
Efficient Team Formation in Social Networks based
on Constrained Pattern Graph

Yue Kou1, Derong Shen1, Quinn Snell2, Dong Li1, Tiezheng Nie1, Ge Yu1, Shuai Ma3

1Northeastern Universtiy, China 2Brigham Young University, United States 3Beihang University, China
{kouyue, shenderong, nietiezheng, yuge}@cse.neu.edu.cn lidongmason@163.com snell@cs.byu.edu mashuai@buaa.edu.cn

Abstract—Finding a team that is both competent in
performing the task and compatible in working together has
been extensively studied. However, most methods for team
formation tend to rely on a set of skills only. In order to solve
this problem, we present an efficient team formation method
based on Constrained Pattern Graph (called CPG). Unlike
traditional methods, our method takes into account both
structure constraints and communication constraints on team
members, which can better meet the requirements of users. First,
a CPG preprocessing method is proposed to normalize a CPG
and represent it as a CoreCPG in order to establish the basis for
efficient matching. Second, a Communication Cost Index (called
CCI) is constructed to speed up the matching between a CPG
and its corresponding social network. Third, a CCI-based node
matching algorithm is proposed to minimize the total number of
intermediate results. Moreover, a set of incremental
maintenance strategies for the changes of social networks are
proposed. We conduct experimental studies based on two real-
world social networks. The experiments demonstrate the
effectiveness and the efficiency of our proposed method in
comparison with traditional methods.

Keywords—team formation, social networks, Constrained
Pattern Graph, Communication Cost Index

I. INTRODUCTION

Team formation in social networks is essential for an
organization or institute’s viability. However, most existing
works tend to rely on a set of skills and only considers the size
of team’s diameter, the size of the minimum spanning tree
(MST) [1] or the total communication cost among members
[2-6]. Usually, people with different skills in a team have
different degrees of communication. For example, in a team,
project managers usually communicate more with software
developers than with test engineers, while software developers
always communicate more with test engineers than with
secretaries. The communication relationship among different
members forms structure constraints. Also the degree of their
communication shows communication constraints. Neither
structure constraints nor communication constraints can be
characterized via a simple skill set. Therefore, pattern graphs
are used by some methods to represent users’ requirements.
These solutions are mainly based on the idea of subgraph
isomorphism [7-20]. Although some subgraph isomorphism
supports matching for constraint pattern graph (e.g. [10, 13,
17, 19]) and can be applied to team formation, it aims to return
the entire matching subgraphs and incurs a NP-complete
problem [21]. However, in some applications, such as group
collaborative learning and expert recommendation, people are
interested in finding nodes, rather than the entire subgraphs.
The uniqueness of the team formation problem leaves much
room for improvements. For example, we can reduce the size
of indexes and focus on smaller candidate set by only
considering the member nodes. Let us consider the following
motivating scenarios.

Example 1.1: Fig. 1(a) depicts a social network which
includes a set of individuals (v1~v2m+2n+6). Each node

represents a person with one (or multiple) label(s) such as
Project Manager (PM), Software Engineer (SE), Database
Developer (DD), Test Engineer (TE), Data Analyst (DA),
Secretary (S) and so on. Here, we use different colors to
denote different skills. Each edge indicates a collaboration
relationship between two persons. The weight of an edge
reflects the distance between the two ends. The more
frequently they communicate with each other, the closer they
are, and the smaller the edge weight. Suppose a project needs
6 types of people, namely, PM, DD, SE, TE, DA and S. As
shown in Fig. 1(b), we can represent the task requirement as
a Constrained Pattern Graph (called CPG), where each edge
in the CPG is labeled with a constant k indicating the
communication cost of the two nodes (in this paper it
represents the upper threshold of the shortest path length)
connected by the edge in social networks should be no larger
than k. For example, a PM needs to be associated with a SE
within the distance of 2. We will map the CPG to the social
network to find a team that satisfies the task requirement.

DD

DATE

SE

S

PM
2 3

2

4

5

3

m

n

v1

v2

v3

v4

v5

v6

vn+6

vn+7 vn+m+6
vn+m+7 v2n+m+6

v2n+m+7 v2n+2m+6

v7

...

...

0.5

1

3 2

3 3

1
2

2 2

1

11

2

PM
m

M SEE DDD TEE DAA S

(a) Social network (b) CPG
Fig. 1. CPG based team formation

Suppose the matching order of nodes in the CPG is (PM,
SE, TE, S, DD, DA), and in the social network there are m
partial mappings consisting of (PM, SE, TE, S) which have
to be combined with n+1 partial mappings consisting of (DD,
DA). So we have to consider m (n+1) kinds of combination
in all, most of which are false positive and redundant.
However, if we use the matching order (PM, SE, DD, TE, S,
DA), we can know early the n partial mappings consisting of
(DD, DA) are not satisfied because the communication cost
between DD and SE for them is larger than 2. They can be
eliminated before mapping with TE, S or DA. At this time, it
only leads to n+1+m partial mappings.

In order to improve the efficiency of matching process,
some approaches are proposed to generate a matching order
of nodes. But they are mainly used for subgraph isomorphism,
which aims to find the entire matching subgraphs in the data
graph. In addition, most subgraph isomorphism methods
perform edge-to-edge mappings, which are somewhat too
strict to identify teams in real-world social networks. Some
extensions of subgraph isomorphism are studied to extend
mappings from edge-to-edge to edge-to-path, but there are no
communication constraints on the paths. In our approach, we

Dong Li is the corresponding author.

889

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00082

only need to check the communication cost between nodes,
without needing to check whether there is an edge between
them. Also, communication constraints in a CPG are useful
for us to filter out more irrelevant nodes as early as possible,
which can further reduce the size of intermediate results.

Example 1.2: Suppose we have already constructed a
team according to the requirements in Example 1.1. Let’s
consider two situations. First, a new label ‘TE’ is added to the
node vx in the social network. It means the person vx acquire
a new skill. Then how is the team built as before? Second,
suppose one of members becomes unavailable. Then how are
adjustments made to the current team?

In this example, if we repeat the whole procedure of team
formation, it will consume lots of time. In fact, the change
only affects partial matches. For the first situation, the node
vx will become a new candidate due to its new label. We only
need to check partial matches affected by it. These matches
constitute an affected region. Only the communication
relationships in the affected region rather than that in the
whole social network need to be rechecked. For the second
situation, deletions of nodes might only increase the
communication cost of some pairs of nodes. Compared to the
previous candidates, no new candidates will be chosen as a
result. We just need to choose the new result from the
previous candidates rather than from the whole network.

With incremental maintenance, the cost of team
formation can be reduced greatly. Although some
incremental team formulation methods (e.g. [10, 15, 18, 22-
25]) have been proposed, they mainly focus on the
maintenance for the entire matching subgraphs (e.g. [24, 25])
or the ranking of result data (e.g. [18]). Most methods only
support the incremental maintenance for the changes of
network structure rather than the changes of nodes’ labels.

However, team formulation in social networks based on
Constrained Pattern Graph is a highly challenging problem.
The major challenges are as follows: First, how to implement
the efficient matching between a CPG and social networks?
Traditional pattern graph matching is an NP-complete
problem. The input pattern graph for subgraph isomorphism
cannot fully reflect the constraints in users’ requirements.
Their edge-to-edge mappings are too restricting for team
formation. Therefore, we need to propose a new efficient
matching approach for team formation. Second, how to
improve the efficiency of maintenance for the result of team
formation? Current techniques only support the incremental
maintenance for the changes of network structure. Thus we
need to consider more types of changes and the
corresponding incremental maintenance strategies.

In this paper, we present an efficient team formation
method based on CPG. Unlike traditional methods, we
consider both structure constraints and communication
constraints on team members, which can better meet the
requirements. We make the practial contributions:

(1) A CPG preprocessing method is proposed to
normalize a CPG and represent it as a CoreCPG in order to
establish the basis for efficient matching.

(2) An auxiliary data structure (called Communication
Cost Index, CCI) is designed to speed up the matching
between the CPG and social networks. First, we construct a
CCI in a top-down way starting from the core node in the

CPG. Then, we refine the constructed CCI in a bottom-up
fashion to reduce the storing space of the CCI.

(3) Based on the CoreCPG and the constructed CCI, a
node matching algorithm is proposed to determine the
matching order of nodes in the CPG. The cost model for
matching is defined and three heuristic matching rules are
proposed to minimize the total number of intermediate results.

(4) The incremental maintenance strategies are proposed
for the changes of social networks including the insertion or
deletion of nodes’ labels, insertion or deletion of edges,
insertion or deletion of nodes, increase or decrease of edges’
weights.

(5) The extensive experimental studies based upon two
real-world social networks are conducted. The experiments
demonstrate the effectiveness and the efficiency of our
proposed method.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III formulates the problem
and gives an overview of our solution. Section IV presents
the CPG preprocessing method. Section V and Section VI
propose the CCI construction algorithm and the CCI-based
node matching algorithm respectively. Section VII proposes
the incremental maintenance strategies. Section VIII shows
the experimental results and Section IX makes conclusion.

II. RELATED WORK

Some communication cost based team formation methods
are proposed to find a group of members such that not only
their skills can cover a set of required skills, but also the size
of team’s diameter (or MST) [1] or the total communication
cost among members [2-6] is minimum. For example, in [2],
a community detection algorithm is proposed to alternatively
find a densely-connected subgraph based on a set of given
nodes. In [3] and [4], some team formation algorithms are
proposed to not only minimize the communication cost
among team members, but also minimize the cost between
team members and team leaders. In [5], the influence
maximization is combined with team formation to facilitate
the organization of social events. In [6], an interactive team
formation system is designed to model teams as hierarchical
structure which can reflect the ubiquitous nature of teams.

Subgraph isomorphism based team formation is to find all
the matches of the nodes in social networks according to a
given pattern graph. Because the problem of subgraph
isomorphism is NP-complete, some approaches are proposed
to reduce the cost of matching. For example, in [7] and [8],
infrequent-labels first strategy and path enumeration are
proposed respectively to generate a matching order of nodes.
In [9], query decomposition is proposed to minimize the total
number of intermediate results. In [10], a BGS (Bounded
Graph Simulation) based approximate solution is proposed to
find inexact matches between the pattern graph and social
networks. In [11], a system called ExpFinder is presented to
find experts in social networks based on graph pattern
matching. In [12], an indexing algorithm that selects features
directly from data graphs is presented. In [13], QGPs
(quantified graph patterns) are proposed and parallel scalable
algorithms for quantified matching are discussed. In [14-16],
extensions are studied to extend mappings from edge-to-edge
to edge-to-path. In [17], exact edge matching is replaced with
the notion of path matching constrained by a path length. In
[18-20], some methods for finding top-K teams are proposed.

890

In [18], a graph pattern matching approach for top-K team
formation is proposed by incorporating both structure
constraints and capacity bounds. In [19], a multi-constrained
top-K graph pattern matching method is proposed. In [20], a
two-level-based framework is designed to recommend top-K
teams for spatial crowdsourcing tasks.

In order to further improve the efficiency of team
formation, some incremental maintenance strategies [10, 15,
18, 22-25] are proposed. In [10] and [22], approximate
algorithms based on bounded graph simulation are designed
for incrementally finding matches when data graphs are
updated. In [15], an index is built to incrementally record the
shortest path length range between different label types, and
the affected parts will be identified when pattern graphs or
data graphs are updated. In [23], an incremental pattern
mining method is proposed, which uses different pruning
strategies as well as an index structure to enable fast access
to matching and fast updates.

The differences between our work and existing work are
as follows: First, most subgraph isomorphism performs edge-
to-edge mappings. Although some extensions of subgraph
isomorphism support edge-to-path matching, they focus on
either the overall communication cost or the aggregated
contribution of a group. In this paper, we focus on more
specific query constraints such as each pair’s communication
cost and each member’s skills. Second, some subgraph
isomorphism supports matching for constraint pattern graph
(e.g. [10, 13, 17, 19]), but they aim to find the entire matching
subgraphs in the data graph. Although most of them can be
applied to team formation by delivering the entire matching
subgraphs in data graph, they incur a high time complexity.
Different from them, our goal is to find team members, but
not the subgraphs containing the members. Third, most
incremental graph pattern matching methods mainly focus on
the incremental maintenance for the result of subgraph
isomorphism (e.g. [24, 25]), or the ranking of result data (e.g.
[18]). Although some methods (e.g. [15]) focus on the
incremental maintenance for the matching nodes, they are
only suitable for the changes of network structure, rather than
the changes of labels. We consider more types of changes and
propose the corresponding incremental maintenance
strategies for the matching nodes.

III. SOLUTION OVERVIEW

Suppose there are n individuals in a social network which
is modeled as a data graph G.

Definition 3.1 (Data Graph): The data graph is a
weighted graph G=(VD, ED, LD, WD), where VD is the vertex
set of size n to denote individuals, ED VD×VD is the edge set
to denote the communication relationships among individuals,
LD is a function such that LD(v) is a set of labels to denote the
skills owned by each node v VD, and WD is a function defined
on ED such that WD(v, v’) is the weight between v and v’ ((v,
v’) ED).

The weight of an edge in G reflects the distance between
the two ends. It is relevant to the degree of communication
between them. The more frequently they communicate with
each other, the smaller the edge weight is. The length of a
path in G equals to the sum of the weights of all the edges on
the path. We build the shortest path length matrix C to record
the shortest path length between each pair of nodes in G. For
each node pair (vi, vj), we use the weights to quantify their

communication cost C(vi, vj) which is defined as the length of
the shortest path between vi and vj.

Definition 3.2 (Constrained Pattern Graph, CPG): A
CPG is a query graph Q=(VQ, EQ, LQ, CQ), where VQ and EQ
are the node set and the edge set respectively, LQ is a function
defined on VQ such that LQ(u) is the label of the node u
(u VQ), and CQ is a function defined on EQ such that CQ(u,
u’) is the upper threshold of the communication cost between
u and u’ ((u, u’) EQ).

For example, Fig. 1(b) depicts a CPG. We use VQ, EQ and
LQ in the CPG to describe structure constraints in user’s
requirements and use CQ to express communication
constraints among team members. The nodes in the CPG have
the same labels as the nodes in G. But the edges in the CPG
and in G are different. The former reflects either direct
relationships or indirect relationships (e.g. the node labeled
with PM and the node labeled with SE are not requested to be
connected directly in G). Each edge in the CPG has a weight
as the bounded communication cost. But edges in G only
reflect direct relationships, that is, two nodes connected by an
edge in G can communicate each other directly.

One challenge is that by recommending only one team to
the requester, it might fail to recruit the team. Thus we
consider top-K team formation.

Definition 3.3 (Top-K Team Formation based on
CPG): Given a data graph G and a CPG (suppose |VQ|=m),
the problem of top-K team formation is to find K teams each
of which has m nodes in G (denoted as Vm) such that:

(1) Nodes in Vm should satisfy the structure constraints in
the CPG. There are m kinds of label mappings between VQ

and Vm. For each mapping (u, v) in each label (u VQ, v Vm),
LQ(u) LD(v). For each edge (u, u’) in EQ, there exists a path
from v to v’ in G such that (u, v) and (u’, v’) are two mappings.

(2) Nodes in Vm should satisfy communication constraints
in the CPG. For each edge (u, u’) in EQ, suppose (u, v) and
(u’, v’) are two mappings, the communication cost (i.e. the
shortest path length) between v and v’ in G should not be
larger than CQ(u, u’). Also the total communication cost of all
edges constructing the final team should be top-K minimum.

To efficiently find the top-K teams, we have to address
two key issues: (1) how to develop an effective index to speed
up matching, and (2) how to devise a heuristic matching order
in the computation.

Example 3.1: In Fig. 1, both the node set {v1, v3, v5, v6,
vn+7, v2n+m+7} and the node set {v1, v3, v5, v6, vn+m+6, v2n+2m+6}
constitute a group of candidate nodes respectively. Their total
communication cost is 12.5 and 11.5 respectively. So the
second group is more dominant than the former to be the final
result.

Definition 3.4 (Incremental Maintenance): Given a
data graph G, a list updates △G to G, the current index and
the current query result, the problem of incremental
maintenance is to determine the affected regions in the index,
and then update the index and the result, but not to re-perform
the whole procedure of team formation.

Frequently used notations in this paper are summarized in
Table I. Our solution is shown in Fig. 2. If the whole CPG is
taken as the matching object, the matching cost is relatively
high. Therefore, we adopt the idea of divide and conquer, first

891

divide the CPG into several parts, and then match them one
by one to reduce the matching cost. It mainly includes four
parts: 1) CPG preprocessing (see Section IV). The CPG is
normalized and represented as a CoreCPG, which consists of
one core part with a core node and several noncore parts, in
order to establish the basis for efficient matching. 2) CCI
construction (see Section V). In order to speed up node
matching, an auxiliary index called CCI is constructed
starting from the core node in the CPG. 3) CCI-based node
matching (see Section VI). Based on the CoreCPG and the
constructed CCI, the matching order of nodes in the CPG is
determined to minimize the total number of intermediate
results. The candidate with the top-K minimum total
communication cost will be selected to form a team. 4)
Incremental maintenance (see Section VII). According to the
updates △G of the data graph and the current CCI, the query
result is maintained incrementally.

TABLE I. NOTATIONS

Notation Meaning
G and Q Data graph and CPG
LD(v) and LQ(u) Labels of node v in G and label of node u in Q
C(v, v’) Communication cost between v and v’ in G
CQ(u, u’) Communication constraint between u and u’ in Q
QT Minimum spanning tree of Q
QC and ucore Core part in Q and the core node in QC

QN Noncore part in Q
M(u) A set of nodes in G matching with u
NS and ES Node set and edge set of an index node in CCI

CCI Construction

CCI

CCI-based Node Matching

Query Result

G Incremental Maintenance

New Query Result

G

....

....

........

....

CPG
Preprocessing

Q ...

...

0.5

1
3 2

3 3

1
2

2 2

1

11

2
Q

2 32
4
5

3

CoreCPG

Fig. 2. Solution overview

IV. CPG PREPROCESSING

We propose a CPG preprocessing method that normalizes
the CPG and reprensents it as a CoreCPG in order to establish
the basis for efficient matching.

A. CPG Normalization
A CPG is often given by users. Inevitably there exists

some data redundancy. It is necessary to normalize the CPG
before matching. According to the triangle inequality
theorem, any side of a triangle is always shorter than the sum
of the other two sides. The communication cost (i.e. the
length of the shortest path) among nodes in G also follows
this theorem. For any three nodes vi, vj and vk in G, the triangle
inequality theorem states that C(vi, vj) should not be larger
than the sum of C(vi, vk) and C(vk, vj). The triangle inequality
theorem assures the following theorem.

Theorem 4.1: For any triangle (suppose ui, uj and uk are
three nodes constituting the triangle) in a CPG, if CQ(ui, uj) is
larger than the sum of CQ(ui, uk) and CQ(uk, uj), then (ui, uj) is
a redundant edge.

Proof: Suppose (ui, vi), (uj, vj) and (uk, vk) are three
mappings between Q and G. If C(vi, vk) CQ(ui, uk) and C(vk,
vj) CQ(uk, uj) are satisfied respectively, due to C(vi, vj) C(vi,
vk) + C(vk, vj), then C(vi, vj) CQ(ui, uk)+ CQ(uk, uj) must be
satisfied. Also, because CQ(ui, uj) is larger than CQ(ui, uk)+
CQ(uk, uj), C(vi, vj) must be no larger than CQ(ui, uj). That is,
if the constraints CQ(ui, uk) and CQ(uk, uj) are satisfied, the
constraint CQ(ui, uj) must be satisfied too. Therefore, the edge
(ui, uj) in the CPG is redundant.

The goal of CPG normalization is to remove all the
redundant edges from the CPG. For simplicity, in the
remainder of this paper, we use the term “CPG” to refer to
the “normalized CPG”.

B. CoreCPG Representation
Definition 4.1 (CoreCPG): A CoreCPG consists of one

core part QC with a core node ucore and a set of noncore parts
QNset. Here the core part QC=(VC, EC, LQ, CQ) is the minimal
connected subgraph in Q, which contains all non-tree edges
(edges in Q but not appearing in Q’s MST (denoted as QT(VT,
ET))). Each noncore part QN=(VN, EN, LQ, CQ) in QNset is the
subgraph of Q consisting of all other edges not in QC. The
node u in VC with fewer matching nodes in G (having the
same label as u, denoted as M(u)) and closer communication
with other nodes in VC is selected as ucore.

Since the cost for matching non-tree edges will increase
sharply with the increase of intermediate results (see Section
VI), QC that contains all such edges should be matched first,
and then QNset. For ucore, fewer matching nodes means less
intermediate results being generated, while closer
communication means lower traverse cost. So ucore will be
matched preferentially over the other nodes in QC. Therefore
we need to represent the normalized CPG as a CoreCPG. Our
method is similar to [9], but we use different condition to
select the core node. The communication constraints are
considered. The pseudocode is shown in Algorithm 1.

Algorithm 1: CoreCPG representation
Input: a normalized Q
Output: QC, ucore, QNset

1 QT generateMST(Q);
2 QC determineCore(Q, QT);
3 for each node vi in VC do
4 vi.com 0;
5 for each edge (vi, vj) in EC do
6 vi.com vi.com+CQ(vi, vj);
7 vi.coreDegree |M(vi)| vi.com;
8 ucore argminui VC ui.coreDegree;
9 QNset determineNoncore(Q, QC);
10 return QC, ucore and QNset;

Step 1: We first generate Q’s MST, i.e. QT(VT, ET), where
VT and ET have the same definitions as VQ and EQ respectively
(Line 1). ET is the subset of EQ.

Step 2: According to QT, determine the core part QC (Line
2). We apply the method in [9] to determine QC.

Step 3: Determine the core node ucore in VC (Line 3-8).
We use communication constraints to select the core node in
VC. We quantify u’s core degree as |M(u)| iCQ(u, ui) (u,
ui VC, (u, ui) EC) and select the node with the minimum
value as the core node. When there are multiple nodes with

892

equal core degree, the node with the smallest identifier will
be selected as the core node.

Step 4: Determine the set of noncore parts QNset in Q
(Line 9). Note that there are some nodes that appear in both
the core part and the noncore part (i.e. VC VN). They act as
the connection nodes between the two parts.

Example 4.1: As shown in Fig. 3(a), there are two edges
removed from the CPG after normalization. Then the
minimum spanning tree QT is generated (shown in Fig. 3(b)).
The minimal connected subgraph of Q that contains all the
non-tree edges is determined as QC (shown in Fig. 3(c)). It
contains all the non-tree edges in Q (denoted as red dashed
lines). Also the core node is selected from QC. Suppose for
each node u in QC, the number of matching nodes (i.e. |M(u)|)
is shown in Fig. 3(c), we can select the core node having the
lowest core degree. Finally, each noncore part QN is
determined. The CoreCPG consists of QC with the core node
ucore and two QN s in this example.

4

4

6
8

2
4

6
8

4

4

8
2

2
44

2

4

4

6

2

6

44222

4

4

4

6

222222

44

6666

44

66

22 4444

QN

QN

QC

uu |M(u)|

2

3

4

8

6

7

iCQ(u, ui)

5

7

18

6

16

20

CoreDegree

10

21

72

48

96

140

 ucore

10

21

(a)Normalization (b)QT generation (c) CoreCPG representation
Fig. 3. An example for CPG preprocessing

In fact, both CPG normalization and MST generation can
remove the redundant edges from CPG. Besides the
redundant edges, the non-tree edges can also be removed
from MST. If without CPG normalization, we cannot tell
whether a removed edge is a redundant edge or a non-tree
edge. Then all the removed edges will be viewed as non-tree
edges, resulting in higher cost of the subsequent node
matching. So both of the steps are necessary.

V. COMMUNICATION COST INDEX

Starting from the core node, we will construct a
Communication Cost Index (CCI). It is used to compactly
encode all possible embeddings of Q in G. Each embedding is
a group of nodes satisfying the constraints in the CPG and is a
candidate to form a team.

A. CCI Data Structure
Given a CPG and a data graph, a CCI is a tree with the

same structure as QT. Each index node in the CCI carries the
same label as the corresponding node in QT. Also the parent-
child relationships among nodes are the same in QT and the
CCI. The data structure of the CCI is as follows. 1) Each
index node e in the CCI corresponds to a node u in QT. It is a
matching node set of u, which includes u’s matching nodes
M(u) (or denoted as M(e) due to the equivalence between e
and u) in G. 2) The relationships between two adjacent index
nodes in the CCI (e.g. ei and ej) are many-to-many. An index
edge between v (v M(ei)) and v’ (v’ M(ej)) is built if and
only if C(v, v’) is not larger than CQ(ei, ej). For each index
node, we use a node set NS and an edge set ES to store its
matching nodes and the communication relationships with its
parent node, respectively.

Example 5.1: Let's take the first two nodes in the table of
Fig. 3(c) as an example (denoted as u1 and u2 here). Suppose

that their matching nodes are M(u1)={v1, v2} and M(u2)={v3,
v4, v5}, and the relevant fragment of G is shown in Fig. 4(a).
Because the relationships among the matching nodes may be
indirect, we use dashed lines with the corresponding
communication cost to represent the relationships. There are
six paths between nodes in M(u1) and nodes in M(u2). The
corresponding index nodes in the CCI are shown in Fig. 4(b).
There are two index nodes (denoted as e1 and e2)
corresponding to u1 and u2 respectively. Only three paths in
Fig. 4(a) are left which satisfying communication constraints
in the CPG (i.e. no larger than 3). So the node sets of e1 and
e2 are {v1, v2} and {v3, v4}, respectively. And there are three
index edges between them which are stored in the edge set of
e2, i.e. {(v3, v1, 2), (v4, v1, 1), (v4, v2, 2)}.

e1

e2

v1 v2

v3 v4 v5

v1 v2

v3 v4

4

6

IndexNode
e1

e2

NS

v1, v2

v3, v4

ES

--

(v3, v1, 2),

(v4, v1, 1),

(v4, v2, 2)

IndexNode
e1

e2

NS

v1, v2

v3, v4

ES

--

(v3, v1, 2),

(v4, v1, 1),

(v4, v2v , 2)

(a) Fragment of G (b) CCI
Fig. 4. An example for index nodes in a CCI

Remark. There are also some existing auxiliary data
structures (e.g. TurboISO [8], CPI [9] and S-Index [17]) to
speed up subgraph matching. However, the CCI is inherently
different. First, for most indexes, the entire matching
subgraphs in the data graph need to be found and stored. Each
index edge represents a direct relationship. However, CCI-
based node matching aims to find the matching nodes
satisfying the constraints in the CPG. Each index edge
represents a path. Only the two ending nodes on each path
need to be stored. Second, although some indexes support
edge-to-path mappings and path matching constrained by a
path length, they do not use communication constraints to
refine, resulting in large storage space and traversal cost. By
checking communication constraints, we can prune
unpromising nodes during CCI construction. As a result, the
CCI is better suited for team formation with less storage space.

B. CCI Construction
The CCI is constructed to compactly encode all possible

embeddings of Q in G and to speed up the matching between
them. Similar to a parent-child relationship in QT, there is also
a parent-child relationship between two adjacent nodes in the
CCI. It is constructed in a top-down fashion. Given the core
node ucore, QT, G and the shortest path length matrix C, the
algorithm for CCI construction is shown in Algorithm 2.

Algorithm 2: CCI Construction
Input: ucore, QT, G, C
Output: CCI

1 root.NS getMatchingNodes(LQ(ucore), G);
2 root.ES ;
3 CCI root;
4 CCI extendCCI(root, ucore, QT, G, C, CCI);
5 return CCI;

Step 1: Generate the root node of the CCI. Intuitively, the
node with stronger pruning power should be the root of the
CCI, so that it can be traversed first. As discussed in Section
IV.B, the core node ucore has both fewer matching nodes and
smaller communication cost with other nodes. Its pruning
power is strongest, so it should be selected as the root of the

893

CCI. Its NS and ES are the set of matching nodes in G (sharing
the common label with ucore) and , respectively.

Step 2: Call Algorithm 3 recursively to generate the rest
part of the CCI. Given the current CCI, a parent index node
ep in it (corresponding to the node up in QT), G and the shortest
path length matrix C, Algorithm 3 is to generate the
descendants of ep. The children Uc of up in QT are checked at
first. If Uc is null, ep will not be extended because up is a leaf
node. Otherwise, there will be |Uc| child nodes of ep being
generated. For each node in Uc, it corresponds to an index
node ec which will be extended as a child node of ep. The
extension process is as follows (Line 4-16).

Algorithm 3: extendCCI
Input: the current CCI, a parent index node ep, up, QT,

G, C
Output: the extended CCI

1 Uc getChildren(up, QT);
2 if Uc is not null then
3 for each node uc in Uc do
4 ec.NS ;
5 ec.ES ;
6 M(ec) getMatchingNodes(LQ(uc), G);
7 for each node vi in M(ec) do
8 for each node vj in ep.NS do
9 if C(vi, vj) CQ (uc, up) then
10 ec.NS ec.NS {vi};
11 ec.ES ec. ES (vi, vj, C(vi, vj));
12 ep.childList.add(ec);
13 CCI updateCCI(CCI, ep, ec);
14 up uc;
15 ep ec;
16 CCI extendCCI(ep, up, QT, G, C, CCI);
17 return CCI;

First, initialize NS and ES of ec. Second, get the matching
nodes of ec (i.e. M(ec)) in G according to the label of uc. Third,
by comparing the communication cost between nodes in M(ec)
and nodes in ep’s NS with the communication constraints in
the CPG, refine M(ec). Only the nodes satisfying the
communication constraints continue to be stored in ec’s NS.
Correspondingly, the index edges between ec and ep will be
stored in ec’s ES. Fourth, extend ec to the current CCI and call
Algorithm 3 recursively with ec as the new parent index node.
Finally, generate the descendants of ec.

To reduce the storing space of the CCI, for each two index
nodes with the parent-child relationship in the CCI (parent is
denoted as ep and child is denoted as ec), we define two rules,
R1: ∀vi(vi ec.NS)→ vj(vj ep.NS C(vi, vj) CQ (uc, up)) and
R2: ∀vj(vj ep.NS)→ vi(vi ec.NS (vi, vj, C(vi, vj)) ec.ES).

R1 reveals that, for any node in ec’s NS, at least there exists
one node in ep’s NS where the communication cost between
them can satisfy the requirement. R2 is used to guarantee that,
for any node in ep’s NS, at least there exists one node in ec’s
NS where the communication cost between them can satisfy
the requirement, i.e. the edge (vi, vj, C(vi, vj)) has been stored
in ec’s ES. In a word, each node in both ec’s NS and ep’s NS is
involved in the parent-child relationship.

In Algorithm 3, when extending an index node ec, its
ancestors will construct ec’s NS and ES, which can guarantee
R1. But R2 might not be satisfied. It is possible that some

nodes exist in ep’s NS not satisfying the communication cost
requirement with ec. So we propose Algorithm 4 to further
refine the CCI in a bottom-up fashion. Each index node next
to the leaves (i.e. at the (max_level-1)-th level) is considered
as ep and is refined at first (Line 1-2). Each node in ep’s NS is
checked whether it is involved in the parent-child relationship
with a node in the leaves’ (i.e. ec’s) NSs (Line 3-7). We
remove from ep’s NS such nodes that cannot satisfy R2 (Line
8-9). ep’s ES is updated (Line 10). Then, follow this
procedure and process the upper level in the CCI iteratively.

Algorithm 4: refineCCI
Input: the current CCI
Output: the refined CCI based on parent-child

relationship
1 for each level l from CCI.max_level-1 to 1 do
2 for each index node ep at level l do
3 for each node vj in ep.NS do
4 vj.status false;
5 for each index node ec in ep.childList do
6 for each node vi in ec.NS do
7 if (vi, vj, C(vi, vj)) ec.ES) then vj.status true;
8 if vj.status==false then
9 ep.NS ep.NS - {vj};
10 ep.ES updateEdge(ep, ep.NS);
11 return CCI;

e1

e2 e3

e4 e5

e6

v1

v5e2 v7v77 ... e3.. vn+6

vn+7+7 vn+m+6 ev2n+m+6

v2n+m+7 v2n+2m+6

5

...

......

...

4 v

6

1.5 2 2

2 223

33

e3

e1

e2

e4

v5e2

vn+77 vn+m+6

v2n+m+7 v2n+2m+6

...

...

4

1.5

23

33

+6

33

vx

6 vz

5

2222
vy

1

2

3

NS NS+

e6

AR

v3

vn+m+7 vv2+7...v6

2

2 e3

e5

v1

v7v7 ... e3.. vn+6

ev2n+m+6 e5

...

...

2 2

2 2
e3v3

vn+m+7 v2+777...
2

2

v6

 (a) An example of CCI (b) Incremental maintenance for CCI
Fig. 5. An example of CCI construction and maintenance

Example 5.2: Consider the data graph and the CPG in Fig.
1. The constructed CCI is as Fig. 5(a). There are six index
nodes, each of which stores a group of candidate nodes in G.
Only the nodes and the edges satisfying communication
constraints in the CPG can be retained in the CCI.

C. Complexity Analysis
The average worst-case size of index nodes: Suppose

that there are lD different labels in G. Then the average size
of nodes in G with each label is |VD|/lD. We only need to store
the nodes and the edges satisfying the input constraints into
the CCI. Suppose that the average probability for an edge in
G (denoted as (vi, vj)) satisfying the corresponding
communication constraint in the CPG is . Then the average
probability for vi (or vj) included by an index node is √ . Thus
the average worst-case size of index nodes is (|VQ||VD|√)/lD.

The average worst-case size of index edges: For each
pair of parent-child nodes in Q, there are an average of
|VD|2/lD

2 paths in G to meet the requirement about labels. Then
there are an average of |VD|2 /lD

2 index edges to meet both the
label requirement and communication constraints. Therefore,
the average worst-case size of index edges is (|VQ||VD|2)/lD

2.

Time complexity of CCI construction: Let H denote the
product of the number of leaf nodes in QT and the height of
QT. Then the top-down checking and the bottom-up refining
takes at most O(H|VD|2/lD

2).

894

VI. CCI-BASED NODE MATCHING

During CCI construction, we only consider the parent-
child relationships in QT. However, communication
constraints reflected by the non-tree edges is not included in
these relationships. We need to make matching further. In this
section, we propose three heuristic matching rules which are
applied to our CCI-based node matching algorithm.

A. Core First Matching Rule
A cost model is proposed in [7] to estimate the matching

cost based on a matching order of nodes (u1, …, un) (as in (1)).
Here Bi is the total number of embeddings in the CCI derived
from (u1, …, ui) (suppose that each ui corresponds to the index
node ei in the CCI), ݀௜௝ is the number of candidates induced by
the j-th embedding of ui-1, and ri is the number of non-tree
edges between ui and nodes before ui in the matching order. ܶ = ଵܤ + ∑ ∑ ݀௜௝(ݎ௜ + 1)஻೔షభ௝ୀଵ௡௜ୀଶ

Example 6.1: Let’s consider the constructed CCI in
Example 5.2. We compare the matching cost under two
matching orders, (e1, e2, e4, e6, e3, e5) and (e1, e2, e3, e4, e6, e5).
For presentation simplicity, we assume that the values of ݀௜௝
for all the embeddings of ei-1 are the same.

Nodee Bi-1

1

1

1

m

m

m

di
j (j=1~Bi-1)

1

1

m

1

n+1

1

) ri

0

0

0

0

1

0

e1

e2

e4

e6

e3

e5

Nodede Bi-1

1

1

1

m

m

m

di
j (j=1~Bi-1)

1

1

n+1

1

1

1

) ri

0

0

1

0

0

0

e1

e2

e3

e4

e6

e5

(a) Matching order: (e1,e2,e4,e6,e3,e5) (b) Matching order: (e1,e2,e3,e4,e6,e5)

Fig. 6. Comparison of the matching cost

In Fig. 6(a), the number of embeddings (i.e. search breadth)
for e1, e2 and e4 is 1. The number of candidates derived from
e4’s parent (i.e. e2) is m, so the search breadth of e4 (i.e. B4) is
m. That is, there are m embeddings generated now. For each
embedding, it derives one candidate in e6. Therefore, by
matching (e1, e2, e4, e6), there are m candidate paths (i.e.
embeddings) generated to be combined with post-order
mappings. When matching e3, there are n+1 candidates in its
NS, each of which needs to be combined with the candidate
paths formed before. So the number of comparison is m (n+1)
for combination. The number of non-tree edges between e3
and the nodes before it in the matching order is 1. Thus the
candidates in e3 need to be checked whether they can satisfy
the communication constraints with the candidates in e2. The
number of comparison is m (n+1) for checking too. So the
cost of matching e3 is 2 m (n+1). The rest can be done in the
same manner. Finally, the total cost of matching regarding the
matching order (e1, e2, e4, e6, e3, e5) is 2 m (n+1)+3 m+2. In
Fig. 6(b), e3 is matched earlier than e4 and e6. Before matching
e3, the search breadth is only 1. So the number of comparison
for matching e3 is only 2 (n+1), the sum of the number of
comparison (n+1) for combination and the number of
comparison (n+1) for checking. The total cost regarding the
matching order (e1, e2, e3, e4, e6, e5) is 2 (n+1)+3 m+2, which
is less than the former.

Remark. From the above example, we can see that the
search breadth grows quickly and dominates in the matching
cost. So we should try to deal with non-tree edges before the

search breadth becomes wider. The combination between
candidates via non-tree edges should be done as early as
possible. The core part is the minimal connected subgraph of
Q that contains all the non-tree edges. Therefore, we propose
the core first matching rule: the nodes in QC should be
matched before the nodes in QN. For example, in Fig. 5(a) the
index nodes e1, e2 and e3 corresponds to the nodes in QC of Q.
Therefore, e1, e2 and e3 should be matched before e4, e5 and e6.

B. Pruning Power First Matching Rule
Next, we further determine the matching order of nodes

in the core part. There are a set of root-to-leaf paths (l1, …, lk)
sharing the root node in the core part. Our goal is to compute
an efficient order of these path, then to obtain the matching
order of query nodes.

Suppose that there are two index nodes (em and en) in the
CCI. There is a non-tree edge between their corresponding
query nodes in Q. We define the satisfaction rate of em

(denoted as (em), as in (2)) as the proportion of nodes in em’s
NS satisfying communication constraints with nodes in en’s
NS. For other index nodes not connected by non-tree edges,
their satisfaction rates are always 1. (݁݉) = ܵܰ.݉݁∋݅ݒ|݅ݒ}| ܵܰ.݊݁∋݆ݒ)݆ݒ∃ ൯݆ݒ,݅ݒ൫ܥ |ܵܰ.݉݁||{((݊݁,݉݁)ݍܥ

To estimate the cost based on a matching order of paths,
we redefine the cost model in [7]. In fact, the matching order
of query nodes can be obtained from the order of paths. We
assume that the matching order of query nodes is (u1, …, un)
and the position of the last node of li in the matching order is
li. Given a path-based order (l1, …, lk) and a CCI, the total cost
of a backtracking algorithm for matching can be calculated as
(3). Here Bli is the search breadth of li, and rli is the number
of non-tree edges between li and paths before li in the
matching order. i-1 is the product of the satisfaction rates in
the CCI derived from (e1, …, ei-1). Suppose that ei-1 is an index
nodes connected by a non-tree edge. Then the probability that
each node in ei-1’s NS preserved in the CCI is i-1, so the
search breadth of ei-1 is Bi-1 i-1. It has an effect on the number
of comparisons during matching the next node (see the first
line in (3)). We can also assume that in the next index node
the number of candidates under each embedding is reduced
uniformly (see the second line in (3)). Further we can get the
third line in (3), which will be used to determine the matching
order of nodes in the core part. For each path li, the matching
cost is relevant to: Bli, the number of non-tree edges
connected to li, and the product of the satisfaction rates
derived from these non-tree edges (i.e. li). Then we define
pruning power for each path (as in (4)).ܶᇱ = ଵܤ + ∑ ∑ ݀௜௝(ݎ௜ + 1) ஻೔షభ ೔షభ௝ୀଵ௡௜ୀଶ≈ ଵܤ + ෍ ௜ିଵ ෍ ݀௜௝(ݎ௜ + 1)஻೔షభ௝ୀଵ௡௜ୀଶ≈ ௟భܤ + ∑ ௟೔ܤ௟೔൫ݎ௟೔ + 1൯௞௜ୀଶ

ܲ(݈௜) = ௥೗೔ ஻೗೔× ೗೔
Remark. Pruning power is used to measure the number

of intermediate results derived from a root-to-leaf path in the
CCI. As discussed before, if the combination between
candidates via non-tree edges is done early, more

895

intermediate results can be pruned early. Thus large rli will
raise the value of P(li). On the contrary, if the search breadth
of li is wider and the satisfaction rates are higher, more
candidates will be generated as intermediate results. The
large Bli and li will lower the value of P(li). It is a hard
problem to minimize T’, so we propose the pruning power
first matching rule: given a set of root-to-leaf paths (l1, …, lk)
sharing the root node in the core part of the CCI, the path with
strongest pruning power should be matched first.

e1

v3v33 v4e2e2 v5v55 v6v66 v7 e333

v8v88 v9v99 v10 v111 v12

v13

e5e5e44

e66
(e5)=0.5

111 v12

e)=0 5

v1v11 v2

Fig. 7. Comparison of pruning power

Example 6.2: Suppose that a CCI is depicted as Fig. 7,
corresponding to QC in Example 4.1 (here the communication
cost for the parent-child relationships is omitted). We assume
that (e5)=0.5 (suppose that C(v12, v13) is larger than CQ(e5,
e6)), and the values of of other index nodes are 1. There are
three root-to-leaf paths (l1, l2, l3). Let's take l2 as an example.
There are four embeddings (v1v5v8v13, v1v5v9v13, v2v6v10v13 and
v2v7v10v13) along it, so its search breadth is 4. In this way, we
can know Bl1 =2, Bl2 =4, and Bl3 =4 respectively. Their
pruning power is P(l1)=1/2, P(l2)=2/4, and P(l3)=2/(4 0.5)
respectively. So the nodes on l3 should be matched at first.

C. Search Breadth First Matching Rule
After matching the nodes in the core part, we begin to

match the nodes in each noncore part QN. Note that there are
no non-tree edges in QN, we only use search breadth to
measure the number of intermediate results induced by QN.

We propose the search breadth first matching rule: given
a set of QN, the noncore part with less search breadth should
be matched first. As for each QN, the path with less search
breadth in QN’s root-to-leaf paths should be matched first.

So we first estimate the size of search breadth for each QN,
and then sort these QN s in an ascending order regarding their
search breadth. Then the root-to-leaf paths in each QN are
ordered according to their search breadth too. In this way, we
obtain the matching order of nodes in the noncore parts. The
estimation of search breadth is similar to the matching
process within the core part, so we omit the details here.

D. CCI-based node matching algorithm
We propose a CCI-based node matching algorithm

(Algorithm 5). Given a CCI, QC, a QNset and the shortest path
length matrix C, it is to determine the matching order of index
nodes in the CCI. According to the core first matching rule,
we first match the nodes in QC, and then in QNset.

Step 1: According to the pruning power first matching
rule, generate the matching order of nodes in QC. First, we
use the set L to store all root-to-leaf paths in QC and select the
first path from it (Line 1-4). The path having the maximum
pruning power in the CCI will be selected. Correspondingly,
the nodes along the path will be added to the matching queue
as the first matched index nodes. Second, we choose the next
path from L (Line 5-11). The next path is chosen based on the

current queue. Each path li in L shares a prefix with the queue.
To reduce computation, we only consider the different part of
li from the current queue, i.e. starting from the last shared
node to the leaf (denoted as li’). Iteratively, we substitute li’
for li and choose the path having the maximum pruning power
from L. Finally, we get the matching order of nodes in QC.

Step 2: According to the search breadth first matching
rule, generate the matching order of nodes in QNset (Line 12-
16). First, for each QN in QNset, the size of its search breadth
will be estimated based on the CCI. The noncore parts in
QNset will be sorted by their search breadth. Those having
less search breadth should be matched first. Second, for each
QN (denoted as QNj), we sort all root-to-leaf paths according
to their search breadth in the CCI. Similarly, the paths having
smaller search breadth should be matched preferentially.
Finally, the matching order of index nodes in QNset can be
generated according to the order of paths.

Algorithm 5: CCI-based node matching
Input: CCI, QC, QNset, C
Output: the matching order of index nodes

1 L all root-to-leaf paths in QC on CCI;
2 l* argmaxl L P(l);
3 Add nodes of l* to queue;
4 L L-{l*};
5 while L do
6 for each path li in L do
7 li’ getDifferentPath(li, queue);
8 li li’;
9 l* argmaxl L P(l);
10 Add nodes of l* to queue;
11 L L-{l*};
12 QNList sortQNByBreadth(QNset, CCI);
13 for each QNj in QNList do
14 LNj all root-to-leaf paths in QNj;
15 pathList sortPathByBreadth(LNj, CCI);
16 Add nodes to queue according to pathList;
17 return queue;

Let |ES| denote the average size of ES regarding to each
index node in the CCI. Then generating the matching order
of nodes in QC takes time O(|ES| l L len(l)). And generating
the matching order of nodes in QNset takes time
O(|ES| QNj QNset l LNj len(l)). Here len(l) means the number
of index edges in the path l. The total time complexity is
O(|ES| l L len(l)+|ES| QNj QNset l LNj len(l)) which is at most
O(H|ES|). Here H has the same value as that of H in Section
V.C. Compared with G, the size of a CCI is generally small.
So the time is linear to |ES|.

After determining the matching order of index nodes, we
will enumerate all the embeddings of Q in G, i.e. all possible
combinations of team members following the constraints in
the CPG. We match each index node according to the
matching order. As for the index nodes not connected by non-
tree edges, they are used to generate the embeddings only. As
for the index nodes connected by non-tree edges, the nodes in
their NS should be checked whether they can satisfy the
constraints along the non-tree edges. If not, the nodes should
be removed from the CCI. Finally, the embeddings with the
top-K minimum total communication cost will be selected to
form each team. The nodes included by each embedding will
act as team members.

896

VII. INCREMENTAL MAINTENANCE

In this section, we present incremental maintenance
strategies for the changes of G, including the insertion or
deletion of nodes’ labels, insertion or deletion of edges,
insertion or deletion of nodes, increase or decrease of edges’
weights, denoted by △GL

+, △GL
-, △GE

+, △GE
-, △GN

+, △GN
-,△GW

+ and △GW
- respectively.

(1) For each label a △GL
+ (suppose that vx is the changed

node in G), which might just generate some new embeddings,
but not affect the communication cost among the current
nodes in the CCI, we consider the following situations.

If a is not one of labels requested in the CPG, then both
the CCI and the query result remain unchanged. Otherwise,
an affected region (AR) in the CCI will be identified, which
initially includes the index node ea (with label a), ea’s parent
and ea’s children. The communication cost between vx and
each node in AR will be checked:

1) If one of the communication cost cannot satisfy the
request in the CPG, both the CCI and the query result remain
unchanged because vx is not possible to be a candidate.

2) Otherwise, both the CCI and the query result should be
updated. First, index nodes in the current AR are updated.
The node vx is added to ea’s NS, which might result in the
insertion of more candidates to ea’s parent and ea’s children.
We denote the insertion part and the new NS as △NS+ and NS’
respectively (NS’=NS △NS+). Second, the initial AR is
extended. Along the path from ea’s parent to the root, the last
index node with nonempty △NS+ is chosen as the root node
of AR. The root node with its descendants in the CCI together
constitutes the new AR. Let h denote the length of the path
from ea’s parent to the root. The average size of nodes in G
with each label is |VD|/lD. Then extending AR takes time
O(h|△NS+||VD|/lD). Third, for each index node in AR, its △NS+ is checked whether the nodes in it satisfy the
communication constraints and the rules defined in
Subsection V.B. If so, the nodes are kept in △NS+. Otherwise,
they are removed from △NS+. Let HAR denote the product of
the number of leaf index nodes in AR and the height of AR.
Then the top-down checking and the bottom-up refining takes
time at most O(HAR|△NS+||VD|/lD). Finally, the query result is
updated. If AR contains the index nodes connected with non-
tree edges, node matching needs to be recomputed based on
the updated CCI. Otherwise, all the embeddings via vx in AR
are enumerated and their total communication cost is
calculated. If an embedding via vx is more dominant, the
current query result will be replaced by it. Otherwise, the
query result will remain unchanged. Let △ES denote the
changed part of ES. Then updating the query result takes time
at most O(HAR|△ES|). Therefore, the total time complexity is
O(HAR(|△NS+||VD|/lD+|△ES|)).

Example 7.1: Fig. 5(a) gives an example of a CCI. When
a new label ‘TE’ is added to the node vx (shown in Fig. 5(b)),
e2, e4 and e6 constitute the initial AR. Because the
communication cost between vx and each node in AR can
satisfy the request in the CPG, the CCI needs to be updated.
Along the path from e2 to e1, the last index node with
nonempty △NS+ is e2. So AR remains unchanged. Since e2
connects with e3 via a non-tree edge, the nodes in e2’s △NS+

should be matched with e3. Thus node matching needs to be
recomputed based on the updated CCI.

(2) For each label a △GL
- (suppose that vx is the changed

node), which might just make some embeddings in the CCI
ineffective, but won't generate any new embeddings and
won't affect the current communication cost, we only need to
prune the current result. We consider the following situations.

If a is not one of labels requested in the CPG, then both
the CCI and the query result remain unchanged. Otherwise,
the CCI should be updated. First, the initial AR is identified
by performing the same procedure as △GL

+. The node vx is
removed from ea’s NS. Also the embeddings via vx are
removed from AR. The deletion of vx might result in the
deletion of more candidates from the CCI, because they might
no longer meet the rules defined in Subsection V.B. We
denote the deletion part and the new NS as △NS- and NS’
respectively (NS’=NS-△NS-). Second, the initial AR is
extended. The process is similar to △GL

+. Along the path
from ea’s parent to the root, the last index node with
nonempty △NS- is chosen as the root node of the new AR. For
each NS, we just need to refine it, not to extend it. Thus
extending AR takes time O(h|NS|). Third, for each index node
in AR, its NS’ is checked and refined with the time complexity
O(HAR|NS|). Finally, the query result is updated. If AR
contains index nodes connected with non-tree edges, node
matching needs to be recomputed. Otherwise, the current
query result is checked. If it doesn’t include any deleted
nodes, it will remain unchanged. Otherwise, we will choose
one from the current embeddings with the minimum total
communication cost as the new query result. The total time
complexity is O(HAR(|NS|+|△ES|)).

(3) For each edge (v, v’) △GE
+ (assume that WD(v, v’) is

not larger than the current C(v, v’)), the communication cost
of any pairs of nodes in G keeps unchanged or decrease,
because it just adds more candidates to the shortest path
between each pair of nodes. The current embedddings in the
CCI can still satisfy the constraints. Besides, some new
embeddings might meet the constraints and be more
dominant. So the shortest path length matrix C, the CCI and
the current query result should be updated respectively. As
for the update for C, we adopt the method proposed in [26] to
incrementally get the new shortest path length matrix. As for
the update for the CCI, we consider the whole CCI as AR and
extend each index node by adding △NS+ to its NS. The
subsequent process is similar to △GL

+. The total time
complexity is O(HAR|VD|2/lD

2+|△ES|). Adding an edge
between two nodes is equivalent to reducing the distance
between them, i.e., reducing the edge’s weight. Therefore, the
process of △GW

- is the same as the above strategy for △GE
+.

(4) For each edge (v, v’) △GE
-, the communication cost

of any pair of nodes in G remains unchanged or increases.
The node pair not meeting the constraints before still cannot
satisfy the constraints now. Therefore, except for the
embeddings in the CCI, no new embeddings will appear as a
result. We just need to update the CCI and choose an
embedding from it as the new query result. In particular, we
will check the edges in each index node’s ES. If the
communication cost no longer meets the constraints
requested in the CPG, the edges should be removed, which
might result in the deletion of the two ending nodes further.
We start updating the CCI from its root and refine each index
node by deleting △NS- from its NS. The subsequent process is
similar to △GL

-. The total time complexity is
O(HAR(|NS|+|△ES|)). Also the process of △GW

+ is the same as
the strategy for △GE

-.

897

(5) For each node v △GN
+, if v has no links with other

nodes in G, then v is an isolated node and might not be the
matching node. So it does not affect the CCI and the current
result. If v leads to one or several new edges in G, the process
of the insertion of these new edges is the same as the above
mentioned strategy for △GE

+.

(6) For each node v △GN
-, the edges with an end point

of v will also be deleted. The process of these deleted edges
is the same as the above mentioned strategy for △GE

-.

The above maintenance strategies focus on maintaining
the CCI, which mainly includes two types of operations: △NS+ (e.g. △GL

+, △GE
+, △GN

+ and △GW
-) and △NS- (e.g. △GL

-, △GE
-, △GN

- and △GW
+). For each index node, let NS,

NS’ and NS’’ denote the node set before updating, the node
set updated by our strategies and the correct node set based
on the updated G respectively.

Theorem 7.1: Taking △GL
+, △GE

+, △GN
+ or △GW

- as
input, our incremental maintenance strategies can maintain
the CCI correctly.

Proof: Suppose NS’ NS’’, then there is at least one node
v in the updated G such that (1) v NS’ v NS’’ or (2)
v NS’’ v NS’. If (1) is true, since NS’’ NS, then v NS.
Since NS’=NS △NS+, then v △NS+ which contradicts v
NS’’. If (2) is true, since NS’ NS, then v NS. Since v NS’’,
then v △NS+. Since NS’=NS △NS+, then v NS’ which
contradicts v NS’. Therefore, for each index node, NS’=NS’’.
That is, the updated CCI is correct.

Theorem 7.2: Taking △GL
-, △GE

-, △GN
- or △GW

+ as input,
our incremental maintenance strategies can maintain the CCI
correctly.

Proof: Suppose NS’ NS’’, then there is at least one node
v in the updated G such that (1) v NS’ v NS’’ or (2)
v NS’’ v NS’. If (1) is true, since NS NS’’, then a) v NS
or b) v NS-NS’’. If a) is true, since NS’=NS-△NS-, then v
NS’ which contradicts v NS’. If b) is true, then v is a node
not satisfying R1, R2 or the communication constraints, so
v △NS-. Since NS’=NS-△NS-, then v NS’ which contradicts
v NS’. If (2) is true, since NS NS’’, then v NS. Since
NS’=NS-△NS- and v NS’, then v △NS-. So v is a node not
satisfying R1, R2 or the communication constraints. It
contradicts v NS’’. Therefore, for each index node,
NS’=NS’’. That is, the updated CCI is correct.

VIII. EXPERIMENTS

We implement the experiments on a Server with Intel(R)
Xeon(R) CPU E7-4820 v4 @ 2.00GHz, 2.0TB main memory
and 11.5TB hard disk, running 64bit CentOS release 6.9
(Final). We use two real-world social graphs, Ego-Facebook
(4039 nodes and 88234 edges) and Email-Enron (36692
nodes and 183831 edges), which are available at
snap.stanford.edu. Like the well-known existing works in
team formation [10, 11, 13], we consider 20 classes of labels
and randomly set the labels of nodes in our data sets. The
weight of each edge is randomly set as an integer from 1 to 3.
We generate different CPGs by changing structure
constraints and communication constraints. Specifically,
these CPGs are generated by controlling the number of nodes
(i.e. |VQ|, set as 4, 6, 8 and 10 respectively), the number of
edges (set between 4 and 10) and communication constraints
(set as an integer between 1 and 3). We set K (the number of
returned teams) to 3.

(a) Ego-Facebook

(b) Email-Enron
Fig. 8. Performance comparison of different team formation algorithms

Effectiveness evaluation of team formation: We use the
diameter, sum distance (i.e. the sum of the communication
cost between each pair of skill holders), the minimum
spanning tree (MST) distance, and the total communication
cost (i.e. the sum of communication cost between two
adjacent members in the CPG) to evaluate the quality of the
teams produced by the following different algorithms. (1)
Label based team formation (L-TF): the nodes satisfying each
kind of label requirements in the CPG constitute a group of
candidates. We randomly select one from each group to form
the team. Besides the required labels, other methods also

consider the communication cost. (2) Rarest-First [1]: the
goal is to minimize the diameter of the team. (3) SumDistance
[5]: the goal is to minimize the sum distance. (4) Enhanced-
Steiner [1]: the goal is to minimize the MST distance. (5)
CPG based team formation (CPG-TF): the goal is to
minimize the total communication cost.

Results: As in Fig. 8, L-TF only considers the required
skills, so the quality of teams found by it is low. The
diameters (or the sum distances) of teams found by CPG-TF
are comparable to those of Rarest-First (or SumDistance)

4 6 8 10
0

2

4

6

8

|V
Q
|

D
ia

m
et

er

L-TF
Rarest-First
SumDistance
Enhanced-Steiner
CPG-TF

4 6 8 10
0

50

100

150

|V
Q
|

S
um

 d
is

ta
nc

e

L-TF
Rarest-First
SumDistance
Enhanced-Steiner
CPG-TF

4 6 8 10
0

10

20

30

40

|V
Q
|

M
S

T
 d

is
ta

nc
e

L-TF
Rarest-First
SumDistance
Enhanced-Steiner
CPG-TF

4 6 8 10
0

10

20

30

40

|V
Q
|

T
ot

al
 c

om
m

un
ic

at
io

n
co

st
L-TF
Rarest-First
SumDistance
Enhanced-Steiner
CPG-TF

4 6 8 10
0

2

4

6

8

10

|V
Q
|

D
ia

m
et

er

L-TF
Rarest-First
SumDistance
Enhanced-Steiner
CPG-TF

4 6 8 10
0

50

100

150

200

|V
Q
|

S
um

 d
is

ta
nc

e

L-TF
Rarest-First
SumDistance
Enhanced-Steiner
CPG-TF

4 6 8 10
0

10

20

30

40

50

|V
Q
|

M
S

T
 d

is
ta

nc
e

L-TF
Rarest-First
SumDistance
Enhanced-Steiner
CPG-TF

4 6 8 10
0

10

20

30

40

50

60

|V
Q
|

T
ot

al
 c

om
m

un
ic

at
io

n
co

st

L-TF
Rarest-First
SumDistance
Enhanced-Steiner
CPG-TF

898

which is in particularly designed to minimize the diameters
(or the sum distances). The MST distances of teams found by
CPG-TF are larger than Enhanced-Steiner which is
specialized for minimizing MST distances, but are smaller
than others. However, the total communication cost of teams
found by CPG-TF is smaller than all the others. These results
verify that CPG-TF can effectively find high quality teams.
For MST distance and total communication cost, the
experiments on Ego-Facebook and Email-Enron exhibit
similar trends. For diameter and sum distance, CPG-TF is
worse relatively on Email-Enron than on Ego-Facebook. That
is because Email-Enron is sparser than Ego-Facebook in
network structures, resulting in larger diameter and sum
distance.

(a) Ego-Facebook (b) Email-Enron
Fig. 9. Query time comparison of different node matching algorithms

Performance evaluation of node matching: We
evaluate the following methods. (1) CCI-Match: CCI-based
node matching algorithm. (2) NaiveCCI-Match: the CCI-
Match algorithm where the CCI is constructed only based on
the label requirements in the CPG. (3) UnrefinedCCI-Match:
the CCI-Match algorithm where the CCI is not refined. (4)
CCI-MatchI: CCI-Match algorithm with a random matching
order of nodes in the CCI. None of the three heuristic rules
are applied. (5) CCI-MatchII: CCI-Match algorithm with a
matching order based on the core first matching rule. (6) CCI-
MatchIII: CCI-Match algorithm with a matching order based
on both the core first matching rule and the pruning power
first matching rule. (7) CCI-MatchIV: CCI-based node
matching (without CPG normalization). (8) BaselineI: node
matching is performed based on the shortest path length index
[15]. (9) BaselineII: path matching constrained by a path
length is performed based on S-Index [17].

Results: The query performance of the effect of different
CCI construction strategies and different node matching
strategies is illustrated in Fig. 9. With the increase of |VQ|, the
query time of CCI-Match is always less than that of two
Baseline methods in both of the two datasets. Also, with the
increase of the size of the datasets, the advantage is even more
obvious. That is because BaselineI only considers the shortest
path length between nodes, but ignores the matching cost
based on a matching order of nodes. BaselineII focuses on the
data graph that consists of multiple smaller subgraphs. All
nodes in the data graph need to be indexed. When the size of
data graph increases, the cost of node matching and index
traversal increases sharply. Only labels are considered by
NaiveCCI-Match, so lots of false-positive candidates are
stored in the CCI which need more query time.
UnrefinedCCI-Match improves upon NaiveCCI-Match by
checking the CCI in a top-down way according to the input
constraints. CCI-MatchI treats all nodes equally when
matching without distinguishing the nodes in core part or in
noncore part. CCI-MatchII improves upon CCI-MatchI, and
CCI-MatchIII further improves upon CCI-MatchII by

adopting our proposed heuristic rules. CCI-MatchIV
confuses the redundant edges with the non-tree edges,
resulting in longer time for matching the nodes connected by
such edges than CCI-MatchIII. CCI-Match further refines the
CCI in a bottom-up way and applies all of the three heuristic
rules, leading to the best performance.

(a) Ego-Facebook (b) Email-Enron
Fig. 10. Time cost of constructing a CCI

TABLE II. STORAGE COST (KB) OF CONSTRUCTING A CCI

Dataset Algorithms |VQ|=4 |VQ|=6 |VQ|=8 |VQ|=10
Ego-

Facebook
NaiveCCI 7401 8885 10194 11560

UnrefinedCCI 5067 5416 5645 5384
RefinedCCI 5062 5409 5534 5183

Email-
Enron

NaiveCCI 29012 36552 38501 218695
UnrefinedCCI 17602 19125 19949 21103
RefinedCCI 13641 19104 19638 11701

Time cost of constructing a CCI: As described in
Subsection V.B, CCI construction includes top-down
construction and bottom-up refining. We measure the time of
the two fashions respectively.

Results: As in Fig. 10, compared with bottom-up refining,
top-down construction takes a larger proportion of time.
When |VQ| reaches a certain level, the time for CCI
construction might be less because the constraints are stricter
and the number of candidates in each index node gets less,
resulting in less time for refining.

Storage cost of constructing a CCI: The storage cost of
different CCI construction algorithms are tested. (1)
NaiveCCI: only the label requirements in the CPG are
considered. Neither top-down construction nor bottom-up
refining is performed. (2) UnrefinedCCI: only top-down
construction is performed. (3) RefinedCCI: our CCI
construction algorithm which includes both top-down
construction and bottom-up refining.

Results: As in Table II, UnrefinedCCI improves upon
NaiveCCI, and RefinedCCI improves upon UnrefinedCCI by
removing the candidates that violate the constraints from the
CCI. When |VQ| is 10, the storage cost decreases a little. This
is because, when |VQ| reaches a certain level, the number of
nodes in G satisfying the requested constraints gets less,
resulting in lower storage cost than before.

Performance evaluation of incremental maintenance:
We compare the performance of our incremental
maintenance strategies (IM) with the non-incremental
maintenance strategies (NIM) and the incremental node
matching strategy (INC) proposed in [15], aiming at △GL

+,△GL
-, △GE

+ and △GE
-. The other situations are similar (see

Section VII). For △GL
+ (or △GL

-), we randomly choose m (set
as 40 and 60 respectively) nodes in G and add (or delete) one
label to (or from) each. The value of the label is random. For △GE

+ (or △GE
-), we randomly add (or delete) m (set as 40 and

60 respectively) edges into (or from) G.

4 6 8 10
0

50

100

150

|V
Q
|

Q
ue

ry
 ti

m
e

(s
)

CCI-Match
NaiveCCI-Match
UnrefinedCCI-Match
CCI-MatchI
CCI-MatchII
CCI-MatchIII
CCI-MatchIV
BaselineI
BaselineII

4 6 8 10
0

100

200

300

400

|V
Q
|

Q
ue

ry
 ti

m
e

(s
)

CCI-Match
NaiveCCI-Match
UnrefinedCCI-Match
CCI-MatchI
CCI-MatchII
CCI-MatchIII
CCI-MatchIV
BaselineI
BaselineII

4 6 8 10
0

5

10

15

20

25

30

|V
Q
|

C
C

I c
on

st
ru

ct
io

n
tim

e(
m

s)

Top-down construction
Bottom-up refining

4 6 8 10
0

100

200

300

400

500

|V
Q
|

C
C

I c
on

st
ru

ct
io

n
tim

e(
m

s)

Top-down construction
Bottom-up refining

899

Results: The variation trend of experimental results under
different sizes of CPGs are similar. For simplicity, we only
show the results regarding to the CPG with six nodes (Table
III). Since NIM needs to perform the whole process of query,
its average processing time is always more than others. INC
does not support incremental maintenance for the changes of
labels. As for △GE

+ (or △GE
-), although INC considers the

incremental maintenance of the shortest path length between
nodes, it ignores the incremental maintenance of the node
order for matching. IM performs the incremental
maintenance for both the shortest path length matrix and the
CCI, which can effectively limit the scope of modification.

TABLE III. THE AVERAGE QUERY TIME (S) BASED ON DIFFERENT SIZE
OF △GL

+, △GL
-, △GE

+ AND △GE
- RESPECTIVELY

Dataset △△G
m=40 m=60

NIM INC IM NIM INC IM

Ego-
Facebook

△GL
+ 9.53 0.55 9.76 0.72△GL
- 9.02 0.02 8.86 0.03△GE
+ 9.52 8.69 2.04 9.64 8.98 3.93△GE
- 9.04 6.14 1.89 8.72 6.41 2.91

Email-
Enron

△GL
+ 29.39 1.51 29.79 2.49△GL
- 28.63 0.07 28.38 0.06△GE
+ 29.58 26.22 8.38 29.81 26.73 13.52△GE
- 28.64 23.58 5.15 28.58 22.26 7.90

IX. CONCLUSION

We present an effective and efficient team formation
method based on CPG, which takes into account both structure
constraints and communication constraints. First, we propose
a CPG preprocessing method and design an index structure,
i.e. CCI, to speed up the matching between the CPG and the
data graph. Then we propose a CCI-based node matching
algorithm to minimize the total number of intermediate results.
Also some incremental maintenance strategies are proposed.
The experiments demonstrate the effectiveness and the
efficiency of our proposed method. In our future work, we will
work on multi-objective team formation methods, and
incremental maintenance strategies for changes of a CPG.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (U1811261, 61672142).

REFERENCES

[1] T. Lappas, K. Liu, and E. Terzi, “Finding a team of experts in
social networks,” in SIGKDD2009, 2009, pp. 467-476.

[2] M. Sozio, and A. Gionis, “The community-search problem and
how to plan a successful cocktail party,” in SIGKDD2010,
2010, pp. 939-948.

[3] M. Kargar, and A. An, “Discovering top-k teams of experts
with/without a leader in social networks,” in CIKM2011, 2011,
pp. 985-994.

[4] J. Huang, Z. Lv, Y. Zhou, H. Li, H. Sun, and X. Jia, “Forming
grouped teams with efficient collaboration in social networks,”
The Computer Journal, vol. 60, no. 11, pp. 1545-1560, 2017.

[5] C. T. Li, M. Y. Huang, R. Yan, and S. D. Lin, “On team
formation with expertise query in collaborative social
networks,” World Wide Web Journal, vol. 21, pp. 939-959,
2018.

[6] C. Ding, F. Xia, G. Gopalakrishnan, W. Qian, and A. Zhou,
“TeamGen: an interactive team formation system based on
professional social network,” in WWW2017, 2017, pp. 195-199.

[7] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification
hardness: an efficient algorithm for testing subgraph
isomorphism,” PVLDB, vol. 1, no. 1, pp. 364-375, 2008.

[8] W. Han, J. Lee, and J. H. Lee, “Turboiso: towards ultrafast and
robust subgraph isomorphism search in large graph databases,”
in SIGMOD2013, 2013, pp. 337-348.

[9] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient
subgraph matching by postponing Cartesian products,” in
SIGMOD2016, 2016, pp. 1199-1214.

[10] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu, “Graph pattern
matching: from intractable to polynomial time,” PVLDB, vol.
3, no. 1-2, pp. 264-275, 2010.

[11] W. Fan, X. Wang, and Y. Wu, “ExpFinder: Finding experts by
graph pattern matching,” in ICDE2013, 2013, pp. 1316-1319.

[12] B. Lyu, L. Qin, X. Lin, L. Chang, and J. X. Yu, “Scalable
supergraph search in large graph databases,” in ICDE2016,
2016, pp. 157-168.

[13] W. Fan, Y. Wu, and J. Xu, “Adding counting quantifiers to
graph patterns,” in SIGMOD2016, 2016, pp. 1215-1230.

[14] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Strong simulation:
Capturing topology in graph pattern matching,” ACM
Transactions on Database Systems (TODS), vol. 39, no. 1, pp.
1-46, 2014.

[15] G. Sun, G. Liu, Y. Wang, M. A. Orgun, and X. Zhou,
“Incremental graph pattern based node matching,” in
ICDE2018, 2018, pp. 281-292.

[16] H. Rahman, S. Roy, S. Thirumuruganathan, S. Amer, and G.
Das, “Optimized group formation for solving collaborative
tasks,” PVLDB, vol. 28, no. 1, pp. 1-23, 2019.

[17] W. Lin, X. Xiao, J. Cheng, and S. Bhowmick, “Efficient
algorithms for generalized subgraph query processing,” in
CIKM2012, 2012, pp. 325-334.

[18] S. Ma, J. Li, C. Hu, X. Liu, and J. Huai, “Graph pattern
matching for dynamic team formation,” CoRR,
abs/1801.01012, 2018.

[19] Q. Shi, G. Liu, K. Zheng, A. Liu, Z. Li, L. Zhao, and X. Zhou,
“Multi-constrained top-K graph pattern matching in contextual
social graphs,” in ICWS2017, 2017, pp. 588-595.

[20] D. Gao, Y. Tong, J. She, T. Song, L. Chen, and K. Xu, “Top-k
team recommendation in spatial crowdsourcing,” in
WAIM2016, 2016, pp. 194-204.

[21] J. R. Ullmann, “An algorithm for subgraph isomorphism,”
JACM, vol. 23, no. 1, pp. 31-42, 1976.

[22] W. Fan, X. Wang, and Y. Wu, “Incremental graph pattern
matching,” ACM Transactions on Database Systems (TODS),
vol. 38, no. 3, pp. 1-47, 2013.

[23] E. Abdelhamid, M. Canim, M. Sadoghi, B. Bhatta, Y. Chang,
and P. Kalnis, “Incremental frequent subgraph mining on large
evolving graphs,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 29, no. 12, pp. 2710-2723, 2017.

[24] K. Kim, I. Seo, W. Han, J. Lee, S. Hong, H. Chafi, H. Shin, and
G. Jeong, “TurboFlux: a fast continuous subgraph matching
system for streaming graph data,” in SIGMOD2018, 2018, pp.
411-426.

[25] B. Du, S. Zhang, N. Cao, and H. Tong, “First: Fast interactive
attributed subgraph matching,” in SIGKDD2017, 2017, pp.
1447-1456.

[26] G. Ramalingam, and T. Reps, “On the computational
complexity of dynamic graph problems,” Theoretical
Computer Science, vol. 158, no. 1, pp. 233-277, 1996.

900

