
Fast Computation of Dense Temporal Subgraphs

Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, Jinpeng Huai
SKLSDE Lab, Beihang University, Beijing, China

Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing, China
{mashuai, hurenjun, wangluoshu, linxl, huaijp}@buaa.edu.cn

Abstract—Dense subgraph discovery has proven useful in
various applications of temporal networks. We focus on a special
class of temporal networks whose nodes and edges are kept fixed,
but edge weights constantly and regularly vary with timestamps.
However, finding dense subgraphs in temporal networks is non-
trivial, and its state of the art solution uses a filter-and-verification
framework, which is not scalable on large temporal networks. In
this study, we propose a data-driven approach to finding dense
subgraphs in large temporal networks with T timestamps. (1) We
first develop a data-driven approach employing hidden statistics
to identifying k time intervals, instead of T ∗ (T + 1)/2 ones
(k is typically much smaller than T), which strikes a balance
between quality and efficiency. (2) After proving that the problem
has no constant factor approximation algorithms, we design
better heuristic algorithms to attack the problem, by building the
connection of finding dense subgraphs with a variant of the Prize
Collecting Steiner Tree problem. (3) Finally, we have conducted
an extensive experimental study to demonstrate the effectiveness
and efficiency of our approach, using real-life and synthetic data.

I. INTRODUCTION

Today dynamic has become an apparent feature of many
data analytic systems and applications that could be modeled as
graphs or networks, such as social network analysis, biological
data analysis, recommendation systems and route planning [2],
[19]. Hence, it is not surprising that dynamic networks have
drawn significant attentions from both industry and academic
communities. In fact, various alternative terms of dynamic
networks are commonly used, such as temporal networks,
dynamic graphs, evolutionary networks, evolving networks,
time-dependent graphs and graph streams [2], [6]–[8], [10],
[12], [14], [17], [20], [21], [26]–[28], [32], [33].

Dense subgraph discovery and analysis have been widely
studied in static networks [3], [4], [13], [15], [16], [22], [23],
[31], such as finding maximal cliques, k-core analyses and
the Prize Collecting Steiner Tree problem. It is worth pointing
out that dense subgraphs are a very general concept, and their
concrete semantics highly depend on the studied problems and
applications. How to properly transfer or define their semantics
over to temporal networks is still in the early stage, e.g., heavy
subgraphs [7], hotspots [33], anomalies [6] and regions [8], not
to mention effective and efficient algorithms.

In this study, we investigate a special class of temporal
networks (see a recent survey [19]) such that their nodes
and edges are kept fixed, but their edge weights constantly
and regularly vary with timestamps. Essentially, a temporal
network with T timestamps can be viewed as T snapshots
of a static network such that the network nodes and edges
are kept the same among these T snapshots, but the edge
weights may be different in different network snapshots. Road

traffic networks typically fall into this category [7], [14], [27],
[32], and road traffic analyses are of particular importance for
large cities, such as Beijing, New York, London and Paris,
that are facing with heavy traffic congestions, one of the great
challenges of urban computing [6], [7], [27], [34].

We also focus on a certain form of dense temporal sub-
graphs, which was initially studied in [7]. Formally speaking,
a temporal subgraph corresponds to a connected subgraph
measured by the sum of all its edge weights in a time interval,
i.e., a continuous sequence of timestamps. Intuitively, a dense
subgraph that we consider corresponds to a collection of
connected highly slow or jam roads (i.e., a jam area) in road
networks, lasting for a continuous sequence of snapshots. We
next use an example to illustrate its basic idea, such the real-
time Beijing traffic status snapshot report generated by a Baidu
product [1], and is regularly updated every couple of minutes.
Given a sequence of such snapshots in a day period, dense
temporal subgraphs help to analyze which areas during what
time periods are in jam conditions at Beijing.

Challenges and limitations. However, the problem of finding
dense subgraphs in temporal networks is non-trivial, and it is
already NP-complete even for a temporal network with a single
snapshot and with +1 or −1 edge weights only, as observed in
[7]. Even worse, it remains hard to approximate for temporal
networks with single snapshots (Section IV). Moreover, given a
temporal network with T timestamps, there are a total number
of T ∗ (T + 1)/2 time intervals to consider, which further
aggravates the difficulty. Finally, the state of the art solution
MEDEN [7] adopts a filter-and-verification framework that
even if a large portion of time intervals are filtered, there
often remain a large number of time intervals to verify. Hence,
MEDEN is not scalable when temporal networks have a large
number of nodes/edges or a large number T of timestamps.

Contributions. To this end, we propose a highly efficient data-
driven approach, instead of filter-and-verification, that employs
hidden data statistics to find dense subgraphs in large temporal
networks in an efficient and effective way.

(1) We first develop a data-driven approach to identifying k
time intervals from T ∗ (T + 1)/2 time intervals (Section III),
striking a balance between quality and efficiency, in which
T is the number of snapshots and k is a small constant,
e.g., 10. This is achieved by exploring the characteristics of
time intervals involved with dense subgraphs based on a novel
evolving convergence phenomenon.

(2) We then design an algorithm for computing dense sub-
graphs, given a time interval (Section IV). After showing that
the problem has no constant factor approximation algorithms,
we develop a heuristic algorithm (by proving the equivalence

(a) Temporal graph G with
time interval [1, 5]

(b) Temporal subgraph H1 of
G with time interval [1, 5]

(c) Temporal subgraph H2 of G
with time interval [1, 4]

(d) Aggregate graph Ĥ2 of
temporal subgraph H2

Fig. 1. Running example

of finding dense subgraphs and finding a maximum net worth
subtree, a variant of the Prize Collecting Steiner Tree problem
[13], [22]) and three optimization techniques to improve the
efficiency while retain a high quality.

(3) Using BJDATA and SYNDATA, we conduct an extensive
test (Section V). (a) We find that our method FIDES is 2, 980
and 1, 079 times on average faster than the state of the art
solution MEDEN [7] on BJDATA and SYNDATA, respectively.
(b) The dense subgraphs found by FIDES have a very high
quality, i.e., about 100.28% and 99.84% on average of those
found by MEDEN on BJDATA and SYNDATA, respectively.
(c) Finally, MEDEN already ran out of memory for temporal
graphs with 150, 000 nodes and 2,000 snapshots.

II. PRELIMINARY

In this section, we introduce the basic definitions of tem-
poral graphs and the problem to be investigated.

A. Basic Concepts

We first introduce basic concepts of temporal graphs.

Temporal graphs. A temporal graph G(V , E, F , Tb, Te) is
a weighted undirected graph with edge weights varying with
timestamps, where (1) V is a finite set of nodes, (2) E ⊆
V × V is a finite set of edges, in which (u, v) or (v, u) ∈ E
denotes an undirected edge between nodes u and v, (3) for
each timestamp t ∈ [Tb, Te], F t() is a total weight function
that maps each edge in E to a positive or negative rational
number, and (4) [Tb, Te] is a time interval representing (Te −
Tb + 1) timestamps, in which Tb ≤ Te are the beginning and
ending timestamps (positive integers), respectively. When it is
clear from the context, we simply use G(V , E, F) to denote
temporal graphs for clarity.

Observe that we are considering a special class of temporal
networks (see a recent survey [19]) such as road networks
and communication networks, in which graph nodes and
edges are kept fixed, but the edge weights vary with re-
spect to timestamps. Intuitively, (1) a temporal graph G(V ,
E, F) essentially denotes a sequence < G1(V,E, F 1), . . .,
GT (V,E, FT) > of T = Te−Tb + 1 standard graphs, and (2)

the edge weights F t(e) specify the distances, communication
latencies or travelling duration [7], [14], [19], [27], [32], or
the affinity or collaborative compatibility [15] between the two
corresponding nodes of edges e at timestamps t. Essentially,
positive/negative edge weights model relationships opposed in
nature, e.g., fast/congested traffic and friend/foe relationships.

We also say that Gi(V,E, F
i) (i ∈ [1, T]) is a snapshot of

temporal graph G(V , E, F) at timestamp Tb + i− 1.

Temporal subgraphs. Temporal graph H(Vs, Es, Fs, Tbs , Tes)
is a subgraph of temporal graph G(V,E, F, Tb, Te), denoted
by G[Vs, Es, Tbs , Tes], if Vs ⊆ V , Es ⊆ E, Tbs , Tes ∈ [Tb,
Te], and F t

s(e) = F t(e) for any t ∈ [Tbs , Tes] and e ∈ Es.

That is, subgraph G[Vs, Es, Tbs , Tes] only contains a subset
of nodes and edges of graph G, and it is restricted within the
time interval [Tbs , Tes] that falls into [Tb, Te].

When Vs = V and Es = E, we also simply use G[Tbs , Tes]
to denote temporal subgraph G[Vs, Es, Tbs , Tes] for clarity.

Aggregate graphs. Given a temporal graph G(V,E, F, Tb,
Te), its aggregate graph Ĝ(V,E, f) is a standard undirected
weighted graph that has the same sets of nodes and edges as
G, and for each edge e ∈ E, its weight f(e) is the sum of
weights F t(e) with t ∈ [Tb, Te], i.e., f(e) =

∑Te

t=Tb
F t(e).

Cohesive density. The cohesive density of an aggregate graph
Ĝ(V,E, f), denoted by cdensity(Ĝ), is equal to the sum of all
the edge weights, i.e., cdensity(Ĝ) =

∑
e∈E f(e).

Positive cohesive density. The positive cohesive density of
an aggregate graph Ĝ(V,E, f), denoted by cdensity+(Ĝ),
is equal to the sum of all the positive edge weights, i.e.,
cdensity+(Ĝ) =

∑
e∈E,f(e)>0 f(e).

The (positive) cohesive density of a temporal graph G is
simply equal to the (positive) cohesive density of its corre-
sponding aggregate graph Ĝ.

Dense subgraphs. Given a temporal graph G(V,E, F), its
dense subgraph is a connected temporal subgraph G[Vs,
Es, i, j] with the greatest cohesive density.

We next illustrate these concepts with an example.

Example 1: (1) Figure 1(a) depicts a temporal graph G with
9 nodes, 9 edges and T = 5 timestamps.

(2) Figure 1(b) shows a temporal subgraph H1 of G with 4
nodes, 4 edges and time interval [1, 5], and Fig. 1(c) shows a
temporal subgraph H2 of G with 5 nodes, 5 edges and time
interval [1, 4], respectively.

(3) Figure 1(d) shows the aggregate graph Ĥ2 of temporal
subgraph H2 whose cohesive density cdensity(Ĥ2) = 21 and
positive cohesive density cdensity+(Ĥ2) = 33, respectively.

(4) One can verify that the temporal subgraph H1 in Fig. 1(b) is
indeed the only dense subgraph of G with the greatest cohesive
density cdensity(Ĥ1) = 44. 2

Remarks. In a road network snapshot generated by a Baidu
product [1], red, yellow and green colored roads denote the
traffic congestion, slow traffic and fast traffic conditions,
respectively. If we replace red, yellow and green colors with
+2, +1 and −1, respectively, we have a road network snapshot

Algorithm basicMEDEN
Input: Temporal graph G(V , E, F).
Output: G[Vs, Es, i, j], a solution of FDS.
1. for each time interval [i, j] (i ≤ j ∈ [Tb, Te]) do
2. let Ĝ[i,j](V,E, f) be the aggregate graph of G(V , E, F , i, j);
3. UBsop[i, j] := cdensity+(Ĝ[i,j]);
4. Estimate a lower bound LB for the solution of FDS;
5. for each time interval [i, j] (i ≤ j ∈ [Tb, Te]) do
6. Prune [i, j] if UBsop[i, j] ≤ LB;
7. for each not pruned time interval [i, j] (i ≤ j ∈ [Tb, Te]) do
8. Ĝ′

[i,j] := topDown(Ĝ[i,j]) ;
9. G[Vs, Es, i, j] := a subgraph with the greatest cohesive density;
10.return G[Vs, Es, i, j].
Fig. 2. Algorithm basicMEDEN

with both positive and negative edge weights. Moreover, it is
quite obvious that dense subgraphs correspond to jam regions.

B. Finding Dense Subgraphs

We next present the problem statement and its baseline
solutions [7]. Given a temporal graph G(V , E, F), the problem
of finding dense subgraphs (referred to as FDS) is to find
a connected temporal subgraph H = G[Vs, Es, i, j] whose
aggregate graph has the greatest cohesive density cdensity(Ĥ).

Intractability. It is already known that the FDS problem is
intractable, as observed in [7].

Proposition 1: The FDS problem is NP-complete, even for a
temporal network with a single snapshot and with +1 or −1
edge weights only [7]. 2

Baseline solutions. We next present the details of algorithm
basicMEDEN developed in [7], shown in Fig. 2. Here proce-
dure topDown aims to find a subgraph of an aggregate graph
with a higher cohesive density.

Algorithm basicMEDEN. Given a temporal graph G, it returns
a solution of FDS. It first computes an upper bound of the
positive cohesive density UBsop[i, j] for each [i, j] of the T ∗
(T + 1)/2 time intervals (i ≤ j ∈ [Tb, Te] and T = Te − Tb +
1) (lines 1–3). It then uses procedure topDown to compute
the solutions for the k time intervals [i, j] that have the top–
k highest UBsop[i, j], and sets LB to be the highest cohesive
density of the k computed dense subgraphs (line 4). Using LB
and UBsop[i, j], the algorithm prunes time intervals (lines 5–6),
and uses topDown again to compute the solutions for all not
pruned time intervals (lines 7–8). The subgraph found with the
greatest cohesive density is finally returned (lines 9-10).

Remarks. (1) The state of the art solution MEDEN was
proposed in [7], which adopted a filter-and-verification frame-
work. For clarity, here we only present the basic version
basicMEDEN. The sophisticated version MEDEN incorporates
a more scalable filtering technique by grouping time intervals,
and it was reported that MEDEN achieved an order of mag-
nitude performance improvement over basicMEDEN [7]. (2)
We will compare our approach with the sophisticated version
MEDEN in the experimental study (Section V).

III. IDENTIFYING TIME INTERVALS

Our data-driven approach to finding dense subgraphs in
temporal graphs consists of two key components: (1) identi-
fying k time intervals and (2) finding a dense subgraph for a

Fig. 3. Local minima and maxima

given time interval. We first introduce how to identify k time
intervals based on a novel evolving convergence phenomenon
and an independent and identically distributed (i.i.d.) weight
assumption. We consider a temporal graph G(V,E, F, Tb, Te),
and w.l.o.g. we assume Tb = 1 and Te = T in the sequel.

Observe that there are T ∗ (T +1)/2 time intervals in total,
and even if T is not a large number, e.g., 2,000, there are more
than 2× 106 time intervals to investigate, which involves with
too much computational cost. Even though MEDEN filters a
large portion of unnecessary time intervals, say 99% [7], there
remain a large number of time intervals to verify, e.g., 2×104

in the above case. Recall that the FDS problem remains NP-
complete for single snapshots (Proposition 1, Section II-B).
Hence, we develop a data-driven approach, instead of filter-
and-verification, to exploring k time intervals only, aiming at
striking a balance between quality and efficiency. Here k is
typically a small constant, e.g., 10.

A. Characteristics of Time Intervals

We first present the key characteristics of the time intervals
involved with dense subgraphs.

Cohesive density curves. Given a temporal graph G(V , E,
F), its cohesive density curve is a function y = W (x) such
that for each x ∈ [1, T], W (x) is the cohesive density of the
aggregate graph of temporal subgraph G[x, x].

Local maximum and minimum. We consider a cohesive
density curve y = W (x) of temporal graph G(V,E, F).

The curve y is said to have a local maximum at a point x∗ if
there exists some positive integer δ such that W (x∗) ≥W (x)
for all x with |x− x∗| ≤ δ.

Similarly, y is said to have a local minimum at a point x∗ if
there exists some positive integer δ such that W (x∗) ≤W (x)
for all x with |x− x∗| ≤ δ.

Example 2: Consider the cohesive density curve y = W (x)
of temporal graph G in Fig. 3, in which W (x) is the cohesive
density of the aggregate graph of temporal subgraph G[x, x]
(x ∈ [1, 20]). Here the curve y has a local maximum at the
points x = 3, 7, 14, 20 and a local minimum at the points
x = 1, 5, 10, 17, respectively. 2

We now present the first key observation inspired by the
convergent evolution in evolutionary biology, based on which
we prove a very important characteristic of the time intervals
involved with dense subgraphs.

Evolving convergence phenomenon. Consider a sequence
< Ĝ1(V,E, f1), . . . , ĜT (V,E, fT) > of the T correspond-
ing aggregate graphs of the temporal subgraphs G[1, 1], . . .,
G[T, T] of temporal graph G.

The evolving convergence phenomenon asserts that if there
exists an edge in Ĝi (i ∈ [1, T − 1]) whose weight is no
less (respectively no greater) than its weight in Ĝi+1, then
for all edges, their weights in Ĝi are no less (respectively no
greater) than their corresponding weights in Ĝi+1. Intuitively,
this says that all edges evolve in a convergent manner, i.e., the
increase of one edge weight indicates that all the remaining
edge weights do not decrease, and vice versa.

Proposition 2: To find the dense subgraph, we only need to
consider the time intervals [i, j] such that the cohesive density
curve has a local maximum at certain point between i and j
under the evolving convergence phenomenon. 2

The evolving convergence phenomenon assures the correct-
ness of Proposition 2 that gives a precise characterization of
the time intervals involved with dense subgraphs, and may not
completely hold. However, this phenomenon remains effective
to a large extent in practice, and it is indeed a statistical
characteristic to capture the general tendency of edge weight
changes on certain temporal graphs.

Considering the Beijing road network for instance, the
phenomenon almost holds. There are morning and evening
peaks at Beijing, and it is typically common that a majority of
roads become slow/jam during the peak time, and enter a faster
traffic condition after the peak time ends, although individual
roads may be physically isolated. In this case, it is easy to
see that it is very likely that the dense subgraph lies in a time
interval containing peaks.

Moreover, it is trivial to verify the following two charac-
teristics, which further help us to identify the time intervals
involved with dense subgraphs.

Fact 1: All dense subgraphs have a non-negative cohesive
density. 2

Intuitively, Fact 1 tells us that dense subgraphs are more
concerned with the positive weight edges, and the positive
cohesive density may give better estimations for the potential
time intervals, compared with the cohesive density.

Fact 2: Temporal subgraph G[i, j] (i ≤ j ∈ [1, T]) with a
higher positive cohesive density has a higher probability of
containing a dense subgraph under the assumption of i.i.d.
edge weights within single snapshots G[i, i] (i ∈ [1, T]). 2

Moreover, Fact 2 tells us that temporal subgraph with the
highest positive cohesive density has a very high probabil-
ity of containing the dense subgraph which we are looking
for. However, the i.i.d. edge weight assumption may not
hold completely in practice. Hence, we compute the time
intervals whose corresponding temporal subgraphs have the
top–k highest positive cohesive densities, instead of the one
with the highest positive cohesive density only, from those
time intervals [i, j] having a local maximum in the curve by
Proposition 2.

Remarks. As will be shown by the experimental study (Sec-
tion V), the three characteristics (i.e., Proposition 2, Facts 1
and 2) together assure a pretty good estimation of the time
intervals involved with dense subgraphs, even when the phe-
nomenon does not hold completely, but almost holds.

Algorithm maxTInterval
Input: Temporal graph G(V , E, F), a positive rational ξ.
Output: k/2 aggregate graphs with largest positive cohesive densities.
1. let y = W (x) be the cohesive density curve of G;
2. let x1 < . . . < xh be the local maxima of y;
3. for each i ∈ [1, h] do
4. xi.l := the largest x with x ≤ xi and |W (x)−W (xi)| ≥ ξ;
5. xi.u := the smallest x with x ≥ xi and |W (x)−W (xi)| ≥ ξ;
6. while there are local maxima xi, xj with xi.l ≤ xj .l ≤ xi.u do
7. xi.u = max(xi.u, xj .u); h := h− 1;
8. Remove local maximum xj ; /*merging overlapped intervals*/
9. S := {[xi.l, xj .u] | i ≤ j and i, j ∈ [1, h]};
10. S′ := the top k/2 intervals in S whose aggregate graphs have

the largest positive cohesive densities;
11. for each time interval [l, u] ∈ S′ do
12. Find the least ls ≤ l and largest us ≥ u such that

cdensity+(G[ls, u]), cdensity+(G[l, us])> cdensity+(G[l, u]);
13. Replace [l, u] with [ls, us]; /*enlarge intervals*/
14. R := {G[l, u] | [l, u] ∈ S′};
15. return the aggregate graphs of temporal graphs in R.
Fig. 4. Algorithm maxTInterval using local maxima

B. Computing Top-K Time Intervals

We finally present our methods to estimate the top–k time
intervals whose aggregate graphs have the greatest positive
cohesive densities, following the analysis in Section III-A.

Algorithm maxTInterval uses local maxima to identify the
time intervals, and is presented in Fig. 4. Given a temporal
graph G(V , E, F) and a positive rational ξ, it outputs a set
of k/2 aggregate graphs with the largest positive cohesive
densities. It first computes the h local maxima of the cohesive
density curve of G (lines 1–2). For each local maximum
xi (i ∈ [1, h]), it finds the largest timestamp xi.l ∈ [1, T]
such that xi.l ≤ xi and |W (xi.l) − W (xi)| ≥ ξ, and the
smallest timestamp xi.u ∈ [1, T] such that xi.u ≥ xi and
|W (xi.u) − W (xi)| ≥ ξ (lines 3–5). Here constant ξ =∑T−1

i=1 |W (i + 1) − W (i)|/(T − 1) is the average density
change of the cohesive density curve of G. It then repeatedly
merges overlapping time intervals by removing local maxima.
For instance, for local maxima xi and xj , it removes xj if
[xi.l, xi.u] and [xj .l, xj .u] overlap (lines 6–8). The intuition
behind these is that close maxima can be treated as a large
one. Using xi.l and xi.u (i ∈ [1, h]), it generates a set S of
h ∗ (h + 1)/2 time intervals (line 9), and computes a subset
S′ of k/2 intervals whose resulting aggregate graphs have the
top–k/2 largest positive cohesive densities (line 10). After this,
each time interval [l, u] ∈ S′ is further enlarged to produce
an aggregate graph with a higher positive cohesive density
(lines 11–13). To speed up the process, the decrement of ls
and increment of us are first initialized to 1, and are doubled
every 4 successful tries. It finally computes and returns the k/2
aggregate graphs of temporal graphs for the time intervals in
S′ (lines 14–15).

Algorithm minTInterval uses local minima to identify the
remaining top–k/2 time intervals that contain local maxima,
which is along the same lines as algorithm maxTInterval
except the following: It (1) computes h local minima x1 <
. . . < xh, instead of local maxima (line 2), (2) produces a
set S of h ∗ (h − 1)/2 time intervals in the form of {[xi.u,
xj .l] | i < j and i, j ∈ [1, h]} (line 9), and (3) shrinks the
intervals, instead of enlarging intervals (lines 11–13).

We next use an example to illustrate how to generate time

intervals using local maxima and minima.

Example 3: Consider the curve y = W (x) in Fig. 3 again.

(1) Assume without loss of generality that 3.l = 2, 7.l =
6, 14.l = 13, 20.l = 19 and 3.u = 4, 7.u = 8, 14.u = 15,
20.u = 20 for the local maximum at points x = 3, 7, 14, 20,
respectively. Here no local maxima can be merged. Then the
set S of time intervals at line 9 of maxTInterval is {[2, 4],
[2, 8], [2, 15], [2, 20], [6, 8], [6, 15], [6, 20], [13, 15], [13, 20],
[19, 20]}. If the positive cohesive density of G[1, 8] is larger
than G[2, 8], then maxTInterval replaces [2, 8] with [1, 8].

(2) Assume without loss of generality that 1.l = 1, 5.l = 4,
10.l = 9, 17.l = 16 and 1.u = 2, 5.u = 6, 10.u = 11, 17.u = 18
for the local minimum at points x = 1, 5, 10, 17, respectively.
Again, no local minima can be merged. Then the set S of time
intervals at line 9 of algorithm minTInterval is {[2, 4], [2, 9],
[2, 16], [6, 9], [6, 16], [11, 16]}. If the positive cohesive density
of G[6, 15] is larger than G[6, 16], then minTInterval replaces
[6, 16] with [6, 15]. 2

Time complexity analysis. Algorithms maxTInterval and
minTInterval both run in O((T + h2) · |E|) time, in which h
is the number of local maxima or minima.

Observe the following. (1) It first takes O(T · |E|) time to
generate the cohesive density curve (line 1), and O(T) time to
find the local maxima (line 2). (2) Then it takes O(h · log h)
time to merge local maxima (lines 3–8), and O(h2) time to
generate the time intervals of the temporal subgraphs (line
9). (3) When computing the positive cohesive densities of the
aggregate graphs, it takes O(h2 ·|E|) time. For each edge e and
timestamp t, let AF (e, t) be

∑t
i=1 F

i(e). Thus the positive
cohesive density of each aggregate graph can be computed
in O(|E|) time using AF (e, t). The top–k/2 intervals are
retrieved in O(h2 · log k) time (lines 10). (4) When tuning the
top–k/2 time intervals (lines 11–13), it takes O(k · log T · |E|)
time since each interval can be updated at most O(log T)
times and each update needs to recompute the positive cohesive
density of a new aggregate graph. Note that here k is a small
constant, e.g., 10 or 15, and h is typically much smaller than T .
Putting these together, algorithm maxTInterval takes O((T +
h2)·|E|) time in total. And, it is similar to show that algorithm
minTInterval runs in O((T + h2) · |E|) time as well.

IV. COMPUTING DENSE SUBGRAPHS

We now explain how to compute the dense subgraph for
a given time interval. This reduces to the problem of finding
the subgraph of an aggregate graph with the highest cohesive
density, which remains NP-hard as observed in [7]. We first
show that the problem has no constant factor approximation
algorithms, and then establish the connection between the
problem of finding the dense subgraph in an aggregate graph
and the Net Worth Maximization problem (NWM), a variant of
the Prize Collecting Steiner Tree problem [13], [22]. We then
develop algorithm heuristics to attack the problem. Finally,
we present our complete solution FIDES for finding dense
subgraphs in temporal networks.

A. Approximation Hardness

The hardness is verified by a reduction from the Net
Worth Maximization optimization problem (NWM), a variant

Input: Aggregate graph Ĥ(V , E, f).
Output: Converted graph ~H(V ′, E′, p, w).
1. Ĥ+ := Ĥ with non-negative edges only;
2. Compute the connected components CC1, . . ., CCl of Ĥ+ ;
3. let V ′ := {u1, . . . , ul};
4. for each i ∈ [1, l] do p(ui) := the total edge weight of CCi;
5. if there are negative edges between CCi and CCj (i, j ∈ [1, l]);
6. then E′ := E′ ∪ {(ui, uj)};
7. w(ui, uj) := |the largest negative edge weight|;
8. return ~H .

Fig. 5. Procedure convertAG

of the Prize Collecting Steiner Tree problem [13], [22]. Given
an undirected graph G(V,E), a non-negative edge weight
w(e) for each edge e ∈ E and a non-negative node weight
p(v) for each node v ∈ V , the NWM problem is to find a
subtree ST (Vst, Est) that maximizes its net worth NW (ST)
=

∑
v∈Vst

p(v) −
∑

e∈Est
w(e). It is known that the NWM

problem is NP-complete, and is hard to approximate: it is
NP-hard to approximate the optimum Net Worth within any
constant factor [13], [22].

To show the approximation hardness, we use approxima-
tion factor preserving reduction (AFP-reduction) [11], [30], a
certain form of reduction that retains approximation bounds.
Let Π1 and Π2 be two maximization optimization problems.
An AFP-reduction from Π1 to Π2 is a pair of PTIME functions
(h, g) that satisfies the following conditions:

(1) for any instance I1 of Π1, I2 = h(I1) is an instance
of Π2 such that opt

2
(I2) ≥ opt1(I1), where opt1(I1)

(respectively opt2(I2)) is the value of an optimal
solution to I1 (respectively I2), and

(2) for any feasible solution s2 to I2, s1 = g(s2) is a
feasible solution to I1 such that obj1(s1) ≥ obj2(s2),
where obj1() (respectively obj2()) is a function mea-
suring the value of a solution to I1 (respectively I2).

Finding an optimal dense subgraph of an aggregate graph
is non-trivial, as shown below.

Theorem 3: The cohesive density achieved by an optimal
subgraph of an aggregate graph is NP-hard to approximate
within any constant factor. 2

Proof Sketch: We show that there exists an AFP-reduction
(h, g) from the NWM problem to the problem of finding
the dense subgraph of an aggregate graph, from which the
conclusion follows since the NWM problem is NP-hard to
approximate within any constant factor [13], [22]. 2

B. Connections with the NWM Problem

Theorem 3 tells us that heuristic algorithms are essentially
the practical solutions on which we should focus, as its
counterpart the NWM problem does [22]. We shall reduce the
problem of finding the dense subgraph in an aggregate graph
with positive or negative edge weights to the NWM problem,
based on a notion of converted graphs that are undirected
graphs with non-negative node and edge weights.

We next present the details of procedure convertAG in
Fig. 5, which takes as input an aggregate graph Ĥ(V,E, f),
and returns its converted graph ~H(V ′, E′, p, w), an undirected
graph with non-negative node and edge weights.

v2

v5

v1

v3

v6

v4

v7

v8 v9

16
6

8 14

6 -4

-14

-2
6

(a) Aggregate graph Ĝ

v7v8
2 4

14

v5
v6
v9

v1
v3
v2
v4

u1

u2

u3 u4

44

0 0
12

(b) Converted graph ~G

Fig. 6. Example of converted graphs

Procedure convertAG first generates graph Ĥ+ by remov-
ing all the edges in Ĥ with negative weights (line 1), and then
computes the connected components of Ĥ+ (line 2). For each
connected component CCi (i ∈ [1, l]), there is a corresponding
node ui in ~H , whose weight p(ui) is equal to the total edge
weight of CCi (lines 3-4). An edge (ui, uj) (i, j ∈ [1, l]) is
included in ~H if there are negative edges between CCi and
CCj in Ĥ , and the edge weight w(ui, uj) is the absolute value
of the largest negative edge weight among all negative edges
between CCi and CCj (lines 5-7). Finally, the converted graph
~H(V ′, E′, p, w) is returned (line 8).

Example 4: Consider the temporal graph G in Fig. 1(a) again,
and its aggregate graph Ĝ in Fig. 6(a). The converted graph
~G of Ĝ computed by convertAG is shown in Fig. 6(b). 2

With a close look at the above procedure convertAG, it is
easy to verify the following, which establishes the connection
between the dense subgraphs in an aggregate graph and the
maximum net worth subtrees in the converted graph.

Proposition 4: Finding a dense subgraph in an aggregate
graph Ĥ is equivalent to finding a maximum net worth subtree
in the converted graph convertAG(Ĥ). 2

Remarks. (1) It is worth mentioning that procedure convertAG
reduces the size of aggregate graphs, which further helps to im-
prove the efficiency of finding the dense subgraphs, as shown
by Example 4. (2) Different from aggregate graphs, converted
graphs have only non-negative node and edge weights.

C. Algorithm Optimizations

Proposition 4 tells us that the algorithm of the NWM
problem [22] provides us a basic solution. We next investigate
optimization techniques that could be employed to improve the
performance for finding the dense subgraphs, in which we also
incorporate the strong pruning technique that has been proven
effective for the NWM problem [22].

(1) Strong merging. After having a converted graph, we
repeatedly merge two neighboring nodes such that if one of
them belongs to an optimal maximum net worth subtree, then
the other must belong to as well. As a side benefit, this further
reduces the size of the converted graph.

We next present the details of a basic version of procedure
strongMerging in Fig. 7. It takes as input a converted graph
~H , and returns its merged converted graph ~H ′. It repeatedly
merges neighboring nodes until there are no changes, and two
nodes u, v are merged if both their node weights are equal to
or larger than the edge weight w(u, v) (lines 1-7). Finally, it
returns the merged converted graph ~H ′ (line 8).

Input: Converted graph ~H .
Output: Merged converted graph ~H ′.
1. while there are changes do
2. for any nodes u, v with p(v) ≥ w(u, v) and p(u) ≥ w(u, v) do
3. Merge u and v into a single node x;
4. p(x) := p(v) + p(u)− w(u, v);
5. Remove edge (u, v) from ~H;
6. Replace all edges (v, y) and (u, y) with (x, y);
7. w(x, y) := min(w(u, y), w(v, y));
8. return ~H ′.
Fig. 7. Procedure strongMerging

u1

u2 u3

u4

u8

u6 u7

u5

5

3

4

4

8

8

12

12

12

13

u9

9

15

10

1 10

9 9

5 17

13

(a) Converted graph ~H

u4 u5
12

12

12

13

u6u7
u8u9

u1
u2u3

25

20

101

u8

u6 u7

3

4

8

u9

9 9

5
1713

u1

u2 u3
54

8

9

15

10

25

20

u8

u6 u7

3
4

89 9

5

12

(b) Merged converted graph ~H ′

Fig. 8. Example for strong merging

However, there may exist different ways to compute the
weights of the merged nodes, as shown below.

Example 5: (1) Consider the converted graph ~H in Fig. 8(a). It
is easy to verify that nodes u1, u2, u3 are merged by procedure
strongMerging. However, there are 2 different ways to merge
u1, u2 and u3 by strongMerging, each of which results in a
different node weight. More specifically, when merging using
(a) edges (u1, u2) and (u2, u3) and (b) edges (u1, u2) and
(u1, u3), the merged node has weights 15 + 9 + 10− 4− 8 =
22 and 15 + 9 + 10 − 4 − 5 = 25, respectively. Note that
edges (u1, u3) and (u2, u3) could not be used to merge nodes
together, as (u2, u3) has a larger weight than (u1, u2), and
hence will be discarded after merging nodes u1 and u3 (at
lines 6–7 in Fig. 7).

(2) One can easily check that (a) when nodes u6, u7, u8 are
merged using edges (u6, u7) and (u6, u8), node u9 cannot
be merged with these nodes; (b) When nodes u6, u7, u8 are
merged using edges (u6, u8) and (u7, u8), node u9 can be
further merged with nodes u6, u7, u8. That is, the way how
nodes are merged also has effects on the merging process.

(3) Note that the converted graph ~G shown in Fig. 6(b) cannot
be further merged. 2

To address these, we maintain a minimum spanning
tree for each (merged) node in the process of procedure
strongMerging, which leads to the need of merging two min-
imum spanning trees when merging nodes. Hence, procedure
strongMerging further uses Sleator–Tarjan dynamic trees [29]
to achieve a good performance, as shown below.

Proposition 5: For a converted graph ~H(VH , EH), the extra
cost of maintaining minimum spanning trees for procedure
strongMerging is bounded by O(|EH | log |VH |). 2

Proof Sketch: Let T be the merged minimum spanning
subtree of two minimum spanning subtrees T1(V1, E1) and
T2(V2, E2) in the process of strongMerging. We first show
that it suffices to consider a T consisting of edges in E1, E2

Input: Minimum spanning tree T of ~H ′.
Output: An optimal subtree ST of T .
1. Randomly select a node as the root of T ;
2. for each node u in T do nw(u) := p(u);
3. for all nodes u in T in a bottom-up fashion do
4. for each child node v of u do
5. if nw(v) < w(u, v) then remove edge (u, v);
6. else nw(u) := nw(u) + nw(v)− w(u, v);
7. ur := argmaxu{nw(u)};
8. return the subtree ST rooted at ur .

Fig. 9. Procedure strongPruning

and those between V1 and V2 only. Second, it is easy to see that
merging T1 and T2 is equivalent to maintaining the minimum
spanning tree in a graph T1 ∪ T2 after inserting the edges
between V1 and V2. Using Sleator–Tarjan dynamic trees, it
takes O(log(|V1| + |V2|)) time to deal with an inserted edge.
From these, we have the conclusion. 2

(2) Strong pruning. Strong pruning is an effective technique
for solving the NWM problem developed in [22], [25] for
finding an optimal net worth subtree that contains a specified
root node. Hence, we revise and utilize the improved strong
pruning technique that eliminates the restriction of containing
a specified root node [25].

Given a minimum spanning tree T of the merged converted
graph, it produces a subtree ST of T that maximizes its net
worth NW (ST) among all subtrees of T .

We next present the details of procedure strongPruning in
Fig. 9 that given a minimum spanning tree T of a merged con-
verted graph generated by procedure strongMerging, returns
the maximum net worth subtree ST of T . It first reconstructs
T by randomly choosing a root node (line 1). It then initializes
the nw(u) of each node u as its p(u) (line 2). All nodes u are
further updated in a bottom-up manner, i.e., u is updated if and
only if all its child nodes have already been updated. When
it updates node u, each of the child nodes of u is processed
independently: (a) If nw(v) ≥ w(u, v), it replaces nw(u) with
nw(u) +nw(v)−w(u, v), and (b) otherwise, it removes edge
(u, v) from T (lines 3–6). Finally, the subtree rooted at the
node ur with the maximum nw(ur) in the remaining T is
returned as ST (lines 7-8).

In the following, we use an example to illustrate the process
of procedure strongPruning.

Example 6: Consider the minimum spanning tree T of the
merged converted graph ~H ′ in Fig. 8(b), obtained by removing
the edge between nodes {u5} and {u6, u7, u8, u9} from ~H ′.
Note that here we simply use a set to denote a node in ~H ′.
The optimal subtree ST produced by strongPruning is shown
in Fig. 10(a), in which x and y of labels x/y denote the p(u)
and nw(u) of nodes u, respectively, and dashed edges denote
removed edges in the process.

Procedure strongPruning first randomly selects {u1, u2,
u3} as the root of T . For each node u in T , its net worth
nw(u) is initialized with p(u). The net worth nw({u5})
and nw({u6, u7, u8, u9}) need not to be updated as both of
them have no child nodes. The first modification is on node
{u4}, whose weight nw({u4}) is replaced by nw({u4}) +
nw({u6, u7, u8, u9})− w({u4}, {u6, u7, u8, u9}). Then for
node {u1, u2, u3}, its attached two edges are removed since
nw({u4}) < w({u1, u2, u3}, {u4}) and nw({u5}) < w({u1,

u4 u5

12

12

12

u6u7
u8u9

u1
u2u3

1/9

20/20

10/10

25/25

(a) Subtree ST by strong pruning (b) Subtree ST ′ by bounded probing

Fig. 10. Examples for strong pruning and bounded probing

u2, u3}, {u5}). Finally, the subtree rooted at {u1, u2, u3} is
returned as ST , which is indeed {u1, u2, u3} itself, as its net
worth nw({u1, u2, u3}) is the maximum one. 2

Based on [25], one can easily check the following result.

Corollary 6: Given a minimum spanning tree T (V,E), proce-
dure strongPruning takes O(|V |) time to find a subtree ST of
T that maximizes its net worth NW (ST) among all possible
subtrees of T . 2

(3) Bounded probing. For the subtree ST found by procedure
strongPruning, we propose a bounded probing technique to
further maximize its net worth. We first illustrate this with an
example below.

Example 7: Consider the subtree ST , i.e., the single node
{u1, u2, u3}, found by procedure strongPruning in Fig. 10(a),
where all nodes can no longer be merged. But, as shown in
Fig. 10(b), after adding nodes {u5} and {u6, u7, u8, u9} along
the single path connecting them, we indeed have a subtree with
a higher net worth 25 + 10 + 20− 12− 13 = 30. 2

We next introduce the main idea of bounded probing, which
basically probes the set B of nodes in the merged converted
graph ~H ′, but not in the subtree ST found by strongPruning,
that can reach certain nodes in ST within r hops. We first
greedily choose a path for each node in B that connects it
with ST . Then we sort those paths that may increase the net
worth of ST , and choose a set of disjoint paths. We extend
ST with these disjoint paths, and repeat this process r times.

D. Algorithm for Aggregate Graphs

We now present the algorithm to compute the Aggregate
graph’s Dense Subgraphs (referred to as computeADS). A
basic version of algorithm computeADS is shown in Fig. 11,
which takes as input an aggregate graph Ĥ , and returns the
dense subgraph of Ĥ based on the three optimizations.

Algorithm computeADS first transforms aggregate graph
Ĥ into its converted graph ~H (line 1), and then produces a
merged converted graph ~H ′ using the strong merging technique
(line 2). A minimum spanning tree T of ~H ′ is computed (line
3), and is optimized to ST using the strong pruning technique
(line 4). Tree ST is then optimized to ST ′ using the bounded
probing technique (line 5), and ST ′ is further optimized to
ST ′′ by computing a minimum spanning subtree of ~H that
has the same set of nodes as ST ′ (line 6), and finally the
subgraph of Ĥ corresponding to the minimum spanning tree
ST ′′ is returned (line 7).

We next show how algorithm computeADS finds the dense
subgraph of an aggregate graph with an example below.

Example 8: (1) Consider the temporal graph G in Fig. 1(a)
and its aggregate graph Ĝ in Fig. 6(a) again. Algorithm

Algorithm computeADS
Input: Aggregate graph Ĥ(V , E, f).
Output: Subgraph of Ĥ with cohesive density as large as possible.
1. ~H(V ′, E′, p, w) := convertAG(Ĥ);
2. ~H ′ := strongMerging(~H);
3. T := a minimum spanning tree of ~H ′;
4. ST := strongPrunning (T);
5. ST ′ := boundedProbing (ST , ~H ′);
6. ST ′′ := a minimum spanning subtree of ~H using ST ′;

/*ST ′′ and ST ′ have the same set of nodes */
7. return the subgraph of Ĥ corresponding to ST ′′.

Fig. 11. Algorithm computeADS

computeADS first computes the converted graph ~G of Ĝ,
shown in Fig. 6(b). In this case, as ~G is already a non-
mergeable tree, computeADS simply uses the strong pruning
technique to produce an optimized subtree, which contains the
single node u1 of ~G. Finally, the subgraph with nodes v1, v2,
v3, v4 in Ĝ that corresponds to the node u1 of ~G is returned.

(2) Consider the converted graph ~H shown in Fig. 8(a).
Algorithm computeADS computes its merged converted graph
~H ′ shown in Fig. 8(b). The minimum spanning tree T of ~H ′

is then computed, as shown in Fig. 10(a). With strongPruning,
it finds the optimal subtree of T , i.e., the single {u1, u2, u3}
in T . Using bounded probing, it finds another subtree ST ′,
having nodes {u1, u2, u3}, {u5} and {u6, u7, u8, u9}, with a
higher net worth, as shown in Fig. 10(b). This tree is indeed
the minimum spanning tree in the entire converted graph, and
finally, the subgraph corresponding to ST ′ is returned. 2

Recall that the strong merging technique directly merges
two nodes using the edge between them. This might give worse
results when there exist paths that are better than using the
edge between them. Hence, algorithm computeADS further
computes dense subgraphs without using strong merging (lines
1, 3–5 and 7 in Fig. 11), and finally returns the better solution
of these two methods.

Time complexity analysis. Algorithm computeADS runs in
O(|V |+|E|+|E′|2+(|E′|+|V ′|)·log |V ′|) time, in which |E′|
and |V ′| are the numbers of edges and nodes in the converted
graph ~H , respectively.

Observe the following. (1) Given an aggregate graph Ĥ(V ,
E, f), it takes procedure convertAG O(|V | + |E|) time to
produce its converted graph ~H(V ′, E′, p, w), as finding all
connected components can be done in linear time [9] (line
1). (2) Procedure strongMerging can be done in O(|E′|2 +
|E′| log |V ′|) time to generate the merged converted graph ~H ′

of ~H (line 2). (3) A minimum spanning tree can be computed
in O(|E′| log |V ′|) time [9] (lines 3, 6). (4) Strong pruning can
be done in O(|V ′|) time [22] (line 4). Finally, (5) bounded
probing takes O(r2 · |E′|+ r · |V ′| log |V ′|) time (line 5). Note
that here ~H is typically much smaller than G, ~H ′ is smaller
than ~H , and r is a small constant, e.g., 3 and 4.

E. FIDES: The Complete Solution

We finally present the complete data-driven approach to
FInding DEnse Subgraphs, referred to as FIDES, in temporal
graphs, which combines algorithm computeADS above and
the algorithms of identifying time intervals in Section III.

Algorithm FIDES
Input: Temporal graph G(V , E, F), positive integer k.
Output: Subgraph of G with cohesive density as large as possible.
1. Identifying k/2 time intervals using maxTInterval;
2. Identifying k/2 time intervals using minTInterval;
3. for each [i, j] of the k time intervals do
4. compute the dense subgraph of G[i, j] using computeADS;
5. return the subgraph with the largest cohesive density.

Fig. 12. Algorithm FIDES: a data-driven approach

Algorithm FIDES is presented in Fig. 12, which takes as
input a temporal graph G(V , E, F) and a positive integer
k, and outputs the dense subgraph of G with the largest
possible cohesive density. It first computes k time intervals
using algorithms maxTInterval and minTInterval (lines 1-2).
Among these k time intervals, it finds and returns the subgraph
of G with the largest possible cohesive density, using algorithm
computeADS (lines 3-5).

Time complexity analysis. By the complexity analyses of
algorithms maxTInterval, minTInterval and computeADS, it
is easy to know that given a temporal graph G(V,E, F) and a
positive integer k, algorithm FIDES runs in O((T +h2) · |E|+
k · (|V |+ |E′|2 + (|E′|+ |V ′|) · log |V ′|)) time.

Space complexity analysis. The space complexity of algorith-
m FIDES is O(2·T ·|E|): (1) the storage of the temporal graph
costs O(T · |E|) space, (2) we pre-compute AF (e, t) for each
edge e and timestamp t, which costs another O(T · |E|) space,
and (3) each step of computeADS is basically based on the
converted graph ~H , with the space complexity being the size
of the converted graph, i.e., O(|V ′|+ |E′|).

Note that here (1) h is the number of local maxima or
minima, (2) T is the total number of snapshots, and (3) |E′|
and |V ′| are the largest numbers of edges and nodes in all
converted graphs ~H in algorithm computeADS, which are
typically much smaller than |E| and |V |, respectively.

V. EXPERIMENTAL STUDY

Using both real-life and synthetic data, we conduct an
extensive experimental study of our data-driven approach
FIDES to finding dense subgraphs in large temporal networks,
compared with the state of the art method MEDEN [7].

A. Experimental Settings

We first introduce the settings of our experimental study.

Datasets. We chose two datasets to test our approach.

(1) BJDATA is a real-life dataset that records the dynamic
traffic condition of the road network in Beijing. Its road traffic
conditions (+2: congestion, +1: slow, and −1: fast) were
collected using Taxies equipped with GPS sensors, and were
updated every 5 minutes. Here we consider day level temporal
data with 289 snapshots in total. Hence, BJDATA is very large,
and has 23, 724, 877 nodes and 31, 280, 782 edges.

(2) SYNDATA is produced by the synthetic data generator
developed in [7]. Using random graphs as the underlying graph
structure, the generator first produces a temporal graph with
n nodes, m edges and T snapshots. Initially, all edges are
assigned with negative weights. The generator activates a seed
edge at random by assigning it a positive edge weight. After
this, its neighboring edges are activated based on a probability

npr. An activated edge also has a probability tpr, to activate its
copy in the next snapshot. Later activated edges will perform
the same activation process, with decayed npr and tpr. The
process is repeated until the graph reaches a fixed activation
density adr, the percentage of activated edges in all snapshots.
Rates npr, tpr and adr are fixed to 0.3, 0.9 and 0.3 by default,
respectively, and the number of edges m is fixed to 2 · n.

Algorithms and implementation. Algorithms were all im-
plemented with Java, including the state of the art algorithm
MEDEN and the synthetic data generator [7] that are available
at http://www.cs.ucsb.edu/d̃bl/software.php.

All experiments were run on a PC with 2 Intel Xeon E5–
2630 2.4GHz CPUs and 64 GB of memory. The usage of
virtual memory was forbidden in all our tests. When quantity
measures are evaluated, the test was repeated over 5 times and
the average is reported here.

B. Experimental Results

We tested the evolving convergence phenomenon proposed
in Section III, and the effectiveness and efficiency of our
data-driven approach FIDES vs. MEDEN using BJDATA and
SYNDATA. We next present our findings.

Exp-1. Verification of the evolving convergence phe-
nomenon. In the first set of tests, we show the rational of
the evolving convergence phenomenon, which justifies the way
how we identify the top k time intervals.

Given a temporal graph G(V,E, F), we define a metric
pEC =

∑T
t=2 max(|E≥(t)|,|E≤(t)|)

|E|(T−1) (the proportion of edges that
satisfy the evolving convergence phenomenon) to measure to
what degree the temporal graph G obeys the phenomenon, in
which |E≥(t)| and |E≤(t)| (t ∈ [2, T]) denote the correspond-
ing numbers of edges e ∈ E such that F t(e) ≥ F t−1(e) and
F t(e) ≤ F t−1(e), respectively.

The pEC are 96% on BJDATA and 90% on average on all
tested SYNDATA, respectively, which justifies our observation
of the evolving convergence phenomenon.

Exp-2. Algorithms computeADS vs. topDown. In the second
set of tests, we compare the effectiveness and efficiency of
computeADS with topDown, both of which compute the dense
subgraphs on aggregate graphs for given time intervals, and are
called by FIDES and MEDEN, respectively.

Exp-2.1. To evaluate the impacts of the number Tti of snap-
shots in the time intervals of aggregate graphs, we varied
Tti from 50 to 289 for BJDATA and from 200 to 2, 000
for SYNDATA, respectively. We used the entire BJDATA,
and fixed SYNDATA with n = 100, 000, T = 2, 000 and
adr = 0.3. For fairness, we report the average result of
aggregate graphs with 20 distinct time intervals for each Tti,
except the largest Tti for BJDATA, shown in Fig. 13.

When varying Tti, the cohesive density scores of the sub-
graphs found by both algorithms increase with the increment
of Tti, as the data has temporal contiguity of positive weight
edges. Further, those found by computeADS are consistently
better than topDown on both BJDATA (+0.28% on average)
and SYNDATA (+0.04% on average).

The running time of both algorithms is insensitive to the
number Tti of snapshots in the time intervals of aggregate

graphs, as the aggregate graphs are basically the same, in terms
of both their sizes and structures. But, computeADS is much
more efficient than topDown on both datasets, and is around 67
and 22 times faster than topDown on BJDATA and SYNDATA,
respectively. This is because computeADS reduces the sizes
of aggregate graphs using converted graphs and the strong
merging technique, which speeds up the computation.

Exp-2.2. To evaluate the impacts of the graph sizes, we varied
n from 50, 000 to 400, 000 on SYNDATA, while fixed T =
2, 000 and adr = 0.3. For fairness, we used the average
result of 100 aggregate graphs by randomly generating 100
time intervals for each graph size. The results are reported in
Figs. 14(a) & 14(b). We did not report topDown on graphs
with n ≥ 150, 000, as it ran out of memory.

When varying n, the cohesive density scores of the sub-
graphs found by both algorithms obviously increase with
the increment of n, and computeADS is consistently better
(+0.04% on average) than topDown when n ≤ 100, 000.

When varying n, the running time of both algorithms
increases with the increment of n. Algorithm computeADS
is consistently much faster than topDown, and is 15 and 24
times faster when n = 50, 000 and 100, 000, respectively.

Exp-2.3. To evaluate the impacts of the activation density adr,
we varied adr from 0.05 to 0.35 on SYNDATA, while fixed
n = 100, 000 and T = 2, 000. Due to the way that the synthetic
generator works, it is already relatively dense in terms of
positive weight edges even when adr is 0.35. Note that adr
was fixed to 0.1 in [7]. For fairness, we also used the same
strategy as Exp-2.2 to use the average result of 100 aggregate
graphs for each adr, which are reported in Figs. 14(c) & 14(d).

When varying adr, the cohesive density scores of the
subgraphs found by both algorithms obviously increase with
the increment of adr. The subgraphs found by computeADS
are better (+4.30% on average) than topDown when adr ≤
0.3, and are the same in terms of cohesive density when
adr = 0.35. Algorithm computeADS performs significantly
better than topDown when adr ≤ 0.2, which is due to our
three well-tuning optimization techniques.

When varying adr, the running time of computeADS
decreases, while the one of topDown increases, especially
when varying adr from 0.25 to 0.35. This is because (a)
there are more edges with positive weights for larger adr, and
(b) procedure convertAG and the strong merging technique
become more effective on reducing the sizes of aggregate
graphs when there are more positive weight edges. Indeed,
computeADS is 20, 25 and 36 times faster than topDown when
adr is ≤ 0.25, 0.3 and 0.35, respectively, in our tests.

Exp-3. Algorithms FIDES vs. MEDEN. In the third set
of tests, we compare the effectiveness and efficiency of our
approach FIDES with the state of the art method MEDEN.
In addition to the three factors evaluated in Exp-2, we further
test the impacts of the number k of time intervals used in
FIDES. By default, k is set to 10. Due to the superiority of
computeADS over topDown as shown in Exp-2, FIDES may
produce denser subgraphs than MEDEN, despite the limited
number of verified time intervals.

Exp-3.1. To evaluate the impacts of the number T of snapshots
of temporal graphs, we varied T from 50 to 289 for BJDATA

0

30

60

90

120

50 100 150 200 250 289

+0.68%

+0.38%

+0.18%

+0.14%
+0.13%+0.16%

de
ns

ity
 s

co
re

 (
x1

05)

number of snapshots in time intervals

topDown
computeADS

(a) BJDATA

0

5

10

15

20

2 5 8 11 14 17 20

+0.03%

+0.04%

+0.04%

+0.05%

+0.05%

+0.05%

+0.03%

de
ns

ity
 s

co
re

 (
x1

05)

number of snapshots in time intervals (x100)

topDown
computeADS

(b) SYNDATA

0.01

0.1

1

10

100

50 100 150 200 250 289

tim
e

(s
ec

.)

number of snapshots in time intervals

topDown
computeADS

(c) BJDATA

0.01

0.1

1

10

100

2 5 8 11 14 17 20

tim
e

(s
ec

.)

number of snapshots in time intervals (x100)

topDown
computeADS

(d) SYNDATA

Fig. 13. Varying the number of snapshots in time intervals: computeADS vs. topDown

0

7

14

21

28

5 10 15 20 25 30 35 40

+0.04%
+0.04%

NA
NA

NA
NA

NA

NA

de
ns

ity
 s

co
re

 (
x1

05)

graph sizes (x10,000)

topDown
computeADS

(a) SYNDATA

0.01

0.1

1

10

100

5 10 15 20 25 30 35 40

tim
e

(s
ec

.)

graph sizes (x10,000)

topDown
computeADS

(b) SYNDATA

1

102

104

106

108

0.05 0.1 0.15 0.2 0.25 0.3 0.35

+7.18%
+2.10%

+4.73%
+11.0%

+0.95%
+0.04%

0.00%

de
ns

ity
 s

co
re

activation density

topDown
computeADS

(c) SYNDATA

0.01

0.1

1

10

100

0.05 0.1 0.15 0.2 0.25 0.3 0.35

tim
e

(s
ec

.)

activation density

topDown
computeADS

(d) SYNDATA

Fig. 14. Varying the graph size and activation density: computeADS vs. topDown

and from 200 to 2, 000 for SYNDATA, respectively. We fixed
k = 10, and used the same setting as Exp-2.1 for BJDATA and
SYNDATA. The results are reported in Fig. 15.

When varying T , the cohesive density scores of the sub-
graphs found by both algorithms increase with the increment
of T . Moreover, the dense subgraph found by FIDES are
consistently better than MEDEN on both BJDATA (+0.28%
on average) and SYNDATA (+0.04% on average), in our tests,

When varying T , the running time of both algorithms
obviously increases with the increment of T . Moreover, FIDES
is consistently faster than MEDEN, and is around 2, 980 and
1, 079 times faster than MEDEN on BJDATA and SYNDATA
on average, respectively, in our tests.

Exp-3.2. To evaluate the impacts of the parameter k, we varied
k from 2 to 22. We used the same setting as Exp-2.1 for T , n
and adr. Algorithm MEDEN uses k time intervals to estimate a
lower bound for pruning (line 4 in Fig. 2), and k has impacts
on the running time of MEDEN, but not the quality of the
dense subgraphs found. The results are reported in Fig. 16.
We simply plotted red markers ∗ in Fig. 16(d) when MEDEN
could not finish the tests in 2 days.

When varying k, the dense subgraphs found by both
algorithms are insensitive to k when k is no less than 10.
The dense subgraphs found by FIDES are (+0.15%, +0.04%)
better than MEDEN on (BJDATA, SYNDATA) when k ≥ 10.

When varying k, the running time of MEDEN decreases,
while the one of FIDES increases, with the increment of k.
Algorithm MEDEN could not finish the test in 2 days on
SYNDATA as it used a non-effective lower bound for k = 2,
and its running time becomes stable when k is around 18 on
both datasets, which only differs 1.72% on BJDATA and 0.06%
on SYNDATA when increasing k from 18 to 22. Moreover,
FIDES is consistently faster than MEDEN. Indeed, FIDES is
19, 655 and 3, 036 times faster than MEDEN, on BJDATA and
SYNDATA on average, respectively, in our tests.

Exp-3.3. To evaluate the impacts of the graph sizes n, we
used the same setting as Exp-2.2 and fixed k = 10. We did
not report MEDEN on graphs with size 150, 000 or larger, as

it ran out of memory, and could not finish the tests. The results
are reported in Figs. 17(a) & 17(b).

When varying n, the cohesive density scores of subgraphs
found by both algorithms increase with the increment of n.
The dense subgraphs found by FIDES are better (+0.05%
on average) than MEDEN on graphs with size no more than
100, 000, in our tests.

When varying n, the running time of both algorithms
obviously increases with the increment of n. Moreover, FIDES
is consistently faster than MEDEN, and is 2, 519 times faster
on graphs with size no more than 100, 000 on average, in our
tests. In fact, FIDES could finish in 141.2 seconds when the
graph size reaches 400, 000, while it already took MEDEN
23, 180 seconds on small graphs with 50, 000 nodes only.

Exp-3.4. To evaluate the impacts of the activation density adr,
we used the same setting as Exp-2.3 and fixed k = 10. The
results are reported in Figs. 17(c) & 17(d). Note that MEDEN
ran out of memory when adr was 0.05 or 0.25, as in these
cases there were too many unpruned time intervals to verify,
and too much space to store the corresponding aggregate
graphs.

When varying adr, the cohesive density scores of sub-
graphs found by both algorithms increase with the increment
of adr. The dense subgraphs found by FIDES are slightly
worse (−0.16% on average) than MEDEN in our tests. More
specifically, those found by FIDES are slightly worse (−0.29%
on average) than MEDEN when adr ≤ 0.2, and are no worse
than MEDEN when adr ≥ 0.3, in our tests, respectively.
This result further shows the effectiveness of the top–k time
intervals, especially on graphs with larger adr.

When varying adr, the running time of MEDEN first
increases and then decreases. This is due to the impacts of
the pruning technique of MEDEN. Note that here adr = 0.3 is
a turning point for MEDEN, as it happens that the estimated
bounds of MEDEN are not very effective when adr = 0.3.
As we can see, FIDES is very robust to adr. Further, FIDES
is consistently faster than MEDEN, and is about 1, 265 times
faster on average, in our tests.

0

30

60

90

120

50 100 150 200 250 289

+0.69%

+0.37%

+0.16%

+0.13%

+0.16%
+0.15%

de
ns

ity
 s

co
re

 (
x1

05)

number of snapshots

MEDEN
FIDES

(a) BJDATA

0

5

10

15

20

2 5 8 11 14 17 20

+0.03%

+0.04%

+0.03%

+0.08%

+0.03%

+0.02%

+0.02%

de
ns

ity
 s

co
re

 (
x1

05)

number of snapshots (x100)

MEDEN
FIDES

(b) SYNDATA

0.1

1

10

102

103

104

105

50 100 150 200 250 289

tim
e

(s
ec

.)

number of snapshots

MEDEN
FIDES

(c) BJDATA

1

10

102

103

104

105

106

2 5 8 11 14 17 20

tim
e

(s
ec

.)

number of snapshots (x100)

MEDEN
FIDES

(d) SYNDATA

Fig. 15. Varying the number of snapshots: FIDES vs. MEDEN

0

50

100

150

200

2 6 10 14 18 22

-0.58%
-0.58%

+0.15%
+0.15%

+0.15%
+0.15%

de
ns

ity
 s

co
re

 (
x1

05)

number k

MEDEN
FIDES

(a) BJDATA

0

8

16

24

32

2 6 10 14 18 22

+0.04%
+0.04%

+0.04%
+0.04%

+0.04%
+0.04%

de
ns

ity
 s

co
re

 (
x1

05)

number k

MEDEN
FIDES

(b) SYNDATA

0.1

1

10

102

103

104

105

2 6 10 14 18 22

tim
e

(s
ec

.)

number k

MEDEN
FIDES

(c) BJDATA

1

10

102

103

104

105

106

2 6 10 14 18 22

tim
e

(s
ec

.)

number k

MEDEN
FIDES

(d) SYNDATA

Fig. 16. Varying the number k: FIDES vs. MEDEN

0

25

50

75

100

5 10 15 20 25 30 35 40

+0.05%
+0.04%

NA
NA

NA
NA

NA

NA

de
ns

ity
 s

co
re

 (
x1

05)

graph sizes (x10,000)

MEDEN
FIDES

(a) SYNDATA

1

10

102

103

104

105

106

5 10 15 20 25 30 35 40

tim
e

(s
ec

.)

graph sizes (x10,000)

MEDEN
FIDES

(b) SYNDATA

1

102

104

106

108

0.05 0.1 0.15 0.2 0.25 0.3 0.35

NA
-0.27%-0.45%-0.15%NA

+0.04%
0.00%

de
ns

ity
 s

co
re

activation density

MEDEN
FIDES

(c) SYNDATA

1

10

102

103

104

105

106

0.05 0.1 0.15 0.2 0.25 0.3 0.35

tim
e

(s
ec

.)

activation density

MEDEN
FIDES

(d) SYNDATA

Fig. 17. Varying the graph size and activation density: FIDES vs. MEDEN

Exp-4. Closeness to optimality. (1) One may want to know
the closeness to the optimal solutions of computeADS and
FIDES. However, as shown by Proposition 1, computing
the optimal dense subgraphs is infeasible even for aggregate
graphs. Hence, we chose the four groups (K, P, C, D) of
114 benchmark small graphs with known optimal solutions
[24]. The cohesive density scores of subgraphs found by
computeADS are (92%, 94%, 92%, 90%) of the optima of
groups (K, P, C, D), respectively, on average. In contrast,
topDown obtains an average performance of (83%, 87%, 87%,
84%) on the four groups, respectively. (2) Roughly speaking,
the solutions of FIDES are around 85% of the optima on
average, as FIDES is comparable to MEDEN, which achieves
a performance of 85% of the optima [7].

Summary. From these tests we find the following.

(1) The evolving convergence phenomenon is quite common.
Indeed, there are about 96% and 90% of edges satisfying the
phenomenon on BJDATA and SYNDATA, respectively.

(2) The quality of the dense subgraphs found by computeADS
is consistently better than those by topDown on both BJDATA
(+0.28% on average) and SYNDATA (+0.04% on average).
Further, computeADS is much faster than topDown: 67 times
and 15 times on average on BJDATA and SYNDATA, respec-
tively. Finally, topDown already ran out of memory for graphs
with 150, 000 nodes and 2, 000 snapshots.

(3) The quality of the dense subgraphs found by FIDES is
comparable to those by MEDEN: better (+0.28% on average)
on BJDATA and slightly worse (−0.16% on average) on SYN-
DATA. Further, FIDES is 2, 980 and 1, 079 times faster than

MEDEN on average on BJDATA and SYNDATA, respectively.
Finally, MEDEN already ran out of memory for graphs with
150, 000 nodes and 2, 000 snapshots.

(4) The three characteristics of time intervals (i.e., Proposi-
tion 2, Fact 1 and Fact 2 in Section III) together assure a
pretty good estimation of the time intervals involved with
dense subgraphs. Indeed, a small number of intervals, e.g.,
10, already suffice for FIDES to find a good solution.

VI. RELATED WORK

Dense subgraphs in static networks. Dense subgraphs have
been widely studied, and are a general concept. The concrete
semantics highly depend on the studied problems and appli-
cations, such as cohesive subgraphs like maximal cliques, n-
clique, k-core and n-clan [31], the prize collecting Steiner tree
[13], [22], and densities defined in terms of the numbers or
weights of edges and nodes [3], [4], [15], [16], [23].

Our work adopts the strong pruning technique introduced
in [22] for finding a better subgraph in aggregate graphs, by
building the connection between finding the subgraph of an
aggregate graph with the highest cohesive density and finding
the maximum net worth subtree [22].

Dense subgraphs in dynamic networks. Dense subgraphs
have also been recently investigated in temporal networks un-
der various terms, such as anomalies [6], [8], heavy subgraphs
[7], dense subgraphs [5], [10] and network processes [27].
However, they typically refer to connected subgraphs with
higher scores, defined in terms of the weights of edges and

nodes in a continuous time interval. Our work adopts the
definition of dense subgraphs in [7], and is different from [5],
[6], [8], [10], [27]. Further, the study in [5], [10] focuses on
dynamic graphs with node and/or edge updates, and, hence, is
different from our work.

Close to our work is [7] that proposed and studied the FDS
problem. We develop a data-driven solution, totally different
from the filter and verification method in [7]. Further, the
connection between the FDS and NWM problems has never
been employed in the algorithm of [7], not to mention the
approximation hardness result of the FDS problem. Indeed,
data-driven solutions using hidden statistics of data also shed
light on large graph processing.

Other works in dynamic networks. Temporal network anal-
ysis has recently attracted more and more attentions [2], [19],
[35], such as temporal shortest paths [14], [18], [32], tempo-
ral minimum spanning trees [21], incremental graph pattern
matching [12], graph stream analysis [33] and continuous
aggregate queries [26]. Different from these, we study dense
temporal subgraphs in this work.

VII. CONCLUSIONS

We have proposed FIDES, a data-driven approach em-
ploying hidden data statistics to finding dense subgraphs in
large temporal networks. First, we have employed the data
characteristics to effectively identify k time intervals from a
total of T ∗ (T + 1)/2 ones, in which T is the number of
snapshots and k is typically much smaller than T . Second,
we have developed better algorithm heuristics to solve the
problem. Finally, we have experimentally verified that FIDES
is much more scalable than the state of the art method MEDEN
[7], while the quality of the dense subgraphs found by FIDES
is comparable to MEDEN.

Several issues need further study. We are to apply our
approach to general temporal graphs with node and edge
updates, to develop incremental and distributed algorithms to
provide further scalability on large temporal networks, and to
extend our techniques to find top–k dense temporal subgraphs.

ACKNOWLEDGMENT

This work is supported in part by NSFC U1636210, 973
Program 2014CB340300, NSFC 61421003 & 61322207, Special
Funds of Beijing Municipal Science & Technology Commis-
sion, and MSRA Collaborative Research Program.

REFERENCES

[1] Baidu real-time road traffic status product.
http://map.baidu.com/fwmap/zt/traffic/index.html?city.

[2] C. C. Aggarwal and K. Subbian. Evolutionary network analysis: A
survey. ACM CSUR, 47(1):10:1–10:36, 2014.

[3] R. Andersen. A local algorithm for finding dense subgraphs. ACM
Transactions on Algorithms, 6(4), 2010.

[4] O. D. Balalau, F. Bonchi, T. H. Chan, F. Gullo, and M. Sozio. Finding
subgraphs with maximum total density and limited overlap. In WSDM,
2015.

[5] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. E. Tsourakakis.
Space- and time-efficient algorithm for maintaining dense subgraphs on
one-pass dynamic streams. In STOC, 2015.

[6] P. Bogdanov, C. Faloutsos, M. Mongiovı̀, E. E. Papalexakis, R. Ranca,
and A. K. Singh. Netspot: Spotting significant anomalous regions on
dynamic networks. In SDM, 2013.

[7] P. Bogdanov, M. Mongiovı̀, and A. K. Singh. Mining heavy subgraphs
in time-evolving networks. In ICDM, 2011.

[8] J. Chan, J. Bailey, C. Leckie, and M. Houle. ciForager: Incrementally
discovering regions of correlated change in evolving graphs. TKDD,
6(3):11, 2012.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2001.

[10] A. Epasto, S. Lattanzi, and M. Sozio. Efficient densest subgraph
computation in evolving graphs. In WWW, 2015.

[11] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph homomorphism
revisited for graph matching. PVLDB, 3(1), 2010.

[12] W. Fan, X. Wang, and Y. Wu. Incremental graph pattern matching.
TODS, 38(3):18, 2013.

[13] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the cost
of multicast transmissions. J. Comput. Syst. Sci., 63(1):21–41, 2001.

[14] L. Foschini, J. Hershberger, and S. Suri. On the complexity of time-
dependent shortest paths. Algorithmica, 68(4):1075–1097, 2014.

[15] A. Gajewar and A. D. Sarma. Multi-skill collaborative teams based on
densest subgraphs. In SDM, 2012.

[16] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense
subgraphs in massive graphs. In VLDB, 2005.

[17] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,
W. Chen, and E. Chen. Chronos: a graph engine for temporal graph
analysis. In Eurosys, 2014.

[18] M. S. Hassan, W. G. Aref, and A. M. Aly. Graph indexing for shortest-
path finding over dynamic sub-graphs. In SIGMOD, 2016.

[19] P. Holme and J. Saramäki. Temporal networks. Physics Reports,
519(3):97 – 125, 2012.

[20] H. Huang, J. Song, X. Lin, S. Ma, and J. Huai. TGraph: A temporal
graph data management system. In CIKM, 2016.

[21] S. Huang, A. W. Fu, and R. Liu. Minimum spanning trees in temporal
graphs. In SIGMOD, 2015.

[22] D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting steiner
tree problem: theory and practice. In SODA, 2000.

[23] S. Khuller and B. Saha. On finding dense subgraphs. In ICALP, 2009.
[24] I. Ljubic, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and

M. Fischetti. An algorithmic framework for the exact solution of the
prize-collecting steiner tree problem. Math. Program., 105(2-3):427–
449, 2006.

[25] M. Minkoff. The prize collecting steiner tree problem. Master’s thesis,
MIT, 2000.

[26] J. Mondal and A. Deshpande. EAGr: supporting continuous ego-centric
aggregate queries over large dynamic graphs. In SIGMOD, 2014.

[27] M. Mongiovı̀, P. Bogdanov, and A. K. Singh. Mining evolving network
processes. In ICDM, 2013.

[28] K. Semertzidis and E. Pitoura. Durable graph pattern queries on
historical graphs. In ICDE, 2016.

[29] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
JCSS, 26(3):362–391, 1983.

[30] V. V. Vazirani. Approximation Algorithms. Springer, 2003.
[31] S. Wasserman and K. Faust. Social Network Analysis: Methods and

Applications. Cambridge University Press, 1994.
[32] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. Path problems

in temporal graphs. PVLDB, 7(9):721–732, 2014.
[33] W. Yu, C. C. Aggarwal, S. Ma, and H. Wang. On anomalous hotspot

discovery in graph streams. In ICDM, 2013.
[34] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing:

Concepts, methodologies, and applications. ACM TIST, 5(3):38:1–
38:55, 2014.

[35] B. Zong, X. Xiao, Z. Li, Z. Wu, Z. Qian, X. Yan, A. K. Singh,
and G. Jiang. Behavior query discovery in system-generated temporal
graphs. PVLDB, 9(4):240–251, 2015.

