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Abstract—Lexicographical order dependencies (ODs) specify
orders between list of attributes, and are proven useful in
optimizing SQL queries with order by clauses. To find hidden
ODs from dirty data in practice, in this paper we make a first
effort to study the approximate OD discovery problem, aiming
at automatically discovering ODs that hold on the data with
some exceptions. (1) We adapt two error measures to ODs, prove
their desirable properties, and present efficient algorithms for
computing the measures and related lower and upper bounds.
(2) We present an efficient approximate OD discovery algorithm
that is well suited to the two error measures, with a set of pruning
rules and optimization techniques. (3) We conduct extensive
experiments to verify the effectiveness and scalability of our
methods, using real-life and synthetic data.

Index Terms—Algorithms; Data profiling; Data dependency

I. INTRODUCTION

Lexicographical order dependencies (ODs) are proposed in

[26], [28], which state lexicographical ordering specifications.

Different from traditional dependencies that are defined on sets
of attributes, e.g., functional dependencies (FDs) and denial

constraints (DCs) [3], ODs are defined on lists of attributes.

ODs lend themselves to wide applicability, since sorting is

one of the most important database operations. We first give

an example to illustrate the features of ODs.

Example 1: Consider the relation instance r in Table I, about

employees in a company (now suppose t3.Salary = 4500 and

t6.Salary = 8500). We see an employee with a higher salary is

at a higher level, or stays at the same level for more years. This

is denoted by
−−−→
Salary �→−−−→Level

−−→
Year in the notation of OD [26],

[28]: the ascending order on Salary guarantees the ascending

order on Level, and the ascending order on Y ear within each

Level group. The lexicographical ordering specification on the

left-hand-side (LHS) (resp. right-hand-side (RHS)) of the OD

is consistent with the SQL clause ORDER BY Salary ASC
(resp. Level ASC, Y ear ASC).

ODs are defined on lists of attributes, and possibly have mul-

tiple attributes on both LHS and RHS. Observe the following

unique features of ODs.

(1) The order of attributes in a list is relevant. For example,−−−→
Salary �→−−→Year−−−→Level does not hold on r.

(2) The attributes in the LHS and RHS list usually cannot be

separated. For example,
−−−→
Salary �→−−→Year does not hold on r. �

To avoid the error-prone and labor-intensive process of

designing dependencies manually, dependency discovery tech-

niques are actively studied; see [1] for a survey. Recently, OD

discoveries have received an increasing attention [4], [9], [14].

† Zijing Tan is the corresponding author.

TABLE I
RELATION INSTANCE r

Name Salary Level Year Age
t1 Alan 4200 1 2 30
t2 Mark 4300 1 3 31
t3 Jack 4500→5800 2 2 38
t4 William 5600 2 3 30
t5 Steven 8000 3 2 35
t6 Thomas 8500→8000 4 5 39

The OD discovery problem is necessarily very difficult: it has

a search space (the total number of candidate ODs) factorial in

the number of attributes since ODs concern lists of attributes.

Worse, data in practice are often dirty, and hence, some

of the discovered (exact) dependencies cannot correctly ex-

press the characteristics of data. It is known that discovered

constraints on dirty data may overfit [13], [19]. This means

too many LHS attributes used in FDs, or too many predicates

specified in DCs. Intuitively, this is because the discovered

constraints have to be more “specialized” to “tolerate” errors

in the data. When it comes to OD discovery, the problem is

even more involved. ODs discovered from dirty data can not

only overfit, but also underfit. By underfit, we mean too few

attributes are specified on the RHS, which implies that the

order specification is not fully established. Interestingly, the

following example shows that a single OD may overfit on the

LHS, and simultaneously, underfit on the RHS.

Example 2: Recall Table I. Now suppose that there are

errors in the data: t3.Salary = 5800, t6.Salary = 8000. We

see
−−−→
Salary �→−−−→Level

−−→
Year no longer holds. Specifically, (a) t4 is

before t3 by Salary ASC, but t3 is before t4 by Level ASC,

Y ear ASC. (b) The order of t5, t6 is unspecified by Salary
ASC, but t5 is before t6 by Level ASC, Y ear ASC.

Consequently, an exact OD discovery algorithm may find−−−→
Salary

−−→
Age �→−−−→Level that holds on the dirty data. Compared with−−−→

Salary �→−−−→Level
−−→
Year, it overfits on the LHS and underfits on

the RHS. The attribute Y ear on the RHS is removed for

resolving the violation incurred by t3, t4, and the attribute Age
is included for resolving the violation caused by t5, t6. �

Dirty data in practice motivate the quest for discovering

approximate dependencies that hold on the data with some

exceptions. Although desirable, approximate dependency dis-

covery is usually more challenging and expensive than the

exact counterpart. Intuitively, exact dependency discoveries

concern the decision problem of whether a dependency holds

or not, while approximate dependency discoveries concern the

counting problem of measuring the error rate of a dependency.
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This increasing complexity is well demonstrated in recent

studies for approximate FDs [13] and DCs [17], [19].

Contributions. In this paper, we make a first effort to study

the problem of approximate OD discovery.

(1) We adapt two error measures to approximate ODs. For an

OD, measure g1 concerns the number of violating tuple pairs,

while g3 concerns the minimum number of tuples that must be

removed such that the OD is satisfied. We show both measures

have desirable properties and can be efficiently computed. We

also study the lower and upper bounds for these measures, to

enable pruning in approximate OD discovery (Section V).

(2) We provide an algorithm for discovering the complete set

of minimal and valid approximate ODs. It traverses the search

space of approximate ODs, computes the error measures and

related lower/upper bounds of candidate ODs, and employs a

host of pruning rules and optimization techniques for improv-

ing efficiency (Section VI).

(3) Using a host of real-life and synthetic data, we conduct

extensive experiments to verify our approach. The results show

the effectiveness of approximate OD discovery in recalling ODs

from dirty data, and the effectiveness of our pruning rules and

optimization techniques. (Section VII).

II. RELATED WORK

Theoretical Foundations of Order Dependencies. Unidirec-

tional and bidirectional lexicographical ODs are proposed in

[26], [28], which are proven useful in optimizing queries with

order-by clauses [27]. Different from these list-based lexico-

graphical ODs, two classes of set-based order dependencies

are also discussed. Set-based canonical ODs are proposed in

[24], [25], and it is proven that they generalize lexicographical

ODs. Another set-based ODs [6], [7], known as pointwise
ODs, further generalize canonical ODs. There is no one-to-one

relationship between a list-based OD and a set-based OD, and

to our best knowledge, no techniques exists for transforming

set-based ODs to list-based ODs.

In this paper, we consider lexicographical bidirectional

ODs that model order specifications in SQL and are hence

preferable in practice.

Exact Order Dependency Discoveries. There has been an

increasing interest in OD discovery techniques. They are

studied in [4], [9], [14] for list-based (bidirectional) ODs, and

in [24], [29] for set-based ODs, aiming to automatically find

ODs that hold on the data without exceptions.

In this paper, we study approximate list-based OD discovery,

which significantly differs from prior works on exact OD

discovery. Exact OD discovery algorithms test the satisfaction

of each candidate OD, and an OD does not hold if a single

violation is identified. In contrast, approximate OD discoveries

need to measure the error rate for each candidate OD. We

adapt two error measures to approximate ODs, with both

theoretical analyses and efficient computation methods. We

also present a discovery algorithm that is well suited to these

error measures, with novel pruning rules and optimization

techniques for improving efficiency.

It is highly non-trivial, if not impossible, to extend exact

OD discovery techniques to approximate ODs. [4] is based on

the observation that each OD can be divided into an FD and

an order compatibility dependency (OCD) (refer to Section V),

and the OD holds iff both FD and OCD hold. This does not

apply to approximate ODs. Intuitively, we cannot have the

“embedded” FD and OCD in an OD both hold with exceptions

if the OD holds with exceptions. For example, an approximate

FD and an exact OCD may also form an approximate OD.

[9] is experimentally verified to be very efficient, by

discovering ODs on a small sample (subset) data first, and

then refining ODs on full data in an iterative way. The rationale

behind [9] is that any exact OD that holds on data must hold

on any subset of it. This does not apply to approximate ODs.

Indeed, the error rate of an OD may increase after removing

some tuples from data, and hence an approximate OD that

holds on data may not hold on subsets of it.

Approximate Dependency Discoveries. To cope with dirty

data in practice, approximate dependency discoveries are stud-

ied for e.g., FDs [13], CFDs [21], DCs [17], [19] and set-based

canonical ODs [25]. Based on definition of approximation that

is given by using notions from information theory, [11] studies

implication for approximate dependencies, and discoveries

of approximate multi-valued dependencies and then acyclic

schemes are investigated in [10].

In this paper, we study approximate OD discovery. The

computation of error measures significantly depends on the

dependency types, and a completely different strategy is re-

quired for generating candidate approximate list-based ODs

compared with the other set-based dependencies.

A different notion, referred to as approximate band condi-
tional OD, is proposed in [15]. Band ODs relax themselves to

hold approximately with some exceptions and conditionally

on subsets of data. Different from our work, [15] does not

study how to discover approximate ODs. The method in [15]

is complementary to ours. For an approximate OD discovered

by us, [15] can be employed to split the data instance into

contiguous segments such that the OD holds on each segment.

III. PRELIMINARIES

In this section, we review basic notations and the definition

of bidirectional lexicographical ODs [25], [26], [28].

Basic notations. R(A, . . .) denotes a relation schema, r
denotes an instance of R, and t, s denote tuples of r. We

use marked attribute, written as A, to model the order specifi-

cations. A is either
−→
A or

←−
A , for A asc or A desc respectively.

tA denotes the value of attribute A in t, and tA = tA.

Attribute List. X denotes a list of marked attributes, i.e.,
[A1, . . . , Ak], and X denotes the set of attributes (without

directions) in X. Given a tuple t, tX denotes the list of attribute

values on X, i.e., [tA1
, . . . , tAk

].

A non-empty list X can be denoted as [Ai |Y ], where head
Ai is a single marked attribute, and tail Y is the remaining

list. For X = [A1,. . .,Ak], prefix(X) denotes the set of all

possible prefixes of X, i.e., [A1,. . .,Ai] for any i < k.
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Lexicographical Ordering. For a marked attribute A and

tuples t, s, we write t ≺A s iff (a) A=
−→
A and tA<sA; or (b)

A=
←−
A and tA>sA. We write t=As iff tA=sA.

Given X = [A1, . . . , Ak], we write t �X s iff (a) X = [ ];

or (b) t ≺A1
s; or (c) X = [A1 |Y ] such that t =A1

s and

t �Y s. We write t=Xs iff t�Xs and s�Xt, i.e., t =Ai
s for

all i ∈ [1, k]. We write t≺Xs iff t�Xs but s ��Xt.

Bidirectional Order Dependency [28]. Given two lists X,

Y, γ = X �→Y denotes a bidirectional order dependency. A

relation instance r satisfies γ iff for any two tuples t, s ∈ r,

t �Y s if t �X s. If r satisfies γ, then we say γ holds on r.

Example 3: If X �→Y holds, then we know tuples are ordered

by Y if they are ordered by X, both in lexicographical ordering.

ODs in Example 1 and Example 2 satisfy the definition. �
Remarks. (1) Along the same setting as [9], [14], in the sequel

we consider completely non-trivial ODs whose LHS and RHS

attribute lists (neglecting direction) are disjoint.

(2) Each OD γ has a symmetry OD γ′ by reversing all

directions [9]. As an example, we can see that
←−
A �→ −→B−→C

is the symmetry of
−→
A �→ ←−B←−C :

←−
A is the reverse order of−→

A ,
−→
B
−→
C is the reverse order of

←−
B
←−
C , and hence,

←−
A �→ −→B−→C

holds iff
−→
A �→ ←−B←−C holds. Without loss of generality, in the

sequel we only consider ODs with asc on the leftmost attribute

in the RHS attribute list, e.g., ←−A �→ −→B−→C .

IV. PROBLEM FORMULATION

In this section we present the definition of approximate ODs,

and formalize the approximate OD discovery problem.

Error measures. We use a function g to measure the errors of

ODs. Specifically, g(γ, r) returns a value by taking as inputs

an OD γ and a relation instance r. The smaller g value is, the

fewer errors w.r.t. γ are on r. Here we present four criteria

for judging whether an error measure function g makes sense,

and will study the details of error measures in Section V.

(1) g(γ, r) is in the range of [0, 1] for any OD γ on any

relation instance r, and g(γ, r) = 0 iff γ holds on r.

(2) g(XA �→ Y, r) ≤ g(X �→ Y, r): appending an attribute to

the LHS never leads to more errors.

(3) g(X �→ Y, r) ≤ g(X �→ YY′, r): appending an attribute to

the RHS never removes any errors.

(4) g(γ, r) can be efficiently computed, e.g., in polynomial

time. This is necessary for a practical setting.

Observe that criteria (2), (3) are consistent with the impli-

cation of exact ODs. It is proven in [26], [28] that X �→Y
logically implies XA �→Y, and X �→YY′ logically implies X
�→Y. Recall that a dependency δ logically implies γ in the

sense that every instance that satisfies δ must satisfy γ.

Approximate OD. Given an error measure function g and an

error threshold e, we say that an OD γ is an approximate OD

(abbreviated as AOD) valid on r iff g(γ, r) ≤ e.

It is usually better to discover minimal valid dependencies

rather than all valid ones, for a more concise result set without

losing informative ones [3], [14], [18]. In the sequel we

establish the minimality of AODs.

Intuitively, an attribute list X is not minimal if part of it

already imposes the same ordering specification. Inspired by

the reduce order procedure in [22], we have the following

result, and hence the definition of minimal attribute list.

Proposition 1: For a list X, a marked attribute B, a subset

Y ⊆X and two tuples t, s, (a) t ≺XB s if t≺Xs, and (b) if

FD Y →B holds, then t =XB s if t=Xs.

Minimal Attribute List. We say an attribute list X is minimal,

iff there do not exist (a) a subset Y of X and (b) an attribute

B in X that is after all attributes in Y , where Y →B holds.

Example 4: If AB → C holds, then we know neither

of
−→
A
−→
B
−→
C ,
−→
B
−→
D
−→
A
−→
C ,
←−
A
−→
B
←−
C is minimal; we have the same

ordering specification after removing
−→
C (
←−
C ). Note that LHS

attributes of the FD are not required to be a sublist (continu-

ous), and directions of attributes are irrelevant. �
Implication of AODs. As noted earlier, an error measure func-

tion g should guarantee that g(XA �→ Y, r) ≤ g(X �→ Y, r)
and g(X �→ Y, r) ≤ g(X �→ YY′, r). Hence, on any instance

r, we know XA �→Y is a valid AOD if X �→Y is a valid AOD,

and X �→Y is a valid AOD if X �→YY′ is a valid AOD.

Putting together the observations, we define minimal AODs.

Minimal AODs. An AOD X �→Y is minimal, iff

(1) X and Y are minimal attribute lists; and

(2) for any X′∈prefix(X), X′ �→Y is not a valid AOD; and

(3) for any non-empty list Y′, X �→YY′ is not a valid AOD.

Example 5: If
←−
A �→−→B−→C is valid, then

←−
A �→−→B is not minimal.

In this case the minimality does not concern fewer attributes.←−
A
−→
C �→−→B is not minimal if

←−
A �→−→B is valid.

←−
A
−→
B �→−→C is not

minimal if A→ B holds, since
←−
A
−→
B is not minimal. �

Discovery of AODs. Given a relational instance r, an error

measure function g and a threshold e, AOD discovery is to

find the complete set of minimal valid AODs on r.

V. ERROR MEASURES FOR APPROXIMATE ODS

In this section, we adapt two error measures to AODs. We

show they satisfy the four criteria stated in Section IV, by

providing theoretical results and efficient algorithms. We also

study the lower and upper bounds for these measures.

A. The Percentage of Violating Tuple Pairs

The most common error measure, referred to as g1, is intro-

duced for FDs [12], [13], and further extended to e.g., DCs [3],

[19]. The computation of g1 is closely related to violations of

a dependency. We review violations of ODs first.

OD violations [26], [28]. Violations of an OD γ = X �→Y are

categorized into two types: split and swap.

(1) A tuple pair (t, s) incurs a split, if t =X s, t �=Y s.

(2) A tuple pair (t, s) incurs a swap, if t ≺X s, s ≺Y t.
Indeed, X �→Y has an “embedded” FD X →Y , and (t, s)

incurs a split w.r.t. X �→Y iff t, s violate X →Y . In contrast, a

swap is caused by a swapped tuple pair (t, s), i.e., t is before

s if sorted by X, but s is before t if sorted by Y. This is

formalized by order compatibility dependencies (OCDs) [4].
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TABLE II
RELATION INSTANCE r

A B C D E F G H
t1 1 2 1 1 1 1 1 2
t2 1 2 1 1 1 1 2 3
t3 1 4 3 1 3 2 1 3
t4 1 1 3 2 2 3 1 4
t5 2 5 5 2 4 4 1 5
t6 2 6 5 3 5 5 1 1

Example 6: Recall
−−−→
Salary �→−−−→Level

−−→
Year on the dirty instance

r in Example 2. (t3, t4) is a swapped tuple pair, and

hence incurs a swap. (t5, t6) incurs a split: t5, t6 violate FD

Salary→Level, Y ear, since they have the same value on

Salary but different values on Level and Y ear. �
Error measure g1 for ODs. The g1 is measured as the ratio of

the number of violating tuple pairs to the total tuple pairs [12].

By considering split and swap, we extend g1 to ODs.

gsplit(X �→Y, r) =
|{(t,s)∈r2 | t=Xs ∧ t�=Ys}|

|r|2−|r|
gswap(X �→Y, r) =

|{(t,s)∈r2 | t≺Xs ∧ s≺Yt}|
|r|2−|r|

g1(X �→Y, r) = gsplit(X �→Y, r) + 2 × gswap(X �→Y, r)

Observe that we need to scale up the second number to

balance out the fact that split is symmetric, but swap is

asymmetric: (t, s) causes a split iff (s, t) causes a split, but

(t, s) does not cause a swap if (s, t) causes a swap.

It is easy to see that g1(γ, r) ranges over [0, 1], and g1(γ,

r) = 0 iff γ holds on r. The following proposition shows that

g1 satisfies criteria (2), (3) stated in Section IV.

Proposition 2: (1) g1(XA �→ Y, r) ≤ g1(X �→ Y, r), and (2)

g1(X �→ Y, r) ≤ g1(X �→ YY′, r).
We show g1 can be efficiently computed by developing such

algorithms. We first give an auxiliary data structure.

Sorted Partition. The data structure, referred to as sorted
partition, is employed in exact OD discoveries [9], [14]. Given

an attribute list X, the sorted partition τX on an instance r is

a sorted list of equivalence classes (sets). Specifically, tuples

with the same value on X are put into the same equivalence

class, and for tuples t, s with different values on X, the

equivalence class of t is before that of s if t ≺X s. It is

known that a sorted partition is built in O(|r|log(|r|)) on r.

We use |τX | to denote the number (count) of equivalence

classes in τX , and define the rank of a tuple t in τX as the

sequence number of the equivalence class that t belongs to,

denoted by IX [t]. Intuitively, IX [t] denotes the order of t on

X in a compact way.

(a) split (b) swapped and ordered pairs

Fig. 1. Example 8 for Algorithm 1 and Example 10 for Algorithm 2

Algorithm 1: Compute gsplit(X �→Y, r)

Input: sorted partitions τX ,τY
Output: gsplit(X �→Y, r)

1 spl ← 0;

2 foreach equivalence class ec in τX do
3 map ← an empty hash table;

4 foreach tuple t in ec do
5 map[IY [t]] ← map[IY [t]] + 1;

6 foreach v in the value set of map do
7 spl ← spl + v × (|ec| − v);

8 return gsplit = spl
|r|2−|r| ;

Example 7: Consider Table II. τ−→A = [{t1, t2, t3, t4},{t5, t6}],
τ−→B = [{t4},{t1, t2},{t3},{t5},{t6}]. I−→A [t3] = 1; t3 is in the

first equivalence class of τ−→A . Similarly, I−→B [t3] = 3. �
Observe that a split is always incurred by two tuples in

the same equivalence class, while two tuples in different

equivalence classes may only lead to a swap. We hence present

two algorithms for computing gsplit and gswap respectively.

Algorithm. Algorithm 1 is provided for computing gsplit.
Recall that a tuple pair (t, s) incurs a split w.r.t. X �→Y, if t, s
have the same value on X but different values on Y. Hence, in

each equivalence class ec of τX , we count the number of tuples

for each distinct value on Y using a hash table with IY [t] as

the key (lines 3-5). A value v in the hash table implies v tuples

having the same value on Y, and each of these tuples forms a

split with any tuple from the other |ec|−v tuples, i.e., tuples in

the same equivalence class of τX but in different equivalence

classes of τY (lines 6-7). Herein, |ec| denotes the number of

tuples in the equivalence class ec.

Example 8: Consider
−→
A �→−→B on Table II. We show the related

split violations in Figure 1a. (1) In the first equivalence class

{t1, t2, t3, t4} of τ−→A , I−→B [t1] = I−→B [t2] = 2, I−→B [t3] = 3, and

I−→B [t4] = 1. On the hash table, we have map[2] = 2, map[3] =

map[1] = 1. The number of violating tuple pairs is computed

as 2×(4-2) + 1×(4-1) + 1×(4-1) = 10. (2) Similarly, we then

deal with the second equivalence class {t5, t6} of τ−→A . �
Time Complexity. Assuming a constant cost for the hash

table, Algorithm 1 has a complexity of O(|r|) on τX and τY .

Lower and upper bounds of g1. As will be illustrated in

Section VI-A, when traversing the search space of candidate

AODs, new candidates following X �→Y are in the form of

XU �→YV (U or V can be empty). It is beneficial if we can

obtain a lower bound and an upper bound of g1 for XU �→YV.

This is because (1) XU �→YV cannot be a valid AOD and can

be pruned, if its lower bound of g1 is larger than the error

threshold e; and (2) XU �→YV is always a valid AOD if its

upper bound of g1 is not larger than e.

The bounds can be efficiently computed together with gswap,

based on the following observations.

(1) If (t, s) incurs a swap w.r.t. X �→Y, then (t, s) also incurs

a swap w.r.t. XU �→YV (U or V can be empty) [14], [28];
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Algorithm 2: Compute gswap and # of ordered pairs

Input: sorted partitions τX and τY
Output: gswap and # of ordered pairs for X �→Y

1 swap ← 0, ordered ← 0;

2 seg ← an empty segment tree on range [1, |τY |];
3 foreach equivalence class ec in τX do
4 foreach tuple t in ec do
5 swap ← swap + seg.query([IY [t] + 1, |τY |]);
6 ordered←ordered + seg.query([1, IY [t]−1]);

7 foreach tuple t in ec do
8 seg.insert(IY [t]);
9 return gswap = swap

|r|2−|r| , ordered;

(2) If t ≺X s and t ≺Y s, then (t, s) never incurs OD violations

w.r.t. XU �→YV.

We refer to tuple pairs in (2) as ordered pairs, in contrast

to swapped pairs in (1). Intuitively, when appending more

attributes to the LHS and (or) RHS attribute list, (1) states that

swap violations can never be resolved; and (2) shows that

ordered pairs still never lead to violations. We hence compute

the bounds as follows:

LBg1(XU �→YV, r) = 2 × gswap(X �→Y, r)

UBg1(XU �→YV, r) = 1 − 2 × |{(t,s)∈r2 | t≺Xs ∧ t≺Ys}|
|r|2−|r|

We show both bounds are tight with the following example.

Example 9: Recall Table II. For
−→
F �→ −→H , there are 5 swapped

pairs and 8 ordered pairs, so the lower and upper bounds are

10/30 and 14/30 respectively. It can be verified that
−→
F
−→
G �→ −→H

has g1 of 10/30 and
−→
F �→ −→H−→G has g1 of 14/30. �

We present one auxiliary structure to facilitate our algorithm

for computing gswap and the number of ordered pairs.

Segment Tree. We employ a simple yet effective data struc-

ture, known as segment tree [2]. A segment tree supports

various range queries, e.g., range sum/max/min queries, and

it takes O(n) to build and O(log(n)) to update and query a

segment tree built on range [1, n] (integer values). A segment

tree also has a space complexity of O(n). The ranks of tuples

in a sorted partition are well suited for transforming operations

on the sorted partition to a segment tree.

Algorithm. Algorithm 2 aims to compute gswap and the

number of ordered pairs simultaneously. The application of

a segment tree built on range [1, |τY |] is at the core of

this algorithm. On this tree, insert(key) increases the value

associated with key by 1, for counting the number of tuples

in the same equivalence class of τY (line 8), and query([a, b])
performs a range sum query on [a, b], for the total number of

tuples in several equivalence classes (lines 5-6).

Equivalence classes ec in τX are processed one by one in

order (line 3), and updates of the segment tree with tuples in

ec (line 8) are conducted after the queries concerning these

tuples (lines 5-6). Therefore, the number of swap violations

w.r.t. a tuple t is the number of tuples whose rank in τY is

larger than that of t (line 5), and the number of ordered pairs

w.r.t. t is the number of tuples whose rank in τY is smaller

than that of t (line 6). Note that a larger (resp. smaller) rank

in τY implies a larger (resp. smaller) value on Y.

Example 10: Consider
−→
C �→−→B on Table II (shown in Fig-

ure 1b). (1) The first equivalence class {t1, t2} of τ−→C does

not lead to swapped or ordered pairs. After t1, t2 are inserted

into the segment tree, there are two tuples whose rank in τ−→B
is 2. (2) In the second equivalence class of τ−→C , t3 leads to

2 ordered pairs (solid lines) since the rank of t1, t2 is smaller

than I−→B [t3] = 3, while t4 incurs 2 swapped pairs (dashed

lines) since the rank of t1, t2 is larger than I−→B [t4] = 1. The

segment tree is employed to facilitate an efficient range sum
query. We then update the tree with t3, t4. (3) {t5, t6} of τ−→C
is processed similarly, which leads to more ordered pairs. �
Time Complexity. The segment tree has a range of [1, |τY |],
and |τY | equals |r| in the worst case. It hence takes at most

O(|r|) to build and O(log(|r|)) to update and query the tree.

The update and query are conducted for each tuple once.

Algorithm 2 has a worst-case complexity of O(|r|log(|r|)).
B. The Minimum Number of Removed Tuples

Another error measure function, referred to as g3 in litera-

ture, is also originally introduced for FDs [12]. This g3 measure

is further extended to CFDs [20], set-based canonical ODs [25],

comparable dependencies [23] and DCs [17], among others.

The computation of g3 can be very expensive. For example,

it is quadratic in the number of tuples to compute g3 for set-

based canonical ODs [25], and even becomes NP-Complete for

comparable dependencies and DCs.

Error measure g3 for ODs. The g3 measures the minimum

number of tuples that must be removed from the given instance

such that the dependency is satisfied. Specifically,

g3(γ, r) =
|r|−max{|r′| | r′⊆r, r′ satisfies γ}

|r|
Obviously, g3(γ, r) ∈ [0, 1], and g3(γ, r) = 0 iff γ holds

on r. We then show how to compute g3, for illustrating the

satisfaction of the criteria in Section IV. We present one more

definition to facilitate our approach.

OD sequence. For an OD γ = X �→Y, an OD sequence on an

instance r is a list of tuples ta1 , ta2 , ..., tak
from r, such that

for any 1 ≤ i < j ≤ k, (a) tai
�X taj

, (b) tai
�Y taj

, and (c)

tai
=Y taj

if tai
=X taj

. It is easy to see that any two tuples in

this sequence cannot form a violation. We say an OD sequence

is a longest OD sequence, denoted by LOS(γ, r), whose k is

the maximum among all OD sequences (choose an arbitrary

one if several ones have the same value).

Example 11: Consider Table III. For
−→
A �→−→C , we have a LOS

[t1, t2, t5, t6]. LOS may not be unique, e.g., [t3, t4, t7, t8] or

[t1, t2, t7, t8] is also a LOS. �
The following proposition tells us that g3 can be readily

computed from LOS.

Proposition 3: g3(γ, r) = 1− |LOS(γ,r)|
|r| .

Proof sketch: g3 is computed based on a maximum subset

of r that satisfies γ, say r′. We can order all tuples in r′ to

form an OD sequence, and the sequence is also the longest. �
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TABLE III
RELATION INSTANCE r

A B C D
t1 1 2 1 3
t2 1 1 1 4
t3 1 3 2 4
t4 1 4 2 3
t5 2 2 1 1
t6 2 1 1 2
t7 2 3 2 2
t8 2 4 2 1

Remark. LOS differs from the longest increasing sequence
in e.g., [5], [8], [16]. This is because OD violations consist

of both swap and split. It is required in an OD sequence that

(a) tai �Y taj if tai �X taj , similar to the longest increasing

sequence, and (b) tai
=Y taj

if tai
=X taj

, which is unique.

The following proposition shows the monotonicity of g3.

Proposition 4: (1) g3(XA �→ Y, r) ≤ g3(X �→ Y, r), and (2)

g3(X �→ Y, r) ≤ g3(X �→ YY′, r).
Proof sketch: We prove (1) by showing that LOS(X �→ Y, r)

can always be transformed into an OD sequence (not neces-

sarily the longest) for XA �→Y, and prove (2) by showing that

LOS(X �→ YY′, r) is also an OD sequence (not necessarily the

longest) for X �→Y. �
Example 12: Recall Table III. (1) [t1, t2, t5, t6] is a LOS for−→
A �→−→C . After being transformed into [t2, t1, t6, t5], it is an OD

sequence (not LOS) for
−→
A
−→
B �→−→C . One LOS for

−→
A
−→
B �→−→C is

[t2, t1, t6, t5, t7, t8]. (2) [t1, t8] is a LOS for
−→
A �→−→C−→D , and is

also an OD sequence (not LOS) for
−→
A �→−→C . �

Similar to g1, we aim for the lower and upper bounds of g3
for XU �→YV. We find that they can be computed with two

other sequences that slightly differ from LOS.

Strict increasing sequence and non-decreasing sequence.
For γ = X �→Y, (1) a strict increasing sequence on r is

a list of tuples ta1
, ta2

, ..., tak
, such that for any 1 ≤

i < j ≤ k, (a) tai
≺Xtaj

, and (b) tai
≺Ytaj

. A longest
strict increasing sequence, denoted by LSIS(γ, r), is a strict

increasing sequence with a maximum k. (2) A non-decreasing
sequence is a list of tuples ta1

, ta2
, ..., tak

, such that for any

1 ≤ i < j ≤ k, (a) tai
�X taj

, and (b) tai
�Y taj

. A longest
non-decreasing sequence, denoted by LNDS(γ, r), is a non-

decreasing sequence with a maximum k.

According to the definitions, it is easy to see that a strict

increasing sequence is an OD sequence, and an OD sequence

is a non-decreasing sequence.

We also have the following results.

(1) Any two tuples in LSIS(X �→ Y, r) do not form a

violation (split or swap) w.r.t. XU �→YV.

(2) Tuples in LNDS(X �→ Y, r) form a subset r′ of r such

that (a) any two tuples in r′ do not incur a swap w.r.t. X
�→Y; and (b) r′ is maximum in terms of the number of tuples,

among all subsets of r that satisfy (a).

The results show that LSIS(X �→ Y, r) must be an OD

sequence for XU �→YV on r (not necessarily the longest),

and hence can serve as a lower bound of LOS(XU �→ YV, r).

Algorithm 3: Compute LOS, LSIS and LNDS

Input: sorted partitions τX ,τY
Output: LOS(X �→ Y, r), LSIS(X �→ Y, r),

LNDS(X �→ Y, r)
1 los ← an empty segment tree on range [1, |τY |];
2 lsis ← an empty segment tree on range [1, |τY |];
3 lnds ← an empty segment tree on range [1, |τY |];
4 τXY ← τX .expand(τY );

5 foreach equivalence class ecx in τX do
6 foreach ecxy in τXY that is from ecx do
7 iy ← IY [ecxy[1]];
8 ecxy.los ← |ecxy| + los.query([1, iy]);
9 ecxy.lsis ← 1 + lsis.query([1, iy − 1]);

10 ecxy.lnds ← |ecxy| + lnds.query([1, iy]);
11 lnds.insert(iy, ecxy.lnds);

12 foreach ecxy in τXY that is from ecx do
13 iy ← IY [ecxy[1]];
14 los.insert(iy, ecxy.los);

15 lsis.insert(iy, ecxy.lsis);

16 return los.query([1, |τY |]), lsis.query([1, |τY |]), and

lnds.query([1, |τY |]);

Moreover, LNDS(X �→ Y, r) corresponds to a maximum sub-

set of r that is free of swap violations w.r.t. X �→Y. Since XU
�→YV can never resolve swap w.r.t. X �→Y, LNDS(X �→ Y, r)
is an upper bound of LOS(XU �→ YV, r).

Both bounds are tight, as shown in the following example.

Example 13: Recall Table III. For A �→C, we have a LSIS
[t1, t8] and a LNDS [t1, t2, t5, t6, t7, t8], which results in a

lower bound of 2 and an upper bound of 6 for LOS(AU �→
CV, r). It can be seen that A �→CD has a LOS [t1, t8], and

AB �→C has a LOS [t2, t1, t6, t5, t7, t8]. �
Following this, we are ready to define the lower and upper

bounds of g3 for XU �→YV.

LBg3(XU �→YV, r) = 1 − |LNDS(X�→Y,r)|
|r|

UBg3(XU �→YV, r) = 1 − |LSIS(X�→Y,r)|
|r|

Algorithm. Algorithm 3 is a three-in-one approach to comput-

ing LOS, LSIS and LNDS. We again use segment trees, with

one tree for each of LOS, LSIS and LNDS (lines 1-3). The

segment trees here have different operation semantics from

those in Algorithm 2, but the complexity of each operation

remains unchanged. Specifically, insert(x, y) updates the val-

ue associated with key x to y, and query([a, b]) returns the

max value associated with keys in the range of [a, b]. We

use segment trees to facilitate our computations in a dynamic

programming fashion. On the trees, the tuple rank in τY is used

as the key, and the value is the length of the longest sequence

(LOS, LSIS or LNDS) that ends with that key (rank).

We first compute τXY with τX and τY (line 4). This is

a basic operation on sorted partitions [14]. One equivalence

class in τX may be divided into several equivalence classes in

τXY , such that tuples in the same equivalence class of τXY

have the same value on both X and Y.
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Fig. 2. Example 14 for Algorithm 3

The outer loop (line 5) enumerates equivalence class ecx
in τX , ordered by X’s value. The first inner loop (lines 6-11)

enumerates equivalence class ecxy in τXY that are obtained

from ecx (with the same X’s value), in the order of Y’s value.

We then identify the rank related to ecxy in τY (all tuples

in excy have the same value on Y), denoted by iy in the

algorithm (line 7). We use iy as the key for querying and

updating segment trees. Note that the Y’s values related to

keys (equivalence classes in τY ) in the range of [1, iy − 1]

are less than the Y’s value related to iy.

Consider the computation of LOS. The LOS that ends with

ecxy is obtained by appending all tuples in excy to the longest
LOS that ends with an equivalence class (a) already inserted

into the tree (a smaller value on X) and (b) having a Y’s value

not larger than that of ecxy (line 8). We save the length of

the LOS for excy (line 8), and update the tree with it in the

second inner loop (line 14). This is necessary since the same

value on Y is required for the same value on X in LOS; a

different equivalence class ecxy′ from the same ecx cannot be

combined with ecxy. In contrast, we update the tree for LNDS
immediately (line 11). This is because ecxy′ can contribute to

the LNDS of ecxy as long as the Y’s value of ecxy′ is not

larger than that of excy. The computation of LSIS differs in the

following. Only one (arbitrary) tuple in excy can be appended

to LSIS and the range query is conducted on [1, iy − 1] (line

9), since an equal value on X or Y is not allowed in LSIS.

Finally, we get the results of LOS, LNDS and LSIS, by

querying max values from their related trees (line 16).

Example 14: Consider
−→
D �→−→E on Table II. In Figure 2,

we illustrate the process of Algorithm 3, by showing the

(length of) LNDS, LOS or LSIS that ends with the rank

iy. We have τ−→D = [{t1, t2, t3},{t4, t5},{t6}] and τ−→D−→E =

[{t1, t2},{t3},{t4},{t5},{t6}]. In the outer loop, we enumerate

equivalence classes in τ−→D .

(1) We process {t1, t2, t3}. In the inner loop, we enumerate

equivalence classes in τ−→D−→E that are from {t1, t2, t3}, i.e.,
{t1, t2} and {t3}. (a) t1, t2 are in the same equivalence class

of τ−→D−→E ; they hence exist (or not) simultaneously in any LOS
(resp. LNDS), but only one of them exists in any LSIS. (b) t3
can be appended to {t1, t2} in LNDS, but not in LOS or LSIS.

(2) We process {t4, t5} in τ−→D , which is divided into {t4}
and {t5} in τ−→D−→E . (a) {t4} can be appended to {t1, t2} in

LOS, LNDS and LSIS. (b) For LNDS, {t5} can be appended

to {t1, t2}, {t3} or {t4}; in Figure 2 we choose {t4} for the

longest sequence (the same for {t3}). For LOS and LSIS, {t5}
can only be appended to {t1, t2} or {t3}. We must choose

{t1, t2} for LOS, but it is the same to choose {t1, t2} or {t3}

for LSIS, since only one tuple in {t1, t2} can exist in LSIS.

(3) We process {t6} in τ−→D (and τ−→D−→E ). We must choose

{t5} for LNDS, but it is the same to choose {t4} or {t5} for

LOS and LSIS. �
Time Complexity. Each segment tree has a range of [1, |τY |],
where |τY | equals |r| in the worst case. It takes at most O(|r|)
to build and O(log(|r|)) to update and query segment trees. It

takes O(|r|log(|r|)) to compute τXY in line 4. The two inner

loops are linear in the size of equivalence classes in τXY .

Algorithm 2 has a worst-case complexity of O(|r|log(|r|)).
VI. DISCOVERY OF APPROXIMATE ODS

In this section, we first present an AOD discovery algorithm

that is suitable to both g1 and g3. We then study several

optimizations to further improve the efficiency.

A. Algorithms for Approximate OD Discovery

Algorithm. DisAOD (Algorithm 4) discovers the complete set

Σ of minimal and valid AODs on a given instance r, with a

given error measure function g and a threshold e.

DisAOD traverses the search space of AODs by following

a depth-first-search (DFS) strategy implemented by recursion.

The AOD traversal is organized in a forest. Each tree is rooted

at an AOD of the form A �→−→B , i.e., −→A �→−→B or
←−
A �→−→B ,

where B∈R and A∈R\B (lines 2-3). Recall that it suffices to

consider AODs with asc on the leftmost attribute on the RHS

due to symmetry (Section III).

For each AOD candidate X �→Y, we compute its error

measure value V g and lower/upper bound value LBg/UBg
on instance r, with the given function g (line 8). If X �→Y
is valid, then we add it into Σ (lines 9-10). If the UBg is

larger than the threshold e, then we further test X �→YC (both

X �→Y
−→
C and X �→Y

←−
C ) for all C ∈ R\XY, by recursively

calling function Search (lines 11-14). As a prerequisite, we

check whether YC is a minimal attribute list; non-minimal

AODs due to non-minimal attribute list are directly discarded.

By definition (Section IV), it suffices to consider the new

attribute C (line 13), i.e., whether Y →C. Indeed, it is to

check whether appending C to Y incurs any changes to τY ,

i.e., whether τY C = τY . It is easy to prove that τY C = τY
iff Y →C. If YC is found to be a minimal attribute list, then

the checking incurs no extra cost since the computation of

τY C is originally required. We further develop optimization

techniques for this in Section VI-B.

If the upper bound UBg is not larger than the threshold

e, then AODs of the form X �→YV are all valid. We generate

minimal ones among them by calling function Extend (line
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Algorithm 4: DisAOD
Input: a relation r of schema R, an error measure

function g and a threshold e
Output: the complete set Σ of minimal and valid AODs

on r
1 Σ← ∅;
2 foreach B∈R, A∈R\B do
3 Search(A �→−→B );

4 Σ ← MinimalAOD(Σ);

5 return Σ;

6

7 Function Search(AOD candidate X �→Y)

8 V g, LBg, UBg ← Compute(X �→Y, g, r);

9 if V g ≤ e then
10 Σ← Σ ∪ {X �→Y };
11 if UBg > e then
12 foreach C ∈ R\XY do
13 if MinimalAttributelist(YC) then
14 Search(X �→YC);

15 else
16 Σ← Σ ∪ Extend(X �→Y);

17 else
18 if LBg ≤ e then
19 foreach C ∈ R\XY do
20 if MinimalAttributelist(XC) then
21 Search(XC �→Y);

16). It suffices to consider X �→YW, where W is a list on

all attributes in R\XY (the others cannot be minimal), and

exclude AODs with non-minimal attribute lists.

If X �→Y is invalid and LBg ≤ e, then we further consider

XC �→Y (both X
−→
C �→Y and X

←−
C �→Y) for all C ∈ R\XY, if

XC is a minimal attribute list (lines 17-21).

As the final step, we remove non-minimal AODs X �→Y if

there exists valid AOD X �→YU (U is not empty) in Σ, by

calling function MinimalAOD (line 4). This is necessary by

the definition of minimal AODs (Section IV).

Correctness&Time Complexity. DisAOD finds the complete

set of minimal valid AODs: it enumerates all possible candi-

dates and only prunes non-minimal or invalid ones. Besides

g1 and g3, DisAOD is suitable to any error measure function

g if g satisfies the criteria stated in Section IV. In case the

lower/upper bounds are not available, we can set the lower

(resp. upper) bound as 0 (resp. 1).

DisAOD has a worst-case complexity of O(|R|!) (the size

of the search space of AOD discovery) in the number |R| of

attributes, and O(|r|log(|r|)) in the number |r| of tuples.

Remarks. We highlight the differences between DisAOD and

existing works on exact OD discovery [4], [9], [14].

(1) DisAOD computes error measures for each candidate OD,

in contrast to exact OD discoveries that perform OD valida-

tions. We adapt two measures g1 and g3 to AOD discovery,

with desirable properties and efficient computations.

Algorithm 5: Incremental computation of gswap and # of

ordered tuple pairs

Input: sorted partitions τX ,τY ,τXA, # of swapped and

ordered tuple pairs for X �→Y
Output: gswap and # of ordered tuple pairs for XA �→Y

1 swap, ordered ← # of swapped and ordered tuple pairs

for X �→Y;

2 foreach equivalence class ecx in τX do
3 range ← 0;

4 foreach tuple t in ecx do
5 m[t]←# of distinct IY [p]≤IY [t] for all p∈ ecx;

6 range ← max(range, m[t]);
7 seg ← an empty segment tree on range [1, range];
8 foreach equivalence class ecxa in τXA from ecx do
9 foreach tuple t in ecxa do

10 swap←swap+seg.query([m[t] + 1, range]);
11 ordered←ordered+seg.query([1,m[t]− 1]);

12 foreach tuple t in ecxa do
13 seg.insert(m[t]);
14 return gswap = swap

|r|2−|r| , ordered;

(2) DisAOD employs novel pruning rules, based on the in-

troduction of upper/lower bounds of g1 and g3. These rules

are crucial to the efficiency. Without them, DisAOD becomes

orders of magnitude slower in our experimental evaluations.

(3) A set of novel optimizations is introduced to DisAOD for

further improving efficiency (Section VI-B).

B. Optimizations

In this subsection, we further develop several optimization

techniques for DisAOD.

Incremental computations. Following X �→Y, we consider

new candidate XA �→Y or X �→YA. Leveraging results of

X �→Y, incremental computations not only apply to sorted

partitions, but also to error measure functions. We present an

“incremental” version of Algorithm 2 with better efficiency.

Recall that a swapped (resp. an ordered) tuple pair w.r.t. X
�→Y is still a swapped (resp. an ordered) pair w.r.t. XA �→Y
or X �→YA. Hence, the number of swapped (resp. ordered)

pairs monotonically increases. Without loss of generality, we

consider XA �→Y. If tuples t, s form a new swapped or an

ordered pair w.r.t. XA �→Y, then the order of them on XA
must be different from that on X. This implies that t, s have

the same value on X, i.e., in the same equivalence class of

τX ; otherwise we know t≺XAs if t≺Xs. Therefore, we can

leverage τX that is already computed for X �→Y, and cope

with each equivalence class in τX separately, when computing

the incremental swapped and ordered tuple pairs for XA �→Y.

Algorithm. Algorithm 5 incrementally computes gswap and the

number of ordered tuple pairs for XA �→Y, based on the known

number of swapped and ordered tuple pairs for X �→Y. As

stated earlier, it handles each equivalence class of τX one by
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(a) Existing results (b) Incremental results

Fig. 3. Example 15 for Algorithm 5

one, in contrast to Algorithm 2 that deals with all equivalence

classes of τX as a whole.

A segment tree is leveraged for each equivalence class ecx.

The complexity of a segment tree is closely related to the

range; recall that it takes O(n) to build and O(log(n)) to

update and query a segment tree on [1, n]. We use the idea

of state compaction to build each segment tree on a compact

range. We obtain the local rank m[t] of a tuple t in ecx based

on the original rank IY [t], which preserves the order (line 5).

As an example, for 5 tuples with IY [t] values of {3, 5, 5, 1,

10}, their ranks in ecx are {2, 3, 3, 1, 4}. The range of the

segment tree is adjusted as the max value of new ranks (line

6), which reduces from |τY | to (at most) |ecx| by the state

compaction. Note that the sum of the ranges of all segment

trees used in Algorithm 5 is at most the number |r| of tuples.

Example 15: On Table II,
−→
A �→−→B incurs no swapped but 8 or-

dered pairs (Figure 3a). Consider
−→
A
−→
C �→−→B . The equivalence

class {t1, t2, t3, t4} in τ−→A is divided into {t1, t2} and {t3, t4}
in τ−→A −→C , which incurs two new ordered pairs (solid lines) and

two new swapped pairs (dashed lines), shown in Figure 3b. �
Time Complexity. State compaction is done in O(|r|), so is

the initialization of all segment trees. Algorithm 5 has the same

worst-case complexity as Algorithm 2, but is experimentally

verified to be much more efficient in practice.

Index for checking the attribute list minimality. The com-

putation of τY C is required for checking whether appending

C to Y leads to a non-minimal attribute list. To avoid some

unnecessary computations, we employ an indexing structure

on C, for fetching all X if we find X →C in DisAOD.

Specifically, we do the following when C is appended to Y.

(1) If Y is a superset of any X related to C in the index, then

we know YC is not a minimal attribute list.

(2) Otherwise, we compute τY C . (a) If τY C = τY , then YC is

not a minimal attribute list since Y →C. We update the index

with Y , and also remove any X related to the key C if X
is a superset of Y . (b) If τY C �= τY , then YC is a minimal

attribute list. We continue to the next step of DisAOD with

the computed sorted partition τY C .

Sorted partition cache. Sorted partitions are heavily used

in AOD discovery. In the traversal, the same attribute list

may occur multiple times (possibly) on different sides. For

example, we may generate
−→
A
−→
C �→−→B from

−→
A �→−→B ,

−→
A
−→
C �→−→D

from
−→
A �→−→D , and

−→
B �→−→A−→C from

−→
B �→−→A , all with the list−→

A
−→
C , and hence, the same sorted partition τ−→A −→C . DisAOD

adopts a DFS traversal with a small memory footprint, which

TABLE IV
DATASETS, EXECUTION STATISTICS OF AOD1 AND AOD3

Dataset Properties AOD1 (e = 0.001) AOD3 (e = 0.01)

DataSet |r| |R| Time(s) |AOD| Time(s) |AOD|
NCV 1K 19 8 36 17 124

NCV 930K 17 35,235 222 254,861 433

FLI 500K 14 26,829 479 8,655 386

DB 250K 16 117 59 1,026 180

Letter 20K 17 2 0 0.552 0

Hepa 155 20 6 0 0.191 0

Horse 300 26 11 47 10 40

Atom 33k 11 68 325 131 310

enables us to maintain a cache for the created sorted partitions.

In addition to the sorted partitions necessary for the DFS

traversal, we also use free memory to preserve more sorted

partitions for possible reuse. We use a simple LRU (least

recently used) strategy when the memory is used up.

VII. EXPERIMENTAL EVALUATIONS

In this section, we present an experimental study. Following

the experimental settings, we conduct extensive experiments

to (1) demonstrate the efficiency of AOD discovery and op-

timization techniques, and to (2) verify the effectiveness of

AOD discovery from dirty data.

A. Experimental setting.

Datasets. We use a set of real-life and synthetic data that are

evaluated in OD discoveries [4], [9], [14], [24], [25] (available

online http://metanome.de). (1) NCV, FLI, Hepa and Atom

are real-life data, concerning voters, flights, hepatitis disease

and atom sites, respectively. (2) DB, Letter and Horse are

synthetic datasets with complicated attribute relationships. We

summarize datasets in Table IV, where |r| denotes the number

of tuples, and |R| denotes the number of attributes.

Algorithms. We implement all algorithms in Java. (1) AOD1

and AOD3, different versions of DisAOD for measure g1 and

g3 respectively. (2) Some variants of DisAOD, for testing the

effectiveness of optimizations (details are provided later). (3)

FastAOD, the algorithm for discovering approximate set-based

canonical ODs with measure g3 [25].

Parameter settings. In addition to |r| and |R|, we use one

more parameter: the error threshold e. We use random sam-

pling (resp. projection) to vary |r| (resp. |R|) when required.

Running environment. We run all experiments on a PC with

an Intel Core(TM) i5 1.8GHz CPU, 8GB of memory and

Windows, and report the average results of 5 runs.

B. Efficiency of AOD discovery

Exp-1: AOD1 and AOD3 on all datasets. We summarize

results of AOD1 and AOD3 on all tested data in Table IV,

with running times (in seconds) and the number |AOD| of

discovered AODs. We use different threshold e for AOD1 and

AOD3. Intuitively, an erroneous tuple incurs a g3 value of 1
|r| ,
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Fig. 4. AOD1, AOD3 against Variants

but a single violation incurs a g1 value of 1
|r|2−|r| . Therefore,

an effective error threshold for g1 is typically much smaller

than that for g3. The times of AOD1 and AOD3 cannot be

compared, since the sets of discovered AODs are different.

We are not aware of any existing works on lexicographical

AOD discovery, and it is beyond the scope of this paper

to extend recent exact OD discoveries to approximate ODs

(explained in Section II). In the sequel we compare AOD1

(resp. AOD3) against its variants, by varying parameters.

Exp-2: AOD1 against Variants. We implement some variants

by disabling an optimization each time (Section VI-B). (1)

NInc disables the incremental computation of swapped and

ordered pais; (2) NIndex disables the index for minimality

check; and (3) NCache disables the sorted partition cache.

We also test a variant without leveraging lower/upper bounds;

it is always orders of magnitude slower (not shown). The

results show that pruning rules with bounds are crucial to

the efficiency of AOD discovery. We only report experimental

results on data FLI, since they are similar on other datasets.

We set |r| = 250K, |R| = 12 and e = 0.001 by default on

FLI, and vary |r| from 50K to 250K in Figure 4a, |R| from 8

to 12 in Figure 4b, and e from 0.0005 to 0.003 in Figure 4c.

We see the following. (1) AOD1 scales well with |r|,
consistent with the complexity analysis. As |r| increases from

50K to 250K, the time increases from 68s to 199s. (2) |R|
significantly affects the efficiency; recall that the search space

of AODs is factorial in |R|. We find the number of discovered

AODs increases from 0 to 1094, as |R| increases from 8 to 12.

(3) The threshold e affects the results of AOD1. Intuitively, a

large e value leads to general AODs, with few attributes on the

LHS and more attributes on the RHS, while a small e value

leads to specialized AODs (recall Example 2). We find on FLI

the number of discovered AODs almost remains unchanged

when e is in the range of [0.0005,0.002], but increases by

more than 4 times as e increases to 0.003. The results also

show that e affects the effectiveness of upper/lower bounds.

A relatively small e, e.g., 0.0005, helps AOD1 prune invalid

candidates more efficiently and leads to far less running time.

A relatively large e, e.g., 0.003, helps AOD1 quickly generate

valid AODs. Hence, the time only increases by about 60% as

the number of AODs increases by more than 4 times.

In terms of the optimizations, we see the following. (1)

AOD1 is faster than NInc by up to 4 times and on average

118%. The cost of AOD1 mainly consists of the times for

creating sorted partitions and for computing g1 values; Al-

gorithms 1 and 2 take sorted partitions as inputs. Along the

same setting as Figure 4a, we show the two times respectively

in Figure 4d. We find the latter governs the overall time,

and hence the incremental computation of g1 significantly

improves efficiency. (2) NIndex and NCache only concern

computations of sorted partitions. We see AOD1 is on average

faster than NIndex and NCache by 22% and 8%, respectively.

Exp-3: AOD3 against Variants. We compare AOD3 against

variants (excluding NInc). The usage of lower/upper bounds is

again experimentally found to be crucial (not shown).

We set |r| = 250K, |R| = 12 and e = 0.03 by default on

FLI, and vary |r| from 50K to 250K in Figure 4e, |R| from 8

to 12 in Figure 4f, and e from 0.01 to 0.05 in Figure 4g.

We see the following. (1) AOD3 scales well with |r|. (2)

As expected, the efficiency of AOD3 is sensitive to |R|; the

number of discovered AODs increases from 2 to 886 as |R|
increases. (3) We find the number of discovered AODs almost

remain unchanged when e > 0.02 on FLI. When e > 0.03, the

upper-bound technique helps generate AODs more efficiently,

and hence the time decreases. (4) AOD3 is on average faster

than NIndex and NCache by 13% and 10%, respectively. (5)

The computation of g3 takes more than 65% of the total time,

as shown in Figure 4h (along the same setting as Figure 4g).

Exp-4: AOD3 against FastAOD. We compare AOD3 against

FastAOD [25]. Different from lexicographical ODs consid-

ered in this paper, FastAOD discovers approximate set-based
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TABLE V
AOD3 AGAINST FastAOD ON VARIOUS DATASETS

Dataset Properties AOD3 (e = 0.01) FastAOD (e = 0.01)

DataSet |r| |R| Time(s) |AOD| Time(s) |AOD|
NCV 10K 12 2 12 2,276 482

FLI 10K 12 4 20 607 99

Hepa 155 20 0.191 0 139 58,028

Horse 300 26 10 40 142 175,118

Atom 33k 11 131 310 3,177 25

canonical ODs with measure g3. Canonical ODs are suggested

as alternatives to lexicographical ODs in [24], [25] (Section II).

The results in Table V show AOD3 is faster than FastAOD
by orders of magnitude (results on DB, Letter are omitted since

FastAOD cannot terminate within 6 hours).

The reason is mainly two-fold. (1) The number of discov-

ered canonical ODs is usually much larger than lexicographical

ODs, as shown in Table V. Similar results are seen in the

comparison of exact canonical and lexicographical OD discov-

eries [9]. Although the canonical OD discovery has a smaller

theoretical search space than the lexicographical one, its huge

result set negatively affects efficiency. (2) It is quadratic in |r|
for FastAOD to compute g3 [25], which hinders the scalability.

C. Effectiveness of AOD discovery

Exp-5: Recall of AOD discovery. We show the effectiveness

of AOD discovery by finding ODs from dirty data. We add

some attributes to FLI and NCV, and populate these attributes

with real-life data, for more interesting and complex ODs. We

then manually identify some “golden” ODs verified by domain

experts (some example ODs are shown in Table VI).

For each dataset, we use a sample of 10K tuples. We

introduce noise to data, which is controlled by the noise ratio

θ and two different strategies [17]. #1: on each attribute, each

value has a probability of θ to be assigned a new value. #2:

each tuple has a probability of θ to be selected, and new values

are assigned to all values of selected tuples. Intuitively, #2 is

a setting that favors g3, since noises are on fewer tuples in #2

than #1. We run DisAOD on the dirty datasets, and compute

the recall as the ratio of the number of discovered golden ODs

to the total number of golden ODs.

(1) From Figure 5a to 5h, we vary the error threshold e and

test various settings (#i, θ) on NCV. In this set of experiments,

we use values close to the original correct ones as new values,

which is common in practice.

We see the following. (a) In contrast to exact OD discoveries

with a recall of 0 in all settings (not shown), both AOD1 and

AOD3 have a recall of 100% when e is above a threshold. We

denote this threshold by eo. (b) In AOD1, eo is much smaller

than the noise ratio θ, by up to orders of magnitude. We find

NCV has sparse value distributions on some attributes, and

hence the introduced new values lead to very few violations.

Recall that g1 concerns the ratio of the number of violating

tuple pairs to |r|2. (c) In AOD3, eo is very close to the noise

ratio θ. This is expected in #2 (Figures 5g and 5h); g3 concerns

TABLE VI
SAMPLE ODS

−−−→
Rank �→−−−−−−−−→

FreeLuggage
free luggage allowance

increases with customer rank−−−−→
SeqNo �→−−→

Year
−−−−→
Month

−−→
Day Sequence No is an auto-increment number−−−−−→

Birthday �→←−−
Age a late birthday implies a small age

−−−→
Salary �→−→

Tax
tax increases with salary

(in NCV all person are in the same state)

the number of violating tuples. We find eo is also close to θ
in #1 (Figures 5e and 5f). This is because there are very few

violations in NCV and the number of violating tuples in #1 is

similar to that in #2.

(2) We report results on FLI from Figure 5i to 5p. In this set

of experiments, the maximum/minimum values in the domain

are used as new values, to maximize violations.

We see the following. (a) As expected, the required thresh-

old eo for a recall of 100% increases significantly and is larger

than the noise ratio θ in most cases. This becomes very evident

when relatively more noises are distributed among more tuples,

i.e., the setting of (#1, 1%), as shown in Figures 5j, 5n.

(b) AOD3 still guarantees a recall of 100% in #2, when the

threshold equals θ (shown in Figures 5o and 5p). (c) Using the

same threshold, we usually get a larger recall in the setting

of #2 than #1; see e.g., Figure 5i against 5k. The reason is

that noises introduced in #2 are on a smaller set of tuples,

compared with #1. (d) We find a relatively large threshold is

required to recall ODs with multiple LHS (RHS) attributes (not

shown). Intuitively, such ODs concern more new values and

are hence more likely to be involved in violations.

VIII. CONCLUSION

We have formalized the AOD discovery problem, developed

efficient algorithms and optimizations for error measures,

related lower/upper bounds and AOD discovery. We have also

experimentally verified the benefits of our methods.

There is naturally more to be done. As shown in our

experimental evaluations, the number of minimal valid AODs

can be large on some instances. We intend to study ranking

functions for measuring the interestingness of AODs, so as to

help users quickly select a small set of more relevant AODs. We

also intend to study further optimizations for AOD discovery,

e.g., by leveraging sampling techniques [9].
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