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Abstract—Finding a team that is both competent in 
performing the task and compatible in working together has 
been extensively studied. However, most methods for team 
formation tend to rely on a set of skills only. In order to solve 
this problem, we present an efficient team formation method 
based on Constrained Pattern Graph (called CPG). Unlike 
traditional methods, our method takes into account both 
structure constraints and communication constraints on team 
members, which can better meet the requirements of users. First, 
a CPG preprocessing method is proposed to normalize a CPG 
and represent it as a CoreCPG in order to establish the basis for 
efficient matching. Second, a Communication Cost Index (called 
CCI) is constructed to speed up the matching between a CPG 
and its corresponding social network. Third, a CCI-based node 
matching algorithm is proposed to minimize the total number of 
intermediate results. Moreover, a set of incremental 
maintenance strategies for the changes of social networks are 
proposed. We conduct experimental studies based on two real-
world social networks. The experiments demonstrate the 
effectiveness and the efficiency of our proposed method in 
comparison with traditional methods.

Keywords—team formation, social networks, Constrained 
Pattern Graph, Communication Cost Index 

I. INTRODUCTION

Team formation in social networks is essential for an 
organization or institute’s viability. However, most existing 
works tend to rely on a set of skills and only considers the size 
of team’s diameter, the size of the minimum spanning tree 
(MST) [1] or the total communication cost among members 
[2-6]. Usually, people with different skills in a team have 
different degrees of communication. For example, in a team, 
project managers usually communicate more with software 
developers than with test engineers, while software developers 
always communicate more with test engineers than with 
secretaries. The communication relationship among different 
members forms structure constraints. Also the degree of their 
communication shows communication constraints. Neither 
structure constraints nor communication constraints can be 
characterized via a simple skill set. Therefore, pattern graphs 
are used by some methods to represent users’ requirements. 
These solutions are mainly based on the idea of subgraph 
isomorphism [7-20]. Although some subgraph isomorphism 
supports matching for constraint pattern graph (e.g. [10, 13,
17, 19]) and can be applied to team formation, it aims to return 
the entire matching subgraphs and incurs a NP-complete 
problem [21]. However, in some applications, such as group 
collaborative learning and expert recommendation, people are 
interested in finding nodes, rather than the entire subgraphs. 
The uniqueness of the team formation problem leaves much 
room for improvements. For example, we can reduce the size 
of indexes and focus on smaller candidate set by only 
considering the member nodes. Let us consider the following 
motivating scenarios. 

Example 1.1: Fig. 1(a) depicts a social network which 
includes a set of individuals (v1~v2m+2n+6). Each node 

represents a person with one (or multiple) label(s) such as 
Project Manager (PM), Software Engineer (SE), Database 
Developer (DD), Test Engineer (TE), Data Analyst (DA), 
Secretary (S) and so on. Here, we use different colors to 
denote different skills. Each edge indicates a collaboration 
relationship between two persons. The weight of an edge 
reflects the distance between the two ends. The more 
frequently they communicate with each other, the closer they 
are, and the smaller the edge weight. Suppose a project needs 
6 types of people, namely, PM, DD, SE, TE, DA and S. As 
shown in Fig. 1(b), we can represent the task requirement as 
a Constrained Pattern Graph (called CPG), where each edge 
in the CPG is labeled with a constant k indicating the 
communication cost of the two nodes (in this paper it 
represents the upper threshold of the shortest path length) 
connected by the edge in social networks should be no larger 
than k. For example, a PM needs to be associated with a SE 
within the distance of 2. We will map the CPG to the social 
network to find a team that satisfies the task requirement.  
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(a) Social network                           (b) CPG
Fig. 1. CPG based team formation 

Suppose the matching order of nodes in the CPG is (PM, 
SE, TE, S, DD, DA), and in the social network there are m
partial mappings consisting of (PM, SE, TE, S) which have 
to be combined with n+1 partial mappings consisting of (DD, 
DA). So we have to consider m (n+1) kinds of combination 
in all, most of which are false positive and redundant. 
However, if we use the matching order (PM, SE, DD, TE, S, 
DA), we can know early the n partial mappings consisting of 
(DD, DA) are not satisfied because the communication cost 
between DD and SE for them is larger than 2. They can be 
eliminated before mapping with TE, S or DA. At this time, it 
only leads to n+1+m partial mappings. 

In order to improve the efficiency of matching process,
some approaches are proposed to generate a matching order 
of nodes. But they are mainly used for subgraph isomorphism,
which aims to find the entire matching subgraphs in the data 
graph. In addition, most subgraph isomorphism methods 
perform edge-to-edge mappings, which are somewhat too 
strict to identify teams in real-world social networks. Some 
extensions of subgraph isomorphism are studied to extend 
mappings from edge-to-edge to edge-to-path, but there are no
communication constraints on the paths. In our approach, we
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only need to check the communication cost between nodes,
without needing to check whether there is an edge between 
them. Also, communication constraints in a CPG are useful 
for us to filter out more irrelevant nodes as early as possible, 
which can further reduce the size of intermediate results. 

Example 1.2: Suppose we have already constructed a 
team according to the requirements in Example 1.1. Let’s 
consider two situations. First, a new label ‘TE’ is added to the 
node vx in the social network. It means the person vx acquire 
a new skill. Then how is the team built as before? Second, 
suppose one of members becomes unavailable. Then how are 
adjustments made to the current team? 

In this example, if we repeat the whole procedure of team 
formation, it will consume lots of time. In fact, the change 
only affects partial matches. For the first situation, the node 
vx will become a new candidate due to its new label. We only 
need to check partial matches affected by it. These matches 
constitute an affected region. Only the communication 
relationships in the affected region rather than that in the 
whole social network need to be rechecked. For the second 
situation, deletions of nodes might only increase the 
communication cost of some pairs of nodes. Compared to the 
previous candidates, no new candidates will be chosen as a 
result. We just need to choose the new result from the 
previous candidates rather than from the whole network. 

With incremental maintenance, the cost of team 
formation can be reduced greatly. Although some 
incremental team formulation methods (e.g. [10, 15, 18, 22-
25]) have been proposed, they mainly focus on the 
maintenance for the entire matching subgraphs (e.g. [24, 25])
or the ranking of result data (e.g. [18]). Most methods only 
support the incremental maintenance for the changes of 
network structure rather than the changes of nodes’ labels.  

However, team formulation in social networks based on 
Constrained Pattern Graph is a highly challenging problem. 
The major challenges are as follows: First, how to implement 
the efficient matching between a CPG and social networks? 
Traditional pattern graph matching is an NP-complete 
problem. The input pattern graph for subgraph isomorphism 
cannot fully reflect the constraints in users’ requirements. 
Their edge-to-edge mappings are too restricting for team 
formation. Therefore, we need to propose a new efficient 
matching approach for team formation. Second, how to 
improve the efficiency of maintenance for the result of team 
formation? Current techniques only support the incremental 
maintenance for the changes of network structure. Thus we 
need to consider more types of changes and the 
corresponding incremental maintenance strategies. 

In this paper, we present an efficient team formation 
method based on CPG. Unlike traditional methods, we
consider both structure constraints and communication 
constraints on team members, which can better meet the 
requirements. We make the practial contributions: 

(1) A CPG preprocessing method is proposed to 
normalize a CPG and represent it as a CoreCPG in order to 
establish the basis for efficient matching. 

(2) An auxiliary data structure (called Communication 
Cost Index, CCI) is designed to speed up the matching 
between the CPG and social networks. First, we construct a 
CCI in a top-down way starting from the core node in the 

CPG. Then, we refine the constructed CCI in a bottom-up 
fashion to reduce the storing space of the CCI. 

(3) Based on the CoreCPG and the constructed CCI, a
node matching algorithm is proposed to determine the 
matching order of nodes in the CPG. The cost model for 
matching is defined and three heuristic matching rules are 
proposed to minimize the total number of intermediate results.  

(4) The incremental maintenance strategies are proposed 
for the changes of social networks including the insertion or 
deletion of nodes’ labels, insertion or deletion of edges, 
insertion or deletion of nodes, increase or decrease of edges’ 
weights. 

(5) The extensive experimental studies based upon two 
real-world social networks are conducted. The experiments 
demonstrate the effectiveness and the efficiency of our 
proposed method. 

The rest of this paper is organized as follows. Section II
reviews the related work. Section III formulates the problem 
and gives an overview of our solution. Section IV presents 
the CPG preprocessing method. Section V and Section VI
propose the CCI construction algorithm and the CCI-based 
node matching algorithm respectively. Section VII proposes 
the incremental maintenance strategies. Section VIII shows 
the experimental results and Section IX makes conclusion. 

II. RELATED WORK

Some communication cost based team formation methods 
are proposed to find a group of members such that not only 
their skills can cover a set of required skills, but also the size 
of team’s diameter (or MST) [1] or the total communication 
cost among members [2-6] is minimum. For example, in [2], 
a community detection algorithm is proposed to alternatively 
find a densely-connected subgraph based on a set of given 
nodes. In [3] and [4], some team formation algorithms are 
proposed to not only minimize the communication cost 
among team members, but also minimize the cost between 
team members and team leaders. In [5], the influence 
maximization is combined with team formation to facilitate 
the organization of social events. In [6], an interactive team 
formation system is designed to model teams as hierarchical
structure which can reflect the ubiquitous nature of teams. 

Subgraph isomorphism based team formation is to find all 
the matches of the nodes in social networks according to a 
given pattern graph. Because the problem of subgraph 
isomorphism is NP-complete, some approaches are proposed 
to reduce the cost of matching. For example, in [7] and [8], 
infrequent-labels first strategy and path enumeration are 
proposed respectively to generate a matching order of nodes. 
In [9], query decomposition is proposed to minimize the total 
number of intermediate results. In [10], a BGS (Bounded 
Graph Simulation) based approximate solution is proposed to 
find inexact matches between the pattern graph and social 
networks. In [11], a system called ExpFinder is presented to 
find experts in social networks based on graph pattern 
matching. In [12], an indexing algorithm that selects features 
directly from data graphs is presented. In [13], QGPs 
(quantified graph patterns) are proposed and parallel scalable 
algorithms for quantified matching are discussed. In [14-16], 
extensions are studied to extend mappings from edge-to-edge 
to edge-to-path. In [17], exact edge matching is replaced with 
the notion of path matching constrained by a path length. In 
[18-20], some methods for finding top-K teams are proposed. 
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In [18], a graph pattern matching approach for top-K team 
formation is proposed by incorporating both structure 
constraints and capacity bounds. In [19], a multi-constrained 
top-K graph pattern matching method is proposed. In [20], a 
two-level-based framework is designed to recommend top-K
teams for spatial crowdsourcing tasks. 

In order to further improve the efficiency of team 
formation, some incremental maintenance strategies [10, 15,
18, 22-25] are proposed. In [10] and [22], approximate 
algorithms based on bounded graph simulation are designed 
for incrementally finding matches when data graphs are 
updated. In [15], an index is built to incrementally record the 
shortest path length range between different label types, and 
the affected parts will be identified when pattern graphs or 
data graphs are updated. In [23], an incremental pattern 
mining method is proposed, which uses different pruning 
strategies as well as an index structure to enable fast access 
to matching and fast updates.

The differences between our work and existing work are 
as follows: First, most subgraph isomorphism performs edge-
to-edge mappings. Although some extensions of subgraph 
isomorphism support edge-to-path matching, they focus on 
either the overall communication cost or the aggregated 
contribution of a group. In this paper, we focus on more 
specific query constraints such as each pair’s communication 
cost and each member’s skills. Second, some subgraph 
isomorphism supports matching for constraint pattern graph 
(e.g. [10, 13, 17, 19]), but they aim to find the entire matching 
subgraphs in the data graph. Although most of them can be 
applied to team formation by delivering the entire matching 
subgraphs in data graph, they incur a high time complexity. 
Different from them, our goal is to find team members, but 
not the subgraphs containing the members. Third, most 
incremental graph pattern matching methods mainly focus on 
the incremental maintenance for the result of subgraph 
isomorphism (e.g. [24, 25]), or the ranking of result data (e.g. 
[18]). Although some methods (e.g. [15]) focus on the 
incremental maintenance for the matching nodes, they are 
only suitable for the changes of network structure, rather than 
the changes of labels. We consider more types of changes and 
propose the corresponding incremental maintenance 
strategies for the matching nodes. 

III. SOLUTION OVERVIEW

Suppose there are n individuals in a social network which 
is modeled as a data graph G.

Definition 3.1 (Data Graph): The data graph is a 
weighted graph G=(VD, ED, LD, WD), where VD is the vertex 
set of size n to denote individuals, ED VD×VD is the edge set 
to denote the communication relationships among individuals,
LD is a function such that LD(v) is a set of labels to denote the 
skills owned by each node v VD, and WD is a function defined 
on ED such that WD(v, v’) is the weight between v and v’ ((v, 
v’) ED).  

The weight of an edge in G reflects the distance between 
the two ends. It is relevant to the degree of communication 
between them. The more frequently they communicate with 
each other, the smaller the edge weight is. The length of a 
path in G equals to the sum of the weights of all the edges on 
the path. We build the shortest path length matrix C to record 
the shortest path length between each pair of nodes in G. For 
each node pair (vi, vj), we use the weights to quantify their 

communication cost C(vi, vj) which is defined as the length of 
the shortest path between vi and vj.

Definition 3.2 (Constrained Pattern Graph, CPG): A
CPG is a query graph Q=(VQ, EQ, LQ, CQ), where VQ and EQ
are the node set and the edge set respectively, LQ is a function 
defined on VQ such that LQ(u) is the label of the node u
(u VQ), and CQ is a function defined on EQ such that CQ(u, 
u’) is the upper threshold of the communication cost between 
u and u’ ((u, u’) EQ).

For example, Fig. 1(b) depicts a CPG. We use VQ, EQ and 
LQ in the CPG to describe structure constraints in user’s 
requirements and use CQ to express communication 
constraints among team members. The nodes in the CPG have 
the same labels as the nodes in G. But the edges in the CPG 
and in G are different. The former reflects either direct 
relationships or indirect relationships (e.g. the node labeled 
with PM and the node labeled with SE are not requested to be 
connected directly in G). Each edge in the CPG has a weight 
as the bounded communication cost. But edges in G only 
reflect direct relationships, that is, two nodes connected by an 
edge in G can communicate each other directly.  

One challenge is that by recommending only one team to 
the requester, it might fail to recruit the team. Thus we 
consider top-K team formation. 

Definition 3.3 (Top-K Team Formation based on 
CPG): Given a data graph G and a CPG (suppose |VQ|=m), 
the problem of top-K team formation is to find K teams each 
of which has m nodes in G (denoted as Vm) such that:  

(1) Nodes in Vm should satisfy the structure constraints in 
the CPG. There are m kinds of label mappings between VQ

and Vm. For each mapping (u, v) in each label (u VQ, v Vm), 
LQ(u)  LD(v). For each edge (u, u’) in EQ, there exists a path 
from v to v’ in G such that (u, v) and (u’, v’) are two mappings.  

(2) Nodes in Vm should satisfy communication constraints 
in the CPG. For each edge (u, u’) in EQ, suppose (u, v) and 
(u’, v’) are two mappings, the communication cost (i.e. the 
shortest path length) between v and v’ in G should not be 
larger than CQ(u, u’). Also the total communication cost of all 
edges constructing the final team should be top-K minimum.  

To efficiently find the top-K teams, we have to address 
two key issues: (1) how to develop an effective index to speed 
up matching, and (2) how to devise a heuristic matching order 
in the computation. 

Example 3.1: In Fig. 1, both the node set {v1, v3, v5, v6,
vn+7, v2n+m+7} and the node set {v1, v3, v5, v6, vn+m+6, v2n+2m+6}
constitute a group of candidate nodes respectively. Their total 
communication cost is 12.5 and 11.5 respectively. So the 
second group is more dominant than the former to be the final 
result. 

Definition 3.4 (Incremental Maintenance): Given a 
data graph G, a list updates △G to G, the current index and 
the current query result, the problem of incremental 
maintenance is to determine the affected regions in the index, 
and then update the index and the result, but not to re-perform 
the whole procedure of team formation.

Frequently used notations in this paper are summarized in 
Table I. Our solution is shown in Fig. 2. If the whole CPG is 
taken as the matching object, the matching cost is relatively 
high. Therefore, we adopt the idea of divide and conquer, first 

891



divide the CPG into several parts, and then match them one 
by one to reduce the matching cost. It mainly includes four 
parts: 1) CPG preprocessing (see Section IV). The CPG is 
normalized and represented as a CoreCPG, which consists of
one core part with a core node and several noncore parts, in 
order to establish the basis for efficient matching. 2) CCI 
construction (see Section V). In order to speed up node 
matching, an auxiliary index called CCI is constructed 
starting from the core node in the CPG. 3) CCI-based node 
matching (see Section VI). Based on the CoreCPG and the 
constructed CCI, the matching order of nodes in the CPG is 
determined to minimize the total number of intermediate 
results. The candidate with the top-K minimum total 
communication cost will be selected to form a team. 4) 
Incremental maintenance (see Section VII). According to the 
updates △G of the data graph and the current CCI, the query 
result is maintained incrementally. 

TABLE I. NOTATIONS

Notation Meaning
G and Q Data graph and CPG
LD(v) and LQ(u) Labels of node v in G and label of node u in Q
C(v, v’) Communication cost between v and v’ in G
CQ(u, u’) Communication constraint between u and u’ in Q
QT Minimum spanning tree of Q
QC and ucore Core part in Q and the core node in QC

QN Noncore part in Q
M(u) A set of nodes in G matching with u
NS and ES Node set and edge set of an index node in CCI

CCI Construction

CCI

CCI-based Node Matching

Query Result

G Incremental Maintenance

New Query Result 
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IV. CPG PREPROCESSING

We propose a CPG preprocessing method that normalizes 
the CPG and reprensents it as a CoreCPG in order to establish 
the basis for efficient matching. 

A. CPG Normalization 
A CPG is often given by users. Inevitably there exists 

some data redundancy. It is necessary to normalize the CPG 
before matching. According to the triangle inequality 
theorem, any side of a triangle is always shorter than the sum 
of the other two sides. The communication cost (i.e. the 
length of the shortest path) among nodes in G also follows 
this theorem. For any three nodes vi, vj and vk in G, the triangle 
inequality theorem states that C(vi, vj) should not be larger 
than the sum of C(vi, vk) and C(vk, vj). The triangle inequality 
theorem assures the following theorem. 

Theorem 4.1: For any triangle (suppose ui, uj and uk are 
three nodes constituting the triangle) in a CPG, if CQ(ui, uj) is 
larger than the sum of CQ(ui, uk) and CQ(uk, uj), then (ui, uj) is 
a redundant edge. 

Proof: Suppose (ui, vi), (uj, vj) and (uk, vk) are three 
mappings between Q and G. If C(vi, vk)  CQ(ui, uk) and C(vk,
vj)  CQ(uk, uj) are satisfied respectively, due to C(vi, vj) C(vi,
vk) + C(vk, vj), then C(vi, vj)  CQ(ui, uk)+ CQ(uk, uj) must be 
satisfied. Also, because CQ(ui, uj) is larger than CQ(ui, uk)+
CQ(uk, uj), C(vi, vj) must be no larger than CQ(ui, uj). That is, 
if the constraints CQ(ui, uk) and CQ(uk, uj) are satisfied, the 
constraint CQ(ui, uj) must be satisfied too. Therefore, the edge 
(ui, uj) in the CPG is redundant. 

The goal of CPG normalization is to remove all the 
redundant edges from the CPG. For simplicity, in the 
remainder of this paper, we use the term “CPG” to refer to 
the “normalized CPG”.

B. CoreCPG Representation 
Definition 4.1 (CoreCPG): A CoreCPG consists of one 

core part QC with a core node ucore and a set of noncore parts 
QNset. Here the core part QC=(VC, EC, LQ, CQ) is the minimal 
connected subgraph in Q, which contains all non-tree edges 
(edges in Q but not appearing in Q’s MST (denoted as QT(VT,
ET))). Each noncore part QN=(VN, EN, LQ, CQ) in QNset is the 
subgraph of Q consisting of all other edges not in QC. The 
node u in VC with fewer matching nodes in G (having the 
same label as u, denoted as M(u)) and closer communication 
with other nodes in VC is selected as ucore.

Since the cost for matching non-tree edges will increase 
sharply with the increase of intermediate results (see Section 
VI), QC that contains all such edges should be matched first, 
and then QNset. For ucore, fewer matching nodes means less 
intermediate results being generated, while closer 
communication means lower traverse cost. So ucore will be 
matched preferentially over the other nodes in QC. Therefore 
we need to represent the normalized CPG as a CoreCPG. Our 
method is similar to [9], but we use different condition to 
select the core node. The communication constraints are 
considered. The pseudocode is shown in Algorithm 1.  

Algorithm 1: CoreCPG representation
Input: a normalized Q
Output: QC, ucore, QNset

1  QT generateMST(Q);
2  QC determineCore(Q, QT);
3  for each node vi in VC do
4    vi.com 0;
5    for each edge (vi, vj) in EC do
6      vi.com vi.com+CQ(vi, vj);
7 vi.coreDegree |M(vi)| vi.com;
8  ucore argminui VC ui.coreDegree;
9 QNset determineNoncore(Q, QC);
10 return QC, ucore and QNset;

Step 1: We first generate Q’s MST, i.e. QT(VT, ET), where 
VT and ET have the same definitions as VQ and EQ respectively
(Line 1). ET is the subset of EQ. 

Step 2: According to QT, determine the core part QC (Line 
2). We apply the method in [9] to determine QC. 

Step 3: Determine the core node ucore in VC (Line 3-8). 
We use communication constraints to select the core node in 
VC. We quantify u’s core degree as |M(u)| iCQ(u, ui) (u,
ui VC, (u, ui) EC) and select the node with the minimum 
value as the core node. When there are multiple nodes with 
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equal core degree, the node with the smallest identifier will 
be selected as the core node.  

Step 4: Determine the set of noncore parts QNset in Q
(Line 9). Note that there are some nodes that appear in both 
the core part and the noncore part (i.e. VC VN). They act as 
the connection nodes between the two parts. 

Example 4.1: As shown in Fig. 3(a), there are two edges 
removed from the CPG after normalization. Then the 
minimum spanning tree QT is generated (shown in Fig. 3(b)). 
The minimal connected subgraph of Q that contains all the 
non-tree edges is determined as QC (shown in Fig. 3(c)). It 
contains all the non-tree edges in Q (denoted as red dashed 
lines). Also the core node is selected from QC. Suppose for 
each node u in QC, the number of matching nodes (i.e. |M(u)|) 
is shown in Fig. 3(c), we can select the core node having the 
lowest core degree. Finally, each noncore part QN is 
determined. The CoreCPG consists of QC with the core node 
ucore and two QN s in this example. 
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Fig. 3. An example for CPG preprocessing 

In fact, both CPG normalization and MST generation can 
remove the redundant edges from CPG. Besides the 
redundant edges, the non-tree edges can also be removed 
from MST. If without CPG normalization, we cannot tell 
whether a removed edge is a redundant edge or a non-tree 
edge. Then all the removed edges will be viewed as non-tree 
edges, resulting in higher cost of the subsequent node 
matching. So both of the steps are necessary. 

V. COMMUNICATION COST INDEX

Starting from the core node, we will construct a 
Communication Cost Index (CCI). It is used to compactly 
encode all possible embeddings of Q in G. Each embedding is 
a group of nodes satisfying the constraints in the CPG and is a 
candidate to form a team.

A. CCI Data Structure 
Given a CPG and a data graph, a CCI is a tree with the 

same structure as QT. Each index node in the CCI carries the 
same label as the corresponding node in QT. Also the parent-
child relationships among nodes are the same in QT and the 
CCI. The data structure of the CCI is as follows. 1) Each 
index node e in the CCI corresponds to a node u in QT. It is a 
matching node set of u, which includes u’s matching nodes 
M(u) (or denoted as M(e) due to the equivalence between e
and u) in G. 2) The relationships between two adjacent index 
nodes in the CCI (e.g. ei and ej) are many-to-many. An index 
edge between v (v  M(ei)) and v’ (v’  M(ej)) is built if and 
only if C(v, v’) is not larger than CQ(ei, ej). For each index 
node, we use a node set NS and an edge set ES to store its 
matching nodes and the communication relationships with its 
parent node, respectively. 

Example 5.1: Let's take the first two nodes in the table of 
Fig. 3(c) as an example (denoted as u1 and u2 here). Suppose 

that their matching nodes are M(u1)={v1, v2} and M(u2)={v3,
v4, v5}, and the relevant fragment of G is shown in Fig. 4(a). 
Because the relationships among the matching nodes may be 
indirect, we use dashed lines with the corresponding 
communication cost to represent the relationships. There are 
six paths between nodes in M(u1) and nodes in M(u2). The 
corresponding index nodes in the CCI are shown in Fig. 4(b). 
There are two index nodes (denoted as e1 and e2)
corresponding to u1 and u2 respectively. Only three paths in 
Fig. 4(a) are left which satisfying communication constraints 
in the CPG (i.e. no larger than 3). So the node sets of e1 and 
e2 are {v1, v2} and {v3, v4}, respectively. And there are three 
index edges between them which are stored in the edge set of 
e2, i.e. {(v3, v1, 2), (v4, v1, 1), (v4, v2, 2)}.  
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(a) Fragment of G                             (b) CCI
Fig. 4. An example for index nodes in a CCI 

Remark. There are also some existing auxiliary data 
structures (e.g. TurboISO [8], CPI [9] and S-Index [17]) to 
speed up subgraph matching. However, the CCI is inherently 
different. First, for most indexes, the entire matching 
subgraphs in the data graph need to be found and stored. Each 
index edge represents a direct relationship. However, CCI-
based node matching aims to find the matching nodes 
satisfying the constraints in the CPG. Each index edge 
represents a path. Only the two ending nodes on each path 
need to be stored. Second, although some indexes support 
edge-to-path mappings and path matching constrained by a 
path length, they do not use communication constraints to 
refine, resulting in large storage space and traversal cost. By 
checking communication constraints, we can prune
unpromising nodes during CCI construction. As a result, the 
CCI is better suited for team formation with less storage space. 

B. CCI Construction 
The CCI is constructed to compactly encode all possible 

embeddings of Q in G and to speed up the matching between 
them. Similar to a parent-child relationship in QT, there is also 
a parent-child relationship between two adjacent nodes in the 
CCI. It is constructed in a top-down fashion. Given the core 
node ucore, QT, G and the shortest path length matrix C, the 
algorithm for CCI construction is shown in Algorithm 2. 

Algorithm 2: CCI Construction
Input: ucore, QT, G, C
Output: CCI

1 root.NS getMatchingNodes(LQ(ucore), G);
2 root.ES ;
3 CCI root;
4 CCI extendCCI(root, ucore, QT, G, C, CCI);
5 return CCI;

Step 1: Generate the root node of the CCI. Intuitively, the 
node with stronger pruning power should be the root of the 
CCI, so that it can be traversed first. As discussed in Section 
IV.B, the core node ucore has both fewer matching nodes and 
smaller communication cost with other nodes. Its pruning 
power is strongest, so it should be selected as the root of the 
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CCI. Its NS and ES are the set of matching nodes in G (sharing 
the common label with ucore) and , respectively.

Step 2: Call Algorithm 3 recursively to generate the rest 
part of the CCI. Given the current CCI, a parent index node
ep in it (corresponding to the node up in QT), G and the shortest 
path length matrix C, Algorithm 3 is to generate the 
descendants of ep. The children Uc of up in QT are checked at 
first. If Uc is null, ep will not be extended because up is a leaf 
node. Otherwise, there will be |Uc| child nodes of ep being 
generated. For each node in Uc, it corresponds to an index 
node ec which will be extended as a child node of ep. The 
extension process is as follows (Line 4-16). 

Algorithm 3: extendCCI
Input: the current CCI, a parent index node ep, up, QT,

G, C
Output: the extended CCI

1   Uc getChildren(up, QT);
2   if Uc is not null then
3     for each node uc in Uc do
4         ec.NS ;
5         ec.ES ;
6         M(ec) getMatchingNodes(LQ(uc), G);
7         for each node vi in M(ec) do
8           for each node vj in ep.NS do
9             if C(vi, vj) CQ (uc, up) then
10           ec.NS ec.NS {vi};
11           ec.ES ec. ES (vi, vj, C(vi, vj));
12      ep.childList.add(ec);
13     CCI updateCCI(CCI, ep, ec);
14       up uc;
15       ep ec;
16       CCI extendCCI(ep, up, QT, G, C, CCI);
17 return CCI;

First, initialize NS and ES of ec. Second, get the matching 
nodes of ec (i.e. M(ec)) in G according to the label of uc. Third, 
by comparing the communication cost between nodes in M(ec)
and nodes in ep’s NS with the communication constraints in 
the CPG, refine M(ec). Only the nodes satisfying the 
communication constraints continue to be stored in ec’s NS.
Correspondingly, the index edges between ec and ep will be 
stored in ec’s ES. Fourth, extend ec to the current CCI and call 
Algorithm 3 recursively with ec as the new parent index node. 
Finally, generate the descendants of ec. 

To reduce the storing space of the CCI, for each two index 
nodes with the parent-child relationship in the CCI (parent is 
denoted as ep and child is denoted as ec), we define two rules,
R1: ∀vi(vi ec.NS)→ vj(vj ep.NS C(vi, vj) CQ (uc, up)) and 
R2: ∀vj(vj ep.NS)→ vi(vi ec.NS (vi, vj, C(vi, vj)) ec.ES).

R1 reveals that, for any node in ec’s NS, at least there exists 
one node in ep’s NS where the communication cost between 
them can satisfy the requirement. R2 is used to guarantee that, 
for any node in ep’s NS, at least there exists one node in ec’s 
NS where the communication cost between them can satisfy 
the requirement, i.e. the edge (vi, vj, C(vi, vj)) has been stored 
in ec’s ES. In a word, each node in both ec’s NS and ep’s NS is 
involved in the parent-child relationship. 

In Algorithm 3, when extending an index node ec, its 
ancestors will construct ec’s NS and ES, which can guarantee 
R1. But R2 might not be satisfied. It is possible that some 

nodes exist in ep’s NS not satisfying the communication cost 
requirement with ec. So we propose Algorithm 4 to further 
refine the CCI in a bottom-up fashion. Each index node next 
to the leaves (i.e. at the (max_level-1)-th level) is considered 
as ep and is refined at first (Line 1-2). Each node in ep’s NS is 
checked whether it is involved in the parent-child relationship 
with a node in the leaves’ (i.e. ec’s) NSs (Line 3-7). We 
remove from ep’s NS such nodes that cannot satisfy R2 (Line 
8-9). ep’s ES is updated (Line 10). Then, follow this 
procedure and process the upper level in the CCI iteratively. 

Algorithm 4: refineCCI
Input: the current CCI
Output: the refined CCI based on parent-child 

relationship
1   for each level l from CCI.max_level-1 to 1 do
2     for each index node ep at level l do
3       for each node vj in ep.NS do
4         vj.status false;
5         for each index node ec in ep.childList do
6           for each node vi in ec.NS do
7             if (vi, vj, C(vi, vj)) ec.ES) then vj.status true;
8         if vj.status==false then
9           ep.NS ep.NS - {vj};
10         ep.ES updateEdge(ep, ep.NS);
11 return CCI;
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         (a) An example of CCI    (b) Incremental maintenance for CCI
Fig. 5. An example of CCI construction and maintenance 

Example 5.2: Consider the data graph and the CPG in Fig. 
1. The constructed CCI is as Fig. 5(a). There are six index 
nodes, each of which stores a group of candidate nodes in G.
Only the nodes and the edges satisfying communication 
constraints in the CPG can be retained in the CCI. 

C. Complexity Analysis 
The average worst-case size of index nodes: Suppose 

that there are lD different labels in G. Then the average size 
of nodes in G with each label is |VD|/lD. We only need to store 
the nodes and the edges satisfying the input constraints into 
the CCI. Suppose that the average probability for an edge in 
G (denoted as (vi, vj)) satisfying the corresponding 
communication constraint in the CPG is . Then the average 
probability for vi (or vj) included by an index node is √ . Thus 
the average worst-case size of index nodes is (|VQ||VD|√ )/lD. 

The average worst-case size of index edges: For each 
pair of parent-child nodes in Q, there are an average of 
|VD|2/lD

2 paths in G to meet the requirement about labels. Then 
there are an average of |VD|2 /lD

2 index edges to meet both the 
label requirement and communication constraints. Therefore, 
the average worst-case size of index edges is (|VQ||VD|2 )/lD

2. 

Time complexity of CCI construction: Let H denote the 
product of the number of leaf nodes in QT and the height of 
QT. Then the top-down checking and the bottom-up refining 
takes at most O(H|VD|2/lD

2).
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VI. CCI-BASED NODE MATCHING

During CCI construction, we only consider the parent-
child relationships in QT. However, communication 
constraints reflected by the non-tree edges is not included in 
these relationships. We need to make matching further. In this 
section, we propose three heuristic matching rules which are 
applied to our CCI-based node matching algorithm. 

A. Core First Matching Rule  
A cost model is proposed in [7] to estimate the matching 

cost based on a matching order of nodes (u1, …, un) (as in (1)). 
Here Bi is the total number of embeddings in the CCI derived 
from (u1, …, ui) (suppose that each ui corresponds to the index
node ei in the CCI), ݀௜௝ is the number of candidates induced by 
the j-th embedding of ui-1, and ri is the number of non-tree 
edges between ui and nodes before ui in the matching order. ܶ = ଵܤ + ∑ ∑ ݀௜௝(ݎ௜ + 1)஻೔షభ௝ୀଵ௡௜ୀଶ

Example 6.1: Let’s consider the constructed CCI in 
Example 5.2. We compare the matching cost under two 
matching orders, (e1, e2, e4, e6, e3, e5) and (e1, e2, e3, e4, e6, e5). 
For presentation simplicity, we assume that the values of ݀௜௝
for all the embeddings of ei-1 are the same. 
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Fig. 6. Comparison of the matching cost 

In Fig. 6(a), the number of embeddings (i.e. search breadth) 
for e1, e2 and e4 is 1. The number of candidates derived from 
e4’s parent (i.e. e2) is m, so the search breadth of e4 (i.e. B4) is 
m. That is, there are m embeddings generated now. For each 
embedding, it derives one candidate in e6. Therefore, by 
matching (e1, e2, e4, e6), there are m candidate paths (i.e. 
embeddings) generated to be combined with post-order 
mappings. When matching e3, there are n+1 candidates in its 
NS, each of which needs to be combined with the candidate 
paths formed before. So the number of comparison is m (n+1) 
for combination. The number of non-tree edges between e3
and the nodes before it in the matching order is 1. Thus the 
candidates in e3 need to be checked whether they can satisfy 
the communication constraints with the candidates in e2. The 
number of comparison is m (n+1) for checking too. So the 
cost of matching e3 is 2 m (n+1). The rest can be done in the 
same manner. Finally, the total cost of matching regarding the 
matching order (e1, e2, e4, e6, e3, e5) is 2 m  (n+1)+3 m+2. In
Fig. 6(b), e3 is matched earlier than e4 and e6. Before matching 
e3, the search breadth is only 1. So the number of comparison 
for matching e3 is only 2 (n+1), the sum of the number of 
comparison (n+1) for combination and the number of 
comparison (n+1) for checking. The total cost regarding the 
matching order (e1, e2, e3, e4, e6, e5) is 2 (n+1)+3 m+2, which 
is less than the former.  

Remark. From the above example, we can see that the 
search breadth grows quickly and dominates in the matching 
cost. So we should try to deal with non-tree edges before the 

search breadth becomes wider. The combination between 
candidates via non-tree edges should be done as early as 
possible. The core part is the minimal connected subgraph of 
Q that contains all the non-tree edges. Therefore, we propose 
the core first matching rule: the nodes in QC should be 
matched before the nodes in QN. For example, in Fig. 5(a) the 
index nodes e1, e2 and e3 corresponds to the nodes in QC of Q. 
Therefore, e1, e2 and e3 should be matched before e4, e5 and e6. 

B. Pruning Power First Matching Rule  
Next, we further determine the matching order of nodes 

in the core part. There are a set of root-to-leaf paths (l1, …, lk)
sharing the root node in the core part. Our goal is to compute 
an efficient order of these path, then to obtain the matching 
order of query nodes. 

Suppose that there are two index nodes (em and en) in the 
CCI. There is a non-tree edge between their corresponding 
query nodes in Q. We define the satisfaction rate of em

(denoted as (em), as in (2)) as the proportion of nodes in em’s 
NS satisfying communication constraints with nodes in en’s 
NS. For other index nodes not connected by non-tree edges, 
their satisfaction rates are always 1. (݁݉) = ܵܰ.݉݁∋݅ݒ|݅ݒ}| ܵܰ.݊݁∋݆ݒ)݆ݒ∃ ൯݆ݒ,݅ݒ൫ܥ |ܵܰ.݉݁||{((݊݁,݉݁)ݍܥ

To estimate the cost based on a matching order of paths,
we redefine the cost model in [7]. In fact, the matching order 
of query nodes can be obtained from the order of paths. We 
assume that the matching order of query nodes is (u1, …, un)
and the position of the last node of li in the matching order is 
li. Given a path-based order (l1, …, lk) and a CCI, the total cost 
of a backtracking algorithm for matching can be calculated as 
(3). Here Bli is the search breadth of li, and rli is the number 
of non-tree edges between li and paths before li in the 
matching order. i-1 is the product of the satisfaction rates in 
the CCI derived from (e1, …, ei-1). Suppose that ei-1 is an index 
nodes connected by a non-tree edge. Then the probability that 
each node in ei-1’s NS preserved in the CCI is i-1, so the 
search breadth of ei-1 is Bi-1 i-1. It has an effect on the number 
of comparisons during matching the next node (see the first 
line in (3)). We can also assume that in the next index node 
the number of candidates under each embedding is reduced 
uniformly (see the second line in (3)). Further we can get the 
third line in (3), which will be used to determine the matching 
order of nodes in the core part. For each path li, the matching 
cost is relevant to: Bli, the number of non-tree edges 
connected to li, and the product of the satisfaction rates 
derived from these non-tree edges (i.e. li). Then we define 
pruning power for each path (as in (4)).ܶᇱ = ଵܤ + ∑ ∑ ݀௜௝(ݎ௜ + 1)                              ஻೔షభ ೔షభ௝ୀଵ௡௜ୀଶ≈ ଵܤ + ෍ ௜ିଵ ෍ ݀௜௝(ݎ௜ + 1)஻೔షభ௝ୀଵ௡௜ୀଶ≈ ௟భܤ + ∑ ௟೔ܤ௟೔൫ݎ௟೔ + 1൯௞௜ୀଶ                                       

ܲ(݈௜) = ௥೗೔ ஻೗೔× ೗೔
Remark. Pruning power is used to measure the number 

of intermediate results derived from a root-to-leaf path in the 
CCI. As discussed before, if the combination between 
candidates via non-tree edges is done early, more 
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intermediate results can be pruned early. Thus large rli will 
raise the value of P(li). On the contrary, if the search breadth 
of li is wider and the satisfaction rates are higher, more 
candidates will be generated as intermediate results. The 
large Bli and li will lower the value of P(li). It is a hard 
problem to minimize T’, so we propose the pruning power 
first matching rule: given a set of root-to-leaf paths (l1, …, lk)
sharing the root node in the core part of the CCI, the path with 
strongest pruning power should be matched first. 

e1
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v8v88 v9v99 v10 v111 v12

v13

e5e5e44

e66
(e5)=0.5

111 v12

e )=0 5

v1v11 v2

Fig. 7. Comparison of pruning power 

Example 6.2: Suppose that a CCI is depicted as Fig. 7, 
corresponding to QC in Example 4.1 (here the communication 
cost for the parent-child relationships is omitted). We assume 
that (e5)=0.5 (suppose that C(v12, v13) is larger than CQ(e5,
e6)), and the values of  of other index nodes are 1. There are 
three root-to-leaf paths (l1, l2, l3). Let's take l2 as an example. 
There are four embeddings (v1v5v8v13, v1v5v9v13, v2v6v10v13 and 
v2v7v10v13) along it, so its search breadth is 4. In this way, we 
can know Bl1 =2, Bl2 =4, and Bl3 =4 respectively. Their 
pruning power is P(l1)=1/2, P(l2)=2/4, and P(l3)=2/(4 0.5) 
respectively. So the nodes on l3 should be matched at first. 

C. Search Breadth First Matching Rule  
After matching the nodes in the core part, we begin to 

match the nodes in each noncore part QN. Note that there are 
no non-tree edges in QN, we only use search breadth to 
measure the number of intermediate results induced by QN.

We propose the search breadth first matching rule: given 
a set of QN, the noncore part with less search breadth should 
be matched first. As for each QN, the path with less search 
breadth in QN’s root-to-leaf paths should be matched first. 

So we first estimate the size of search breadth for each QN,
and then sort these QN s in an ascending order regarding their 
search breadth. Then the root-to-leaf paths in each QN are 
ordered according to their search breadth too. In this way, we 
obtain the matching order of nodes in the noncore parts. The 
estimation of search breadth is similar to the matching 
process within the core part, so we omit the details here. 

D. CCI-based node matching algorithm 
We propose a CCI-based node matching algorithm 

(Algorithm 5). Given a CCI, QC, a QNset and the shortest path 
length matrix C, it is to determine the matching order of index 
nodes in the CCI. According to the core first matching rule, 
we first match the nodes in QC, and then in QNset. 

Step 1: According to the pruning power first matching 
rule, generate the matching order of nodes in QC. First, we 
use the set L to store all root-to-leaf paths in QC and select the 
first path from it (Line 1-4). The path having the maximum 
pruning power in the CCI will be selected. Correspondingly, 
the nodes along the path will be added to the matching queue 
as the first matched index nodes. Second, we choose the next 
path from L (Line 5-11). The next path is chosen based on the 

current queue. Each path li in L shares a prefix with the queue. 
To reduce computation, we only consider the different part of 
li from the current queue, i.e. starting from the last shared 
node to the leaf (denoted as li’). Iteratively, we substitute li’
for li and choose the path having the maximum pruning power 
from L. Finally, we get the matching order of nodes in QC. 

Step 2: According to the search breadth first matching 
rule, generate the matching order of nodes in QNset (Line 12-
16). First, for each QN in QNset, the size of its search breadth 
will be estimated based on the CCI. The noncore parts in 
QNset will be sorted by their search breadth. Those having 
less search breadth should be matched first. Second, for each 
QN (denoted as QNj), we sort all root-to-leaf paths according 
to their search breadth in the CCI. Similarly, the paths having 
smaller search breadth should be matched preferentially. 
Finally, the matching order of index nodes in QNset can be 
generated according to the order of paths. 

Algorithm 5: CCI-based node matching
Input: CCI, QC, QNset, C
Output: the matching order of index nodes

1   L all root-to-leaf paths in QC on CCI;
2   l* argmaxl L P(l);
3   Add nodes of l* to queue;
4   L L-{l*};
5   while L do
6      for each path li in L do
7         li’ getDifferentPath(li, queue);
8         li li’;
9      l* argmaxl L P(l);
10    Add nodes of l* to queue;
11    L L-{l*};
12 QNList sortQNByBreadth(QNset, CCI);
13 for each QNj in QNList do
14    LNj all root-to-leaf paths in QNj;
15    pathList sortPathByBreadth(LNj, CCI);
16 Add nodes to queue according to pathList;
17 return queue;

Let |ES| denote the average size of ES regarding to each 
index node in the CCI. Then generating the matching order 
of nodes in QC takes time O(|ES| l L len(l)). And generating
the matching order of nodes in QNset takes time 
O(|ES| QNj QNset l LNj len(l)). Here len(l) means the number 
of index edges in the path l. The total time complexity is 
O(|ES| l L len(l)+|ES| QNj QNset l LNj len(l)) which is at most 
O(H|ES|). Here H has the same value as that of H in Section 
V.C. Compared with G, the size of a CCI is generally small. 
So the time is linear to |ES|.

After determining the matching order of index nodes, we 
will enumerate all the embeddings of Q in G, i.e. all possible 
combinations of team members following the constraints in 
the CPG. We match each index node according to the 
matching order. As for the index nodes not connected by non-
tree edges, they are used to generate the embeddings only. As 
for the index nodes connected by non-tree edges, the nodes in 
their NS should be checked whether they can satisfy the 
constraints along the non-tree edges. If not, the nodes should 
be removed from the CCI. Finally, the embeddings with the 
top-K minimum total communication cost will be selected to 
form each team. The nodes included by each embedding will 
act as team members. 
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VII. INCREMENTAL MAINTENANCE

In this section, we present incremental maintenance 
strategies for the changes of G, including the insertion or 
deletion of nodes’ labels, insertion or deletion of edges, 
insertion or deletion of nodes, increase or decrease of edges’ 
weights, denoted by △GL

+, △GL
-, △GE

+, △GE
-, △GN

+, △GN
-,△GW

+ and △GW
- respectively. 

(1) For each label a △GL
+ (suppose that vx is the changed 

node in G), which might just generate some new embeddings, 
but not affect the communication cost among the current 
nodes in the CCI, we consider the following situations. 

If a is not one of labels requested in the CPG, then both 
the CCI and the query result remain unchanged. Otherwise, 
an affected region (AR) in the CCI will be identified, which 
initially includes the index node ea (with label a), ea’s parent 
and ea’s children. The communication cost between vx and 
each node in AR will be checked: 

1) If one of the communication cost cannot satisfy the 
request in the CPG, both the CCI and the query result remain 
unchanged because vx is not possible to be a candidate.  

2) Otherwise, both the CCI and the query result should be 
updated. First, index nodes in the current AR are updated.
The node vx is added to ea’s NS, which might result in the 
insertion of more candidates to ea’s parent and ea’s children. 
We denote the insertion part and the new NS as △NS+ and NS’
respectively (NS’=NS △NS+). Second, the initial AR is 
extended. Along the path from ea’s parent to the root, the last 
index node with nonempty △NS+ is chosen as the root node 
of AR. The root node with its descendants in the CCI together 
constitutes the new AR. Let h denote the length of the path 
from ea’s parent to the root. The average size of nodes in G
with each label is |VD|/lD. Then extending AR takes time 
O(h|△NS+||VD|/lD). Third, for each index node in AR, its △NS+ is checked whether the nodes in it satisfy the 
communication constraints and the rules defined in 
Subsection V.B. If so, the nodes are kept in △NS+. Otherwise, 
they are removed from △NS+. Let HAR denote the product of 
the number of leaf index nodes in AR and the height of AR. 
Then the top-down checking and the bottom-up refining takes 
time at most O(HAR|△NS+||VD|/lD). Finally, the query result is 
updated. If AR contains the index nodes connected with non-
tree edges, node matching needs to be recomputed based on 
the updated CCI. Otherwise, all the embeddings via vx in AR 
are enumerated and their total communication cost is 
calculated. If an embedding via vx is more dominant, the 
current query result will be replaced by it. Otherwise, the 
query result will remain unchanged. Let △ES denote the 
changed part of ES. Then updating the query result takes time 
at most O(HAR|△ES|). Therefore, the total time complexity is 
O(HAR(|△NS+||VD|/lD+|△ES|)). 

Example 7.1: Fig. 5(a) gives an example of a CCI. When 
a new label ‘TE’ is added to the node vx (shown in Fig. 5(b)), 
e2, e4 and e6 constitute the initial AR. Because the 
communication cost between vx and each node in AR can 
satisfy the request in the CPG, the CCI needs to be updated. 
Along the path from e2 to e1, the last index node with 
nonempty △NS+ is e2. So AR remains unchanged. Since e2
connects with e3 via a non-tree edge, the nodes in e2’s △NS+

should be matched with e3. Thus node matching needs to be 
recomputed based on the updated CCI. 

(2) For each label a △GL
- (suppose that vx is the changed 

node), which might just make some embeddings in the CCI 
ineffective, but won't generate any new embeddings and 
won't affect the current communication cost, we only need to 
prune the current result. We consider the following situations. 

If a is not one of labels requested in the CPG, then both 
the CCI and the query result remain unchanged. Otherwise, 
the CCI should be updated. First, the initial AR is identified 
by performing the same procedure as △GL

+. The node vx is 
removed from ea’s NS. Also the embeddings via vx are 
removed from AR. The deletion of vx might result in the 
deletion of more candidates from the CCI, because they might 
no longer meet the rules defined in Subsection V.B. We 
denote the deletion part and the new NS as △NS- and NS’
respectively (NS’=NS-△NS-). Second, the initial AR is 
extended. The process is similar to △GL

+. Along the path 
from ea’s parent to the root, the last index node with 
nonempty △NS- is chosen as the root node of the new AR. For 
each NS, we just need to refine it, not to extend it. Thus 
extending AR takes time O(h|NS|). Third, for each index node 
in AR, its NS’ is checked and refined with the time complexity 
O(HAR|NS|). Finally, the query result is updated. If AR 
contains index nodes connected with non-tree edges, node 
matching needs to be recomputed. Otherwise, the current 
query result is checked. If it doesn’t include any deleted 
nodes, it will remain unchanged. Otherwise, we will choose 
one from the current embeddings with the minimum total 
communication cost as the new query result. The total time 
complexity is O(HAR(|NS|+|△ES|)). 

(3) For each edge (v, v’) △GE
+ (assume that WD(v, v’) is 

not larger than the current C(v, v’)), the communication cost 
of any pairs of nodes in G keeps unchanged or decrease, 
because it just adds more candidates to the shortest path 
between each pair of nodes. The current embedddings in the 
CCI can still satisfy the constraints. Besides, some new 
embeddings might meet the constraints and be more 
dominant. So the shortest path length matrix C, the CCI and 
the current query result should be updated respectively. As 
for the update for C, we adopt the method proposed in [26] to 
incrementally get the new shortest path length matrix. As for 
the update for the CCI, we consider the whole CCI as AR and 
extend each index node by adding △NS+ to its NS. The 
subsequent process is similar to △GL

+. The total time 
complexity is O(HAR|VD|2/lD

2+|△ES|). Adding an edge 
between two nodes is equivalent to reducing the distance 
between them, i.e., reducing the edge’s weight. Therefore, the 
process of △GW

- is the same as the above strategy for △GE
+. 

(4) For each edge (v, v’) △GE
-, the communication cost 

of any pair of nodes in G remains unchanged or increases. 
The node pair not meeting the constraints before still cannot 
satisfy the constraints now. Therefore, except for the 
embeddings in the CCI, no new embeddings will appear as a 
result. We just need to update the CCI and choose an 
embedding from it as the new query result. In particular, we 
will check the edges in each index node’s ES. If the 
communication cost no longer meets the constraints 
requested in the CPG, the edges should be removed, which 
might result in the deletion of the two ending nodes further. 
We start updating the CCI from its root and refine each index 
node by deleting △NS- from its NS. The subsequent process is 
similar to △GL

-. The total time complexity is 
O(HAR(|NS|+|△ES|)). Also the process of △GW

+ is the same as 
the strategy for △GE

-. 

897



(5) For each node v △GN
+, if v has no links with other 

nodes in G, then v is an isolated node and might not be the 
matching node. So it does not affect the CCI and the current 
result. If v leads to one or several new edges in G, the process 
of the insertion of these new edges is the same as the above 
mentioned strategy for △GE

+. 

(6) For each node v △GN
-, the edges with an end point 

of v will also be deleted. The process of these deleted edges 
is the same as the above mentioned strategy for △GE

-. 

The above maintenance strategies focus on maintaining 
the CCI, which mainly includes two types of operations: △NS+ (e.g. △GL

+, △GE
+, △GN

+ and △GW
-) and △NS- (e.g. △GL

-, △GE
-, △GN

- and △GW
+). For each index node, let NS,

NS’ and NS’’ denote the node set before updating, the node 
set updated by our strategies and the correct node set based 
on the updated G respectively. 

Theorem 7.1: Taking △GL
+, △GE

+, △GN
+ or △GW

- as 
input, our incremental maintenance strategies can maintain 
the CCI correctly. 

Proof: Suppose NS’ NS’’, then there is at least one node 
v in the updated G such that (1) v NS’ v NS’’ or (2) 
v NS’’ v NS’. If (1) is true, since NS’’ NS, then v NS.
Since NS’=NS △NS+, then v △NS+ which contradicts v
NS’’. If (2) is true, since NS’ NS, then v NS. Since v NS’’, 
then v △NS+. Since NS’=NS △NS+, then v NS’ which 
contradicts v NS’. Therefore, for each index node, NS’=NS’’.
That is, the updated CCI is correct. 

Theorem 7.2: Taking △GL
-, △GE

-, △GN
- or △GW

+ as input, 
our incremental maintenance strategies can maintain the CCI 
correctly. 

Proof: Suppose NS’ NS’’, then there is at least one node 
v in the updated G such that (1) v NS’ v NS’’ or (2) 
v NS’’ v NS’. If (1) is true, since NS NS’’, then a) v  NS 
or b) v NS-NS’’. If a) is true, since NS’=NS-△NS-, then v
NS’ which contradicts v NS’. If b) is true, then v is a node 
not satisfying R1, R2 or the communication constraints, so 
v △NS-. Since NS’=NS-△NS-, then v NS’ which contradicts 
v NS’. If (2) is true, since NS NS’’, then v NS. Since 
NS’=NS-△NS- and v NS’, then v △NS-. So v is a node not 
satisfying R1, R2 or the communication constraints. It 
contradicts v NS’’. Therefore, for each index node, 
NS’=NS’’. That is, the updated CCI is correct. 

VIII. EXPERIMENTS

We implement the experiments on a Server with Intel(R) 
Xeon(R) CPU E7-4820 v4 @ 2.00GHz, 2.0TB main memory 
and 11.5TB hard disk, running 64bit CentOS release 6.9 
(Final). We use two real-world social graphs, Ego-Facebook 
(4039 nodes and 88234 edges) and Email-Enron (36692 
nodes and 183831 edges), which are available at 
snap.stanford.edu. Like the well-known existing works in 
team formation [10, 11, 13], we consider 20 classes of labels 
and randomly set the labels of nodes in our data sets. The 
weight of each edge is randomly set as an integer from 1 to 3. 
We generate different CPGs by changing structure 
constraints and communication constraints. Specifically, 
these CPGs are generated by controlling the number of nodes 
(i.e. |VQ|, set as 4, 6, 8 and 10 respectively), the number of 
edges (set between 4 and 10) and communication constraints 
(set as an integer between 1 and 3). We set K (the number of 
returned teams) to 3.

(a) Ego-Facebook

(b) Email-Enron
Fig. 8. Performance comparison of different team formation algorithms 

Effectiveness evaluation of team formation: We use the 
diameter, sum distance (i.e. the sum of the communication 
cost between each pair of skill holders), the minimum 
spanning tree (MST) distance, and the total communication 
cost (i.e. the sum of communication cost between two 
adjacent members in the CPG) to evaluate the quality of the 
teams produced by the following different algorithms. (1) 
Label based team formation (L-TF): the nodes satisfying each 
kind of label requirements in the CPG constitute a group of 
candidates. We randomly select one from each group to form 
the team. Besides the required labels, other methods also 

consider the communication cost. (2) Rarest-First [1]: the 
goal is to minimize the diameter of the team. (3) SumDistance 
[5]: the goal is to minimize the sum distance. (4) Enhanced-
Steiner [1]: the goal is to minimize the MST distance. (5) 
CPG based team formation (CPG-TF): the goal is to 
minimize the total communication cost. 

Results: As in Fig. 8, L-TF only considers the required 
skills, so the quality of teams found by it is low. The 
diameters (or the sum distances) of teams found by CPG-TF 
are comparable to those of Rarest-First (or SumDistance) 
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which is in particularly designed to minimize the diameters 
(or the sum distances). The MST distances of teams found by 
CPG-TF are larger than Enhanced-Steiner which is 
specialized for minimizing MST distances, but are smaller 
than others. However, the total communication cost of teams 
found by CPG-TF is smaller than all the others. These results 
verify that CPG-TF can effectively find high quality teams. 
For MST distance and total communication cost, the 
experiments on Ego-Facebook and Email-Enron exhibit 
similar trends. For diameter and sum distance, CPG-TF is 
worse relatively on Email-Enron than on Ego-Facebook. That 
is because Email-Enron is sparser than Ego-Facebook in 
network structures, resulting in larger diameter and sum 
distance. 

(a) Ego-Facebook                                (b) Email-Enron 
Fig. 9. Query time comparison of different node matching algorithms 

Performance evaluation of node matching: We 
evaluate the following methods. (1) CCI-Match: CCI-based 
node matching algorithm. (2) NaiveCCI-Match: the CCI-
Match algorithm where the CCI is constructed only based on 
the label requirements in the CPG. (3) UnrefinedCCI-Match: 
the CCI-Match algorithm where the CCI is not refined. (4) 
CCI-MatchI: CCI-Match algorithm with a random matching 
order of nodes in the CCI. None of the three heuristic rules 
are applied. (5) CCI-MatchII: CCI-Match algorithm with a 
matching order based on the core first matching rule. (6) CCI-
MatchIII: CCI-Match algorithm with a matching order based 
on both the core first matching rule and the pruning power 
first matching rule. (7) CCI-MatchIV: CCI-based node 
matching (without CPG normalization). (8) BaselineI: node 
matching is performed based on the shortest path length index 
[15]. (9) BaselineII: path matching constrained by a path 
length is performed based on S-Index [17].  

Results: The query performance of the effect of different 
CCI construction strategies and different node matching 
strategies is illustrated in Fig. 9. With the increase of |VQ|, the 
query time of CCI-Match is always less than that of two 
Baseline methods in both of the two datasets. Also, with the 
increase of the size of the datasets, the advantage is even more 
obvious. That is because BaselineI only considers the shortest 
path length between nodes, but ignores the matching cost 
based on a matching order of nodes. BaselineII focuses on the 
data graph that consists of multiple smaller subgraphs. All 
nodes in the data graph need to be indexed. When the size of 
data graph increases, the cost of node matching and index 
traversal increases sharply. Only labels are considered by 
NaiveCCI-Match, so lots of false-positive candidates are 
stored in the CCI which need more query time. 
UnrefinedCCI-Match improves upon NaiveCCI-Match by 
checking the CCI in a top-down way according to the input 
constraints. CCI-MatchI treats all nodes equally when 
matching without distinguishing the nodes in core part or in 
noncore part. CCI-MatchII improves upon CCI-MatchI, and 
CCI-MatchIII further improves upon CCI-MatchII by

adopting our proposed heuristic rules. CCI-MatchIV 
confuses the redundant edges with the non-tree edges, 
resulting in longer time for matching the nodes connected by 
such edges than CCI-MatchIII. CCI-Match further refines the 
CCI in a bottom-up way and applies all of the three heuristic 
rules, leading to the best performance. 

(a) Ego-Facebook                                (b) Email-Enron 
Fig. 10. Time cost of constructing a CCI 

TABLE II. STORAGE COST (KB) OF CONSTRUCTING A CCI 

Dataset Algorithms |VQ|=4 |VQ|=6 |VQ|=8 |VQ|=10
Ego-

Facebook
NaiveCCI 7401 8885 10194 11560

UnrefinedCCI 5067 5416 5645 5384
RefinedCCI 5062 5409 5534 5183

Email-
Enron

NaiveCCI 29012 36552 38501 218695
UnrefinedCCI 17602 19125 19949 21103
RefinedCCI 13641 19104 19638 11701

Time cost of constructing a CCI: As described in 
Subsection V.B, CCI construction includes top-down 
construction and bottom-up refining. We measure the time of 
the two fashions respectively. 

Results: As in Fig. 10, compared with bottom-up refining, 
top-down construction takes a larger proportion of time. 
When |VQ| reaches a certain level, the time for CCI 
construction might be less because the constraints are stricter 
and the number of candidates in each index node gets less, 
resulting in less time for refining.

Storage cost of constructing a CCI: The storage cost of 
different CCI construction algorithms are tested. (1) 
NaiveCCI: only the label requirements in the CPG are 
considered. Neither top-down construction nor bottom-up
refining is performed. (2) UnrefinedCCI: only top-down 
construction is performed. (3) RefinedCCI: our CCI 
construction algorithm which includes both top-down 
construction and bottom-up refining. 

Results: As in Table II, UnrefinedCCI improves upon 
NaiveCCI, and RefinedCCI improves upon UnrefinedCCI by 
removing the candidates that violate the constraints from the 
CCI. When |VQ| is 10, the storage cost decreases a little. This 
is because, when |VQ| reaches a certain level, the number of 
nodes in G satisfying the requested constraints gets less, 
resulting in lower storage cost than before. 

Performance evaluation of incremental maintenance:
We compare the performance of our incremental 
maintenance strategies (IM) with the non-incremental 
maintenance strategies (NIM) and the incremental node 
matching strategy (INC) proposed in [15], aiming at △GL

+,△GL
-, △GE

+ and △GE
-. The other situations are similar (see 

Section VII). For △GL
+ (or △GL

-), we randomly choose m (set 
as 40 and 60 respectively) nodes in G and add (or delete) one 
label to (or from) each. The value of the label is random. For △GE

+ (or △GE
-), we randomly add (or delete) m (set as 40 and 

60 respectively) edges into (or from) G.
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Results: The variation trend of experimental results under 
different sizes of CPGs are similar. For simplicity, we only 
show the results regarding to the CPG with six nodes (Table 
III). Since NIM needs to perform the whole process of query, 
its average processing time is always more than others. INC 
does not support incremental maintenance for the changes of 
labels. As for △GE

+ (or △GE
-), although INC considers the 

incremental maintenance of the shortest path length between 
nodes, it ignores the incremental maintenance of the node 
order for matching. IM performs the incremental 
maintenance for both the shortest path length matrix and the 
CCI, which can effectively limit the scope of modification.

TABLE III. THE AVERAGE QUERY TIME (S) BASED ON DIFFERENT SIZE 
OF △GL

+, △GL
-, △GE

+ AND △GE
- RESPECTIVELY

Dataset △△G
m=40 m=60

NIM INC IM NIM INC IM

Ego-
Facebook

△GL
+ 9.53 0.55 9.76 0.72△GL
- 9.02 0.02 8.86 0.03△GE
+ 9.52 8.69 2.04 9.64 8.98 3.93△GE
- 9.04 6.14 1.89 8.72 6.41 2.91

Email-
Enron

△GL
+ 29.39 1.51 29.79 2.49△GL
- 28.63 0.07 28.38 0.06△GE
+ 29.58 26.22 8.38 29.81 26.73 13.52△GE
- 28.64 23.58 5.15 28.58 22.26 7.90

IX. CONCLUSION

We present an effective and efficient team formation 
method based on CPG, which takes into account both structure 
constraints and communication constraints. First, we propose 
a CPG preprocessing method and design an index structure, 
i.e. CCI, to speed up the matching between the CPG and the 
data graph. Then we propose a CCI-based node matching 
algorithm to minimize the total number of intermediate results. 
Also some incremental maintenance strategies are proposed. 
The experiments demonstrate the effectiveness and the 
efficiency of our proposed method. In our future work, we will 
work on multi-objective team formation methods, and 
incremental maintenance strategies for changes of a CPG. 
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