
On Anomalous Hotspot Discovery in Graph Streams

Weiren Yu

SKLSDE Lab
Beihang University, China
yuweiren@act.buaa.edu.cn

Charu C. Aggarwal

IBM Research
Yorktown, NY, USA
charu@us.ibm.com

Shuai Ma

SKLSDE Lab
Beihang University, China

mashuai@buaa.edu.cn

Haixun Wang

Google Research
California, USA

haixun@google.com

Abstract—Network streams have become ubiquitous in re-
cent years because of many dynamic applications. Such streams
may show localized regions of activity and evolution because
of anomalous events. This paper will present methods for
dynamically determining anomalous hot spots from network
streams. These are localized regions of sudden activity or
change in the underlying network. We will design a lo-
calized principal component analysis algorithm, which can
continuously maintain the information about the changes in
the different neighborhoods of the network. We will use a
fast incremental eigenvector update algorithm based on von
Mises iterations in a lazy way in order to efficiently maintain
local correlation information. This is used to discover local
change hotspots in dynamic streams. We will finally present
an experimental study to demonstrate the effectiveness and
efficiency of our approach.

Keywords-graph streams; anomaly detection

I. INTRODUCTION

Network streams have become very popular in recent

years because of an increasing number of domains in social

and communication network analysis which continuously

generate data about interactions between network partic-

ipants. In such cases, it may be desirable to determine

anomalous hot spots, which show abrupt changes both in

the magnitudes and patterns of interaction. Such hotspots

are often indicative of critical events in the network. This

problem is related to that of abrupt or surprising change
detection, which has been studied in more conventional time-

series settings [1], [4], [11].

Anomalous events may arise in a graph stream in two

different ways. In the first kind, significant changes in the

magnitudes of the interaction may occur in the neighborhood

of a node in the network. For example, unusual events in the

neighborhood of a node in the network may lead to sudden

and abrupt changes in the frequency of activity levels of

the edges. In the second kind, anomalous events may also

cause sudden changes in the structural edge patterns at a

particular node. Specifically, the correlations between the

nodes, as measured by the edges between the different nodes

in the network, may change significantly. For example, in

a bibliographic network, the sudden movement of a faculty

member from one university to another may affect local edge

correlation patterns. Both these different types of changes

may provide valuable insights about the anomalies in the

underlying network, and the precise importance of each is

application-dependent.

We will see that a localized principal component analysis

(PCA) of the edge correlation structure can be very useful

from an analytical perspective. Changes in the dominant

(local) eigenvectors provide useful information on the local

edge correlation patterns, whereas changes in the (local)

eigenvalues provide insights on changes in absolute levels of

activity. Of course, a major challenge is that such analytics

are traditionally considered too computationally intensive to

be applied in an online setting. In this paper, we will use an

approach that performs the updates minimally as required.

Further, since the changes in eigenvectors are significant

only for outliers (which by definition are rare), we can reuse

the results from previous time periods to efficiently update

most of these values incrementally in a stream setting.

Another challenge is that changes could occur over differ-

ent horizons in time. In some cases, significant anomalies

can only be detected over a long period in time, whereas

in other cases, they may be detected over a short period of

time. There is typically no “optimal” temporal granularity at

which the analysis needs to be performed. Hence, we will

design an approach that can analyze streams automatically

at multiple levels of temporal granularity in an efficient

way. Such an analysis can be used to provide simultaneous
insights over short, medium and long-term horizons.

Related work. The problem of change detection [1], [4],

[11] has been studied widely in the literature. Most of the

well known work on change detection in graphs measures

similarities between successive graph snapshots [7] or uses

matching [8] between successive snapshots for anomaly

detection [8]. The work in [5] uses spectral methods in

order to determine anomalies in time-series of graphs.

Summarization-oriented methods for anomaly detection in

bipartite graphs are presented in [9], [10]. The problem of

anomalous temporal changes in graphs is addressed in [6].

These methods are designed for snapshots of graphs (rather

than streams), and are not specifically designed for the

problem of hotspot discovery. The works in [2], [3], [12] are

designed for various mining applications in graph streams,

but are not designed for node-centric hotspot discovery.

II. ANOMALOUS HOT SPOT DETECTION: THE MODEL

We assume that we have a network stream, which is

defined by a continuously arriving sequence of edges. Since

some edges may contain new nodes, the set of nodes also

changes over time, though much more slowly. Therefore,

the network stream implicitly defines a temporal network

G(t) = (N(t), A(t)), where N(t) and A(t) are the nodes

and edges in the network at time t. We note that N(t) is the

set of all distinct nodes in the stream at time t, and A(t) is

a sequence of edges corresponding to all edges received so

far. This sequence of edges may possibly contain repetitions,

since the same edge may be received multiple times in the

network stream. It is assumed that the set A(t) contains

the edge (i, j) a total of nt
ij times. A(t) also contains the

explicit time-stamps at which the edges were received, since

it is maintained as a sequence. Therefore, we assume that

the time stamps at which the edge (i, j) is received in A(t)
are denoted by T (i, j, 1) . . . T (i, j, nt

ij). Since the graph is

assumed to be undirected, the value of T (i, j, r) is the same

as T (j, i, r).

The period over which trends change is often unknown

in advance. For example, in a network intrusion detection

application, if a sudden attack occurs in the locality of

a node, a smaller period is more appropriate. This is

clearly application-specific. Therefore, we will design multi-

granularity methods which can automatically detect the most

relevant periods over which the changes occur in the graph

stream. For simplicity, we will first use a fixed period for

analysis, and later incorporate multi-granularity.

We note that the relative edge frequencies of the different

edges will stabilize over a long period of time (and will

not show much relative change in the presence of unusual

events), unless the frequencies of the edges are counted by

providing greater importance to recent edges. In order to

model the temporal aspect of edge frequencies, we assume

a decay factor λ associated with each edge. This weight

regulates the rate at which the importance of an edge decays

over time. We will discuss later, how multiple values of λ
are picked in the context of a multi-granularity approach.

We define the weight of an edge as follows:

Definition 1: At current time t, the weight of an edge,

which arrived at time ts, is given by 2−λ·(t−ts). The half-

life of the edge is 1/λ, since its weight reduces by a factor

of 2 in that period.

Because of the use of decay weighting, the correlations

between the nodes in the network structure will change

significantly, as the network evolves over time. Of course,

since the sequence A(t) contains multiple occurrences of

the edge (i, j) at time t, we need to define the weighted

frequency F (i, j, t).

Definition 2: The weighted frequency F (i, j, t) of

an edge (i, j), which has arrived at multiple times

T (i, j, 1) . . . T (i, j, nt
ij) is defined as the sum of its decay

weighted frequencies over all instances of its arrival.

Therefore, we have:

F (i, j, t) =

nt
ij∑

k=1

2−λ·(t−T (i,j,k)) (1)

Since the network is assumed to be undirected, the value of

F (i, j, t) is the same as F (j, i, t). The sudden changes in this

frequency can be very useful in determining the anomalies

from the underlying stream. An immediate consequence

of this way of defining exponential decay for F (i, j, t),
is that it is bounded above by 1/(1 − 2−λ), as long as

each edge is received at most once in a time-stamp. This

follows immediately from the bound on the geometric series∑∞
t=0 2

−λ·t.
Observation 1: The frequency F (i, j, t) is bounded above

by 1/(1− 2−λ).
We note that the value of the frequency is often dominated

by the relative recency of arrivals. Therefore, in hotspots

of suddenly increasing activity, the corresponding edges

may show high frequency. On the other hand, a sudden

unexpected decrease in the activity will also show up as

a reduction in the underlying frequencies.

At time t, we define the locality S(i, t) of the node i as

the nodes which are directly connected to node i with an

edge. Since most networks are sparse, the value of S(i, t)
is typically much smaller than the number of nodes in the

network. For example, in a bibliographic network such as

DBLP, the number of nodes may be of the order of a

million, whereas the average degree of a node is less than

20. Therefore, these sets are fairly compact, and can be

analyzed easily in practice. However, the value of S(i, t) will

change over time, as new edges are added to the network.

We assume that the index of the nodes in S(i, t) are denoted

by {ji1(t) . . . ji|S(i,t)|}.

Next, we will define methods for computing the temporal

correlations between edges in the network stream. This is

quite tricky, because the edges in the stream may not appear

at exactly the same time, and yet we would somehow like

to capture the temporal correlation between them. It turns

out that the decay weighting provides a powerful way of

computing the correlations, at a level of granularity which

is regulated by the decay rate. For a pair of edges (i, j) and

(k, l), the correlations between the decay weighted frequen-

cies provide an interesting way to measure the correlations

between the attributes.

Definition 3 (Decay-based Frequency Product): The

decay-based frequency product P (e1, e2) of a pair of edges

e1 = (i, j) and e2 = (k, l) at time t is defined as the

sum of the pairwise products of the aggregate frequencies

associated with the edges at each time stamp.

P (e1, e2) =
t∑

r=1

F (i, j, r) · F (k, l, r) · 2−2·λ·(t−r) (2)

We note that P (e1, e2) = P (e2, e1). Furthermore, P (e1, e1)
is defined by matching each edge with itself. Intuitively,

the additional decay term is added to account for a lower

importance to the older frequencies F (i, j, r). The decay-

based frequency product captures the correlations between

edges very well (relative to the individual edge frequencies).

This is because when the edges arrive together, this product

is usually much higher than if the edges arrive individually.

The decay-based frequency product can be used in order to

define a decay-based frequency matrix as follows:

Definition 4 (Decay-based Product Matrix): The decay-

based product matrix at a node i is the |S(i, t)| × |S(i, t)|
matrix M(i, t), in which each row or column k corresponds

to a node jik(t) in the locality of i. The value of the (k, l)th
entry is equal to the value of the decay-based frequency

product between (i, jik(t)) and (i, jil (t)).
An immediate observation is that the decay-based product

matrix is positive semi-definite.

Lemma 1: The decay-based product matrix M(i, t) is

positive semi-definite.

Proof: Omitted.

Since the matrix M(i, t) represents the correlation struc-

ture of the locality of a given node, its largest eigenvectors

and eigenvalues provide key insights about the underlying

edge-correlation dynamics. We define the characteristic vec-

tor and value of the locality of the node i as follows:

Definition 5 (Characteristic Vector/Value): The

characteristic vector W (i, t) of node i is the unit

eigenvector of its decay-based product matrix M(i, t), which

corresponds to the largest eigenvalue. The characteristic

value is equal to the largest eigenvalue α(i, t).
What is the significance of the characteristic vector and the

characteristic value? The characteristic vector contains one

coefficient for each node adjacent to i. This is a summary

representation of the correlations of the edges incident on

i. If the coefficients for two nodes j and k are both of

the same sign, it implies that the edges (i, j) and (i, k)
are positively correlated in their arrival times. Once the

characteristic vector has been defined, it can be used in

order to define the changes both in terms of correlations

and absolute values.

Definition 6 (Activity Correlation Change): The activity

correlation change C(t1, t2) at node i between t1 and t2
is defined as 1−W (i, t1) ·W (i, t2).
We note that since the characteristic vector is normalized

to be a unit vector, the dot product between the vectors at

times t1 and t2 is less than 1. When the two vectors are

identical, the dot product is 1, and therefore the change is

0. On the other hand, when the two vectors are orthogonal,

this corresponds to the greatest change, and the change value

is 1. Typically, such a measurement is likely to be most

informative, when the time period (t1, t2) is chosen to have

a span which is dependent on the half-life of the data points

for the corresponding decay parameter. The corresponding

half-life activity correlation change at level λ and time t, is

defined as the change between the current time t and that

at a time t− 1/λ. We note that 1/λ is the half-life span of

the data point. Therefore, we have:

Definition 7 (Half-life Correlation Change): The half-

life correlation change HC(i, t, λ) for node i at decay level

λ and time t is the change occurring over a half-life period

of a data point, and is equal to C(i, t− 1/λ, t).
The afore-mentioned quantity measures the changes in the

correlations. It is also possible to measures the absolute

changes in the dominant trend, by examining the largest

eigenvalue. Correspondingly, the magnitude change is de-

fined as the absolute change in the characteristic value.

Definition 8 (Activity Magnitude Change): The activity

magnitude change between t1 and t2 for node i is denoted

by γ(i, t1, t2), and is equal to α(i, t2)− α(i, t1).
High positive values correspond to a substantial increase

in activity between t1 and t2, and high negative values

correspond to a substantial decrease in the activity level.

We define the half-life magnitude change in a similar way.

Definition 9 (Half-life Magnitude Change): The half-life

magnitude change HA(i, t, λ) for node i at decay level λ
and time t is the change occurring over a half-life period of

a data point, and is equal to γ(i, t− 1/λ, t).
Thus, by measuring the change over the half life of the decay

parameter λ, it is possible to obtain a good estimate of the

level of change occurring within the window. On the other

hand, windows much smaller or much larger than the half-

life will lose their ability to provide an effective analysis.

Thus, the value of λ provides the level of granularity of the

analysis. In the next section, we will discuss the efficient

implementation of a multi-granularity approach.

III. EFFICIENT ALGORITHMS FOR CHANGE

MONITORING

In this section, we will study efficient algorithms for

change monitoring in network streams. A number of com-

putational and effectiveness challenges arise in this context.

• The determination of principal components need to be

locally performed over all nodes in the network. While

each local matrix is relatively small, and dependent

only on the node-degree, this can be a problem for a

large network containing many nodes, especially since

eigenvector computation is expensive.

• A decay-based approach ensures that the relative fre-

quencies change at each time-stamp. This implies that

all matrices, eigenvectors, and eigenvalues need to be

updated at each time-stamp. In a fast stream setting,

this can clearly be impractical.

• The anomalous trends may show up over different time-

horizons. If the half-life of the analysis is chosen to be

too short, it will result in highly changing set of charac-

teristic vectors. On the other hand, if the half-life of the

analysis is chosen too long, the characteristic vectors

will be too stable. In other words, multi-granularity
analysis needs to be performed in an efficient way.

In order to analyze the nature of the variations in the

patterns, we will examine the case where a single edge (k, l)
is added to the network at current time t. Let us also assume

that the previous edge added to the network was at time

t′ < t. It is evident that the changes to the eigenvectors

and eigenvalues of the different nodes are impacted by a
combination of decay-based activity and the addition of the
new edge. As long as t′ < t, it is certain that every tracked

quantity M(i, t) and F (i, j, t) has changed for each node

and edge. The number of entries for these variables alone is

greater than the number of edges in the network. Therefore,

it would seem, at least at first sight, that even the update

process in a fast network stream is likely to be intractable

from a computational perspective.

However, it turns out that many of the temporal updates

at nodes can be performed in a lazy fashion, and maintained

implicitly, as long as there are no changes in the locality of

the node because of arrivals of edges.

Observation 2: As long as there are no new arrivals of

the edge (i, j) in (t′, t), we have F (i, j, t) = F (i, j, t′) ·
2−λ·(t−t′).

The correctness of this observation follows almost imme-

diately from how F (i, j, t) is defined. The behavior of

the decay-matrix is slightly more involved. By combining

the definition of each entry of M(i, t) in Equation 2, and

Observation 2, the following may be obtained:

Lemma 2: As long as there are no arrival of edges in-

cident on node i in (t′, t), the (k, l)th entry of the matrix

M(i, t) can be expressed completely in terms of the corre-

sponding quantities at t′ as follows:

[M(i, t)]kl = [M(i, t′)]kl · 2−2λ·(t−t′) +

+(t− t′) · 2−2·λ·(t−t′) · F (i, jik(t
′), t′) · F (i, jil (t

′), t′)
Thus, the updates to these quantities are expressed purely

as a function of the values of the quantities at t′, and the
value of (t − t′). Therefore, as long as we know the last

time-stamp t′ at which the matrix was updated together

with the corresponding values of F (·) and M(·), we do not

need to explicitly update its values. This saves a tremendous

computational burden, especially when updates to specific

nodes are much more rare than a single node.

Four pieces of information was maintained for each node

i. Specifically, the information maintained are (i) the locality

set S(i, t), (ii) the last time stamp L(i) at which an edge

was received incident at node i, (iii) the values of the decay

matrix M(i, L(i)), and (iv) the value of F (i, j, L(i)) for

each edge (i, j) incident at node i.
Note that if di be the degree of node i, then the bottleneck

space requirement here is given by d2i for the decay based

product matrix. Therefore, the total space requirement of

this maintenance is given by the sum of the squares of the

degrees of the nodes in the network. Since real matrices are

quite sparse, the total space requirement of this approach

may be quite modest. Furthermore, because of the power-law

property of networks, most of the space requirements will

be consumed by a small number of nodes with high-degree.

If desired, the statistics of such nodes can be maintained on

disk, and most of the other nodes can be maintained in main

memory. Thus, the approach may require occasional updates

to disk, but most of the relevant updates will be performed

in main memory. This can work effectively in the streaming

scenario.
Updates to the afore-mentioned statistics are performed

only when new edges arrive. An immediate observation is

the following, which follows directly from Lemma 2:
Observation 3: When edge (i, j) arrives, the summary

statistics of only nodes i and j need to be updated.
The actual update process first uses the results of Observa-

tion 2 and Lemma 2 in order to make the statistics current

till time t from a decay perspective. Then, the effect of

the arrival of the new edge is incorporated into F (·) by

a simple additive operation of adding 1. At that point, the

corresponding change in the entries of M(·) because of

the change in F (·) is computed and added to the relevant

entries of the decay matrix. If desired, it is also possible

to re-compute the statistics of nodes at which no new edge

has been incident for a long time, in order to be able to

estimate significant changes arising out of unusual inactivity.

However, since such nodes are relatively easy to identify,

our focus will be on the more complex case, where we

wish to identify anomalous nodes because of large activity
or changes in activity patterns.

A. Computing Anomalous Changes
A variety of options are available for computing anoma-

lous changes, depending on whether online or offline anal-

ysis is desired. If all nodes need to be tracked at the same

time, it is advisable to periodically store all the statistics for

offline analysis. However, if only a subset of the nodes need

to be tracked, online analysis is much more simpler.
For online monitoring, we maintain the time-series values

of HA(i, t, λ) and HC(i, t, λ) continuously over time. A

variety of auto-regressive models may be maintained in order

to compute the unusual deviations among these values. How-

ever, in the streaming scenario, we choose a much simpler

solution in which the mean and standard deviations of these

values are maintained continuously over time. Specifically,

the square sum of these values, sum of these values and the

number of values are continuously maintained. This is easy

to do in a data stream. The mean and standard deviations

can be easily computed from these values. For example,

let μA(i, t, λ) and σA(i, t, λ) be the mean and standard

deviation of HA(i, t, λ). Then, the Z-number of the quantity

can be computed as follows:

ZV alue =
HA(i, t, λ)− μA(i, t, λ)

σA(i, t, λ)
(3)

When the value of this deviation is larger than 3, it is flagged

as an anomaly.

If desired, this approach can also be used for more detailed

offline analysis by dumping all the frequencies and decay-

based matrices to disk. In order to compute the anomalous

changes, we always dump all the statistics to disk, when

the time-stamp is divisible by 1/λ. Recall that the half-life

represents the level of granularity at which the analysis is

performed. Depending upon the space availability, either all

the dumped statistics may be maintained, or only the last k
dumps may be maintained.

B. Multi-Granularity Analysis

The previous section assumes that a particular value of

λ is used for analytical purposes. However, in practice,

the value of λ may not be known in advance. The value

of λ really depends upon the expected time periods over

which the significant changes in the network structure are

expected. For example, in a DBLP network, this value

could range anywhere between 2 and 20 years, and in a

social network, this value may range from a month to a

year. However, for a given application, it is reasonable to

assume that an approximate idea of the approximate ranges
in which the changes could occur are known. Therefore,

we assume that these minimum and maximum ranges are

denoted by tmin and tmax respectively. Correspondingly, we

choose the minimum and maximum half lives of the decay-

based approach to tmin and tmax respectively. Therefore,

we have λmin = 1/tmax, and λmax = 1/tmin. We choose

log2(λmax/λmin) different values of λ denoted by λmax,

λmax/2, λmax/4 and so on, till the value falls below λmin.

For each of these logarithmic values the model is main-

tained, and the change values are independently monitored.

Note that smaller values of λ require disk statistic dumps

which are much more infrequent. In fact, since the storage

requirement of a successively smaller value of λ requires

at most half as much space, the total storage requirement

is dominated by that required by the case for the largest

value of λ. Furthermore, the change values are reported

more infrequently for smaller values of λ. In this multi-

granularity approach a change is reported to be significant,

if it is found by any of the detectors for different values of λ.

This approach increases the performance and main memory

requirements by a factor of at most log2(λmax/λmin). In

many applications, this may be a small number, e.g., 3 or 4.

IV. EXPERIMENTAL STUDY

In this section, we will present an experimental study of

our HOTSPOT framework on real data sets.

A. Experimental Settings

We first introduce the settings of our experimental study.

Data Set. We chose Internet Movie Database (IMDB) to test

our approach. IMDB is an online collection of movie data,

which contains data from 1892 to 2012 from the IMDB

database to generate the graph stream. We selected works

with director and actor information. A piece of work is

considered a graph, director-actor pairs being edges. The

IMDB data set contains a total of 1,008,978 records, and a

graph with 2,214,210 nodes and 13,529,524 edges.

Algorithms and Implementation. HOTSPOT algorithm

was implemented with Microsoft Visual C++. We adopted

Intel Math Kernel Library(Intel MKL) 11.0 update 1

(http://software.intel.com/en-us/intel-mkl) for eigenvalue com-

putation. All experiments were run on a PC with an Intel

Core i5-2400 CPU@3.10GHz and 16GB of memory.

B. Experimental Results
We next present our findings. In the experiments, we used

four half-life values: 1, 2, 4 and 8 years (i.e., λ = 1/1, 1/2,

1/4, and 1/8) to detect anomalous changes. We used all

these half-life values in the multi-granularity analysis.

1. Case Study. A hot spot is essentially a node such that

its interaction with neighbors has significant changes or its

structural edge patterns have a sudden change. We report an

example hot spot discovered by algorithm HOTSPOT, which

provide intuition and insights why it is able to effectively

determine anomalous hot spots.

Hot Spot: David Butler, Director, who was one of the earli-

est movie artists, started his career as an actor in 1910 when

he was 16 and shot his first film as a director in 1927. In

this example, HOTSPOT algorithm found several interesting

turning points and remarkable periods during his career.
(1) When the half-life was set to 1 year, David Butler was

detected as a hot spot in years 1929, 1934, 1943, 1949, 1956

and 1962. We next give an analysis.
For example, year 1929 marked his first success as a

director. In 1927 he started as a director in a movie with

6 of the actors represented in the data. According to IMDB,

the activity level was almost as stable as his actor records

before 1927. In 1928 he directed 3 films with a small crew

of around 5 people, and acted in an additional film. In 1929,

he was again detected as a hot spot for directing 6 films with

many actors, which caused sudden changes of activity levels

and structural edge patterns. In a director-actor relationship,

a director forms edges with all the actors in one movie, while

an actor forms edges with each director only. This typically

results in sudden changes on directors.
(2) When half-life is 2 years, the algorithm tells us an

artist’s take-off period. For David Butler, the detected period

was 1956-1957, 1962-1963, corresponding to the start and

peak of his TV series career. When half-life period is longer

than 1 year, the activity level is balanced within the period.

For example year 1943 was prominent when half-life is 1

year but it was balanced and hence not detected due to

inactivity in 1942 when half-life is 2 years.
(4) When half-life is 4 years, the algorithm tells us an

artist’s peak period of his entire career. For David Butler,

the detected peak period was 1956-1963, which was almost

his entire TV series career. He retired in 1967.

1
2
3
4
5
6
7
8
9

10

1892 1912 1932 1952 1972 1992 2012

Pr
oc

es
s R

at
e

(x
10

4 e
dg

es
/s

ec
.)

Year

All
λ = 1/1
λ = 1/2
λ = 1/4
λ = 1/8

(a) IMDB

1

2

3

4

5

6

7

0 5 10 15 20

R
un

ni
ng

 T
im

e
(x

10
3 se

c.
)

Number of Nodes (x105)

All
λ = 1/1
λ = 1/2
λ = 1/4
λ = 1/8

(b) IMDB

Figure 1: Processing Speed Evaluation

2

4

6

8

10

12

14

16

1892 1912 1932 1952 1972 1992 2012

M
em

or
y

C
os

t (
G

B
)

Year

All
λ = 1/1
λ = 1/2
λ = 1/4
λ = 1/8

(a) IMDB

2
4
6
8

10
12
14
16

0 5 10 15 20

M
em

or
y

C
os

t (
G

B
)

Number of Nodes (x105)

All
λ= 1/1
λ= 1/2
λ= 1/4
λ= 1/8

(b) IMDB

Figure 2: Space Overhead Evaluation

(5) When half-life is 8 years, David Butler was not

detected as a hot spot as this half-life is too large to detect

effective changes due to the change balance.

2. Performance Evaluation. In this section, we report

the performance of HOTSPOT in terms of efficiency. The

results for IMDB are illustrated in Figure 1. Figure 1(a)

shows the processing rate, in terms of the number of edges

that HOTSPOT processed per second, where the X-axis

represents the progression w.r.t years. Figure 1(b) shows

the total processing time, where the X-axis represents the

progression w.r.t the number of nodes.

The processing rate of the HOTSPOT algorithm drops with

the progression of the stream. This is because for any node

i, its locality set S(i, t) grows and the decay-based product

matrix grows larger in scale. As a result, it takes more time

to solve the eigenvalue problem. Moreover, the eigenvalue

computation often took up to 80% of the entire time.

The processing rate fluctuated with the progression of

time. The sudden drops reflect the time when the eigenvalue

computation was performed. The processing time for each

half-life value is different, since for smaller half-life values,

the statistics update is more frequent.

Figure 1 shows that the algorithm has a performance of

980 edges per second for IMDB, which is quite significant

from a practical perspective in many specific applications.

3. Space overhead evaluation. We report the memory cost

of HOTSPOT w.r.t the progression of time and the number

of nodes. The results are illustrated in Figure 2.

Figure 2(a) shows that the usage of memory increases

with the progression of time, and 2(b) shows that the usage

of memory increases with stream length. This is because

the locality set S(i, t) of each node i grows constantly. It

took 16GB from years 1892 to 1995. The memory usage for

distinct half-life values are almost the same since identical

set of information is maintained.

Summary. In summary, we conclude the following.

(1) Algorithm HOTSPOT is effective in finding anomalous

hot spots in graph streams. Sudden structural edge pattern

changes and significant activity level changes are reflected

by changes in the eigenvector system. For small half-life

values, the algorithm detects temporary activity bursts. For

medium half-life values, it detects the activity level incre-

ments during a period. For large half-life values, it could

tell a period of a peak activity level in a long span of time.

(2) Algorithm HOTSPOT is efficient, and can process several

hundred edges per second. Its bottleneck lies in the hardness

of the computation of eigenvalues. The reduction of space

overhead will be addressed by our future optimization.

V. CONCLUSIONS

The problem of hotspot discovery can help identify im-

portant localized regions of change in a fast graph stream.

Such regions of change are often associated with critical

events. In practice, such hot-spots may be difficult to find

both because of the stream setting, and the transient nature

of hot spots. We used a dynamic PCA-based method in

order to identify significant neighborhoods of change. The

experimental results show the effectiveness in discovering

useful hot-spots from the underlying data stream.

Acknowledgments. Research of C. Aggarwal was spon-

sored by the Army Research Lab. and was accomplished

under Coop. Agreement No. W911NF-09-2-0053. Shuai is

supported in part by NSFC grant 61322207, NGFR 973 grant

2014CB340304 and 863 grant 2013AA01A213, and MOST

grant 2012BAH46B04.

REFERENCES

[1] C. Aggarwal, Outlier Analysis, Springer, 2013.
[2] C. Aggarwal, On classification of graph streams, SDM, 2011.
[3] C. Aggarwal, Y, Zhao, P, Yu. Outlier detection in graph

streams. ICDE, 2011.
[4] T. Fawcett, F. Provost. Activity Monitoring: Noticing Inter-

esting Changes in Behavior. KDD, 1999.
[5] T. Ide, H. Kashima. Eigenspace-based Anomaly Detection in

Computer Systems. KDD, 2004.
[6] M. Mongiovi, P. Bogdanov, R. Ranca, A. Singh, E. Papalex-

akis, C. Faloutsos. NetSpot: Spotting Significant Anomalous
Regions on Dynamic Networks. SDM, 2012.

[7] B. Pincombe. Anomaly Detection in Time Series of Graphs
using ARMA Processes. ASOR Bulletin, 24(4): 2–10, 2005.

[8] P. Showbridge, M. Kraetzl, D. Ray. Detection of Abnormal
Change in Dynamic Networks. IDC, 1999.

[9] J. Sun, S. Papadimitriou, P. Yu, C. Faloutsos. Graphscope:
Parameter-free Mining of Large Time-Evolving Graphs.
KDD, 2007.

[10] J. Sun, H. Qu, D. Chakrabarti, C. Faloutsos. Neighbor-
hood Formation and Anomaly Detection in Bipartite Graphs.
ICDM, 2005.

[11] K. Yaminshi, J. Takeuchi. A Unified Framework for Detecting
Outliers and Change Points from Time Series Data. KDD,
2002.

[12] P. Zhao, C. Aggarwal, M. Wang. Gsketch: On query estima-
tion in graph streams, VLDB, 2012.

