
Proxies for Shortest Path and Distance Queries
(Extended Abstract)

Shuai Ma∗†, Kaiyu Feng‡, Jianxin Li∗†, Haixun Wang§, Gao Cong‡, Jinpeng Huai∗†
∗SKLSDE Lab, Beihang University, Beijing, China

†Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing, China
‡School of Computer Science and Engineering, Nanyang Technological University, Singapore

§Facebook Inc., USA
{mashuai, lijx, huaijp}@buaa.edu.cn, {kfeng002@e., gaocong@}ntu.edu.sg, haixun@gmail.com

Abstract—This study investigates a light-weight data reduction
technique for speeding-up shortest path and distance queries on
large graphs. We propose a notion of routing proxies (or simply
proxies), each of which represents a small subgraph, referred to as
deterministic routing areas (DRAs). We show that routing proxies
hold good properties for speeding-up shortest path and distance
queries, and there exists a linear-time algorithm to compute
routing proxies and their corresponding DRAs. Finally, we discuss
the experimental results, and verify that our solution is a general
technique for reducing graph sizes and speeding-up shortest path
and distance queries, using real-life large graphs.

I. INTRODUCTION

We study the node-to-node shortest path (distance) prob-
lem on large graphs: given a weighted undirected graph
G(V,E) with non-negative edge weights, and two nodes of G,
the source s and the target t, find the shortest path (distance)
from s to t in G. The Dijkstra’s algorithm with Fibonacci heaps
runs in O(n log n +m) due to Fredman & Tarjan [2], where
n and m denote the numbers of nodes and edges in a graph,
respectively, which remains asymptotically the fastest known
solution on arbitrary undirected graphs with non-negative edge
weights. However, computing shortest paths and distances
remains a challenging problem, in terms of both time and space
cost, on large-scale graphs. Hence, various optimizations have
been developed to speed-up the computation.

To speed-up shortest path and distance queries, our ap-
proach is to use representatives, each of which captures a set
of nodes in a graph. The task of finding a proper form of
representatives is nontrivial. Intuitively, we expect represen-
tatives to have the following properties. (1) A small number
of representatives can represent a large number of nodes in a
graph; (2) Shortest paths and distances involved within the set
of nodes being represented by the same representative can be
answered efficiently; And, (3) the representatives and the set
of nodes being represented can be computed efficiently.

The full version of this extended abstract appears in [3].

II. ROUTING PROXIES

We first propose routing proxies and deterministic routing
areas (DRAs) to capture the idea of representatives and the set
of nodes being represented, respectively.

Proxies. Given a node u in graph G(V,E), we say that u is a
routing proxy (or simply proxy) of a set of nodes, denoted by
Au, if and only if:

(1) node u ∈ Au is reachable to any node of Au in G,

(2) all neighbors of any node v ∈ Au \ {u} are in Au, and

(3) the size |Au| of Au is equal to or less than c · b
√
|V |c,

where c is a small constant number, such as 2 or 3.

Here condition (1) guarantees the connectivity of subgraph
G[Au], condition (2) implies that not all neighbors of proxy u
are necessarily in Au; and condition (3), called size restriction,
limits the size of Au of proxy u. Intuitively, one simply
checks the graph by removing u from G and its newly created
connected components (CCs), and a proxy of u is a union of
such CCs whose total number of nodes is at most c·b

√
|V |c−1.

Deterministic routing areas. A node u may be a proxy of
multiple sets of nodes A1

u, . . . , A
k
u. We denote as A+

u the union
of all the sets of nodes whose proxy is u , i.e., A+

u = A1
u∪. . .∪

Ak
u, and Ai

u (i ∈ [1, k]) is said a component of A+
u .

We refer to the subgraph G[A+
u] as a deterministic routing

area (DRA) of proxy u. Intuitively, DRA G[A+
u] is a maximal

connected subgraph, union of a set of CCs, that connects to the
rest of graph G through proxy u only. That is, for any node
v in G[A+

u] and any node v in the rest of graph G, u must
appear on the shortest path path(v, v′).

Maximal proxies. We say that a proxy u is maximal if there
exist no other proxies u′ such that u′ 6= u and A+

u ⊂ A+
u′ .

Trivial proxies. We say that a maximal proxy u is trivial if
A+

u contains itself only, i.e., A+
u = {u}.

Equivalent proxies. We say that two proxies u and u′ are
equivalent, denoted by u ≡ u′, if A+

u = A+
u′ .

Trivial proxies only represent themselves. Hence, we only
focus on non-trivial maximal proxies (or simply proxies).

We then give an analysis of the properties of DRAs and their
routing proxies, and show that they indeed hold the desired
properties of representatives discussed in Introduction.

Proposition 1: Given any two nodes v, v′ in the DRA G[A+
u] of

proxy u in graph G, (1) the shortest path in G[A+
u] is exactly

the one in the entire graph G, and (2) it can be computed in
linear time in the size of G. 2

Corollary 2: Given any two nodes v, v′ in the DRA G[A+
u]

of proxy u in graph G, (1) the shortest distance dist(v, v′) in
G[A+

u] is exactly the one in the entire graph G, and (2) it can
be computed in linear time in the size of G. 2

Proposition 3: Given two nodes v and u with two dis-
tinct proxies x and y, respectively, in graph G, the shortest
path from v to u is the concatenation of three paths, i.e.,
path(v, x)/path(x, y)/path(y, u). 2

Corollary 4: Given two nodes v and u with two distinct
proxies x and y, respectively, in graph G, the shortest distance
dist(v, u) = dist(v, x) + dist(x, y) + dist(y, u). 2

Theorem 5: Finding all DRAs, each associated with one
maximal proxy, in a graph can be done in linear time. 2

III. QUERY ANSWERING WITH ROUTING PROXIES

Based on the previous analyses, we present a framework
for speeding-up shortest path and distance queries, consisting
of two modules: preprocessing and query answering.

1. Preprocessing. Given graph G(V,E), the preprocessing
module executes the following.

(1) It first computes all DRAs and their maximal proxies with
a linear algorithm, referred to as computeDRAs [3].

(2) It then pre-computes and stores all the shortest paths and
distances between any node in a DRA and its proxy. To support
shortest distance queries, for each node in a DRA, we store its
proxy u, its distance to u and the component of A+

u to which it
belongs, and to support shortest path queries, we further keep
the shortest paths from proxy u to all nodes in the DRA.

(3) It finally computes the reduced subgraph G′ by removing
all DRAs, but keeping their proxies, from graph G.

2. Query answering. Given two nodes s and t in graph G(V ,
E) and the pre-computed information, the query answering
module executes the following.

(1) When nodes s and t belong to the same DRA G[A+
u] with

proxy u such that A+
u = A1

u ∪ . . . Ah
u.

If s and t further fall into the same component Ai
u

(i ∈ [1, h]), it invokes the Dijkstra’s algorithm on the subgraph
G[Ai

u] to compute the shortest path and distance between s
and t. Otherwise, it simply returns path(s, u)/path(u, t) or
dist(s, u) + dist(u, t) in constant time.

(2) When s and t belong to two DRAs G[A+
us
] and G[A+

ut
]

with proxies us and ut, respectively.

As shown in Section II, we know that path(s, t) =
path(s, us)/ path(us, ut)/ path(ut, t), in which path(s, us)
and path(ut, t) are already known. Hence, it simply invokes an
algorithm (e.g., ARCFLAG [4], TNR [1], AH [5]) on the reduced
graph G′ for computing path(us, ut). Similarly, it computes
dist(s, t) = dist(s, us) + dist(us, ut) + dist(ut, t).

IV. EXPERIMENTAL STUDY

We conduct an extensive experimental study, using real-
life datasets: (1) co-authorship networks, which extracted a
co-authorship graph from DBLP (SNAP, http://snap.stanford.
edu/data) and (2) road networks (DIMACS, http://www.dis.
uniroma1.it/challenge9/download.shtml). Note that TNR is de-
signed for road networks and it is very inefficient for TNR
to preprocess dense graphs such as DBLP (it took more than

1 week to finish the preprocessing). Hence, we remove all
nodes whose degrees are higher than 14, and choose the largest
connected component in the remaining graph, referred to as
DBLP14. Also AH requires the coordinate information to
answer shortest path or distance queries, not available in both
DBLP and DBLP14.

Experimental results. (1) In sparse graphs whose average
degree is less than 4, about 1/3 nodes in the graph are captured
by proxies, leaving the reduced graph about 2/3 of the input
graph. In some cases such as DBLP14, about 2/3 nodes in
the graph are captured by proxies, leaving the reduced graph
about only 1/3 of the input graph.

(2) The performance of proxies and DRAs is sensitive to the
density and degree distribution of graphs, and they perform
well on graphs following the power law distribution. Mean-
while, for a given degree distribution, DRAs tend to capture
less nodes when the average degree is higher.

(3) Proxies and their DRAs benefit existing shortest path and
distance algorithms in terms of time cost. They reduce (20%,
1%) time for (ARCFLAG, AH), and have comparable running
time for TNR on road networks; They reduce (4%, 49%) time
for (ARCFLAG, TNR) on the co-authorship network DBLP14.

(4) Existing shortest path and distance algorithms also benefit
from using proxies in terms of space overhead. Proxy+TNR can
handle the road network C-US while TNR cannot. Moreover,
(Proxy+ARCFLAG, Proxy+TNR, Proxy+AH) incur less space
overhead than their counterparts, and are about (38%–68%,
72%–92%, 82%) of (ARCFLAG, TNR, AH), respectively.

V. CONCLUSION

We have studied how to speed-up (exact) shortest path and
distance queries on large weighted undirected graphs. To do
this, we have proposed a light-weight data reduction technique,
a notion of proxies such that each proxy represents a small
subgraph, referred to as DRAs, and proxies and DRAs can
be computed efficiently in linear time. We have also verified,
both analytically and experimentally, that proxies significantly
reduce graph sizes and improve efficiency of existing methods.

ACKNOWLEDGMENTS

This work is supported in part by 973 Program
2014CB340300, NSFC U1636210 & 61421003 & 61322207,
Special Funds of Beijing Municipal Science & Technology
Commission, and MSRA Collaborative Research Program.

REFERENCES

[1] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor,
P. Sanders, D. Wagner, and R. Werneck. Route planning in transportation
networks. In MSR-TR-2014-4. 2014.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2001.

[3] S. Ma, K. Feng, J. Li, H. Wang, G. Cong, and J. Huai. Proxies for
shortest path and distance queries. TKDE, 28(7):1835–1850, 2016.

[4] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm.
Partitioning graphs to speedup Dijkstra’s algorithm. ACM Journal of EA,
11:1–29, 2006.

[5] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest
path and distance queries on road networks: towards bridging theory and
practice. In SIGMOD, 2013.

