
Dynamic Functional Dependency Discovery
with Dynamic Hitting Set Enumeration

Renjie Xiao 1,2 Yong’an Yuan 1,2 Zijing Tan 1,2† Shuai Ma 3 Wei Wang 1,2

1Fudan University, China 2Shanghai Key Laboratory of Data Science, China 3SKLSDE Lab, Beihang University, China

Abstract—Functional dependencies (FDs) are widely applied in
data management tasks. Since FDs on data are usually unknown,
FD discovery techniques are studied for automatically finding
hidden FDs from data. In this paper, we develop techniques
to dynamically discover FDs in response to changes on data.
Formally, given the complete set Σ of minimal and valid FDs
on a relational instance r, we aim to find the complete set Σ′ of
minimal and valid FDs on r ⊕ �r, where �r is a set of tuple
insertions and deletions. Different from the batch approaches
that compute Σ′ on r ⊕�r from scratch, our dynamic method
computes Σ′ in response to �r by leveraging the known Σ on
r, and avoids processing the whole of r for each update from
�r. We tackle dynamic FD discovery on r ⊕ �r by dynamic
hitting set enumeration on the difference-set of r⊕�r. Specifically,
(1) leveraging auxiliary structures built on r, we first present
an efficient algorithm to update the difference-set of r to that
of r ⊕ �r. (2) We then compute Σ′, by recasting dynamic FD
discovery as dynamic hitting set enumeration on the difference-
set of r ⊕ �r and developing novel techniques for dynamic
hitting set enumeration. (3) We finally experimentally verify the
effectiveness and efficiency of our approaches, using real-life and
synthetic data. The results show that our dynamic FD discovery
method outperforms the batch counterparts on most tested data,
even when �r is up to 30% of r.

Index Terms—Data profiling; Data dependency; Functional
dependency

I. INTRODUCTION

Functional dependencies (FDs) [5] are extensively studied,

for their usefulness in schema design [26], [35], query op-

timization [8], [30] and data quality management [9], [12],

among others. In practice, FDs on data are usually unknown

and too expensive to be designed manually [1], [2], [31].

Hence, discovery techniques for FDs are actively studied; see,

e.g., [4], [11], [13], [14], [17], [18], [20], [25], [33], [34],

[36], [37]. They aim at automatically finding hidden FDs from

data, to enable FDs in data management tasks and alleviate

the burden of users. There are two criteria that are usually

considered in FD discoveries, namely validity and minimality.

Example 1: Consider the relational instance r in Table I.

DE → A is an FD that will be discovered, since it is valid
and minimal. The validity of DE → A can be verified by

checking whether any tuple pair from r violates it. To check

the minimality of DE → A, it suffices to consider the validity

of D → A and E → A. Since neither of them is valid,

DE → A is minimal. Intuitively, D → A (E → A) is more

general than DE → A, in the sense that if D → A (E → A)

is valid on any relational instance, then so is DE → A. �

† Zijing Tan is the corresponding author.

TABLE I
RELATIONAL INSTANCE r

A B C D E

t1 0 0 0 0 0
t2 1 1 1 0 1
t3 2 2 2 1 2
t4 3 0 3 0 3
t5 4 2 2 2 2

TABLE II
TUPLE INSERTIONS

A B C D E

t6 5 3 3 2 2
t7 6 4 4 3 1

Most of the FD discovery methods, e.g., [4], [11], [17],

[25], [34], [36], aim to discover all minimal valid FDs, i.e.,
a complete set Σ of minimal valid FDs. The FD discovery

is costly on instances with large numbers of attributes and

tuples, since the size of Σ can be exponential in the number of

attributes and value comparisons of tuple pairs are required to

check the validity of FDs. Worse, data in practice are frequently

updated and the changes in data usually incur changes in the

discovered FDs. It suffices to consider tuple insertions and

deletions, since each value modification can be modeled as

a deletion followed by an insertion. As shown below, the

changes of FDs in response to updates can be very intricate.

Example 2: To simplify the discussion, we consider tuple

insertions and deletions separately in this example.

(1) Suppose the two tuples in Table II are inserted into r. Note

that insertions can only introduce new FD violations. DE→A
is violated by (t5, t6) and (t6, t5), and is not a valid FD now.

We see BDE→A and CDE→A are valid and minimal FDs;

they are valid but not minimal before the tuple insertions since

DE → A is valid. Hence, DE→A should be removed from

while BDE→A and CDE→A should be added into Σ.

(2) Suppose tuples t1, t4 are deleted from r, as shown in

Table III. Note that deletions can only remove FD violations.

Since all violating tuple pairs are removed, D → A becomes

a minimal valid FD and should be put into Σ. In contrast,

DE → A should be removed from Σ; it is still valid but not

minimal now due to the validity of D → A.

To sum up, we see the following. (a) Tuple insertions

(resp. deletions) can introduce (resp. remove) FD violations,

and hence tuple insertions can make a valid FD invalid and

286

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00026

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
00

26

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

TABLE III
r AFTER TUPLE DELETIONS

A B C D E

t2 1 1 1 0 1
t3 2 2 2 1 2
t5 4 2 2 2 2

deletions can make an invalid FD valid. (b) The minimality of

FDs should be considered in computing the changes to Σ. �
Formally, in response to a set �r of updates to an instance

r, the set Σ of FDs on r will evolve into the new set Σ′

on r ⊕ �r. We use the notation “⊕” since �r is a set of

tuple insertions and deletions. As shown in Example 2, the

evolutions are intricate since both Σ′ \ Σ and Σ \ Σ′ can

be not empty. The baseline approach to computing Σ′ is to

perform FD discovery on r⊕�r from scratch. However, this

is usually inefficient, especially when �r is (much) smaller

than r. A better approach is to perform a dynamic discovery,

by computing Σ′ in response to �r. The efficiency can be

further improved by leveraging auxiliary structures built upon

the known Σ and r in the pre-processing step.

Contributions & Organizations. In this paper, we study the

problem of dynamic FD discovery. We contend this problem

is more relevant to data profiling in the real world. We tackle

the problem with the row-based strategy, by recasting dynamic

FD discovery on r ⊕�r as dynamic hitting set enumeration
of the difference-set of r ⊕�r (Section IV). In this way, our

method fully leverages the good scalability of the row-based

strategy in the number of attributes. Our method also performs

well on instances with a large number of tuples, since it avoids

processing the whole of r for each update from �r.

(1) To improve the efficiency of dynamic computations, we

propose auxiliary structures (including the difference-set) built

upon r. We present an efficient algorithm to update the

structures in response to �r, and show the computation avoids

processing the whole of r, for each tuple insertion and deletion

from �r (Section V).

(2) We present a method to compute Σ′, by developing novel

techniques to dynamically enumerate hitting sets in response

to the changes in the difference-set from r to r ⊕ �r. We

contend that the technique for dynamic hitting set enumeration

is valuable in itself and can be applied to other domains in

which hitting set problems are studied, e.g., computational

biology and data mining [10], [15] (Section VI).

(3) We conduct an experimental study to verify our approach,

using a host of real-life and synthetic datasets. The results

show our dynamic FD discovery method outperforms the batch

methods that compute from scratch on most tested data, even

when |�r| = 30%|r|, and our method is much faster than the

only existing method for dynamic FD discovery (Section VII).

II. RELATED WORK

Dependency discovery techniques are extensively studied;

see, e.g., [1], [2], [31] for surveys on this topic. In this

section, we investigate works close to ours: FD discoveries

and dependency discoveries on dynamic data.

FD discoveries. There are many FD discovery algorithms for

finding the complete set of minimal and valid FDs, e.g., [4],

[11], [17], [22], [25], [34], [36], and some of them are

compared in [24]. They can be roughly categorized into

three types. (1) The column-based approaches, e.g., [4], [11],

enumerate FD candidates from the space of all candidates

following the traversal strategies and then validate them. They

typically scale well with the number of tuples. (2) The row-

based approaches, e.g., [17], [22], [36], are based on the value

comparisons of all tuple pairs. In particular, [36] builds the so-

called difference-set on the relation instance and then recasts

FD discovery as hitting set enumeration of the difference-

set. These approaches usually scale well with the number of

attributes. (3) The hybrid approaches, e.g., [25], [34], combine

row-based strategy on sample data with column-based strategy

on the full instance, and are experimentally verified to outper-

form the row-based and column-based methods in practice.

Different from the above-mentioned works, other FD dis-

covery methods find approximate FDs holding on dirty data

with some exceptions [13], [14], discover embedded FDs from

data with missing values [33], or heuristically identify only

“interesting” or “reliable” FDs, by using, e.g., entropy-based

measures, mutual information or probabilistic graphical mod-

els; see, e.g., [18]–[20], [27], [37]. We consider discovering all

minimal valid FDs in this paper, along the same setting as [4],

[11], [17], [25], [34], [36]. Further post-processing steps can

be used to select FDs to meet the specific user requirements,

which is beyond the scope of this paper.

The above-mentioned works perform batch FD discoveries;

they aim to discover the set Σ of FDs on a given instance r.

In this paper we study the problem of dynamic FD discovery.

We tackle the problem by proposing auxiliary structures on r,

presenting methods to update structures in response to �r, and

computing Σ′ on r⊕�r via dynamic hitting set enumeration

on the difference-set of r ⊕�r.

Dependency discovery on dynamic data. In contrast to batch

discoveries that find dependencies from scratch, dynamic or

incremental discoveries are recently studied to handle updates

on data. They are investigated for unique column combinations

(UCCs) [3], a.k.a. candidate keys, FDs [7], [28], pointwise or-

der dependencies [32] and inclusion dependencies [29]. These

works differ in the constraint types. UCCs are a special case of

FDs. [32] focuses on the efficient processing of the inequality

operators in pointwise order dependencies, i.e., “<,>”, while

FDs only concern the equality operator, i.e., “=”. Moreover,

[3], [28], [29] and this paper consider dynamic settings with

both insertions and deletions, while [7], [32] study incremental

discoveries only with tuple insertions.

To our best knowledge, [28] is the only work for dynamic

FD discovery. This work differs from [28] in the following.

We adopt the row-based strategy, by recasting FD discovery

as hitting set enumeration, while [28] adopts a column-based

strategy. Hence, our method scales much better with the

287

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

number of attributes, by leveraging the advantage of the row-

based strategy. Moreover, by putting the row-based strategy

together with our carefully designed dynamic algorithms, we

avoid processing the whole of r for each tuple insertion and

deletion, while [28] enjoys this feature only for insertion but

not deletion. Our method is verified to be much faster than

[28] in the experimental evaluations (Section VII), which well

demonstrates the benefit of our approach.

III. PRELIMINARIES

In this section, we review the basic notions of FDs, and the

approach to batch FD discovery via hitting set enumeration.

A. Basic notations

R(A,. . .) denotes a relation schema, r denotes a specific

instance of R, t, s denote tuples from r, and t[A] denotes the

value of attribute A in a tuple t. Each tuple t is associated

with a distinct identifier (id). We denote by |r| the number of

tuples in r and |R| the number of attributes in R, respectively.

Functional dependency (FD). We consider FDs of the form

X → A, where X (resp. A) is a set of attributes (resp. a single

attribute) from R (A �∈ X). Obviously, FDs with a single right-

hand-side (RHS) attribute do not lose generality. An FD γ =

X → A is valid on r, i.e., γ holds on r, iff for any t, s ∈ r,

t[A] = s[A] if t[X] = s[X].

Minimal FD. An FD X→A is minimal, iff X ′→A is invalid

for any proper subset X ′ of X .

Former works, e.g., [4], [11], [17], [25], [34], [36], consider

batch FD discoveries, concerning the validity and minimality.

Batch FD discovery. Given a relation instance r of schema R,

batch FD discovery is to find the complete set Σ of minimal

and valid FDs on r.

B. Batch FD discovery via hitting set enumeration

There is a long history of studies on the relationship

between batch FD discovery and hitting set enumeration, a.k.a.
hypergraph transversal; see, e.g., [17], [21], [22], [36]. In this

subsection, we review the notations and techniques of [36].

Difference-set. The difference-set of a tuple pair (t, s) is

D(t, s) = {A ∈ R | t[A] �= s[A]}, i.e., the set of attributes in

which t, s have different values. Obviously, D(t, s) = D(s, t).
The difference-set of r is Dr = {D(t, s) | t, s∈r, D(t, s) �= ∅}.

Example 3: Consider the instance r in Table I. (1) D(t1, t2) =

{ABCE}. To simplify the presentation, in the rest of the paper

we write ABCE instead of {ABCE}. Similarly, D(t1, t4) =

ACE and D(t3, t5) = AD. (2) Different tuple pairs can have

the same difference-set. For example, D(t1, t3) = D(t1, t5) =

D(t2, t3) = D(t2, t5) = D(t3, t4) = D(t4, t5) = ABCDE. (3)

Finally, Dr = {ABCE, ACE, AD, ABCDE}. �
It can be seen that, for γ = X → A and A ∈ D(t, s), t, s

do not violate γ iff X contains at least one attribute (not A)

from D(t, s). Therefore, γ is valid on r iff X contains at least

one attribute (not A) from D(t, s) for all t, s ∈ r.

Hitting set of difference-set. For a given attribute A ∈ R, the

difference set of r modulo A is DA
r = { U \ {A} | U ∈ Dr,

A ∈ U}. X → A (A �∈ X) is valid iff X intersects with every

element of DA
r . Such X is referred to as a hitting set (HS)

of DA
r [15]. In the formal notations, DA

r is a subset family

{U1,. . . ,Um} defined on R \ {A}. A HS of DA
r is a subset

X of R \ {A} such that X∩U �= ∅ for every U ∈ DA
r . X

is a minimal HS if no proper subset of X is a HS. X → A
(A �∈ X) is a minimal valid FD iff X is a minimal HS of DA

r .

Example 4: (Example 3 continued.) (1) DA
r = {BCE, CE,

D, BCDE}. DE
r = {ABC, AC, ABCD}. (2) BDE is a

HS of DA
r , i.e., BDE intersects with every element in DA

r .

BDE → A is hence a valid FD, but is not minimal since

BDE is not a minimal HS. We see DE is a minimal HS, and

hence, DE → A is a minimal and valid FD. �
HS enumeration for FD discovery. [36] first builds the

difference-set of r. For each A from R, it then discovers

minimal and valid FDs of the form X → A by enumerating

minimal hitting sets (HSs) X of DA
r . By using all attributes

from R on the RHS, it discovers all minimal valid FDs. There

can be an exponential number of minimal valid FDs, so is the

number of minimal HSs. The algorithms for HS enumeration

are well studied and employed in not only data dependency

discoveries [6], [16], but also in, e.g., data mining and AI.

Please refer to [10], [15] for surveys.

Example 5: (Example 4 continued.) We discover FDs of the

form X→A by enumerating minimal HSs X of DA
r = {BCE,

CE, D, BCDE}. They are CD → A and DE → A. �

IV. FORMULATION OF DYNAMIC FD DISCOVERY

In this section, we first formalize the problem of dynamic

FD discovery. We then outline our approach to dynamic FD

discovery by dynamic HS enumeration.

Dynamic FD discovery. Given the complete set Σ of minimal

and valid FDs on r, and a set �r of updates to r, dynamic FD

discovery is to find the complete set Σ′ of minimal and valid

FDs on r ⊕�r.

Specifically, let �r = �r+ ∪ �r−, where �r+ (resp.

�r−) is a set of tuple insertions (resp. deletions). r ⊕ �r
= r ∪ �r+ \ �r−.

Overview of our approach. We will develop novel and

efficient techniques for dynamic FD discovery in the following

sections. Our aim is to present a solution that scales well with

both |R| and |r|. This is achieved by combining the advantage

of the row-based strategy in its scalability with |R| and the

advantage of our dynamic computation that avoids visiting the

whole of r for each update. Roughly speaking, we adapt the

row-based approach to the dynamic setting as follows.

(1) We update the difference-set Dr to Dr⊕�r of r ⊕�r,

in response to �r (Section V).

(2) We compute the complete set Σ′ of minimal valid FDs

on r⊕�r, by performing dynamic HS enumeration on Dr⊕�r,

in response to the changes from Dr to Dr⊕�r (Section VI).

At both steps, we perform dynamic computations in re-

sponse to the changes, and leverage auxiliary structures built

at the pre-processing step to further improve the efficiency.

288

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

V. UPDATING DIFFERENCE-SET

In this section, we present an efficient algorithm to update

the difference-set Dr of r to Dr⊕�r of r ⊕�r.

A. Auxiliary structures

To facilitate our approach, we propose to build some simple

yet effective auxiliary structures on the known instance r.

These structures are built in the pre-processing step.

Position list indexes. The first auxiliary structure, known as

position list indexes (Plis), is commonly used in FD discover-

ies [14], [25], [28]. Each Pli is built for an attribute from R,

and we denote the Pli on attribute A by πA. πA is a set of

clusters; each cluster is also a set and tuples with the same

value in A are in the same cluster from πA. We denote by

clA(t) the cluster from πA that contains tuple t. With hashing,

it takes O(|r|) to build πA, and O(1) to find clA(t).
We build πA for all A ∈ R. The instance r is only used

to create Plis, and no longer needed after that. The space

complexity of Plis on r is O(|r||R|). To reduce the memory

footprint, only tuple ids are stored in Plis.

Example 6: In Table I, πA = {{t1},{t2},{t3},{t4},{t5}}, and

πB = {{t1,t4},{t2},{t3,t5}}. We also have clA(t1) = {t1},

and clB(t1) = {t1,t4}. �
Difference-set with weights. The other auxiliary structure

we use is the difference-set Dr of r. The original version

from [36] is not sufficient to support updates, and a minor

modification is required for this purpose. Recall that each

element of Dr is a difference-set of tuple pair from r. We

additionally associate each element U in Dr with a weight

wt(U) denoting the number of tuple pairs (t, s) such that

D(t, s) = U , i.e., the number of tuple pairs having U as the

difference-set. DA
r is extended similarly. In the sequel, we

still use Dr and DA
r to denote difference-sets with weights.

Let wt(Dr) =
∑

U∈Dr
wt(U). It is easy to see that wt(Dr)

= |r|(|r| − 1), i.e., the total number of tuple pairs.

Example 7: (Example 3 and Example 4 continued.) We have

Dr = {ABCE: 4, ACE: 2, AD: 2, ABCDE: 12}, DA
r =

{BCE: 4, CE: 2, D: 2, BCDE: 12}, and DE
r = {ABC: 4,

AC: 2, ABCD: 12}. �
Dr is obtained by value comparisons of all tuple pairs, and

some optimizations are proposed in [36]. We build Dr as a

hash table, where the difference-sets of tuple pair are keys

and weights are values. The number of elements in Dr has an

upper bound of 2|R|, but is usually much smaller in practice,

as experimentally verified in Section VII.

B. Updating the difference-set of r with �r

We first update Plis with �r, which then facilitates the

update of the difference-set Dr. For �r = �r+ ∪ �r−, we

process �r+ before �r−, in case �r+ ∩ �r− �= ∅.

Updating Plis. (1) For each tuple t ∈ �r+ and each attribute

A ∈ R, we find the cluster that t should belong to, i.e., the

cluster containing the tuples that have the same value as t in

A. We still use clA(t) to denote the cluster. We add t into

Algorithm 1: Update
Input: the difference-set Dr of r, �r = �r+ ∪ �r−, Plis
Output: the difference-set Dr⊕�r of r ⊕�r

1 foreach tuple t in �r+ and then in �r− do
2 map ← an empty hash table;
3 foreach attribute A in R do
4 update πA with t;
5 foreach tuple s in clA(t) do
6 if s is not in map then
7 insert a key-value pair (s, R \ {A}) into

map, where s is the key;
8 else
9 update the pair (s, X) to (s, X \ {A});

10 update Dr with map;

clA(t) if it exists, otherwise we create clA(t) with t and add

it into πA. (2) For each tuple t ∈ �r−, we find clA(t) for each

attribute A ∈ R. We remove t from the cluster clA(t), and the

cluster from πA if the cluster is empty after the removal of t.

Updating the difference-set Dr. Applying �r to r incurs

changes to the difference-set Dr of r. Intuitively, a tuple

t ∈ �r+ leads to new difference-sets that should be combined

into Dr, while a tuple t ∈ �r− leads to obsolete difference-

sets of tuple pair that should be separated from Dr. The

observation critical to the efficiency is that, for t ∈ �r, we

need to compute D(t, s) only when s has the same values as

t in some attributes, and all such s can be efficiently obtained

by leveraging Plis. To complement the strategy, we need to

adjust the weight wt(R) associated with R in Dr. Note that

D(t, s) = R if t, s have different values in all attributes. More

details are provided in Algorithm Update.

Algorithm. Update (Algorithm 1) takes as inputs the differ-

ence set Dr of r, �r = �r+ ∪ �r− and Plis on r. It computes

the difference set Dr⊕�r of r⊕�r, by updating Plis and Dr.

Update enumerates tuples first from �r+ and then from

�r−. For each enumerated tuple t, Update deals with attribute

A ∈ R one by one. It first updates πA with t (line 4), as

stated before. By checking the id of t, it can directly stop

the processing of t if t ∈ �r+ already belongs to clA(t) or

t ∈ �r− does not belong to clA(t).

Update then computes the new or obsolete difference-sets

concerning t, i.e., the changes incurred by t (lines 5-9).

Specifically, it computes D(t, s) for s that belongs to some

clA(t). A tuple s can have the same values as t in several

attributes, and a hash table map is used to gradually compute

D(t, s) for such s. Each element in map is a key-value pair.

The tuple id of s is used as the key, which guarantees that

s is inserted into map only once (line 6). The difference-set

D(t, s) computed so far is used as the value. If s is found in

clA(t), then A is removed from D(t, s) (lines 7 and 9). After

all attributes from R are processed, the final D(t, s) for s can

be obtained in map. Note that for t, s ∈ �r, D(t, s) is also

computed in this way if at least one of t, s is from �r+.

All changes incurred by t are finally applied to Dr (line 10).

We first enumerate each element (s, X) in map that denotes

289

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

the new or obsolete difference-set X = D(t, s) = D(s, t), and

do the following. (1) If t ∈ �r+, then we increase wt(X)
by 2 if X exists in Dr, otherwise we add X into Dr and set

wt(X) = 2. (2) If t ∈ �r−, then in Dr we decrease wt(X)
by 2 and remove X from Dr if wt(X) becomes 0.

We then additionally adjust wt(R) in Dr. (1) If t ∈ �r+,

then we increase wt(R) by 2(k−|map|), where |map| is the

number of elements in map, and k is the number of tuples

in r before inserting t into r. This is because the addition of

t always incurs 2k new difference-sets of tuple pair. Besides

those stored in map, all the others must equal R, arising from

tuples that have different values as t in all attributes. (2) If

t ∈ �r−, then we decrease wt(R) by 2(k−|map|), where k
is the number of tuples in r after removing t.

Example 8: (Example 7 continued.) Recall that Dr =

{ABCE: 4, ACE: 2, AD: 2, ABCDE: 12}. We show how

Plis and Dr are updated for deleting t1. (1) For attribute A, we

have clA(t1) = ∅ after removing t1 and hence remove clA(t1)
from πA. (2) For attribute B, clB(t1) = {t4} after removing

t1. We insert (t4, ACDE) into the hash table. (3) Attribute C
is treated in the same way as attribute A. (4) For attribute D,

clD(t1) = {t2, t4} after removing t1. We insert (t2, ABCE)

and update (t4, ACDE) to (t4, ACE) in the hash table. (5)

Attribute E in treated similarly as attribute A.

We have D(t1, t2) = ABCE and D(t1, t4) = ACE in

the hash table. After removing them and adjusting wt(R =
ABCDE), Dr = {ABCE: 2, AD: 2, ABCDE: 8}. �
Complexity. Update deals with tuples from �r one by one.

For each t ∈ �r, (1) it updates πA for each A ∈ R; (2)

the cost of computing the changes to Dr incurred by t is

linear in the number of tuples from clA(t) for A ∈ R, i.e.,
O(

∑
A∈R |clA(t)|); and (3) the cost of updating Dr is linear

in the number of elements in the hash table (the number of

distinct tuples from clA(t) for A ∈ R), i.e., O(|∪A∈R clA(t)|).
To sum up, Update avoids visiting the whole of r for each t.

Remark. Update handles �r+ before �r−, to guarantee the

correctness when a tuple is inserted first and then deleted. An

alternative method is to first remove tuple insertions in �r+

and deletions in �r− that cancel each other. After that, it is

more efficient to treat �r− first, since the computation of any

difference-set of a deleted tuple and a new tuple is avoided.

VI. DYNAMIC HS ENUMERATION FOR

DYNAMIC FD DISCOVERY

In this section, we compute the set Σ′ of minimal valid

FDs on r ⊕ �r, based on the changes from Dr to Dr⊕�r.

We tackle the problem by solving a more general problem,

namely, dynamic hitting set enumeration.

A. Problem formulation

To simplify presentation, in this section we use the notations

of hitting set (HS) enumeration [6], [23]. A hypergraph F is

a subset family {F1,. . . ,Fm} defined on a vertex set V ; each

element F of F is called a hyperedge. We denote by |F| the

number of hyperedges in F . A subset H of V is called a

TABLE IV
NOTATIONS OF FD DISCOVERY AND HS ENUMERATION

FD Discovery HS Enumeration

attribute set R vertex set V

the complement set DA
r hypergraph F

difference-set of tuple pair D(t, s) hyperedge F
attribute A vertex v

attribute set X vertex subset H
minimal valid FDs X → A ∈ Σ HS enumeration Hs(F)

vertex subset. H covers hyperedge F if H ∩ F �= ∅. H is a

HS of F if H covers all hyperedges in F , and is minimal if

no proper subset of H is a HS. The HS enumeration of F is

the set of all minimal HSs of F , denoted by Hs(F).
The problem of HS enumeration is well studied in the liter-

ature [10], [15]. However, to our best knowledge, the dynamic

version of HS enumeration has never been investigated before.

Dynamic HS enumeration. Given Hs(F) of F and a set �F
of updates to F (hyperedges that are added into or removed

from F), it is to compute the HS enumeration Hs(F ⊕�F).

From dynamic HS enumeration to dynamic FD discovery.
We discover FDs of the form X→A (all FDs are discovered

by using every attribute from R on the RHS), by recasting

dynamic FD discovery as dynamic HS enumeration:

Input: (1) F = DA
r ; (2) Hs(F) = {X | X→A ∈ Σ}; and

(3) �F is the changes from DA
r to DA

r⊕�r, i.e., the new (resp.

obsolete) difference-sets of tuple pair that (a) are added into

(resp. removed from) Dr and (b) include attribute A. �F is

obtained in Algorithm Update (Section V), and the weights

of difference-sets are neglected in HS enumeration.

Output: X∈Hs(F ⊕�F) corresponds to X→A ∈ Σ′,
where Σ′ is the complete set of minimal valid FDs on r⊕�r.

We summarize the relationship between notations of FD

discovery and HS enumeration in Table IV.

B. Techniques of HS enumeration and auxiliary structures

We review some techniques of HS enumeration, and propose

a simple auxiliary structure to boost dynamic HS enumeration.

HS enumeration methods aim to generate all minimal com-

binations of vertices that can cover all hyperedges. Various

enumeration strategies and pruning rules are developed in the

literature [10], [15]. It is known that MMCS [23] is currently

the fastest algorithm, as verified in [10].

Critical hyperedges. The idea of critical hyperedge is intro-

duced in MMCS and critical to the efficiency. For a vertex set

H ⊆ V and a vertex v ∈ H , a hyperedge F ∈ F is a critical
hyperedge of v if H ∩ F = {v}, i.e., v is the only common

vertex from H and F . We denote by critHv the set of all critical

hyperedges of v, i.e., critHv = {F |F ∈ F , H ∩ F = {v}},

and denote by critH all the critical hyperedges concerning

H , i.e., critHv for all v ∈ H . It is proved in [23] that H is a

minimal HS of F iff (a) H covers all hyperedges in F , and

(b) critHv �= ∅ for any v ∈ H , i.e., each v is necessary for H
to be a HS. Leveraging critical hyperedges, the minimality of

a HS is checked locally without considering the other HSs.

290

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

Example 9: Let F = {ABC,AD,BD}. H = AB is a minimal

HS, since (a) it covers all hyperedges from F ; and (b) critHA
= {AD} and critHB = {BD}. Each hyperedge can serve as a

critical hyperedge for at most one vertex by the definition.

When the intersection of a hyperedge and a HS contains

several vertices, the hyperedge is not a critical hyperedge. For

example, ABC is not a critical hyperedge of any v ∈ H . �
Minimal hyperedges. Not all of the hyperedges from F are

equally important in HS enumeration. A hyperedge Fi is a

minimal hyperedge of F if there does not exist any Fj ∈ F
such that Fj ⊂ Fi. The minimization of F , denoted by Fmin,

is the subset of F with only minimal hyperedges. It is easy

to see that Hs(F) = Hs(Fmin) [6], [36]. Hence, it suffices to

consider Fmin in HS enumeration. Note that |Fmin| is usually

much smaller than |F| in practice.

Auxiliary structures. Based on the known input F , we

compute Fmin in the pre-processing step, to facilitate dynamic

HS enumeration. This can be easily adapted to dynamic FD

discovery, following the conversions in Table IV. Specifically,

for every A ∈ R, we treat DA
r as hypergraph F and build

Fmin accordingly. Note that Fmin is computed in terms of

every DA
r instead of Dr. A minimal hyperedge of DA

r does

not necessarily correspond to a minimal hyperedge of Dr. For

example, DC
r = {AB} if Dr = {A,ABC}. We see AB is a

minimal hyperedge of DC
r , but its corresponding hyperedge

ABC is not a minimal hyperedge of Dr. Our experimental

evaluations (Section VII) show that the accumulated memory

usage of Fmin for all DA
r is still very small.

The set �F of updates may incur changes to Fmin. We

update Fmin and compute critical hyperedges for (candidate)

HSs w.r.t. Fmin in our dynamic HS enumeration methods.

C. Updating Hs(F) with �F+

Let �F = �F+ ∪ �F−, where �F+ (resp. �F−) is the

set of inserted (resp. removed) hyperedges. In the following

two subsections, we present two algorithms to handle �F+

and �F− respectively. They are independent of each other.

The order of applying them is irrelevant if �F+ ∩ �F− =

∅. Otherwise, �F+ is processed before �F−.

We first consider �F+. F ⊕ �F+ = F ∪�F+. There are

two observations that guide our algorithm design. (1) �F+

does not affect Hs(F) unless Fmin is changed after applying

�F+ to F . That is, our computation is guided by the changes

in Fmin, which is usually much smaller than �F+. (2) A

minimal HS of F ∪�F+, is either a minimal HS of F , or

obtained by adding vertices to a minimal HS of F . The formal

result is stated as follows.

Proposition 1: If H ∈ Hs(F ∪�F+), then there exists H ′ ∈
Hs(F) such that H ′ ⊆ H .

Algorithm. Insert (Algorithm 2) takes as inputs Hs(F), �F+,

Fmin, and outputs Hs(F ∪�F+). Note that F is not needed.

Insert first updates Fmin by computing the set of new (resp.

obsolete) minimal hyperedges for Fmin, denoted by �F+
min

(resp. �F−
min) (lines 1-2). Specifically, (1) �F+

min ⊆ �F+,

and a hyperedge F from �F+ belongs to �F+
min if there

Algorithm 2: Insert
Input: Hs(F), �F+, Fmin

Output: Hs(F ∪�F+)
1 compute the set of new (resp. obsolete) minimal hyperedges

for Fmin, denoted by �F+
min (resp. �F−

min);
2 Fmin ← Fmin ∪�F+

min \ �F−
min;

3 foreach H ∈ Hs(F) do
4 foreach F ∈ Fmin do
5 if F ∩H = {v} then add F into critHv ;

6 if critHv = ∅ for any v ∈ H then
7 remove H from Hs(F);
8 tested ← an empty hash set;
9 result ← ∅;

10 foreach H ∈ Hs(F) do
11 uncovH ← {F ∈ �F+

min | F ∩H = ∅};
12 cand ← R \H;

13 WalkDown (H, critH , uncovH , cand);
14 return result ;

Algorithm 3: WalkDown

Input: candidate HS H , critical hyperedges critH ,
uncovered hyperedges uncovH , and candidate
vertices cand

1 if H ∈ tested then return;
2 tested ← tested ∪{H};

3 if uncovH = ∅ then
4 add H into result;
5 return;

6 choose a hyperedge F from uncovH ;
7 U ← cand ∩ F ;
8 cand ← cand \ U ;
9 foreach u ∈ U do

10 G ← H ∪ {u};
11 if G ∈ tested then continue;

12 critGu ← {F ∈ uncovH |u ∈ F};

13 uncovG ← uncovH \ critGu ;

14 critG ← {critGu };
15 foreach v ∈ H do
16 critGv ← {F ∈ critHv |u /∈ F};

17 critG ← critG ∪ {critGv };

18 if critGv
= ∅ for each v ∈ G then
19 WalkDown (G, critG, uncovG, cand);
20 cand ← cand ∪ {u};

does not exist F ′ ∈ �F+ ∪ Fmin, such that F ′ ⊂ F . (2)

�F−
min ⊆ Fmin, and a hyperedge F belongs to �F−

min if

there exists F ′ ∈ �F+, such that F ′ ⊂ F .

Insert then computes critical hyperedges for HSs in Hs(F)
and updates Hs(F) (lines 3-7). It enumerates H ∈ Hs(F) and

does the following. (1) For each F∈Fmin, if H,F have only

one common vertex v, then it adds F into critHv . (2) If H
has any empty critHv , then it removes H from Hs(F) because

H is not a minimal HS and no minimal HSs can be obtained

by adding vertices to H . Insert finally calls WalkDown to

compute Hs(F ∪�F+) (lines 10-13). Specifically, for each H
∈ Hs(F), it saves uncovered hyperedges in uncovH and can-

didate vertices in cand , respectively, and provides WalkDown
with critH , i.e., critHv for all v ∈ H .

291

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

WalkDown (Algorithm 3) is an adaption of MMCS [23]. It

adds candidate H into the result set if H covers all hyperedges

(lines 3-5). Otherwise, it chooses an uncovered hyperedge F ,

and tries all combinations of vertices from cand that can cover

F (lines 6-8). When a vertex u is included in H for a new

candidate G, critG and uncovG are computed based on critH

and uncovH (lines 12-17), just as in MMCS. Specifically, all

hyperedges uncovered by H but covered by G belong to critGu
(line 12). For each v ∈ H , a hyperedge F from critHv is

included in critGv if F does not contain u (line 16). If G passes

the minimality check (line 18), then WalkDown is recursively

called following a depth-first-search (DFS) strategy (line 19).

WalkDown differs from MMCS mainly in two aspects. (1)

A DFS traversal starts from each H ∈ Hs(F) in WalkDown,

rather than from an empty set in MMCS. That is, we compute

Hs(F ∪�F+) based on Hs(F). (2) We use a hash set tested
to save all the tested candidate HSs (line 8 in Insert and line 2

in WalkDown). WalkDown may generate the same candidate

from different HSs in Hs(F), e.g., ABC from AB and BC.

This is necessary to obtain all minimal HSs, since we perform

DFS from all HSs of Hs(F) independently. We employ tested
to avoid duplicate computations (lines 1, 11 in WalkDown).

Example 10: Let F = {ABE,CDE,ABCE,BCDE}. We

have Fmin = {ABE,CDE} and Hs(F) = {AC, AD,
BC, BD, E}. Now let �F+ = {AE,BE,CE,EG}. (1)

We see �F+
min = {AE,BE,CE,EG}, �F−

min = {ABE,

CDE}, and the updated Fmin = {AE,BE,CE,EG}. (2) We

compute critical hyperedges for each HS in Hs(F), as shown in

Figure 1. Recall that critical hyperedges are computed in terms

of Fmin instead of F . Leveraging critical hyperedges, we have

Hs(F) = {AC,BC,E} after removing the non-minimal HSs.

(3) We call WalkDown to search for new minimal HSs based

on HSs from Hs(F); the details are provided in Figure 1. Take

AC as an example. Two hyperedges BE and EG are not

covered by AC. Suppose we first cover BE. We have ABC
(resp. ACE) by adding B (resp. E) to AC. ACE is pruned

since some vertices from it have no critical hyperedges, while

ABC passes the minimality check. We further add vertices to

ABC for covering EG, and obtain a minimal HS ABCG. (4)

When ABC is generated for the first time, it is added into

the set tested . When we generate ABC based on BC again,

we can directly discard ABC since it is found in tested . (5)

Finally, we have two minimal HSs ABCG and E. �
Correctness. We show the correctness of Insert. (1) Insert may

prune candidates from Hs(F) leveraging critical hyperedges.

It is easy to see that no minimal HSs can be generated based

on these candidates by including more vertices. (2) For each

H ∈ Hs(F), WalkDown guarantees to find all minimal HSs of

Hs(F ∪�F+) that include H , according to the correctness

of MMCS. Putting this together with Proposition 1, Insert
guarantees to find all minimal HSs of Hs(F ∪�F+).

Complexity. It takes O((|Fmin|+ |�F+|) · |�F+|) to com-

pute �F+
min and �F−

min, and O(|Fmin ∪�F+
min \�F−

min| ·
|Hs(F)|) to compute critical hyperedges for HSs in Hs(F).
For each H ∈ Hs(F), there are at most 2|R\H| candidate HSs

E

ABC
AE

B
ABCcrit BE

CE
EGABCuncov

C
ABCcrit

ACE

EG

choose EG

pruned by crit in Insert
pruned by crit in WalkDown
pruned by tested in WalkDown
minimal HS after insertion

choose BE choose AE

minimal HS
before insertion

ACE
Acrit

ACEuncov

ACE
Ccrit

AD
AD
Acrit AE

D
D
Acrit

BD
BEBD

Bcrit
D

D
Bcrit

E
Ecrit AE BE

CE EG
Euncov

AC
CA

Acrit AE
C

C
Acrit CE

BE
EG

ACuncov

BCE
BCE
Bcrit

C
BCEcrit

EG
BCEuncov

E
BCEcrit

ABC
tested

ABCE
ABCE
Acrit

E
B
ABCcrit

EG

E
C
ABCcrit

E
E
ABCcrit

ABCEuncov

ABCG
ABCG
Acrit AE

G
B
ABCcrit BE

CE
EG

ABCGuncov

G
G
ABCcrit

ABCG
Ccrit

E
ACEcrit

BC
C

B
Bcrit BE

C
C
Bcrit CE

AE
EG

BCuncov

A
ABCcrit

updated
()Hs

Fig. 1. Example 10 for Algorithms Insert and WalkDown

based on it. For each candidate, it takes at most O(|�F+
min|)

to check whether the candidate is a minimal HS.

D. Updating Hs(F) with �F−

We then consider the subset �F− of �F with only

hyperedge deletions. F ⊕ �F− = F \�F−. It is easy

to see that Hs(F) remains unchanged unless Fmin changes

after applying �F− to F , the same as �F+. However, the

following example shows the challenges inherent in dealing

with hyperedge deletions, compared with insertions.

Example 11: Consider F = {A,AB,CD}. We see Fmin =
{A,CD} and Hs(F) = {AC,AD}. With �F− = {A,CD},

i.e., the deletion of hyperedges A and CD, Fmin becomes

{AB} and Hs({AB}) is {A,B}. �
We see the following. (1) The changes to Fmin cannot be

computed with only Fmin and �F−; F is also needed. This

is because non-minimal hyperedges from F , e.g., AB, may

become minimal after hyperedges in �F− are removed from

F . (2) After some hyperedges are removed, HSs in Hs(F), e.g.,
AC and AD, may become not minimal since they contain

“redundant” vertices to cover the removed hyperedges. This

implies that we need to consider candidate HSs by removing

vertices from HSs in Hs(F). However, we see some new HSs,

e.g., B, cannot be obtained in this way. Indeed, a carefully

designed strategy that combines both addition and removal of

vertices is required for generating candidate HSs, to guarantee

the correctness and completeness of the results.

Algorithm. Delete (Algorithm 4) computes Hs(F \�F−),
based on Hs(F), �F−, F and Fmin.

Delete first updates Fmin by computing �F−
min and

�F+
min (line 1-2). Specifically, (1) �F−

min = Fmin ∩ �F−.

292

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4: Delete
Input: Hs(F), �F−, F , Fmin

Output: Hs(F \�F−)
1 compute the set of new (resp. obsolete) minimal hyperedges

for Fmin, denoted by �F+
min (resp. �F−

min);
2 Fmin ← Fmin ∪�F+

min \ �F−
min;

3 affected ← ⋃
F∈�F−min

F ;

4 pending ← {F ∈ Fmin|F∩ affected
= ∅};
5 foreach H ∈ Hs(F) do
6 H ← H\ affected;
7 foreach F ∈ Fmin do
8 if F ∩H = {v} then add F into critHv ;
9 tested ← an empty hash set;

10 result ← ∅;
11 foreach H ∈ Hs(F) do
12 uncovH ← {F ∈ pending | F ∩H = ∅};
13 cand ← R \H;

14 WalkDown (H, critH , uncovH , cand);
15 return result;

(2) �F+
min ⊆ F \ �F−, and a hyperedge F belongs to

�F+
min, if (a) there exists at least one F ′ ∈ �F−

min such

that F ′ ⊂ F , and (b) there does not exist any F ′′ ∈ F \�F−

such that F ′′⊂F . That is, F is not a minimal hyperedge of

F , but is minimal after applying �F− to F .

Delete then computes two sets, referred to as affected
and pending respectively (lines 3-4). Specifically, affected
is the set of vertices that are contained in hyperedges from

�F−
min, and pending is the set of hyperedges from the up-

dated Fmin that contain vertices in affected . Delete computes

Hs(F \�F−) by leveraging the two sets. In a nutshell, it first

updates HSs in Hs(F) by removing the vertices in affected , to

“cancel” the effect of the removed hyperedges from �F−
min,

and then adds vertices to the updated (candidate) HSs for

further covering hyperedges from pending .

Specifically, this is done in two steps. (1) Vertices in

affected are removed from HSs in Hs(F), and the critical

hyperedges are computed (lines 5-8). It is worth mentioning

that there is no need to check the minimality of HSs here

as we do in Insert, since vertices that may have no critical

hyperedges are already removed. (2) WalkDown (Algorithm 3)

is called to compute Hs(F \�F−) based on the updated HSs

from Hs(F) (lines 11-14). The inputs here are different from

those in Insert (Algorithm 2). The set uncovH of hyperedges

is a subset of pending rather than �F+
min. It is easy to see

that �F+
min is a subset of pending by the definition.

Example 12: Let F = {ABC,ACD,BE,BCDE}. We see

Fmin = {ABC,ACD,BE} and Hs(F) = {AB, AE, BC,
BD, CE}. Now let �F− = {BE}. (1) We have �F−

min

= {BE}, �F+
min = {BCDE}, and the updated Fmin =

{ABC, ACD, BCDE}. (2) B and E are the two affected
vertices. We remove them from every HS in Hs(F) and

hence have the updated Hs(F) = {A, C, D} and pending =

{ABC, BCDE}. We compute the related critical hyperedges,

as shown in Figure 2. (3) We call WalkDown to further

cover hyperedges from pending . The details are presented in

Figure 2. We can employ critical hyperedges to prune non-

A
ABC
ACD

BCDE

C
ABC
ACD

BCDE

AB
ACD

AC AD
ABC

AE

BCDE BCDE BCDE

ABC
ACD

BCDE

AD
tested

BD
ABC

ACD

CD
ABC

D

ABC

ACD
BCDE

AB AE BC CE BD
minimal HS before deletion

()Hs
updated

choose BCDE

choose ABC

pruned by crit in WalkDown
pruned by tested in WalkDown
minimal HS after deletion

A
Acrit C

Ccrit D
Dcrit

B
B
Acrit

AB
Acrit AC

Acrit
AC
Ccrit

AD
Acrit
AD
Dcrit

AE
Acrit
AE
Ecrit

BD
Bcrit

D
D
Bcrit

CD
Ccrit
CD
Dcrit

Auncov Cuncov Duncov

ABuncov ACuncov ADuncov AEuncov

BDuncov CDuncov

Fig. 2. Example 12 for Algorithms Delete and WalkDown

minimal candidates, e.g., AC, and tested to avoid visiting the

same candidate again, e.g., AD. We finally have five minimal

HSs C, AB, AD, AE and BD. �
We present a result underlying the correctness of Delete.

Given F = {F1,. . . ,Fm} on the vertex set V , and a subset

U ⊆ V , we denote by FU the hyperedges from F that contain

vertices only from U .

Proposition 2: For each H ∈ Hs(FU), we can find H ′ ∈
Hs(F) that is a superset of H , such that H ′ \H ⊆ V \ U .

Note that hyperedges are partitioned by vertices in Propo-

sition 2; this differs from the setting of Proposition 1. As a

corollary of Proposition 2, we have the result below.

Corollary 3: Let Hs(F) = {H ′
1, H

′
2, . . . , H

′
k}. Hs(FU) ⊆

{H ′
1 \ (V \ U), H ′

2 \ (V \ U), . . . , H ′
k \ (V \ U)}.

Correctness. We show the correctness of Delete. (1) After

removing the affected vertices, we know the updated Hs(F)
contains all minimal HSs of FV \affected . This follows from

Corollary 3. (2) WalkDown can find Hs(F \�F−) based on

all minimal HSs of FV \affected , since in the set pending we

have all hyperedges that contain the affected vertices. It also

guarantees to find only HSs in Hs(F \�F−), according to

the correctness of WalkDown.

Complexity. It takes O(|F| · |�F−
min|) to update Fmin (lines

1-2) and O(|Fmin ∪ �F+
min \ �F−

min| · |Hs(F)|) to update

Hs(F) by removing vertices (lines 5-8). In the worst case, the

computation of WalkDown (lines 11-14) starts from the empty

set and has a search space of 2|R|, if the empty set belongs to

the updated Hs(F), i.e., there exists H in the original Hs(F)
such that all vertices in H are the affected vertices. Since

affected is the set of vertices contained in hyperedges from

�F−
min instead of �F− and �F−

min is usually much smaller

than �F−, the worst case typically happens only when the

ratio of �F− to F is large. Even in the worst case, we can still

293

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

TABLE V
DATASETS AND EXECUTION STATISTICS (TIME IN SECOND)

Dataset Properties Batch Dynamic (|�r| = 10%|r|) Dynamic (|�r| = 20%|r|) Dynamic (|�r| = 30%|r|)
DataSet |r| (full) |R| |Σ| Tane FastFD HyFD |�Σ| DynFD DHSFD |�Σ| DynFD DHSFD |�Σ| DynFD DHSFD

Balance 625 5 1 0.22 0.12 0.1 0 0.14 0.034 0 0.14 0.052 0 0.21 0.071
Iris 150 5 4 0.24 0.04 0.075 0 0.17 0.029 0 0.19 0.033 7 0.2 0.049

Claim 20K 11 12 1.1 202.3 0.8 0 0.4 1.5 2 0.5 2.2 2 0.7 3.5

Letter 20K 17 61 223.9 491.2 2.3 32 12 1.2 68 19.4 2.1 96 25.1 2.6

Bridges 108 13 142 0.3 0.1 0.1 61 0.2 0.001 71 0.25 0.005 96 0.27 0.007
Echo 132 13 527 0.3 0.1 0.1 48 0.2 0.004 89 0.23 0.006 157 0.26 0.01
NCV 1K 19 758 0.6 0.4 0.2 182 0.3 0.03 307 0.4 0.07 611 0.44 0.09
Hepa 155 20 8,250 4.9 4.1 0.28 2,127 0.4 0.04 4,623 0.5 0.1 11,008 0.7 0.23
FDR 250K 30 89,571 25.7 134.3 69 27 118.6 2.1 27 183.5 4.7 42 247.2 7.2
Census 50K 42 103,999 TL TL 403 49,283 TL 155 63,728 TL 243 83,948 TL 369
Flights 250K 31 117,367 TL TL 645 152,546 TL 194 57,535 TL 395 226,183 TL 612
Horse 300 28 128,726 76 60 4.5 53,342 29.1 1.8 93,449 32.7 3.9 129,121 33.4 5.3

Plista 1001 63 173,409 TL TL 12.4 134,983 144.7 4.2 192,573 146.3 7.6 168,247 149.8 11.4
Accident 300K 47 196,455 TL TL 3,233 121,594 TL 1,102 169,212 TL 1,974 213,324 TL 3,347

HAEM 15.5K 34 272,138 TL 4h31min 78 85,695 324.4 7.5 152,546 433.5 16.5 226,183 574.9 24.9
Pitches 250K 40 608,928 TL TL 923 114,007 TL 302 225,402 TL 598 362,521 TL 915
CAB 67.3K 54 3,353,531 TL TL 6,614 624,910 TL 319.2 1,368,206 TL 692 1,891,256 TL 1,325

leverage the updated Fmin, in contrast to the batch approach

computing from scratch based on the updated F .

VII. EXPERIMENTAL EVALUATIONS

In this section, we conduct experiments to verify the ef-

fectiveness and efficiency of our dynamic FD discovery and

dynamic HS enumeration, and to analyze the properties of our

methods in detail. All tested datasets and code are available

at https://github.com/RangerShaw/DHSFD.

A. Experimental settings

Datasets. We use a host of real-life and synthetic datasets1.

We summarize the characteristics of them in Table V. These

datasets differ in not only the numbers of tuples and attributes,

but also in data distributions. We employ them to give a

detailed analysis of the performance of our approach.

Algorithms. All the algorithms are implemented in Java. (1)

We compare our dynamic FD discovery method, referred to

as DHSFD, against (a) DynFD [28]: the only known dynamic

FD discovery method2, and (b) HyFD [25], Tane [11] and

FastFD [36]: batch FD discovery methods. HyFD adopts a

hybrid strategy and is known as one of the fastest methods, and

Tane and FastFD are representative column-based and row-

based methods, respectively3. (2) We compare our dynamic HS

enumeration methods, Insert and Delete (Section VI), against

the known fastest batch method MMCS [23]. We develop a

best-effort implementation of MMCS in Java, based on the

original version written in C.

1Datasets are obtained from https://hpi.de/naumann/projects/repeatability/data-
profiling/ and https://www.kaggle.com/datasets.

2Code is from https://github.com/HPI-Information-Systems/dynfd.
3All the codes are from https://hpi.de/naumann/projects/data-profiling-and-

analytics/metanome-data-profiling/algorithms.html.

Running environment. We run all experiments on a PC server

with an Intel Xeon E-2224 3.4G CPU, 64GB of memory and

CentOS 7. We report the average results of 5 runs.

B. Experimental results of dynamic FD discovery

Updates. We generate updates �r randomly, controlled by the

size |�r| = |�r+|+|�r−| and the ratio λ of |�r−| to |�r|.
Measurement. In the preprocessing step, we compute Σ with

HyFD, and build auxiliary structures for dynamic methods.

Different from DHSFD, DynFD leverages only Plis (see Exp-

5 for details). We compare the times of DHSFD and DynFD
that dynamically compute Σ′ on r⊕�r, against those of the

batch methods that compute Σ′ from scratch. The correctness

of DHSFD is verified by checking the equivalence of the

results. The time of DHSFD consists of the times for updating

the difference-set and dynamic HS enumeration (including the

time for updating auxiliary structures in the process).

Exp-1: DHSFD against batch and dynamic methods. We

report running times of all methods in Table V, by varying
|�r|
|r| from 10% to 30% and setting λ = 1

3 . Specifically, we

randomly select 80% tuples as the instance r, and generate

�r+ from the remaining 20% tuples and �r− from r∪�r+,

respectively. We process �r+ and then �r− in DHSFD and

DynFD. All times are in seconds unless otherwise stated. We

denote the time by TL if one algorithm cannot terminate within

the time limit of 5 hours. The times of batch methods are

obtained on r⊕�r. In this set of experiments, |r⊕�r| only

slightly increases; |r ⊕ �r| = 110%|r| when |�r| = 30%|r|
and λ = 1

3 . For space limitation, we report the results of batch

methods with |�r| = 10%|r|. This favors batch methods.

We show the number |Σ| of FDs on r. Moreover, we

denote by �Σ the changes from Σ to Σ′. Specifically, �Σ
is computed as (Σ′ \Σ) ∪ (Σ\Σ′), i.e., the FDs that are added

294

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

into or removed from Σ. Intuitively, a large |�Σ| implies more

challenges for the dynamic FD discovery.

(1) We see the following. (a) DHSFD is much faster than

the batch methods on almost all tested data when |�r| =

20%|r|, and still performs better on most tested data even

when |�r| = 30%|r|. (b) DHSFD significantly outperforms

DynFD on almost all tested data. (c) DHSFD performs well

on datasets with a wide range of |R| and |r|, and exhibits very

good efficiency even when |�Σ| is very large.

(2) We compare DHSFD against HyFD in detail. HyFD
significantly outperforms other batch methods on almost all

datasets, which is consistent with the results reported in [25],

[34]. However, we see running HyFD on some datasets with

large |R| and |r| is still very costly, e.g., on Accident and CAB.

This highlights the quest for dynamic FD discoveries.

DHSFD is much faster than HyFD on most datasets. This

happens in datasets with large |R|. For example on CAB, HyFD
takes 6,614 seconds, while DHSFD only takes 1,325 seconds

even when |�r| = 30%|r|. This is also seen in datasets with

large |r|, e.g., FDR and Flights. Note that on instances with

large |r|, the setting of |�r| = 30%|r| implies large updates.

The results show DHSFD well leverages the benefits of the

row-based strategy and dynamic computations, and performs

well on instances that are costly for batch methods.

(3) We compare DHSFD against DynFD in detail. DynFD
is experimentally found to be much slower than DHSFD and

HyFD, on almost all datasets. DynFD adopts the column-based

strategy, and has to validate all FDs from Σ in response to tuple

insertions. We find the validation step does not scale well on

datasets with large |Σ|. Another reason for the inefficiency

of DynFD is the inherent difficulty in dealing with tuple

deletions. As an example, suppose ABC→D is in Σ. When

tuples are deleted from r, DynFD has to check the validity of

AB→D, AC→D and BC→D; when either of them is valid,

ABC→D is not minimal and should be removed from Σ.

Worse, if AB→D is valid, then A→D and B→D have to be

validated as well. The validations are very expensive since they

have to be conducted on r⊕�r. Although some optimizations

are used in DynFD to improve the efficiency, the performance

necessarily degrades. DynFD outperforms DHSFD only on

Claim. This dataset has small |Σ| and |�Σ|, and in particular,

only tuple insertions are applied to Claim by using λ = 0. This

setting of Claim is similar to that used in [28]. We will further

study the impact of tuple deletions by varying λ in Exp-2.

We find DynFD is suitable to maintain a small set of

FDs in response to updates. In contrast, DHSFD aims to

efficiently perform dynamic FD discovery when batch methods

are expensive, e.g., on the instances with large |R|, |r| and |Σ|.
Exp-2: Scalability of algorithms. In this set of experiments,

we study the scalability of DHSFD and the compared methods

by varying parameters. For space limitation, we report results

on CAB and Pitches; results on other datasets are similar.

(1) We set |r| = 10K,
|�r|
|r| = 20%, |R| = 54 and λ = 1

2 by

default on CAB, and vary one parameter in each experiment.

We omit the results of DynFD if they are more than 5 hours.

Varying |R|. We report results in Figure 3a by varying |R|
from 34 to 54. The time of FD discovery is exponential in

|R| and hence very sensitive to |R|. We see DHSFD scales

better than HyFD. As |R| increases from 34 to 54, the time

of DHSFD increases from 6.7s to 30.1s while that of HyFD
increases from 11s to 89s. DynFD is much slower, and costs

more than 5 hours when |R| = 54.

Varying |�r|. Figure 3b shows results by varying |�r| from

2K to 10K (the ratio of |�r| to |r| increases from 20% to

100%). HyFD is indifferent to |�r|, since |r⊕�r| = |r| when

|�r+| = |�r−| (recall we set λ = 1
2). DHSFD scales very well

with |�r|: the time increases from 30.1s to 127s. DHSFD still

outperforms HyFD even when the ratio of |�r| to |r| is more

than 60% on CAB. DynFD cannot terminate within 5 hours.

Varying |r|. In Figure 3c, we vary |r| from 10K to 14K (|�r|
from 2K to 2.8K). The time of DHSFD increases from 30.1s

to 56s while that of HyFD increases from 89s to 476s. We

find the number of FDs on CAB almost triples (not shown) as

|r| increases from 10K to 14K, which necessarily hinders the

efficiency of HyFD. We see DHSFD is very efficient in coping

with a large number of FDs.

Varying λ. We report results in Figure 3d by varying λ from

0 to 100%. �r contains only tuple insertions (resp. deletions)

if λ = 0 (resp. 100%). As λ increases, |r⊕�r| decreases and

hence the time of HyFD decreases. We see DynFD is very

sensitive to the increase of tuple deletions. The time of DynFD
increases from 2,100s to 7,023s and then grows beyond the

time limit as λ increases. Recall this is because the cost of

DynFD depends on |r| for tuple deletions. In contrast, the

time of DHSFD only increases from 20s to 57s.

(2) We set |r| = 50K,
|�r|
|r| = 20%, |R| = 40 and λ = 1

2 by

default on Pitches, and vary one parameter in each experiment.

Specifically, we vary |R| from 25 to 40 in Figure 3e, |�r|
from 2K to 15K (the ratio of |�r| to |r| from 4% to 30%)

in Figure 3f, |r| from 10K to 50K (|�r| from 2K to 10K) in

Figure 3g, and λ from 0 to 100% in Figure 3h.

The results confirm our observations on CAB and tell us the

following. (a) DHSFD scales better with |R| than HyFD. The

time of DHSFD increases from 9.2s to 45s, while that of HyFD
increases from 4.8s to 82s. (b) DHSFD scales very well with

|�r|. The time increases from 15.2s to 77s, as |�r| increases

from 2K to 15K. (c) As |r| increases, the gap between the

performance of HyFD and that of DHSFD becomes larger.

(d) Compared with DynFD, DHSFD is less sensitive to the

increase of λ. It still beats HyFD even when λ = 100% (�r
consists of only tuple deletions).

Exp-3: Time decomposition. In this set of experiments, we

decompose the time of DHSFD into the times for (a) updating

the difference-set and (b) dynamic HS enumeration.

(1) We use CAB in Figure 3i, in the same setting as Figure 3c.

The time for dynamic HS enumeration governs the overall

time, due to the huge number of FDs on CAB (recall Table V).

The increase of |r| incurs more growth in the time of dynamic

HS enumeration than that of updating the difference-set. This

is because the number of FDs on CAB almost triples as |r|

295

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

 1

 10

 100

 1000

 10000

 34 38 42 46 50 54

T
im

e(
se

c)

Number |R| of attributes

DHSFD
HyFD

DynFD

(a) CAB: varying |R|

 0

 30

 60

 90

 120

 150

2 4 6 8 10

T
im

e(
se

c)

Number |Δr| of updates (K)

DHSFD
HyFD

(b) CAB: varying |Δr|

 0

 100

 200

 300

 400

 500

10 11 12 13 14

T
im

e(
se

c)

Number |r| of tuples (K)

DHSFD
HyFD

(c) CAB: varying |r|

 10

 100

 1000

 10000

 0 25 50 75 100

T
im

e(
se

c)

Ratio λ (%)

DHSFD
HyFD

DynFD

(d) CAB: varying λ

 0

 25

 50

 75

 100

 25 28 31 34 37 40

T
im

e(
se

c)

Number |R| of attributes

DHSFD
HyFD

(e) Pitches: varying |R|

 0

 20

 40

 60

 80

 100

2 4 6 8 10 15

T
im

e(
se

c)

Number |Δr| of updates (K)

DHSFD
HyFD

(f) Pitches: varying |Δr|

 0

 20

 40

 60

 80

 100

10 20 30 40 50

T
im

e(
se

c)

Number |r| of tuples (K)

DHSFD
HyFD

(g) Pitches: varying |r|

 10

 100

 1000

 10000

 100000

 0 25 50 75 100

T
im

e(
se

c)

Ratio λ (%)

DHSFD
HyFD

DynFD

(h) Pitches: varying λ

 0

 15

 30

 45

 60

10 11 12 13 14

T
im

e(
se

c)

Number |r| of tuples (K)

difference-set
HS enumeration

(i) CAB: varying |r|

 0

 10

 20

 30

 40

 50

0 25 50 75 100

T
im

e(
se

c)

Ratio λ (%)

difference-set
HS enumeration

(j) Pitches: varying λ

 0

 300

 600

 900

 1200

 1500

1 2 3 6 12

T
im

e(
se

c)

Size of Δr (K)

CAB
Pitches
Flights

Accident

(k) Varying |�ri|

 0
 50

 100
 150
 200
 250
 300

 1 2 3 4 5 6

T
im

e(
se

c)

Round

CAB
Pitches
Flights

Accident

(l) Multiple rounds

Fig. 3. DHSFD against DynFD and HyFD

increases. Nevertheless, the dynamic HS enumeration method

scales very well with the number of FDs.

(2) We report the results on Pitches in Figure 3j, in the same

setting as Figure 3h. As λ increases, �r contains more tuple

deletions. We see the dynamic HS enumeration part takes more

time, since it is necessarily more costly to handle deletions

than insertions. In contrast, the time of updating the difference-

set slightly decreases, since the sizes of the difference-set and

Plis become smaller with more tuple deletions.

Exp-4: A series of updates. In this set of experiments, we

employ DHSFD to handle a series of updates. There is no need

to rebuild the auxiliary structures in this process, since they are

maintained when updating the difference-set and performing

dynamic HS enumeration. We handle �r as a series of updates

(�r = �r1∪ . . .∪�rk), where �ri (i ∈ [1, k]) is of the same

size. We set �r = 12K, λ = 1
3 , and report the experimental

results on datasets with large |R| and |r| from Table V.

(1) In Figure 3k, we vary |�ri| from 1K to 12K, and report

the total time for applying all �ri. Note that a single set of

updates is applied to r if |�ri| = 12K, while 12 sets of updates

are applied one by one if |�ri| = 1K. On tested datasets, the

times for handling the series of updates decrease by 20%-70%

as |�ri| increases. This is mainly because the total time for

HS enumeration decreases due to fewer rounds of requests.

(2) We fix |�ri| = 2K in Figure 3l, and show the times for

applying �r1 to r, �r2 to r⊕�r1, etc. The time for different

�ri varies on a dataset. We find the reason is that different

�ri causes (significantly) different changes in the FD set.

Exp-5: Auxiliary structures. In Table VI, we present details

of the auxiliary structures. For reference, we provide |R|, |Σ|
and the memory footprint (Data) of each dataset. We show the

auxiliary structures of each dataset r: (a) the memory footprint

of Plis, (b) the number |Dr| of difference-sets of tuple pair

in Dr, and (c) the number |Fmin| of hyperedges in Fmin.

Herein, Fmin is the accumulated result by treating DA
r as

hypergraph F for every A ∈ R. Each difference-set of tuple

pair in Dr (each hyperedge in Fmin) is encoded in |R| bits,

where each bit denotes whether an attribute from R exists

in the difference-set or not. For example, the Dr of Census

is the largest in Table VI, and needs less than 80M (bytes).

The actual memory usage is a little larger, due to necessary

overhead of the implementation.

We see the following. (a) Plis costs less memory than the

original dataset (Data), since only tuple ids are stored in Plis.
(b) |Dr| differs significantly on different datasets, and is much

smaller than the upper bound of 2|R| on all tested data. A

large |R| does not necessarily lead to a large |Dr|, since |Dr|
also depends on the data distributions. (c) |Fmin| is usually

much smaller than |Dr|. This favors dynamic HS enumeration

methods. Recall that Algorithm Insert leverages Fmin but does

not need F , and that Algorithm Delete is guided by the set

of vertices contained in hyperedges from �F−
min.

We compare DHSFD against HyFD and DynFD in terms

of the memory usage. (a) On each tested dataset, we see the

296

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
AUXILIARY STRUCTURES ON DIFFERENT DATASETS

Dataset Properties Auxiliary Structures

DataSet |R| |Σ| Data Plis |Dr| |Fmin|
Balance 5 1 46.4K 15.6K 19 14

Iris 5 4 188.8K 58.1K 30 20

Claim 11 12 13.1M 6.2M 511 19

Letter 17 61 17.8M 6.7M 110,389 329

Bridges 13 142 76.4K 33.8K 482 96

Echo 13 527 93.5K 50K 185 204

NCV 19 758 913.6K 785.6K 1,483 330

Hepa 20 8,250 164.2K 52.3K 1,185 630

FDR 30 89,751 409.5M 177M 348 6,391

Census 42 103,999 159.3M 44.6M 14,177,591 1,648

Flights 31 117,367 340.4M 157.1M 88,374 14,947

Horse 28 128,726 439.8K 176.3K 15,909 10,227

Plista 63 173,409 2.4M 1.4M 57,578 14,109

Accident 47 196,455 749.7M 445.9M 10,778,684 16,040

HAEM 34 272,138 118.6M 11.2M 340,554 14,658

Pitches 40 608,928 501.1M 208.8M 179,993 150,693

CAB 54 3,353,531 184.1M 77.5M 2,844,553 57,794

total memory of auxiliary structures is less than or similar to

Data. This implies that DHSFD does not incur extra memory

cost; the datasets are needed by HyFD but only used in the pre-

processing step of DHSFD. (b) DHSFD additionally needs Dr

and Fmin, compared with DynFD. Fmin facilitates dynamic

HS enumeration and always incurs small memory footprint.

Dr is necessary for the dynamic row-based approach. It

brings much better performance than DynFD with reasonable

memory usage, as shown in the experiments.

|Dr| and |Fmin| provide valuable hints on the advantage

of the row-based dynamic FD discovery method against batch

methods, which helps us analyze the experimental results in

Table V. (a) The largest |Fmin| is seen on Pitches, which

negatively affects dynamic HS enumerations. (b) A large |Dr|
is found on Accident. Updates to Accident with the same value

distributions are very likely to incur large changes to Dr, and

in practice each operation on a large Dr may become costly.

(c) Census has the largest |Dr|, but its |Fmin| is very small.

The dynamic HS enumerations on Census can be very efficient,

which partly balances the cost of updating Dr.

C. Experimental results of dynamic HS enumeration

We experimentally verify the benefit of dynamic HS enu-

meration, using datasets with large |Dr| from Table VI.

On each dataset r, the time of MMCS (resp. dynamic HS

enumeration) is the sum of the times of MMCS (resp. dynamic

HS enumeration) on every DA
r for A ∈ R. For dynamic HS

enumeration of F , the only auxiliary structure we use is Fmin.

Exp-6: Dynamic HS enumeration against MMCS. To ana-

lyze the performance in detail, we compare Insert and Delete
against MMCS, respectively. We set �F = �F+ (resp.

�F−) for Insert (resp. Delete), adjust the ratio
|�F|
|F| in the

experiments, and report the speedup ratio, i.e., the ratio of

the time of MMCS to that of Insert (or Delete). In Figure 4,

1
3
5
7

 10 20 30 40 50 60 70 80 90 100

sp
ee

du
p

ra
tio

insert ratio (%)

1
2
3
4
5

 5 10 15 20 25 30 35 40 45 50 55 60

sp
ee

du
p

ra
tio

delete ratio (%)

Heam
CAB

Letter
Pitches

Census
Accident

Flights

Fig. 4. Dynamic HS enumeration against MMCS (varying |�F| to |F|)

we show the results of each dataset until the speedup ratio is

smaller than 1, i.e., Insert (Delete) is slower than MMCS.

(1) We first compare Insert against MMCS. Insert is much

more efficient than MMCS. For example, Insert is almost

up to 7 times faster than MMCS on Census when |�F| =

10%|F|, and about 3 times faster than MMCS on Accident

when |�F| is up to 50%|F|. The results also show that Insert
still outperforms MMCS on all tested data, when |�F| = |F|.
(2) We then compare Delete against MMCS. It is more

challenging to handle hyperedge deletions than insertions in

dynamic HS enumeration, and the time of MMCS decreases

with more hyperedge deletions. We see the advantage of

Delete varies on different datasets. For example, Delete out-

performs MMCS, when |�F| is up to 60% of |F| on HAEM

and up to 15% of |F| on Flights. The results show that Delete
is on average 2.46 (resp. 1.73) times faster than MMCS when

|�F| = 10%|F| (resp. 15%|F|).

VIII. CONCLUSION

We have studied the problem of dynamic FD discovery, by

recasting it as dynamic HS enumeration of the difference-set.

We have presented methods to update the difference-set, and

techniques for dynamic HS enumeration. We have conducted

experiments to verify the effectiveness and scalability of our

dynamic FD discovery and HS enumeration methods.

We intend to explore the possibility of combining our ap-

proach with transaction or streaming data processing systems

to continuously monitor and maintain FDs, and conduct more

studies to verify the effectiveness of dynamic HS enumeration

methods on datasets from, e.g., AI and semantic web.

ACKNOWLEDGMENTS

This work is supported by National Key R&D Program of

China 2018YFB1700403, 2018YFB1403200 and NSFC 62172102,

61572135, 61925203.

We are really grateful to anonymous reviewers for their

valuable comments and suggestions.

297

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling
relational data: a survey. VLDB J., 24(4):557–581, 2015.

[2] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Pa-
penbrock. Data Profiling. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2018.

[3] Ziawasch Abedjan, Jorge-Arnulfo Quiané-Ruiz, and Felix Naumann.
Detecting unique column combinations on dynamic data. In ICDE,
pages 1036–1047, 2014.

[4] Ziawasch Abedjan, Patrick Schulze, and Felix Naumann. DFD: efficient
functional dependency discovery. In CIKM, pages 949–958, 2014.

[5] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[6] Johann Birnick, Thomas Bläsius, Tobias Friedrich, Felix Naumann,
Thorsten Papenbrock, and Martin Schirneck. Hitting set enumeration
with partial information for unique column combination discovery. Proc.
VLDB Endow., 13(11):2270–2283, 2020.

[7] Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and Giuseppe
Polese. Incremental discovery of functional dependencies with a bit-
vector algorithm. In SEBD, 2019.

[8] Qi Cheng, Jarek Gryz, Fred Koo, T. Y. Cliff Leung, Linqi Liu, Xiaoyan
Qian, and K. Bernhard Schiefer. Implementation of two semantic query
optimization techniques in DB2 universal database. In VLDB, pages
687–698, 1999.

[9] Wenfei Fan and Floris Geerts. Foundations of Data Quality Manage-
ment. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2012.

[10] Andrew Gainer-Dewar and Paola Vera-Licona. The minimal hitting
set generation problem: Algorithms and computation. SIAM J. Discret.
Math., 31(1):63–100, 2017.

[11] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen.
TANE: an efficient algorithm for discovering functional and approximate
dependencies. Comput. J., 42(2):100–111, 1999.

[12] Ihab F. Ilyas and Xu Chu. Data Cleaning. ACM, 2019.
[13] Jyrki Kivinen and Heikki Mannila. Approximate dependency inference

from relations. In ICDT, pages 86–98, 1992.
[14] Sebastian Kruse and Felix Naumann. Efficient discovery of approximate

dependencies. PVLDB, 11(7):759–772, 2018.
[15] Li Lin and Yunfei Jiang. The computation of hitting sets: Review and

new algorithms. Inf. Process. Lett., 86(4):177–184, 2003.
[16] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld.

Approximate denial constraints. PVLDB, 13(10):1682–1695, 2020.
[17] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery

of functional dependencies and armstrong relations. In EDBT, pages
350–364, 2000.

[18] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. Discovering
reliable approximate functional dependencies. In SIGKDD, 2017.

[19] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. Discovering
reliable dependencies from data: Hardness and improved algorithms.
In ICDM, 2018.

[20] Panagiotis Mandros, David Kaltenpoth, Mario Boley, and Jilles Vreeken.
Discovering functional dependencies from mixed-type data. In SIGKDD,
2020.

[21] Heikki Mannila and Kari-Jouko Räihä. Dependency inference. In VLDB,
pages 155–158, 1987.

[22] Heikki Mannila and Kari-Jouko Räihä. Algorithms for inferring func-
tional dependencies from relations. Data Knowl. Eng., 12(1):83–99,
1994.

[23] Keisuke Murakami and Takeaki Uno. Efficient algorithms for dualizing
large-scale hypergraphs. Discret. Appl. Math., 170:83–94, 2014.

[24] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert,
Jan-Peer Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Nau-
mann. Functional dependency discovery: An experimental evaluation of
seven algorithms. PVLDB, 8(10):1082–1093, 2015.

[25] Thorsten Papenbrock and Felix Naumann. A hybrid approach to
functional dependency discovery. In SIGMOD, pages 821–833, 2016.

[26] Thorsten Papenbrock and Felix Naumann. Data-driven schema normal-
ization. In EDBT, pages 342–353, 2017.

[27] Frédéric Pennerath, Panagiotis Mandros, and Jilles Vreeken. Discovering
approximate functional dependencies using smoothed mutual informa-
tion. In SIGKDD, 2020.

[28] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Nau-
mann, Dennis Hempfing, Torben Mayer, and Daniel Neuschäfer-Rube.
Dynfd: Functional dependency discovery in dynamic datasets. In EDBT,
pages 253–264, 2019.

[29] Nuhad Shaabani and Christoph Meinel. Incrementally updating unary
inclusion dependencies in dynamic data. Distributed Parallel Databases,
37(1):133–176, 2019.

[30] David E. Simmen, Eugene J. Shekita, and Timothy Malkemus. Funda-
mental techniques for order optimization. In SIGMOD, pages 57–67,
1996.

[31] Shaoxu Song, Fei Gao, Ruihong Huang, and Chaokun Wang. Data
dependencies extended for variety and veracity: A family tree.
IEEE Trans. Knowl. Data Eng. Accepted for publication. doi:
10.1109/TKDE.2020.3046443.

[32] Zijing Tan, Ai Ran, Shuai Ma, and Sheng Qin. Fast incremental
discovery of pointwise order dependencies. PVLDB, 13(10):1669–1681,
2020.

[33] Ziheng Wei, Sven Hartmann, and Sebastian Link. Discovery algorithms
for embedded functional dependencies. In SIGMOD, pages 833–843,
2020.

[34] Ziheng Wei and Sebastian Link. Discovery and ranking of functional
dependencies. In ICDE, pages 1526–1537, 2019.

[35] Ziheng Wei and Sebastian Link. Embedded functional dependencies and
data-completeness tailored database design. ACM Trans. Database Syst.,
46(2):7:1–7:46, 2021.

[36] Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. Fastfds:
A heuristic-driven, depth-first algorithm for mining functional dependen-
cies from relation instances. In DaWaK, 2001.

[37] Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. A statistical
perspective on discovering functional dependencies in noisy data. In
SIGMOD, 2020.

298

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 06,2022 at 02:09:19 UTC from IEEE Xplore. Restrictions apply.

