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Introduction

Experimental Results

In this paper, we are to study the problem of finding dense subgraphs

(FDS) on large temporal graphs.

Summary. (1) ECP is quite common. (2) Algorithm computeADS performs

better than topDown both in quality and efficiency. (3) FIDES finds

comparable dense subgraphs to MEDEN, even with small k, and is 1000x

faster than MEDEN.

Challenges and Limitations

We propose a highly efficient data-driven approach FIDES, instead of filter-

and-verification, to finding dense temporal subgraphs.

[1] P. Bogdanov, M. Mongiov, A. K. Singh. Mining heavy subgraphs in time-evolving

networks. In ICDM, 2011.

Temporal subgraph Gs(Vs,Es,i,j) of G(V,E,F). A temporal subgraph

contains a subset of nodes and edges of G, and is restricted within the

time interval that falls into [1,T]: Vs⊆V, Es⊆E, [i,j]⊆[1,T].

Limitations of filter-and-verification [1]. A temporal graph with T

timestamps has a total of T*(T+1)/2 time intervals. The state-of-the-art

solution [1] adopts a filter-and-verification framework that even if a large

portion of time intervals (e.g., 99%) are filtered, there often remain a large

number of time intervals to verify.

A Data-driven Approach FIDES

Temporal graph G(V,E,F). A temporal graph is an undirected weighted

graph with nodes and edges unchanged and edge weights varying with

timestamps regularly and constantly, e.g., road traffic networks. Note that

G(V,E,F) with T timestamps essentially denotes a sequence <G1(V,E,F1),

…, GT(V,E,FT)> of T snapshots of a standard graph.

Finding dense subgraphs (FDS). FDS refers to find a connected

temporal subgraph with the greatest cohesive density, where cohesive

density cdensity(Gs)=∑F
t(e) for all e∈Es and t∈[i,j], i.e., the sum of edge

weights among all snapshots.

Hardness: The FDS problem is NP-hard to solve [1], and NP-hard to

approximate within any constant factor, even for a temporal graph with a

single snapshot and with +1 or -1 weights only.

T 141 447 1,414 ··· 14,142

T*(T+1)/2 104 105 106 ··· 108

# to verify 102 103 104 ··· 106

Filter-and-verification is insufficient for large temporal graphs!

Characteristic under ECP: to find the dense subgraphs, we only need to

consider the time intervals [i,j] such that the cohesive density curve has a

local maximum between i and j (Fig. 3).

Figure 2: convergent evolution Figure 3: cohesive density curve

Procedure maxTInterval / minTInterval identify the top-k time intervals

containing local maxima and having the largest positive cohesive density.

y(x)=cdensity(Gs[V,E,x,x])

Given [i,j], an aggregate graph G’(V,E,f) is first constructed s.t. f(e)=∑Ft(e)

for t∈[i,j] (Fig. 4(a)). Finding dense subgraph on G’ can be reduced to the

net worth maximization problem on a converted graph (Fig. 4(b)). And we

further solve it with three optimization techniques: strong merging (Fig.

4(c)-4(d)), strong pruning (Fig. 4(e)) and bounded probing (Fig. 4(f)).
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Figure 4: (a) aggregate graph G’(V,E,f); (b) conver-
ted graph of G’; (c) aggregate graph; (d) strong
merging; (e) strong pruning; (f) bounded probing.
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Exp-1: verification of ECP. The proportion of edges that satisfy ECP is

96% on BJData and 90% on average on SYNData.

Exp-2: computeADS vs. topDown [1]. (FDS given time intervals)

Exp-3: FIDES vs. MEDEN [1]. (FDS on temporal graphs)

Procedure maxTInterval / minTInterval: identify k time intervals involved

with dense subgraph by employing hidden data statistics.

Procedure computeADS: compute dense subgraph given time intervals.

Procedure computeADS

Figure 1: temporal graph G(V,E,F)  with T=5 (left);
temporal subgraph Gs(Vs,Es,1,4) (middle);

and dense subgraph Gs(Vs,Es,1,5)
with cdensity(Gs)=44 (right).

Hidden data statistic ECP. The evolving convergence phenomenon (ECP)

asserts that all edge weights evolve in a convergent way, i.e., ꓱe Ft(e) < (or,

>) Ft-1(e) implies ꓯe Ft(e) ≤ (or, ≥) Ft-1(e). The ECP is inspired by the

convergent evolution in evolutionary biology which describes that different

species independently evolve similar traits as a result of having to adapt to

similar environments (Fig. 2).

Hidden Data Statistics and Time Intervals


