd with n/500, 200, 600 and1000, respectively. Similar
to the setting ofExp-5.1, we varied the graph sizes, while
fixed Embed(k + β), µ = 0.4, p = 1.0% and the number
of anomalies removed as the minimum quantity of anomalies
detected byEmbed(k+ β) with different dimension numbers.
The results are reported in Fig. 6(b).

The F1 scores ofOddBall and Embed(k + β) with d =

n/500, 200, 600 and1000 were (70%, 89%, 91%, 88%, 86%)
on average for SYNTHETIC, respectively. When varying the
graph sizes, theF1 scores usingEmbed(k+ β) with different
numbersd of dimensions were consistently close to each
other. TheirF1 score difference was only4.5% on average
in our tests. In almost all cases, our methodEmbed(k + β)
is consistently better thanOddBall. Indeed, theF1 scores of
Embed(k+β) with d = n/500, 200, 600 and1000 were (19%,
21%, 18%, 16%) larger thanOddBall on average, respectively.

Exp-5.3. To evaluate the impacts of the mixing parameter, we
variedµ from 0.1 to 0.6, while fixed the graph size to400K,
d = n/500, p = 1.0% and the number of anomalies removed
as the smaller one detected byEmbed(d) andEmbed(k+ β).
Sincethre is affected byµ, we fixedthre to 1.8, 2.5, 2.5, 3.3,
4.5, 6.1 when varyingµ from 0.1 to 0.6, respectively. Note
that whenµ is closer to1, the generated graphs are closer to
random graphs, andµ = 0.6 is a higher value for real-life
networks. The results are reported in Fig. 6(c).

TheF1 scores ofOddBall, Embed(d) andEmbed(k + β)
were (68%, 86%, 88%) on average for SYNTHETIC, re-
spectively. When varying the mix parameter, theF1 score
usingEmbed(k + β) was consistently close to the one using
Embed(d) for SYNTHETIC. TheirF1 score difference was only
2.2% on average in our tests. In almost all cases, theF1 scores
for both our embedding methodsEmbed(d) andEmbed(k+β)
were better thanOddBall. In deed, theF1 scores ofEmbed(d)
andEmbed(k + β) were (18%, 20%) larger thanOddBall on
average, respectively.

Exp-5.4. To evaluate the impacts of the proportion of anoma-
lies, we varied the proportion from0.1% to 2.0%, while fixed
graph size to400K, d = n/500, µ = 0.4 and the number
of anomalies removed as the smaller quantity of anomalies
detected byEmbed(d) andEmbed(k + β).

The results are reported in Fig. 6(d). TheF1 scores of
OddBall, Embed(d) andEmbed(k+β) were (63%, 89%, 91%)
on average for SYNTHETIC, respectively. When varying the
proportion, theF1 score usingEmbed(k+β) was consistently
close to the one usingEmbed(d) for SYNTHETIC. Their F1

score difference was only2.7% on average in our tests. In
all cases, theF1 scores for both our embedding methods
Embed(d) and Embed(k + β) were better thanOddBall. In
deed, theF1 scores ofEmbed(d) and Embed(k + β) were
(26%, 28%) larger thanOddBall on average, respectively.

(III) Efficiency Study. In the last set of tests, we evaluated the
efficiency of our algorithms. Here we chose larger datasets to
test the efficiency, and evaluated the impacts of three factors
that affect the efficiency of our embedding approach: thek+β
reduction, number of dimensions and numberk in k + β
reduction. We produced another SYNTHETIC dataset with size
4, 000K, by setting the other parameters with default values,
and generated subgraphs of different sizes with the same
algorithm as the one on AMAZON and DBLP. Here we plotted
with (red) markers× in the figures when algorithmsEmbed(d)
andMDS(d) threw out a memory allocation exception.

Exp-6.1. To evaluate the impacts of thek + β reduction
technique, we tested the efficiency ofMDS(d), Embed(d) and
Embed(k + β), respectively. We varied the number of graph
nodes,i.e., graph sizes, from400K to 1, 000K for DBLP,
from 400K to 4, 000K for SYNTHETIC and from100K to
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Figure 7. Impacts on the efficiency:k + β reduction
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 0

 2

 4

 6

 8

 10

1.0 1.5 2.0 2.5 3.0 3.5

tim
e 

(x
10

0 
se

c.
)

graph sizes (x100,000)

k=8
k=12
k=16
k=20

(a) AMAZON dataset

0

10

20

30

40

 4  5  6  7  8  9  10

tim
e 

(x
10

0 
se

c.
)

graph sizes (x100,000)

k=8
k=12
k=16
k=20

(b) DBLP dataset

0

15

30

45

60

4 10 20 30 40
tim

e 
(x

10
0 

se
c.

)
graph sizes (x100,000)

k=8
k=12
k=16
k=20

(c) SYNTHETIC dataset

Figure 9. Impacts on the efficiency ofEmbed(k + β): the numberk

the largest size for AMAZON, respectively, while fixedd =
n/500 andk = avgD. The results are reported in Fig. 7.

When varying the graph sizes, the running time ofMDS(d),
Embed(d) and Embed(k + β) increases with the increase
of graph sizes. However, the running time ofEmbed(d)
and Embed(k + β) was consistently smaller thanMDS(d).
Moreover, the running time ofEmbed(k + β) was also con-
sistently smaller thanEmbed(d). Indeed, the running time
of Embed(k + β) was only(35.3%, 25.0%), (23.4%, 13.1%)
and(25.6%, 13.2%) of Embed(d) andMDS(d) on AMAZON,
DBLP and SYNTHETIC on average, respectively, in our tests.
The running time of4, 000K on SYNTHETIC was much less
than expected, due to the gradient descent finished in advance
when the change of objective functionO was less than the
change thresholdδ. Moreover, when the graph sizes were no
less than600K on DBLP and SYNTHETIC, bothMDS(d) and
Embed(d) ran out of memory, and could not finish the tests.

Exp-6.2. To evaluate the impacts of the number of dimensions,
we tested the efficiency ofEmbed(k+β) with d = n/500 and
(200, 600, 1000), (800, 1400, 2000), (2000, 6000, 10000) for
AMAZON, DBLP, SYNTHETIC, respectively. Here we chose
Embed(k+β) instead ofEmbed(d), for larger graphs on DBLP
and SYNTHETIC. Similar to the setting ofExp-6.1, we varied
the graph sizes, while fixedEmbed(k + β) and k = avgD.
The results are reported in Fig. 8.

When varying the graph sizes, the running time of
Embed(k+β) with different dimensions increases with the in-
crease of graph sizes, as expected. Moreover, the running time
of Embed(k + β) with different dimensions was consistently
close to each other. The running time ofEmbed(k + β) with

different selections ofd differed 54.5%, 14.2% and 24.5% on
AMAZON, DBLP and SYNTHETIC on average, respectively, in
our tests. Although the proportion result on AMAZON is large,
the running time difference was only28 seconds on average.
The efficiency is indeed mainly affected by the convergence
speed of the gradient descent.

Exp-6.3. To evaluate the impacts of the numberk in k + β
reduction, we tested the efficiency ofEmbed(k+ β) with k =
8, 12, 16, 20. Similar to the setting ofExp-6.1, we varied the
graph sizes, while fixedd = n/500.

The results are reported in Fig. 9. When varying the
graph sizes, the running time ofEmbed(k + β) with different
k increases with the increase of graph sizes, as expected.
Moreover, its running time also decreases with the decreaseof
k. The running time ofEmbed(k+β) with k = (16, 12, 8) was
(87.7%, 66.8%, 55.7%), (86.3%, 76.3%, 66.5%) and (85.2%,
80.9%, 72.2%) of the one ofEmbed(k + β) with k = 20 on
AMAZON, DBLP and SYNTHETIC on average.

Summary. From these tests we find the followings.

(1) Our embedding approach to network anomaly detection is
both effective and efficient.

The effectiveness evaluation using modularity for the im-
provement of community detection with algorithmNewman

shows that the modularity was increased about 2.9% and 2.4%
for AMAZON, 4.9% and 4.2% for DBLP and 6.3% and 4.2%
for SYNTHETIC, by our approach andOddBall respectively.

The quality evaluation using theF1 measure also shows
that it was about88% and 70% for SYNTHETIC by our
approach andOddBall, respectively.



The efficiency evaluation shows the running time of
Embed(k+β) increases reasonably with the increase of graph
sizes, even with large number of communities.

(2) The direct use of multi-dimensional scaling fails to ef-
fectively detect structural inconsistencies. The modularity was
increased about 7.3% and 8.1% for AMAZON, 4.6% and 5.2%
for DBLP, and 0.4% and 6.8% for SYNTHETIC, by MDS(d)
and Embed(d) respectively. Moreover, theF1 measure was
only 11.3% forMDS(d), while it was 88.8% forEmbed(d).
Further, it ran out of memory for larger networks.

(3) Our k + β reduction optimization technique reduces both
space and time costs, and slightly improves the quality. The
running time ofEmbed(k + β) was only 35.3%, 23.4% and
25.6% of its counterpartEmbed(d) on AMAZON, DBLP and
SYNTHETIC, respectively. Moreover,Embed(d) already ran
out of memory on DBLP and SYNTHETIC with sizes equal
to or larger than600K.

(4) While the numbersd and k of dimensions do have
certain impacts on the quality and efficiency, their settings are
relatively easy as long as they fall into a reasonable range,e.g.,
n/500 for d andavgD for k, compared with the real number
of community groups that is often hard to determine.

VII. C ONCLUSIONS

In this paper, we presented an embedding approach to
detecting structurally inconsistent nodes (anomalous nodes) in
massive social networks. The embedding approach is based
on a model, in which each dimension of the embedding
corresponds to a clustered region in the network, and the
embedding retains a very high level of interpretability in terms
of the original graph data. We utilize the gradient descent
method to compute an embedding, and propose optimization
techniques to make the approach more scalable for larger net-
works. Our extensive experimental results have demonstrated
the effectiveness and efficiency of our approach to network
anomaly detection, which also brings significant applications in
social networks, such as the specific use of detected anomalies
and the improvement of community detection. We are also
exploring other possible applications of our approach.
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