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Abstract—Aggregate nearest neighbor (ANN) query has been
studied in both the Euclidean space and road networks. The
flexible aggregate nearest neighbor (FANN) problem further
generalizes ANN by introducing an extra flexibility. Given a set
of data points P , a set of query points Q, and a user-defined
flexibility parameter ϕ that ranges in (0, 1], an FANN query
returns the best candidate from P , which minimizes the aggregate
(usually max or sum) distance to any ϕ |Q| objects in Q. In this
paper, we focus on the problem in road networks (denoted as
FANNR), and present a series of universal (i.e., suitable for both
max and sum) algorithms to answer FANNR queries in road
networks, including a Dijkstra-based algorithm enumerating P ,
a queue-based approach that processes data points from-near-
to-far, and a framework that combines Incremental Euclidean
Restriction (IER) and kNN. We also propose a specific exact so-
lution to max-FANNR and a specific approximate solution to sum-
FANNR which can return a near-optimal result with a guaranteed
constant-factor approximation. These specific algorithms are easy
to implement and can achieve excellent performance in some
scenarios. Besides, we further extend the FANNR to k-FANNR,
and successfully adapt most of the proposed algorithms to answer
k-FANNR queries. We conduct a comprehensive experimental
evaluation for the proposed algorithms on real road networks
to demonstrate their superior efficiency and high quality.

I. INTRODUCTION

The aggregate nearest neighbor (ANN) query [1]–[7] is a
classic problem that has a large number of applications (e.g.,
location-based services) in spatial databases. Given a group of
query points Q, ANN finds out a point in a set of data points P ,
which has the smallest aggregate distance to all points in Q.
The aggregate function is usually either max or sum. The ANN
problem has been studied in both the Euclidean space [1]–[3]
and road networks [4]–[7].

In many cases, it is more desirable to take a fraction of
query points Q into account. Consider the example of Fig. 1,
where a set of data points P = {p1, p2, . . . , p8, p9} (colored in
black), and a set of query points Q = {q1, q2, q3, q4} (colored
in red). Note that p4 and q3, p5 and q4 are located at the
same node, respectively. Some points are located at edges.
For example, q1 lies on (p2, p3), and q2 lies on (p3, p6). In an
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online war strategy game, Q is a set of small military camps,
and there is a fixed number of soldiers in each camp. Players
should choose the best place from a set of candidate locations
(i.e., P ) to build a logistics center. If the supplies are abundant
enough, the possible choice can be answered by an ANN query.
The result of this max-ANN query is p2 with the aggregate
distance of 16 (from p2 to q4) and the result of this sum-
ANN query is also p2 with the aggregate distance of 52 (i.e.,
10+14+12+16). The paths from p2 to Q have been colored
in green, and we add a “virtual” edge from p2 to q2 for better
visualization. We can intuitively understand the result because
p2 is the geographical “center” of Q. However, if this logistics
center can only afford to support 50% camps due to the limited
supplies in the game settings, the result is different. In this
case, for the sake of players’ victory, the possible strategy is
to find the best place to build a logistics center which is able
to supply 50% of these camps while minimizing the aggregate
traveling cost. More precisely, a more general query is to allow
users to specify a flexibility parameter ϕ ∈ (0, 1], and the
goal is to retrieve the best point from P that is the closest to
any ϕ |Q| points in Q. We denote this query as the flexible
aggregate nearest neighbor in road networks (FANNR). When
ϕ is 50%, it is obvious that the result of this max-FANNR
query is p3 with the aggregate distance of 2 (from p3 to either
q1 or q2) and the result of this sum-FANNR query is also p3
with the aggregate distance of 4 (i.e., 2 + 2). The paths from
p3 to these ϕ|Q| points have been colored in blue.
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Fig. 1. Example of an FANNR query in road networks



As illustrated above, FANNR can be used in online games’
site-selection in road networks. To emphasize its importance,
we take a real world scenario as an example. Choosing a
location to hold an election meeting: Suppose that the meeting
is legitimate as long as at least half of members are present.
To cut down the traveling expense, we can find a place which
minimizes the flexible aggregate (sum) distance to members.

To the best of our knowledge, there is no any research on
FANNR query problems in road networks. FANN queries [8],
[9] are first studied in the Euclidean space. Compared with
the Euclidean space, many operations in road networks are
much more expensive. For example, determining the distance
between any two points in the Euclidean space can be solved in
O(1) time. However, the calculation process in road networks
is much more complex, and the computation cost depends on
the implementation of the shortest path distance algorithm.
Although it is possible to get it in O(1) using pre-computation
in road networks, this overhead (with respect to time and stor-
age) of pre-processing is unbearably high. In order to further
accelerate the computing in road networks, the topology nature
of the road networks should be fully utilized in order to prune
the unnecessary candidate points as many as possible. Some
geometrical properties in the Euclidean space will not hold
in road networks, and hence it is necessary to redesign the
algorithms in the context of road networks.

The most relevant study is the ANN query in road net-
works [4], [6], [7], but our study of FANNR is not a trivial
extension or adaption based on ANN query for two main
reasons. Firstly, the IER algorithm in [4] can reach the best
performance, which uses R-tree to index the data objects,
but it is not efficient when only partial points in Q are
considered. To be specific, because any ϕ |Q| objects in Q may
be the potential targets, the number of all possible answers can
achieve the scale of

( |Q|
ϕ|Q|

)
. Secondly, our study of FANNR is

comprehensive and it could be applied in different scenarios
(e.g., having an index structure or not, returning an exact
answer or not). Obviously, we can regard ANN query as a
special case of FANNR query when ϕ = 1. Another relevant
but different type of query is the optimal meeting point (OMP)
query [5] in road networks, but the set P in OMP query is
not determined in advance. However, the uncertainty of set
P does not really increase the complexity. As proved in [5],
[10], given an OMP query with a set of query points Q on a
road network G = (V,E), V ∪Q contains an OMP. In other
words, we can determine the set P in an implicit way. Hence,
we can also regard the OMP query as a special case of the
FANNR query.

In this paper, we first focus on the universal (i.e., applicable
to both max and sum) methods for the FANNR query problem.
We first design a Dijkstra-based algorithm enumerating P .
Secondly, we successfully modify the List algorithm [8],
[9] in the context of road networks, which processes data
points from-near-to-far. Thirdly, we design a general algorithm
framework by combining Incremental Euclidean Restriction
(IER) and kNN. Note that the IER here refers to general
Incremental Euclidean Restriction, rather than the specific

algorithm for ANN in [4]. To boost the efficiency, these
universal algorithms often require complex index structures
which usually are infeasible for large dynamic road networks
with respect to time and space. Motivated by this, we sacrifice
some generalities and investigate a specific algorithm for max-
FANNR which can give an exact answer. Sometimes, it is
also desirable to retrieve a near-optimal answer as fast as
possible. Therefore, we further design an efficient specific 3-
approximation algorithm for sum-FANNR. We also prove that
the approximation ratio can even reach 2 when Q is a subset
of P . These two specific methods have little dependence on
index structure over road networks, and hence they can still
give acceptable answers especially when road networks change
frequently (or we cannot build an index over the whole road
network easily). Besides, these specific algorithms are easy to
implement. Finally, we further extend FANNR to k-FANNR,
and adapt most of the proposed algorithms successfully to
answer k-FANNR queries in road networks.

The main contributions of our work can be summarized as
follows:

• We firstly introduce an extra flexibility parameter to the
classic ANN problem in road networks, and propose a
series of methods to answer FANNR queries in road
networks.

• We design a Dijkstra-based algorithm to answer FANNR
queries, which is much better than adopting ANN as
an independent module directly. Some researchers [8],
[9] have tried the List to answer FANN queries in the
Euclidean space. We modify this algorithm, by taking the
features of road networks into account to solve FANNR
queries, and denote it as R-List (road networks’ List). We
also combine IER with kNN, and then develop a family
of algorithms based on the general algorithm framework
for FANNR queries.

• We propose a specific Exact-max (exact max-FANNR)
algorithm for max-FANNR and APX-sum (approximate
sum-FANNR) algorithm for sum-FANNR to get the exact
and 3-approximation answer, respectively. We also prove
that the approximation ratio of APX-sum can even reach
2 if Q is the subset of P . These specific algorithms are
easy to implement and can achieve excellent performance
in some scenarios.

• We further extend FANNR to k-FANNR, and formulate it
formally in road networks. We also successfully adapt
most of the proposed algorithms to answer k-FANNR
queries.

The rest of this paper is organized as follows: Section II
defines the problem, discusses some related works, and shows
an outline of the proposed approaches. Section III presents uni-
versal methods, including a Dijkstra-based algorithm, a queue-
based method and a general algorithm framework. Section IV
presents specific methods to answer sum-FANNR and max-
FANNR queries respectively. Section V discusses k-FANNR,
which is an extension of FANNR. We present the experimental
results in Section VI and make a conclusion in Section VII.



II. PRELIMINARIES

We first present the road network definitions that we follow
throughout the paper and formulate the FANNR problem
formally. Then, we review some related works. Finally, we
present the outline of proposed methods in this paper.

A. Problem Formulation

A road network can be represented as an undirected
weighted graph, G = (V,E,W ), where V is the set of nodes,
E is the set of edges, and W is a weight function E → R+,
which maps an edge to a positive real number.

We use Q to denote the set of query objects, and use
P to denote the set of data objects, and use ϕ to denote
the flexibility parameter, and ϕ varies in the range of (0, 1].
For simplicity, we assume that query (or data) objects are at
vertices, i.e., P ⊂ V , Q ⊂ V . If the query (or data) object
is on an edge, we can use the two vertices on the edge to do
FANNR search and merge the answer sets of the two vertices to
generate the final result. If the query (or data) object is outside
the whole network, we can find the closest point in the network
and use it to do FANNR search. The similar assumption is also
adopted in [11]. In the following, “node”, “point”, “object”,
and “vertex” are interchangeably used if the context is clear.

Let δ be the distance function on G, and the network
distance δ(vi, vj) between node vi and vj is defined as the
minimum sum of weights of any path between them. We use
δϵ(vi, vj) to denote the Euclidean distance between node vi
and vj . Let g be an aggregate function, which can be defined
on a single node p and a dataset S ⊂ V , and it is either sum
or max in this paper:

g(p, S) = g{δ(p, v1), δ(p, v2), ..., δ(p, vk)}

where k = |S|, vi ∈ S, for i = 1, 2, . . . , k.
Then we can define the flexible aggregate function gϕ, which

is the most critical operation for the FANNR query problem
in road networks.

Definition 1 (Flexible Aggregate Function). The flexible ag-
gregate function gϕ, is a function that takes a node p ∈ P and
the set Q as its input, and returns a pair (dp, Qp

ϕ) as the result,
i.e., (dp, Qp

ϕ) = gϕ(p,Q), which satisfies:Qp
ϕ = argmin

Qϕ⊂Q,|Qϕ|=ϕ|Q|
g(p,Qϕ),

dp = g(p,Qp
ϕ),

where Qϕ is the subset of Q with |Qϕ| = ϕ|Q|. Given a p,
we denote the optimal flexible subset of Q as Qp

ϕ, and denote
its flexible aggregate distance to Q as dp.

It is worth noting that we usually use gϕ(p,Q) to denote
the flexible aggregate distance for simplicity in the following.
Our goal is to retrieve a point p∗ in P to minimize dp. An
FANNR query can be formalized with the following definition:

Definition 2 (FANNR query). The input of an FANNR query is
a quintuple (G,P,Q, ϕ, g), which returns a triple (p∗, Q∗

ϕ, d
∗)

as its answer such that:(p∗, Q∗
ϕ) = argmin

p∈P,Qϕ⊂Q,|Qϕ|=ϕ|Q|
g(p,Qϕ),

d∗ = g(p∗, Q∗
ϕ),

where p∗ is the point in P that minimizes the flexible aggregate
distance, Q∗

ϕ is the optimal flexible subset, and d∗ is the
flexible aggregate distance.

B. Related Works

The shortest path algorithm. The shortest path algorithm
is one of the most fundamental operations in road networks,
and it has been extensively studied during the past half
century. The Dijkstra algorithm [12] and its variants (e.g.,
A∗ algorithm [13]) have been widely applied in location-
based services. We can use either lower bounds (or other
heuristic properties) or materialization techniques to accelerate
the shortest path computation. The fully materialization of
distances requires high storage cost, while HiTi [14] and
HEPV [15] materialize distances partially to make it feasible
for large graph. Currently, PHL [16] is the fastest method
by decomposing a graph into the shortest paths and storing
distances from each vertex to the shortest path in its labels.
Note that many indexing techniques also rely on distance
materializations, and we will discuss it in the following.

Indexing techniques and hierarchical structures. Index-
ing techniques and hierarchical structures [14], [15], [17]–[19]
are also widely used in road networks. The basic idea is to
partition the graph into subgraphs recursively, and pre-compute
some shortcuts within subgraphs. It is usually required to keep
the hierarchical structure balanced for better performance.
CH [18] has a low memory overhead, but it has to traverse a
large number of nodes when objects are relatively dispersed
in the graph. The authors in [7], [20] transplanted Voronoi
digram to the domain of road networks, but it often causes
unbalanced partitions. K. C. Lee et al. [19] used ROAD to
index road networks in a hierarchical way, but it performs
badly if the objects are sparse and road networks are large.
G-tree [11], [21] has a superior performance while the cost of
building index is acceptable.
kNN, ANN, and FANN in the Euclidean space. The k-

nearest neighbor (kNN) query has been studied for decades.
Many successful approaches have been developed to solve this
problem [11], [22], [23]. Abeywickrama et al. [24] studied
the different in-memory algorithms for kNN queries, and
they proved that IER has an excellent potential. The ANN
problem has been studied in both the Euclidean space [1]–
[3] and road networks [4]–[7], and successfully adapted to
the top-k algorithms. The IER algorithm in [4] can reach
the best performance, which uses R-tree to index the data
objects, but it is not efficient when only partial points in
Q are considered. The algorithms in [6], [7] use a Voronoi
diagram to partition the road network, but they can often cause
unbalanced partitioning and thus are also inefficient in large
road networks. Y. Li et al. [8], [9] first studied FANN in the
Euclidean space, which generalized the classical ANN problem



and offered it richer semantics. They proposed a series of exact
and approximate algorithms to address this problem, but those
algorithms cannot be used directly due to the complexity in
road networks.

C. Outlines of Proposed Methods

In this paper, we design two kinds of algorithms which are
denoted as the universal and specific methods respectively. The
universal methods are able to deal with any g (i.e., suitable
for both max and sum), and the specific methods can only
solve the problem when g is either max or sum.

As for the universal methods, a naive way is to regard the
ANN as an independent module. To be specific, we enumerate( |Q|
ϕ|Q|

)
options to determine Qp

ϕ (as the query objects), and then
apply the ANN routine (e.g., IER in [4]) directly. However,
this method is always infeasible in practice since

( |Q|
ϕ|Q|

)
is

often too large to deal with. For example, the
( |Q|
ϕ|Q|

)
can reach

2.39 × 1037 if we set |Q| and ϕ to 128 and 0.5 respectively.
To this end, we design a Dijkstra-based algorithm to compute
gϕ (shown in Section III-A). Although it also searches in an
enumerative way, it is much more efficient than the naive so-
lution. Inspired by the threshold algorithm [25], List [8], [9] is
proposed to answer FANN queries in the Euclidean space. We
modify this List, and implement the modified algorithm in a
“switchable” way to answer FANNR queries in road networks.
We denote it as R-List (shown in Section III-B). The modified
implementation also leads to much more efficient solution to
max-FANNR problems (shown in Section IV-A). As presented
in [24], IER has an excellent potential when retrieving kNN.
Hence, we further design a IER-kNN framework to answer
FANNR queries. Based on the general IER-kNN framework,
we can have a family of algorithms (shown in Section III-C).

Although the universal methods can generally achieve good
performance, they highly rely on sophisticated indexing tech-
niques. The construction cost of index can often be very high
especially for frequently changing road networks. Motivate by
this, we design a specific algorithm when g is max, which can
return an exact answer, and denote it as Exact-max (shown in
Section IV-A). Exact-max follows the basic data structure of
R-List, but it often outperforms any other methods when it is
index-free. What is more, it is often desirable to obtain a near-
optimal result. To this end, we design a APX-sum algorithm
to answer sum-FANNR queries in road networks, which can
return a 3-approximation result. We further prove that it can
even return a 2-approximation result if Q is the subset of P
(shown in Section IV-B).

III. UNIVERSAL METHODS

In this section, we present the universal solutions to answer
both sum-FANNR and max-FANNR queries.

A. The Dijkstra-based Algorithm

The Dijkstra-based algorithm is based on the following
observation. Recall how Dijkstra routine runs: at every step
of its expansion, it chooses an unvisited nearest node of the
source node to visit and updates its neighbors’ distances to

the source node. This behavior also makes sense in running
gϕ(p,Q). First, let p be the source node, we call a Dijkstra-
like routine on it. Then we keep the path expanding until ϕ|Q|
nodes in Q are labeled as visited. Hence, these ϕ|Q| nodes are
exactly Qp

ϕ. Thus, we can enumerate points in P and return
the one with the smallest flexible aggregate distance.

At a high level, the difference between the naive method
mentioned in Section II-C and the Dijkstra-based algorithm is
that: the former is to construct a Qϕ first, and then to determine
the correct p and its flexible aggregate distance; the latter is
to choose a p first, and then retrieve the correct Qp

ϕ and its
flexible aggregate distance.

Algorithm complexity. Since gϕ has the same time cost
with Dijkstra, i.e., O(|E|+ |V | log |V |) (assume that the min-
priority queue is implemented by a Fibonacci heap), the total
time cost is O((|E|+ |V | log |V |)|P |). In the worst case, the
space cost is O(|P |+ |Q|+ |V |+ 2ϕ|Q|) = O(|V |).

Intuitively, there are two ways to improve this algorithm:
prune nodes in P as much as possible (i.e., reduce the
invocation of gϕ), or improve the implementation of gϕ. We
will discuss related improving techniques in the following. For
example, R-List (Section III-B) aims to reduce the invocation
of gϕ, and IER-kNN (Section III-C) combines the two ways.

B. The R-List Algorithm

The basic idea of R-List algorithm is to construct a thresh-
old [25] for early terminating, and thus it is able to reduce
the invocation of gϕ. The R-List (road networks’ List [8], [9])
is actually queue-based. We create |Q| queues. Each queue
corresponds to an object in Q, and processes data points in a
from-near-to-far way.

Although R-List shares the basic idea with List [8], [9], we
have two contributions here. Firstly, the implementation details
of constructing the list of queues are different in the context of
road networks. Secondly and most importantly, the modified
implementation can lead to a much more efficient solution
to max-FANNR problems. To this end, we will discuss the
detailed implementation and its algorithm complexity together
with Exact-max in Section IV-A.

C. IER-kNN Framework

In this section, we propose a powerful algorithm framework
for FANNR query. Firstly, we adopt the Incremental Euclidean
Restriction (IER) to prune the unnecessary nodes in P as much
as possible. Let e be an entry of an R-tree that indexes P and
b its minimum bounding rectangle (MBR). We can calculate
the minimum possible distance from b to a point q, denoted as
mdist(b, q). Generally, let b′ be another MBR, and we also use
mdist(b, b′) to denote the minimum possible distance from b
to b′. We denote gϵ as the Euclidean aggregate function, and
we have

gϵ(p,Q) = g{δϵ(p, q1), δϵ(p, q2), . . . , δϵ(p, q|Q|)}.

Similarly, gϵ(e,Q) can be defined by g{mdist(b, qi),∀qi ∈
Q}. Like Definition 1, we can define the flexible Euclidean
aggregate function (Euclidean FANN) by gϵϕ(p,Q) if replacing



g(p,Qϕ) with gϵ(p,Qϕ). Following the similar definition, we
also have gϵϕ(e,Q) to denote the flexible Euclidean aggregate
function with respect to an MBR e and Q. For simplicity, we
also use gϵϕ to denote its flexible Euclidean aggregate distance
if the context is clear. Now, we can prove the following lemma:

Lemma 1. Let Q be a set of query points and e an R-tree
node entry. For any point p indexed under e, gϵϕ(e,Q) cannot
be larger than gϕ(p,Q).

Proof: It is true due to gϵϕ(e,Q) ≤ gϵϕ(p,Q) and
gϵϕ(p,Q) ≤ gϕ(p,Q).

Based on Lemma 1, we can solve the FANNR query using
an R-tree built on P . We show this process in Algorithm 1.
Suppose head is a function get the head element from a queue.
Initially, the root of the R-tree is enqueued into a priority
queue which is sorted by gϵϕ(e,Q) in ascending order (line 2).
For each iteration, we first check whether gϵϕ(e,Q) is larger
than or equal to the current best candidate result (line 5). If
so, we terminate the algorithm (line 6); otherwise, we check
whether the dequeued item is an R-tree node (line 8). If so, we
push all entries under this node into the priority queue (line
9-10); otherwise, we run gϕ(e,Q) on it and update the result
if necessary (line 12-14). Note that in line 9, the entry ê is a
data point in P if e is a leaf node, and it is an R-tree node if
e is a non-leaf node.

Algorithm 1: IER-kNN Framework
Input: G, P , Q, ϕ, g, R
Output: p∗, Q∗

ϕ, d∗

1 d∗ ←∞, H ← new priority queue
2 H.enqueue(R.root, gϵϕ(R.root,Q))

3 while H is not empty do
4 e← H.top()
5 if gϵϕ(e,Q) ≥ d∗ then
6 break

7 H.dequeue()
8 if e is an R-Tree node then
9 foreach R-Tree entry ê under e do

10 H.enqueue(ê, gϵϕ(ê, Q))

11 else
12 (Qe

ϕ, d
e)← gϕ(e,Q)

13 if de < d∗ then
14 p∗ ← e, d∗ ← de, Q∗

ϕ ← Qe
ϕ

A running example. Let us see how Algorithm 1 finds
the sum-FANNR in Fig. 1 whose ϕ = 50%. We illustrate
this process in Fig. 2, and remove the road segments for
better visualization. In the first round of loop, we would push
(MBR1, 8), (MBR2, 1.5), and (MBR3, 26) into H . After
that, (MBR2, 1.5) will be popped, and we would check p3
and p6 within MBR2. Clearly, d∗ will be 4. We can safely
terminate the algorithm since d∗ is less than the distance value

of head in H .
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Fig. 2. Example of Algorithm 1

Revisitation of gϕ(p,Q). Now we revisit the implementation
of gϕ(p,Q). As implied in Section III-A, given a p, Q and ϕ,
gϕ(p,Q) is exactly an incremental network expansion (INE),
which is also a kNN query where p is a query node and Q is
the set of data objects and k = ϕ|Q|.

Note that [4] uses A∗ to compute the shortest path distance
due to its better performance compared to Dijkstra. However,
A∗ is necessarily no better than INE when it comes to the
implementation of gϕ, as showed in our experiments. This
finding is also noted by [24]. To boost efficiency of computing
the shortest path distance and kNN, we apply two state-
of-the-art techniques. The first is G-tree [11], [21], which
materializes distance matrix for each tree node. The second
is pruned highway labelling (PHL) [16], which accelerates
the shortest path distance queries by decomposing a graph
into shortest paths and storing distances from each vertex
to the shortest path in its labels. We denote the IER-kNN
framework combined with the INE algorithm as IER-INE.
Similarly, we also have IER-A∗, IER-GTree and IER-PHL to
represent the IER-kNN framework combined with A∗, G-tree
and PHL respectively.
gϕ(p,Q) itself can also be implemented with IER and any

shortest path distance algorithm when Q is indexed under R-
tree. In this way, we denote the IER-kNN method whose gϕ is
implemented with IER-A∗ as IER2-A∗ (there are double IER
routines). The IER-A∗ here means the kNN (or gϕ) method,
instead of the FANNR approach mentioned above. Similarly, if
we replace A∗ here with GTree (or PHL), we also have IER2-
GTree (or IER2-PHL). Note that the “GTree” in IER-GTree
is the kNN algorithm presented in [11], [21], which is based
on an occurrence list (Occ) over Q, and the “GTree” in IER2-
GTree denotes the shortest path distance algorithm based on
G-Tree index.

In this way, we can have a family of algorithms based on
IER-kNN. The index techniques of different implementations
for gϕ are summarized in Table I, and they will be further
studied in the experimental section.

Note that we can also boost the efficiency of any proposed
method by leveraging these index structures. We will exploit



TABLE I
ROAD NETWORK INDEX OF gϕ

Algorithm Name G-tree PHL R-tree Occ
INE 7 7 7 7
A∗ 7 7 7 7

GTree 3 7 7 3
PHL 7 3 7 7

IER-A∗ 7 7 3 7
IER-GTree 3 7 3 7
IER-PHL 7 3 3 7

it in Section VI.

Algorithm complexity. In the worst case, we still need to visit
each point in P . Take the IER-GTree for an example, and the
worst time cost of kNN search [11], [21] is O(|V | log |V |).
The total time cost is O(|P ||V | log |V |). As noted in [11],
[21], the complexity is much smaller than the worst case
complexity in practice. Because the space cost of R-tree
or Occ is negligible compared with G-tree, the space cost
is mainly made up of the cost of G-tree [11], [21], i.e.,
O(|V |+ |V | log |V |+ |E|).

In addition, we can also use another bound in line 5 of
Algorithm 1 when we apply IER2-A∗, IER2-GTree, or IER2-
PHL, which is not as tight as gϵϕ(e,Q), but can be computed
cheaply. The new bound d(p,Q) can be defined by:

• d(p,Q) = mdist(bQ, p) when g is max.
• d(p,Q) = ϕ|Q| ×mdist(bQ, p) when g is sum.

where bQ is the MBR of Q, and p can be either a data point
or an R-tree node. It is obvious that we can terminate the
algorithm if d(e,Q) ≥ d∗ holds.

IV. SPECIFIC METHODS

Although the universal algorithms for FANNR queries in
Section III can achieve excellent performance, they highly
depend on the sophisticated index techniques (e.g., G-tree or
PHL) as shown in our experimental results. In this section,
we design two specific algorithms to solve sum-FANNR and
max-FANNR queries respectively. Most importantly, these spe-
cific methods can achieve excellent performance even if the
underlying road networks are index-free.

A. The Exact-max Algorithm

We present this method in Algorithm 2, and call it Exact-
max (exact max-FANNR), which shares the similar idea and
data structure of R-List. The main difference is that we add a
counter for every point in P . Initially, these counters are set to
0 (line 2). During every iteration, we get the head node with
the smallest distance (line 4), and then increase the counter
associated with the head node by one (line 5). If the counter
associated with the head node reaches ϕ|Q|, the head node
is exactly p∗, and then we can terminate the algorithm safely
(line 6-9). Hence, we can run the time consuming gϕ only once
(line 8). This is why Exact-max can be efficient. Besides, this
also indicates that the different implementations of gϕ have
little influence on Exact-max. In other words, we may get an

adorable performance even if we do not build a road network
index over the whole G. This property is appealing when road
networks change frequently, since we do not need to re-build
the index any more, which is usually time consuming as shown
in Fig. 9(b).

Algorithm 2: The Exact-max Algorithm
Input: G, P , Q, ϕ, δ, g
Output: p∗, Q∗

ϕ, d∗

1 foreach p ∈ P do
2 count[p]← 0

3 while true do
4 Lmin ← the queue whose head has the smallest

distance
5 count[Lmin.top()]← count[Lmin.top()] + 1
6 if count[Lmin.top()] ≥ ϕ|Q| then
7 p∗ ← Lmin.top()
8 (Q∗

ϕ, d
∗)← gϕ(Lmin.top(), Q)

9 break

10 Lmin.dequeue()

Implementation details. Now we discuss the implementation
details of R-List and Exact-max. The list of queues is con-
structed in an implicit way, or it will violate the memory limit
if O(|P ||Q|) is larger enough. To be specific, We set the |Q|
query nodes instead of p as the multiple sources initially, and
then execute Dijkstra-like routine on them simultaneously and
independently. As shown in Algorithm 2, the queue operations
are alternately performed on different queues, which implies
that we can implement this multi-source Dijkstra procedure in
a “switchable” way. To be specific, all data structures related to
different queues should be well preserved when the Dijkstra-
like routine switches away, thus the interrupted search process
can be reloaded and resumed when it switches back.

A running example. Let us see how Exact-max finds the
max-FANNR in Fig. 1 whose ϕ = 50%. The expanding
paths of {q1, q2, q3, q4} are {p3, . . . }, {p3, . . . }, {p4, . . . } and
{p5, . . . } respectively. It is obvious that the counter of p3 will
reach ϕ × 4 = 2 first. Hence the result of this max-FANNR
query is p∗ = p3, d∗ = 2 and Q∗

ϕ = {q1, q2}.
The correctness of this algorithm is easy to validate: the

nature of the Dijkstra algorithm guarantees that the closer
nodes to the source are, the earlier they will be visited. When a
node is the first to be visited by exact ϕ|Q| sources, it means
that this node is the closest one to the ϕ|Q| sources. Thus
Algorithm 2 can answer max-FANNR queries correctly.

Note that basic idea of Exact-max is different from gϕ which
is implemented with Dijkstra or INE. The latter is to regard P
as sources and then obtain the kNN (i.e., the nodes in Q are
destinations). The expansion direction of Exact-max is quite
the reverse: we regard the nodes in Q as sources and then
expand them to P (i.e., the nodes in P are destinations). It is
not hard to understand that Exact-max is very efficient when



P is dense and ϕ|Q| is relatively small. In most reality cases,
this is true because |Q| is much smaller than |P |.

Algorithm complexity. Assume that gϕ is implemented by
Dijkstra-like method. For R-List algorithm, every point in
P will be visited in the worst case. Thus, the time cost is
O((|E| + |V | log |V |)|P |). In practice, the time complexity
is often smaller than it due to the lower bound. The space
cost is O(|Q||V |) in the worst case, and it is mainly made
up of the list of queues. Similarly, the time cost of Exact-max
is O(|E| + |V | log |V |), and its space cost also includes the
counter usage, i.e., O(|Q||V |+ |P |) = O(|Q||V |) in the worst
case.

TABLE II
A COUNTER EXAMPLE OF SUM-FANNR

Source Expanding
q1 (4, p2) (12, p3) -
q2 (2, p1) (10, p2) -
q3 (11, p1) - -
q4 (14, p4) - -
q5 (15, p2) - -

It is worth noting that this method cannot be used to answer
sum-FANNR queries. Table II illustrates a counter example.
Suppose query nodes set Q is {q1, q2, q3, q4, q5} (any query
node does not belong to {p1, p2, p3, p4, p5}), and ϕ = 40%.
Hence, ϕ|Q| = 2. If we follow the idea of Algorithm 2, we
would examine the queue of q2 first, and visit p1. Secondly, we
would examine the queue of q1, and visit p2. Thirdly, we would
examine the queue of q2 again, and hence visit p2 again. At
this moment, the counter of p2 reaches 2, and we can terminate
the algorithm. In this way, we have p∗ = p2, d∗ = 4+10 = 14,
and Q∗

ϕ = {q1, q2}. However, the correct answer is p∗ = p1,
d∗ = 2 + 11 = 13, and Q∗

ϕ = {q2, q3}.

B. The APX-sum Algorithm

For the sum-FANNR problem in road networks, we
present an approximate approach APX-sum (approximate sum-
FANNR) in Algorithm 3. This algorithm is extremely simple,
but it has a constant approximation ratio. Instead of consid-
ering the whole P , we only examine those data points which
are the nearest neighbors of those query nodes in Q (line
2-4). Then we regard the candidate set as P , and run the
FANNR algorithm (whose g is sum). Hence, we reduce the
number of candidate data points to |Q|, which is usually much
smaller than |P |. This is why it can remarkably improve the
search efficiency. Actually, it is even possible that the size of
candidate set is smaller than |Q|, since different query points
may have the same nearest data point neighbor. One of the
most appealing properties of APX-sum is the stability when
varying P because it is only affected by Q generally. We can
prove that the approximation ratio dα/d∗ of this algorithm is
no more than 3.

Theorem 1. Algorithm 3 returns a 3-approximation answer
to any sum-FANNR query in road networks.

Algorithm 3: The APX-sum Algorithm
Input: G, P , Q, ϕ, δ, g
Output: pα, Qα

ϕ , dα

1 candidate ← ∅
2 foreach q ∈ Q do
3 p← the nearest neighbor of q in P
4 candidate.insert(p)

5 FANNR (G, candidate, Q, ϕ, sum)

Proof: Given an sum-FANNR query, Algorithm 3 returns
an approximate answer (pα, Qα

ϕ , d
α), and the true optimal

answer is (p∗, Q∗
ϕ, d

∗). Let qτ be the nearest node in Q∗
ϕ to

p∗, and pτ be the nearest node in P to qτ . We have:

δ(pτ , qτ ) ≤ δ(p∗, qτ ) (1)

And for any q ∈ Q∗
ϕ, we have:

δ(p∗, qτ ) ≤ δ(p∗, q) (2)

⇒ ϕM · δ(p∗, qτ ) ≤
∑
q∈Q∗

ϕ

δ(p∗, q) = d∗ (3)

It is obvious that pτ cannot be “better” than pα. If the result
of gϕ(pτ , Q) is (Qτ

ϕ, d
τ ), we have:

dα ≤ dτ

=
∑
q∈Qτ

ϕ

δ(pτ , q)

≤
∑
q∈Q∗

ϕ

δ(pτ , q)

≤
∑
q∈Q∗

ϕ

(δ(pτ , p∗) + δ(p∗, q)) (triangle inequality)

=
∑
q∈Q∗

ϕ

δ(pτ , p∗) + d∗

= ϕM · δ(pτ , p∗) + d∗

≤ ϕM · (δ(pτ , qτ ) + δ(qτ , p∗)) + d∗

≤ 2ϕM · δ(qτ , p∗) + d∗ (by Eqation 1)
≤ 2d∗ + d∗ (by Eqation 3)
= 3d∗

A running example. Let us see how APX-sum finds the sum-
FANNR in Fig. 1 whose ϕ = 50%. First, we can easily
obtain the candidates of data points {p3, p4, p5}. Since the
true optimal p∗ belongs to the set of candidates, A-sum returns
p∗ = p3, d∗ = 4 and Q∗

ϕ = {q1, q2} as the final result.

Algorithm complexity. APX-sum is consisted of finding the
nearest neighbors and FANNR. If the gϕ is implemented as
Dijkstra or INE, the time cost is O((|E| + |V | log |V |)|Q|).
The space cost is O(|V |) in the worst case.



It should be pointed out that, 3 is only a theoretical bound.
As shown in our experiments, the approximation ratio of APX-
sum is far less than 3 in practice: it never exceeds 1.2 in our
experiments. We further propose a new theorem when Q is
the subset of P in the following.

Theorem 2. Algorithm 3 returns a 2-approximation answer
to any sum-FANNR query in road networks if Q is a subset
of P .

Proof: If Q is the subset of P , pτ is also qτ in the proof of
Theorem 1, and hence δ(pτ , qτ ) = 0 holds. Thus, dα ≤ 2d∗ is
true if we replace δ(pτ , qτ ) with 0 in the proof of Theorem 1.

V. EXTENSION TO THE K-FANNR PROBLEM

In this section, we define the k-FANNR query, which is
a further extension of FANNR. We can regard FANNR as a
special case of k-FANNR when k is 1.

Definition 3 (k-FANNR query). A k-FANNR query is a six-
tuple (G,P,Q, ϕ, g, k), which returns a k-element vector X
as its answer. Each element of X is a pair (pi, ri), in which
i = 1, 2, · · · , k, pi ∈ P and ri is the flexible aggregate
distance from pi to Q. For any node p0 ∈ P \{p1, p2, · · · , pk},
assume its flexible aggregate distance to Q is r0, we have
r0 ≥ max{r1, r2, · · · , rk}.

Obviously, it is not necessary for Qpi

ϕ to be the same, where
i = 1, 2, · · · , k. With some minor modifications, all of the
algorithms in this paper can be easily adapted to answer the
k-FANNR query except the APX-sum algorithm.

The Dijkstra-based algorithm. To get the top-k, we need to
update the queue when enumerating the P . Finally, the queue
is our final result.

The R-List algorithm. The threshold τ is calculated in
the same way as the original R-List algorithm. Instead of
comparing τ with the smallest distance, we compare it with
the k-th smallest distance in the priority queue. If τ is larger,
we can terminate the algorithm and return the priority queue
as the k-FANNR answer.

The IER-kNN framework. Like the adaptation for the R-List
algorithm, instead of comparing gϵϕ(e,Q) with the smallest
distance, we compare it with the k-th smallest distance in
the priority queue. If gϵϕ(e,Q) is larger, we can terminate
the algorithm and return the priority queue as the k-FANNR
answer.

The Exact-max algorithm. For the k-FANNR problem, we
should expand the paths until k different counters reach ϕ|Q|.
Then, we can terminate the search routine and return the k
corresponding query nodes and their flexible distances as the
final answer to the k-FANNR query.

TABLE III
ROAD NETWORK DATASETS

Name Description # nodes # edges
DE Delaware 48,812 119,004
ME Maine 187,315 412,352
COL Colorado 435,666 1042,400
NW Northwest USA 1,089,933 2,545,844

E Eastern USA 3,598,623 8,708,058
CTR Central USA 14,081,816 33,866,826
USA Full USA 23,947,347 57,708,624

VI. EXPERIMENTS

A. Setup

We implemented all the algorithms mentioned in this paper
by standard C++, and executed our experiments on a Linux
machine with dual 6-core Intel Xeon E5-2620 processors at
2.00 GHz and 64 GB DDR3 RAM. All of our road network
datasets come from the real word1. Note that the original
datasets have many errors, such as unconnected components
or self-loops, and we have cleaned it up at the preprocessing
stage. We show them in Table III.

Given a road network, there are many factors that will affect
the cost of an FANNR query. In our experiments, we mainly
focus on those in the following:

• d, the density of P
• A, the coverage ratio of Q
• M , the size of Q (i.e., |Q|)
• C, the number of clusters of Q
• ϕ, the flexibility parameter

where d controls the generation of P , and A, M and C affect
the generation of Q.

Uniform data points. Parameter d reflects the ratio of the
size of P to the size of nodes in whole graph (i.e., |P |/|V |).
We assume that P is generated randomly in the road network
given a density.

Uniform query points. Parameter A reflects aggregation
degree of the query nodes in Q. We first randomly select a
node in V as a source node (i.e., seed node), and calculate
the shortest path distances from it to all other nodes in V .
We denote the maximum one as the radius of G. Next, we
randomly choose M nodes from G, whose distances to the
seed node are no more than A×radius. Note that we assume
the size of nodes in such region is always larger than or equal
to M . If there is no enough objects in the region, we simply
expand outward until the size reaches M .

Clustered query points. In some scenarios, the query points
are not uniformly distributed. Some locations, such as schools,
often occur in clusters. After we determine a region by A in
the road network, we select C central nodes in the selected
region, and choose M/C nodes in the vicinity of each central
node by expanding from it.

Real-world POIs. We use the real-word data from [24], which

1http://www.dis.uniroma1.it/challenge9/download.shtml



is extracted from OpenStreetMap (OSM)2. We only show the
POIs within NW since our default road network is NW (see
Table IV).

TABLE IV
REAL WORLD POIS IN NW

Name Description # nodes Density
PA Parks 5,098 0.005
SC Schools 4,441 0.004
FF Fast Food 1,328 0.001
PO Post Offices 1,403 0.001

HOT Hotels 460 0.0004
HOS Hospitals 258 0.0002
UNI Universities 95 0.00009
CH Courthouses 49 0.00005

We use the NW as our default road network. We vary d from
0.0001 to 1, and vary A from 1% to 20%, and vary M from
64 to 1024, and vary C from 1 to 8, and vary ϕ from 0.1 to 1.
The default values of d, A, M , C and ϕ are set to 0.001, 10%,
128, 1 and 0.5 respectively. These values are set stochastically
and others are also adoptable. By default, both P and Q are
generated uniformly. In order to minimize the randomness,
we average the results of algorithms over 100 queries. The
performances of R-tree and G-tree are dependent on the value
of fanout f (both R-tree and G-tree) and maximum number
of points in a leaf node τ (G-tree). In our experiments, we set
f to 4. And for G-tree, we set τ to 64 (DE), 128 (ME, COL),
256 (NW, E), and 512 (CTR, USA) respectively.

In the following paper, we use GD to denote the family of
generalized Dijkstra-base algorithms, since the Dijkstra here
can be regarded as INE and it can be replaced with other
gϕ methods (e.g., A∗, PHL, and G-tree). In the meanwhile,
the specific Dijkstra-based algorithm (see Section III-A) is
denoted as Baseline. Note that we only show the results
of max-FANNR for universal methods (i.e., GD, R-List, and
IER-kNN) due to the space limit except the evaluation for
approximation ratio in Section VI-C. Fortunately, the running
time of sum-FANNR is very close to that of max-FANNR given
the same input, which is showed in Appendix C of our full
paper [26] due to the space limit.

B. Evaluation for Efficiency

The evaluation of efficiency includes the query efficiency
of different algorithms, the index cost, and the extended k-
FANNR queries.

1) Query Efficiency: The experimental results of different
algorithms’ running time (excluding the construction time of
index) are shown in the following, with respect to the varying
parameters of d, A, M , C and ϕ.

Varying d. We use 0.0001, 0.001, 0.01, 0.1, 1 to vary d. Firstly,
we present the experimental results of GD and IER-kNN
algorithms which are implemented by different gϕ routines
in Fig. 3. Note that the legends here refer to gϕ methods. We
can find that PHL and IER-PHL always preform best while A∗

2http://www.openstreetmap.org

and IER-A∗ are worst among these different implementations.
Another important conclusion is that there is a linear (or sub-
linear) relationship between the running time and density of
P for baseline (or IER-kNN) algorithms. The IER version of
A∗ is slightly better than A∗ in generally. Comparing Fig. 3(a)
with 3(b), we can see that IER-kNN outperforms GD by 1-3
orders of magnitude with respect to the same gϕ.

From Fig. 3(a), we can conclude that GD algorithm is often
infeasible if it is combined with A∗, IER-A∗, or INE, which
implies that Baseline is often infeasible. For example, we
can observe the gap between Baseline and R-List (whose gϕ
are both implemented with INE) with respect to the running
time (see Fig. 4(b)), and the Baseline cannot finish the query
when d is larger than 102 within a reasonable time. We will
discuss more about this based on the results of Fig. 4(b)
in Section VI-E. And since PHL (or IER-PHL) is the most
efficient implementation of gϕ, we choose PHL as the default
implementation of gϕ in the latter experiments.
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Fig. 3. Efficiency of GD and IER-kNN implemented by different gϕ
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Fig. 4. Efficiency when varying d

Fig. 4(a) shows the efficiency of all FANNR algorithms
presented in this paper. With the increasing of d, IER-PHL
performs best at first, and APX-sum outperforms any other
method when d is larger than 0.01. We also find that R-List is
better than the GD algorithm when d is large. We can validate
the stability of APX-sum when varying d, and this is because
APX-sum depends much on Q instead of P . Both APX-sum
and Exact-max have the tendency that they cost less time when
d is larger. This is because the expanding routine from Q to P
is faster when the data points is denser. The reason why Exact-
max decreases first and then increases is due to the trade-off
between the expanding overhead and convenience brought by
d. To be specific, a larger d will lead to a higher expanding
overhead in general, while it will also make the terminating
condition to be fulfilled earlier.



Varying A. Now we study the efficiency with different cov-
erage ratios of Q. We use 1%, 5%, 10%, 15%, 20% to vary A.
We show the results in Fig. 5.
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Fig. 5. Efficiency when varying A

We can conclude that IER-kNN can reflect how the ef-
ficiency is affected by different gϕ routines when varying
A. Fig. 5(a) shows the results of IER-kNN implemented
by different gϕ when we vary A. Clearly, PHL and IER-
PHL outperform other methods. All algorithms will cost more
running time with the increase of A. This is because larger A
means that Q is sparser in road networks, and hence it will
usually travel within a larger region. As shown in Fig. 5(a),
the slopes of A∗, IER-A∗ and INE are larger than those of
others. This behavior is consistent with the their nature of
“expanding”.

Further, we show the results of all algorithms in Fig 5(b).
Clearly, APX-sum is stable when we vary A. This validates our
conclusion that APX-sum has little dependence on Q’s sparsity.
As for R-List and Exact-max algorithm, their performances are
bad if Q is sparse, and this because sparer Q often leads to
a slower expanding from Q to P . We can also find the GD
algorithm is stable for different A. This is not surprising, as
the GD method depends much on P . Finally, R-List and Exact-
max are not better than GD algorithm here, and this is also
verified by the efficiency results in Fig. 4(a) when d = 0.001.

Varying M . Our next experiment investigates the efficiency
when varying the size of Q. We use 64, 128, 256, 512, 1024
to vary M . The results are shown in Fig. 6. As for IER-kNN
methods, they have the tendency that larger M leads to worse
efficiency in general. Note that the running time decreases first
(from M = 64 to M = 256) for most IER-kNN methods.
This is due to the trade-off between M and the sparsity of
Q. To be specific, the smaller M results in a larger sparsity
given a coverage ratio of Q . We also find that IER version
of A∗ can improve the performance generally. Besides, the
differences among PHL, GTree, IER-PHL, and IER-GTree are
minor in Fig. 6(a). From Fig. 6(b), we can clearly find that
APX-sum increases with the increase of M , and this verifies
our conclusion that APX-sum depends much on the size of Q.

Varying C. We evaluate the effect of C if Q is generated in
clusters, rather than uniformly. We use 1, 2, 4, 6, 8 to vary C.
Fig. 7 shows the results. Clearly, the larger C leads to worse
performance in general, and this tendency is more serious for
“expanding-based” methods in Fig. 7(a). When C is larger
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Fig. 6. Efficiency when varying M

enough, the performance will be stable and the running time
will approximate to the value when Q is generated uniformly.
For example, the running time of IER-A∗ is 2.16 seconds if
the Q is generated uniformly, while the cost is 2.37 seconds
when C = 8. As shown in Fig. 7(b), R-List and Exact-max
are more affected by C due to their similar mechanisms.
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Fig. 7. Efficiency when varying C
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Fig. 8. Efficiency when varying ϕ

Varying ϕ. The final part of query efficiencies is to study
the effect of ϕ, i.e., the flexibility parameter. We use
0.1, 0.3, 0.5, 0.7, 1.0 to vary ϕ. Fig. 8 shows our results. There
is an obvious positive correlation with ϕ. This is reasonable
because the larger ϕ means that more destinations need to be
visited. We can find that R-tree over Q has less improvement
for A∗ with the increasing of ϕ, however, the improvement is
very obvious when ϕ is relatively small. We can also find that
R-List and Exact-max are more effected by ϕ in Fig. 8(b).

2) Index Efficiency: Here we measure the construction time
and size of the road networks’ index structures used in our
algorithms. The different index techniques have been presented
in Table I.

Index cost of G-tree and PHL. Fig. 9 shows the index size



DE ME COL NW E CTR USA
dataset

100

101

102

103

104
in
de

x 
siz

e 
(M

B)
G-tree PHL

(a) Index size of G

DE ME COL NW E CTR USA
dataset

100

101

102

103

104

105

tim
e 
(s
ec
on
d)

G-tree PHL

(b) Construction time of G

Fig. 9. Index cost of different road networks

and the construction time of G-tree and PHL for different
datasets. This is also studied in [24]. Generally, G-tree costs
less storage than PHL. Note that PHL only can build index for
the first 5 datasets before exceeding the memory capacity. This
experimental result suggests that G-tree is the only choice for
very large road networks (e.g. USA), since PHL fails to build
index for CTR and USA in a single commodity machine. It
is obvious that the construction time of them is very close
generally. We can conclude that the major considerations are
the running efficiency and memory capacity rather than the
index construction time when choosing between G-tree and
PHL.

Index cost of R-tree and Occ. Due to the space limit, the
experimental results are not showed here, and readers can refer
to Appendix A in our full paper [26]. We can find that although
Occ always has higher time and size cost than R-tree, the
differences are quite trivial compared with the running cost.
Hence, the index cost of Q can be ignored when we need to
make a choice between GTree and IER-GTree.
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Fig. 10. Efficiency of k-FANNR

3) Efficiency of k-FANNR Queries: Now we study perfor-
mance of the k-FANNR queries of different algorithms. We
use 1, 5, 10, 15, 20 to vary k. Fig. 10 shows the results. It is
obvious that the query time will increase with the increasing of
k except for the GD algorithm. The stability of GD is because
that it mainly depends on P and the choice of gϕ, and other
factors rarely have influence on it. Thus, the computation cost
is similar with the case when k = 1 for GD. We can also
notice that both the Exact-max and R-List algorithms are more
sensitive to the increasing k than others. This is because they

need more expanding overheads when k increases. The reason
why GD always comes in the second place will be discussed
in Section VI-E.

C. Approximation Quality of APX-sum

The APX-sum algorithm proposed in Section IV-B is an
approximate algorithm. Due to the space limit, we only show
the results of its approximation quality in Fig. 11 when varying
d and ϕ. To get the results when varying other parameters,
the readers can refer to Appendix B in our full paper [26].
The y-error in error bars is the standard deviation. The results
show that APX-sum algorithm has an excellent approximation
quality and is quite stable, and the approximation ratio is
always less than 1.2 in all experimental cases.

D. Real World Data

We choose FF and PO POIs as our P since their densities
are equal to our default density (i.e., 0.001) in Table IV. Note
that there is no any type of POIs whose size is equal to our
default size (i.e., 128), and hence we the POIs whose sizes
are near to 128. In this way, we choose HOS and UNI POIs
as our Q in Table IV.

1) Query Efficiency: As shown in Fig. 12(a), the perfor-
mance of different FANNR methods on real world POIs has the
similar characteristics with the evaluation using synthesized
data. Again, the reason why GD always comes in the third
place will be discussed in Section VI-E.

2) Approximation Quality of APX-sum: We call find that
the APX-sum also has a very good approximation quality on
real world POIs as showed in Fig. 12(b). The approximation
ratio is always less than 1.1.
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TABLE V
EFFICIENCY OF Exact-max WITH DIFFERENT gϕ (SECOND)

gϕ

d 0.0001 0.001 0.01 0.1 1

A∗ 7.26 1.24 0.65 0.69 2.05
IER-A∗ 7.07 1.05 0.47 0.50 1.79

INE 6.81 0.94 0.35 0.38 1.62
PHL 7.56 1.10 0.36 0.41 1.67

IER-PHL 7.59 1.07 0.36 0.40 1.68
GTree 6.77 0.92 0.34 0.37 1.60

IER-GTree 6.78 0.93 0.34 0.38 1.64

E. Revisitation of GD Algorithm

As shown in experimental results above (Section VI-B1,
VI-B3, VI-D1), we can find that the GD is even better than
R-List (or Exact-max) in some scenarios if gϕ is implemented
by PHL. There are two reasons: i) Our default d is set to
0.001 and the performance evaluation can be seen in Fig. 4(a);
ii) PHL is fast enough such that the advantage of R-List
(or Exact-max) is shadowed. We will investigate the second
reason in the following.

To begin with, we show the experimental results of Exact-
max implemented by different gϕ routines in Table V. Al-
though we find that the efficiencies of different gϕ methods
may differ sharply in Fig. 3, it has little influence on Exact-
max. Clearly, Exact-max outperforms GD by 2 orders of
magnitude if gϕ is implemented by A∗ even if d = 0.0001.

Next, we use 0.0001, 0.001, 0.01, 0.1, 1 to vary d and com-
pare the R-List with the GD algorithm when gϕ is implemented
by INE. Fig. 4(b) shows the result. We can also conclude that
R-List is much better than GD if there is no any precomputed
index over the whole road network. There is not doubt that
Baseline or GD is infeasible when road network index is not
available (e.g., road networks in online games’ maps).

VII. CONCLUSION

In this paper, we have studied an interesting problem of
flexible aggregate nearest neighbor queries in road networks
(FANNR). We propose a series of universal methods to solve
this problem, including a Dijkstra-based algorithm, R-List and
IER-kNN algorithm framework. Combined with the state-
of-the-art shortest path techniques, the proposed algorithms
can achieve excellent performance. Our specific approaches
(Exact-max and APX-sum) sacrifice some generalities, but they
are easier to implement and much more efficient than those
universal approaches especially when the road networks are
index-free. Exact-max can return an exact answer, and APX-
sum can return a near-optimal result with a guaranteed 3-
approximation. Finally, we successfully adapt most of the pro-
posed algorithms to answer the extended k-FANNR queries.
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