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Abstract—With the proliferation of location-based services, the
generation of massive geo-tagged data opens up new opportuni-
ties to address real-world problems. In this paper, we present a
novel continuous bursty region detection (SURGE) problem that
aims to continuously detect a bursty region of a given size in
a specified geographical area from a stream of spatial objects.
The SURGE problem is useful in addressing several real-world
challenges such as disease outbreak detection. We propose an
exact solution to address the problem, and show the efficiency and
effectiveness by conducting experiments on real-world datasets.

I. INTRODUCTION

People often share geo-tagged messages through many
social services like Twitter and Facebook. Each geo-tagged
data is associated with a timestamp, a geo-location, and a set
of attributes (e.g., tweet content). In this paper, we refer to
them as spatial objects. With the proliferation of GPS-enabled
mobile devices and location-based services, the amount of
such spatial objects (e.g., geo-tagged tweets and trip requests
using Uber) is growing at an explosive rate. Their real-time
nature coupled with multi-faceted information and rapid arrival
rate in a streaming manner open up new opportunities to
address real-world problems.

For example, to tackle the challenge of a variety of virus
epidemics like Zika, the U.S. government continuously mon-
itored different areas for possible Zika outbreak. Since early
detection of such outbreak is paramount, how can we identify
the potential Zika-affected region in real time? As another
example, people can use Uber and Lyft to get a ride nowadays.
Sometimes people have to wait a long time for a car when the
number of car requests significantly surpasses the supply of
nearby drivers. Thus, it is beneficial to both passengers and
drivers if we can notify idle drivers in real time whenever there
is a sudden burst in demand in areas of interest to them.

There are two common themes in the two examples. First,
we need to continuously monitor a large volume of spatial
objects (e.g., trip requests and disease occurrences) to detect
in real time one region that shows relatively large spike in the
number of spatial objects (i.e., bursty region) in a given time
window. Second, a user needs to specify as input the size a×b
of rectangular-shaped bursty region that one wishes to detect.

In this paper, we refer to the problem embodied in the
aforementioned motivating examples as continuous bursty
region detection (SURGE) problem. Specifically, given a region

size a × b and an interested area A, the aim of the SURGE
problem is to continuously detect a region of the specified
size in A that demonstrates the maximum burstiness from a
stream of spatial objects.

In this paper, we propose an exact solution called cell-
CSPOT to monitor the bursty region. Specifically, we first
reduce the SURGE problem to the continuous bursty point
detection (CSPOT) problem. To address the CSPOT problem,
we propose a cell-based algorithm with a complexity of
O(|cmax|2 + log n), where |cmax| is the maximum number
of objects that we search inside a cell, and n is the number
of objects. We also conduct extensive experiments to illustrate
that our algorithm outperforms the baseline algorithms in an
order of magnitude. All the proofs can be found in the full
version of this paper [2].

II. RELATED WORK

Burst detection. Our SURGE problem is closely related to
efforts on exploring spatial-temporal bursts [5], [4], [7] albeit
from different aspects. However, the solution developed in [5]
is designed for data warehouse, and it cannot be deployed or
adapted to solve the SURGE problem. Lappas et al. [4] takes as
input a set of text streams with fixed locations. The proposed
solution can only handle a small number of text streams(tens
to hundreds) due to its high computational complexity. Zhang
et al. [7] define a burst as a cluster of geo-tagged tweets.
Moreover, their solution is built over geo-textual stream, while
our SURGE is applicable to any kind of spatial stream.
Region search. Our SURGE problem is also closely related
to the recent efforts on continuous MaxRS problem [1], [3].
Amagata et al. [1] propose the problem of monitoring the
MaxRS region over spatial data streams. The difference of the
SURGE problem from the continuous MaxRS problem is that
the burst score of the SURGE problem is defined over two
consecutive sliding windows, and spatial objects in different
windows contribute differently to the burst score. Though
their solution cannot be directly applied to solve the SURGE
problem, we can adapt their solution with some modifications
for the SURGE problem. Hussain et al. [3] investigates the
MaxRS problem on the trajectories of moving objects, where
the position of the objects can be estimated. In our problem,
the positions of the new arrived objects are unknown a priori.



III. PROBLEM STATEMENT

A. Terminology

A spatial object is a triple o = 〈w, ρ, tc〉, where w is the
weight, ρ is its location, and tc is the creation time. For
example, a geo-tagged tweet is a spatial object. The weight
could be the text relevance to a set of query keywords.

We next introduce two consecutive time-based sliding win-
dows, namely current and past windows. Given a window size
|W |, the current window Wc and the past window Wp are two
consecutive time periods of length |W | from present time t,
i.e., Wp = (t− 2|W |, t− |W |], Wc = (t− |W |, t].

Given a region r and a sliding window W , we define its
score as the summation of the objects in O(r,W ), normal-
ized by W ’s length, i.e., f(r,W ) =

∑
o∈O(r,W ) o.w

|W | , where
O(r,W ) = {o|o.ρ ∈ r ∧ o.tc ∈ W} is the set of spatial
objects which are created in W and located in r.

B. Problem Statement

We first define the burst score. Intuitively, the burst score
of a region r reflects the variation in the spatial objects in r
in recent period. This motivates us to design the burst score
based on the current and past windows.

We consider the following two factors in our burst score: (a)
The score of the region w.r.t. the current window, i.e. f(r,Wc),
which measures the significance, and (b) the increase in the
score of the region between the current window and the past
window, i.e., max(f(r,Wc) − f(r,Wp), 0), which measures
the burstiness.

We now formally define the burst score as follows.
Definition 1: Burst Score. Given a region r, we define its

burst score S(r) as: S(r) = αmax(f(r,Wc)−f(r,Wp), 0)+
(1−α)f(r,Wc), where α ∈ [0, 1) is a parameter that balances
the significance and the burstiness.

We are now ready to formally define the SURGE problem.
Definition 2: Continuous Bursty Region Detection

(SURGE) Problem. Given a stream of spatial objects O, a
preferred area A, a query rectangle of size a × b, and the
length |W | of the current and past windows, the SURGE
problem aims to continuously detect the position of the
region r of size a × b in A with the maximum burst score.
The region r is referred to as the bursty region.

IV. SOLUTION

The SURGE problem is challenging to address due to the
following reasons. First, given a snapshot of the stream, the
bursty region can be located at any point, which is infinite.
Second, we need to design effective pruning techniques to
avoid frequent recomputation of the bursty region given the
high arrival rate of the spatial stream.

In this section, we present a solution to address the
SURGE problem. We first introduce the continuous bursty point
detection (CSPOT) problem and show that we can reduce
the SURGE problem to the CSPOT problem (Section IV-A).
Then we present an algorithm to address the CSPOT problem
efficiently (Section IV-B and IV-C).
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Fig. 2: Illustration of bursty
point detection.

A. The cSPOT Problem

Definition 3: Rectangle Object. A rectangle object g =
〈w, ρ, tc〉 is a rectangle of size a× b, where g.w is its weight,
g.ρ is the location of its left-bottom corner, and g.tc is the
creation time of g.

With a slight abuse of notation, we continue to use f(p,W )
and S(p) to denote the score of a point p w.r.t. the window
W , and the burst score of p, respectively. Let G(p,W ) =

{g|g.tc ∈ W ∧ p ∈ g}. We define f(p,W ) =
∑

g∈G(p,W ) g.w

|W | .
We define the burst score of a point by following the definition
of burst score of a region in Section III.

We are now ready to formally define the CSPOT problem.
Definition 4: cSPOT Problem. Consider a stream of rect-

angle objects G, a parameter α, as well as the current window
Wc and past window Wp. The Continuous Bursty Point
Detection (CSPOT) problem aims to keep track of a point p in
the space, such that its burst score S(p) is maximized. A point
p with the maximum score is referred to as bursty point.

We illustrate the reduction from the SURGE problem to the
CSPOT problem with the example in Figure 1. Assume that
o1, . . . , o3 are all in A. For each spatial object oi, i ∈ [1, 3],
we generate a rectangle object gi of size a× b with oi as the
left-bottom corner such that o.tc = g.tc and g.ρ = o.ρ. We
next show the relationship between the SURGE problem and
the reduced CSPOT problem.

Theorem 1: Given a snapshot of the stream, the bursty point
p in the reduced CSPOT problem is the top-right corner of the
bursty region in the original SURGE problem.

According to Theorem 1, we can address the SURGE prob-
lem by solving the reduced CSPOT problem. Note that in the
CSPOT problem, the edges of the rectangles divide the space
into O(n2) disjoint regions[6]. This justifies the reduction: We
only need to consider the O(n2) disjoint regions in the CSPOT
problem instead of the infinite points in the SURGE problem.

The reduction is inspired by [6]. However, the techniques
designed in [6] cannot be utilized to search for the bursty point
at a snapshot in the CSPOT problem.

B. Detecting Bursty Point on a Snapshot

We next present a sweep-line based algorithm called SL-
CSPOT to detect the bursty point in the CSPOT problem.

The high level idea of the SL-CSPOT algorithm is as follows.
We use a horizontal line, referred to as the sweep-line, to scan
the space top-down. The sweep-line is divided into 2n + 1
intervals at most by the vertical edges of the n rectangle
objects. For instance, in Figure 2, the vertical edges of the two
rectangles divide the sweep-line into 5 intervals, {I0, . . . , I4}.



Algorithm 1: SL-CSPOT Algorithm
Input: A set of rectangle objects G
Output: A bursty point p

1 p = null;
2 while sweep-line meets an horizontal edge of a rectangle g do
3 Ii, . . . , Ij ← the intervals covered by g;
4 for interval I ∈ {Ii, . . . , Ij} do
5 Update I.fc, I.fp and I.S;
6 if I.S > S(p) then
7 p← a point beneath I , and between the

sweep-line and next horizontal edge;
8 return p;

For each interval I , we use I.fc and I.fp to denote the score
for the points on the interval I w.r.t. the current and past
windows, respectively. We use I.S to denote the burst score
of such points. For any interval Ii, the set of rectangles which
can cover interval Ii changes when the sweep line meets the
top or bottom edge of a rectangle which can cover Ii, and its
burst score Ii.S is updated accordingly. Consider the example
in Figure 2. When the sweep-line first meets the top edge of
g1, intervals I2 and I3 will be covered by g1. Assume g1 is
in Wc. Then I2.fc and I3.fc will be increased by g1.w

|Wc| = 2.
Consequently, the burst scores of I2 and I3 are updated as
Ii.S = 2 for i ∈ [2, 3]. When the sweep-line meets the end
of the space, a point with the maximum burst score during
the sweeping process is returned as the bursty point. The
procedure is outlined in Algorithm 1.
Time Complexity. The complexity of Algorithm 1 is O(n2),
where n is the number of rectangles in the space.

C. Handling the Stream

We have presented Algorithm SL-CSPOT to detect a bursty
point given a snapshot. But how to continuously detect the
bursty point? Note that there are three kinds of events that
may change the bursty point: (1) a new event, i.e., a new
object enters the current window, (2) a grown event, i.e., an
existing object moves from the current window to the past
window, and (3) an expired event, i.e., an existing object
leaves the past window. We use a tuple e = 〈g, l〉 to denote an
event, where g is the rectangle object, and l is one status from
{New,Grown,Expired} to indicate the type of the event.

When an event happens, it only affects the burst score of
the points inside the rectangle of the event. Motivated by this
locality property, we propose a cell-based algorithm called the
Cell-CSPOT algorithm.

We divide the space into cells of equal size a× b. For each
cell c, we maintain a list c.G of rectangles which overlap with
the cell over the two sliding time windows Wc and Wp.

The high level idea of our cell-based lazy update strategy is
as follows: For each cell, we maintain a burst score upper
bound for the points inside the cell (to be discussed in
Section IV-C1). Whenever an event happens, we first update
the upper bound of the overlapped cells. A cell is searched
only if its upper bound is higher than the current maximum
burst score.

Algorithm 2: Cell-CSPOT Algorithm
Input: An event e = 〈g, l〉
Output: A bursty point

1 Cg ← cells that are overlapped with g;
2 for c ∈ Cg do
3 Update U(c) using Eqn 1, 2, and status of c.p using

Lemma 3;
4 c← argmaxU(c);
5 while c.p is invalid do
6 c.p← SL-CSPOT(c);
7 Ud(c) = S(c.p);
8 c← argmaxU(c);
9 return c.p

In addition, to reuse the result of Algorithm 1 from previous
computations, we record the point returned by Algorithm 1 for
each cell which is called candidate point. The status of each
candidate point is either valid or invalid. If the candidate point
of a cell is guaranteed to have the maximum burst score in the
cell, its status is valid. Otherwise, the status is set to invalid.
We do not need to invoke Algorithm 1 to search a cell if its
candidate point is valid (Section IV-C2).

Algorithm 2 outlines the procedure. It takes as input an
event e = 〈g, l〉, and reports a bursty point in the space.
The algorithm first locates the set Cg of cells that overlap
with g (line 1). Then for each cell c in Cg , it updates its
upper bound based on Equations 1, and 2 (Section IV-C1),
and determines the status of the candidate point c.p based on
Lemma 3 (Section IV-C2) (line 3). Then it accesses the cells in
descending order of their upper bounds U(c) iteratively (lines
4–8). In each iteration, if the candidate point c.p is invalid, we
search the cell and update c.p (line 6) and the upper bound
(line 7). Otherwise c.p is valid, and this indicates that c.p has
the maximum burst score and we can terminate the process
and report c.p as the result.
Complexity Analysis. The time complexity of Algorithm 2 is
O(|cmax|2 + log n), where |cmax| is the maximum number of
rectangle objects in a cell, and n is the number of rectangle
objects in Wc and Wp. The space cost of Algorithm 2 is O(n).

1) Upper Bound Estimation: Next, we present the details
about estimating the upper bound for a cell.
Static Upper Bound. According to the Definition 1, only the
rectangle objects in Wc have a positive impact on the burst
score. Hence, we can estimate an upper bound burst score for
a cell by only utilizing the objects in the current window. We
refer to this upper bound as static upper bound.

Definition 5: Static Upper Bound. For a cell c, its static
upper bound is computed as follows:

Us(c) =
∑

g∈c.G∧g.tc∈Wc

g.w

|Wc|
(1)

where c.G is a set of rectangle objects overlapped with c.
Lemma 1: For any point p in cell c, we have S(p) ≤ Us(c).

Dynamic Upper Bound. Next, we introduce another way to
estimate the upper bound. Specifically, when an event happens,



TABLE I: Datasets.
Datasets UK US Taxi

# of Spatial Objects 1,000,000 1,000,000 1,000,000
Arrival Rate(per hour) 5,747 16,802 18,145

we dynamically update the upper bound. We refer to such
upper bound as dynamic upper bound.

Whenever we search a cell c on a snapshot i, we found a
point pm with the maximum burst score. The score S(pm) is
an upper bound for cell c on snapshot i, i.e., U i

d(c) = S(pm).
Let U i

d(c) be the upper bound of cell c on snapshot i when
event ei arrives. When the (i + 1)-th event ei+1 = 〈g, l〉
happens, we have

U i+1
d (c) =


U i
d(c) +

g.w
|Wc| l is New,

U i
d(c) l is Grown,

U i
d(c) + α g.w

|Wp| l is Expired
(2)

Lemma 2: Consider a cell c. For any point p in c, we have
S(p) ≤ Ud(c) after e happens.

We now combine the two bounds for a tighter upper bound.
Definition 6: Upper bound for cell. For a cell c, we define

its upper bound U(c) as U(c) = min(Us(c), Ud(c)).
2) Candidate Point Maintenance: In order to reuse the

result of invoking Algorithm 1, for each cell c, we maintain a
candidate point, denoted by c.p, to record the point returned
by Algorithm 1. The candidate point has two possible status
as introduced before. We next present Lemma 3, which is
employed to determine the status of a candidate point.

Lemma 3: Let c.p be a point with the maximum burst score
in cell c currently. Consider an event e = 〈g, l〉. After e
happens, if either (1) e is either new or expired, g can cover
c.p, and f(c.p,Wc) − f(c.p,Wp) > 0, or (2) e is grown
object and g cannot cover c.p, then the point c.p still has
the maximum burst score.
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Fig. 3: Runtime of CCS, B-CCS, Base and aG2 on US.
V. EXPERIMENTAL STUDY

A. Experimental Setup

Datasets. We conduct experiments on three public real-life
datasets. The details of the datasets are reported in Table I.
For each dataset, the weight of each spatial object is randomly
chosen from [1, 100] with a uniform distribution.
Algorithms. We evaluate the following algorithms. (a) Cell-
CSPOT, denoted by CCS; (b) An approach that only utilizes
the static upper bound, denoted by B-CCS; (c) An approach
that does not use any upper bound estimation technique,
denoted by Base; and (d) a modified version of aG2 [1].

The experiments are run on a machine with a 2.70GHz CPU
and 64GB of memory running Ubuntu. The algorithms are
implemented in C++ complied with GCC 4.8.2.

TABLE II: Ratio of rectangle messages that trigger a search.

Taxi
Window (mins) 1 5 10 20 30

CCS 4.85% 3.20% 2.56% 2.13% 1.95%
B-CCS 92.63% 78.30% 70.00% 62.07% 57.90%

UK
Window (hours) 0.5 1 2 5 12

CCS 0.34% 0.27% 0.23% 0.37% 0.48%
B-CCS 37.79% 28.23% 22.76% 21.64% 14.57%

US
Window (hours) 0.5 1 2 5 12

CCS 0.60% 0.68% 0.70% 0.52% 0.60%
B-CCS 64.21% 52.29% 35.13% 9.0% 20.90%

B. Experimental Results

Runtime Performance. We first compare the proposed algo-
rithm against the three baseline algorithms. Figure 3 (a) and (b)
report the average runtime of the four methods for processing
one spatial object as we vary the size of sliding windows and
the size of the query rectangle, respectively. We observe that
CCS outperforms aG2 by an order of magnitude. We also
find that aG2 run out of the 64 GB memory on US when the
current window and past window are both set as 12 hours, as
there are too many spatial objects in the two sliding windows.
Usefulness of Upper Bound. Next, we evaluate the usefulness
of the method for upper bound estimation in CCS. In this set
of experiments, we process 1,000,000 new objects and report
how many rectangles trigger a search. The results are reported
in Table II. Clearly, only a small portion of rectangle messages
(2%-5% for Taxi, and less than 1% for US and UK) trigger a
search in CCS compared with B-CCS. This is because CCS
can estimate a much tighter upper bound for cells. Thus, many
cells are eliminated from further checking.

VI. CONCLUSIONS

Motivated by the great opportunities brought by the massive
volumes of streaming geo-tagged data, we have proposed the
SURGE problem aiming at continuously detecting the bursty
region in real time in this paper. We have proposed a grid-
based solution with effective pruning techniques to address
the SURGE problem. Experiments on real-life datasets show
the efficiency and effectiveness of our proposed solution.
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