
Improving Spectral Clustering with
Deep Embedding and Cluster Estimation

Liang Duan∗†, Charu Aggarwal‡, Shuai Ma∗†, Saket Sathe‡
∗SKLSDE Lab, Beihang University, China

†Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing, China
‡IBM T. J. Watson Research Center, New York, USA

{duanliang, mashuai}@buaa.edu.cn, {charu, ssathe}@us.ibm.com

Abstract—Spectral clustering is one of the most popular mod-
ern clustering algorithms. It is easy to implement, can be solved
efficiently, and very often outperforms other traditional clustering
algorithms such as k-means. However, spectral clustering would
be insufficient when dealing with most datasets which have
complex statistical properties and requires the user to specify the
number of clusters (called k). To address these two problems,
in this paper, we propose an approach to extending spectral
clustering with deep embedding and estimation of the number
of clusters. Specifically, we first generate the deep embedding
via learning a deep autoencoder, which transforms the raw
data into the lower dimensional representations that suitable
for clustering. We then provide an effective method to estimate
the number of clusters by learning a softmax autoencoder from
the deep embedding. We finally extend spectral clustering with
the learned embedding and the estimated number. An extensive
experimental study on several image and text datasets illustrates
the effectiveness and efficiency of our approach.

Index Terms—spectral clustering, deep embedding, autoen-
coder, number of clusters, clustering

I. INTRODUCTION

Clustering can be considered as one of the most fundamental

unsupervised learning techniques, which has been widely used

in various fields from computer science to social science [1].

The goal of clustering is to group a set of data points into

multiple groups or clusters so that points within a cluster

have high similarity, but are very dissimilar to points in other

clusters [2]. Thus, a notion of dissimilarity or distance is cen-

tral to clustering algorithms and most of the existing methods

focus on modeling the dissimilarity relationship among data

points based on the data representation in a feature space.

For example, the traditional clustering method k-means [3]

uses the Euclidean distance between data points in a given

feature space, which might be raw pixels for images or TF-

IDF representations for text documents.

Different from k-means that directly clusters on the given

feature space, Spectral Clustering (SC) [4] works by embed-

ding the data into the eigenspace of the Laplacian matrix that

derived from the pairwise similarities between data points, and

applying k-means on this embedding to obtain the clusters.

In fact, SC has many fundamental advantages, such as it

is very simple to implement, can be solved efficiently by

standard linear algebra methods, and often performs better than

other traditional clustering methods. However, the pairwise

similarities are typically constructed on Euclidean distance

and this might make SC work poorly on high dimensional

data due to the curse of dimensionality [5]. Furthermore, SC

requires the user to supply the number k of clusters in the

input data, which is not always clear what is the best value

for k in practical applications [6].

Recently, deep learning has achieved widespread success in

numerous machine learning tasks [7], where learning powerful

feature representations by deep neural networks (DNN) lies

in the core. Thus, it is conceivable to conduct clustering

on the powerful representations rather than on the raw data.

The deep autoencoder [8], [9] is one of the most popular

architectures of DNN for learning good representations and

several deep-autoencoder-based methods have been proposed

to improve the clustering performance. Deep Embedded Clus-

tering (DEC) [10] was proposed to simultaneously learn

feature representations and cluster assignments. It pretrains

a multilayer autoencoder to generate deep embedding and

then finetunes the parameters of the autoencoder and cluster

centroids simultaneously by the defined clustering loss with

an iterative approach. However, the clustering loss can not

guarantee good embedding and might lead to corruption of

embedded space [11], [12]. Therefore, we adopt the deep

autoencoder in DEC to learn the embedded features, but

after that we apply spectral clustering on the embedding to

obtain clusters. We refer to this clustering method as Spectral

Clustering with Deep Embedding (SCDE).

Another limitation of spectral clustering is that the number

of clusters has to be supplied. In the last decades, several

methods have been proposed to determine the value of k au-

tomatically and most of them are wrappers around k-means or

some other clustering algorithms for fixed k [6]. They usually

use splitting or merging rules for cluster centroids to increase

or decrease k as the algorithm proceeds and estimate the

optimum number by applying different clustering evaluation

criteria, such as Calinski-Harabasz Index [13], Davies-Bouldin

Index [14], Silhouette Statistic [15], Bayesian Information

Criterion [16], etc. However, these methods depend on the

clustering algorithm in use, i.e., they may find an incorrect

number if the clustering algorithm performs poorly on the data.

Furthermore, they would be inefficient when a large range of

k are considered. Therefore, we propose a new method to

find the correct number k by learning a special autoencoder,

referred to as Softmax Autoencoder (SA), which can estimate

170

2019 IEEE International Conference on Data Mining (ICDM)

2374-8486/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDM.2019.00027

the number of clusters directly rather than runs multiple k-

means on the data. Moreover, this method could be conducted

on the deep embedding, which effectively improves the es-

timation accuracy. To this end, we integrate this estimation

method into SCDE, referred to as SCDE+.

Contributions. Our major contributions are follows:

1) We first provide an effective extension of spectral clus-

tering with deep embedding by utilizing a deep autoen-

coder to learn the representations from the raw data and

then applying spectral clustering to cluster.

2) We then propose a novel method to estimate the number

of clusters using a softmax autoencoder and integrate it

into the extension of spectral clustering. By incorporat-

ing with the learned deep embedding, it is effective for

estimating the number for clustering.

3) We finally conduct a set of experiments on several image

and text datasets, and show that our proposed approach

for clustering is both effective and efficient.

Organization. This paper is organized as follows. In the

next section, we provide the basic notations for clustering and

describe spectral clustering with deep embedding. Section III

discusses how to determine the optimal number of clusters

and integrate it into the proposed clustering method. Section

IV presents the experimental results, followed by related work

in Section V and conclusions in Section VI.

II. SCDE: SPECTRAL CLUSTERING WITH DEEP

EMBEDDING

In this section, we describe Spectral Clustering with Deep

Embedding (SCDE), an effective method for extending spec-

tral clustering with deep embedding via learning a deep

autoencoder from the raw data.

Assuming that the data set X = {x1, ...,xn} contains n
data points and each point x = (x1, ..., xd) is a d-dimensional

row vector. The clustering problem is to organize the set X
into k partitions (k ≤ n), where each partition represents

a cluster [1]. For example, the classic clustering method k-

means [3] divides X into k disjoint clusters C = {C1, ..., Ck}
by choosing centroids that minimize the within-cluster sum-

of-squares criterion
∑k

j=1

∑
xi∈Cj

‖xi − μj‖2, where μj is

the centroid of cluster Cj . Note that k-means are suitable for

clustering the data scattered around their centroids, but would

be poorly to elongated clusters or manifolds with irregular

shapes. Moreover, high dimensional data are in general not

very friendly to k-means [11]. In order to solve this problem,

several methods have been proposed by using a dimensionality

reduction technique, such as principal component analysis

(PCA) [17] or nonnegative matrix factorization (NMF) [18],

[19], to reduce the original input data into a lower dimensional

space and then applying k-means, which usually obtain better

results. However, most of these methods are linear embedding

and insufficient for more complex data.

Spectral clustering makes use of a nonlinear embedding

to reduce the dimensionality of the data. The process of

spectral clustering is shown in Algorithm 1. Indeed, SC first

constructs a similarity matrix A (also called affinity matrix)

Algorithm 1 SC Algorithm

Input:
X , a data set; k, the number of clusters

Output:
C, a set of k clusters {C1, ..., Ck}

1: Construct the similarity matrix A = (aij)i,j=1,...,n from

the raw data X , where aij is the pairwise similarity

between point xi and xj ;

2: Form the normalized Laplacian matrix Ln = I −
D−1/2AD−1/2, where D is the diagonal matrix whose

(i, i)-element is the sum of A’s i-th row;

3: Find the k largest eigenvectors u1, ...,uk of Ln and then

form a new matrix Y = [u1...uk];

4: Normalize the rows of Y by yij = yij/
√∑k

j=1 y
2
ij ;

5: C = {C1, ..., Ck} ← cluster Y with k-means.

from X and then runs an eigenvalue decomposition on the

normalized Laplacian matrix Ln. After that, SC finds the k
largest eigenvectors of Ln to form new representations Y and

applies k-means on Y to obtain the final clusters [20]. SC

takes O(n2d) time to compute A and O(n2k) time to find

eigenvectors. Thus, the complexity of SC is O(n2(d+ k)).

SC often outperforms other traditional approaches due to the

good representations generated by the top eigenvectors of the

Laplacian matrix of the similarity matrix [20]. Note that SC

does not directly cluster on the raw data but on the similarity

matrix A. Thus, the performance of SC relies on the similarity

matrix. However, the similarity matrix is usually constructed

by a K-nearest neighbor graph based on Euclidean distance

or a fully connected graph based on Gaussian similarity

function [4]. This would be ineffective when the input dataset

consists of complex statistical properties [21]. Therefore, we

extract more effective representation for SC by learning a deep

autoencoder from the raw data.

A traditional autoencoder is a neural network for dimen-

sionality reduction, which aims to learn a compressed repre-

sentation for an input by minimizing its reconstruction error

[7]. Internally, it has a hidden layer h that describes a code

used to represent the input. The network usually consists of

two parts: an encoder function h = f(x) and a decoder

that produces a reconstruction x′ = g(h). The learning

process of the autoencoder is to minimize a loss function

L(x, g(f(x))), where L is a loss function penalizing g(f(x))
for being dissimilar from x. If we constrain h to have a smaller

dimension than x, it will force the autoencoder to capture the

most salient features of the training data and obtain useful

representations of the data.

Several methods based on multilayer autoencoders (also

called deep autoencoder) have been proposed to learn powerful

feature representations and achieve great success in many

fields [8], [10], [11], [21]. DEC is one of these successful

methods that use an iterative way to update the parameters of

the encoder and cluster centroids jointly after obtain the deep

embedding. The clustering loss of DEC is the Kullback-Leibler

171

Fig. 1. The framework of SCDE. The top row is the network architecture of
the deep autoencoder and the bottom row is the clustering phase of SCDE
that applies spectral clustering on the deep embedding to obtain clusters.

Algorithm 2 SCDE Algorithm

Input:
X , a data set; k, the number of clusters

Output:
C, a set of k clusters {C1, ..., Ck}

1: train a deep autoencoder: xi
f−→ hi

g−→ x′i with data

reconstruction loss in (1);

2: obtain deep embedding: hi = f(xi);
3: C = {C1, ..., Ck} ← cluster {hi} with SC (Algorithm 1).

(KL) divergence loss
∑n

i=1 KL(f(x;ω); θ), where ω is the

encoder parameters and θ is the cluster centroids. Optimizing

this loss might lead to a trivial solution f(x;ω) = 0 which

distorts the embedding. IDEC [12] improves DEC by taking

the reconstruction loss into consideration, but can not solve

this problem completely.

Inspired by these work, we adopt the deep autoencoder in

DEC to obtain good embedding of the raw data. After that, we

apply SC on the embedding to cluster the data. We refer to this

method as Spectral Clustering with Deep Embedding (SCDE).

Fig. 1 shows the network architecture of the deep autoencoder

and the framework of SCDE. The complete procedure of

SCDE is shown in Algorithm 2.

We first learn a deep autoencoder from X by using stochas-

tic gradient descent (SGD) algorithm to minimize the data

reconstruction loss Lr, which is defined as follows:

Lr =
n∑

i=1

‖xi − x′i‖2 (1)

We then obtain the deep embedding hi for each point xi using

the encoder f on X and finally apply SC on this embedding

to finish the clustering. SCDE takes O(nwt) time to train the

deep autoencoder, where w and t are the number of weights

in the autoencoder and the total training epochs. Thus, the

complexity of SCDE is O(nwt+ n2(h+ k)), where h is the

dimension of the embedding layer.

Discussions. Using deep embedding for spectral clustering

has several advantages. The deep autoencoder is a nonlinear

transformation to extract more powerful features from the raw

data and generates better data representations, which signifi-

cantly improve the clustering accuracy of spectral clustering.

Moreover, compared with the iterative clustering methods such

as DEC, our approach can not distort the deep embedding.

However, SC requires to supply the number of clusters, which

is not always clear for users in practical applications. In order

to handle this problem, we propose an effective and efficient

method to estimate the number of clusters.

III. SCDE+: IMPROVING SCDE WITH ESTIMATION OF

THE NUMBER OF CLUSTERS

In this section, we first propose a novel method to estimate

the number of clusters based on a softmax autoencoder. We

then integrate this method into SCDE to estimate the number

of clusters automatically.

A. Estimation of the Number of Clusters

The basic idea of this estimation method is that using the

softmax autoencoder as a clustering method and counting the

number of cluster labels assigned by the softmax autoencoder

as the estimation.

The softmax autoencoder derives its name from the fact

that the innermost hidden layer uses the softmax activation

function. Note that the softmax activation function is often

(almost exclusively) reserved for the output layer in multiway

prediction problems; therefore, its use in a hidden layer seems

somewhat unusual at first sight. However, the use of the soft-

max activation within the hidden layer is actually quite logical

in this setting, when one considers the fact that it is intended

for the innermost hidden layer to yield probabilistic cluster

memberships. Although this can be viewed as a clustering

method, we use these cluster memberships to estimate the

number of clusters rather than cluster the data.

The softmax autoencoder contains a total of 2m+1 layers,

including the input layer. The innermost layer, which is the

(m+ 1)-th layer, contains ku units, and it also represents the

upper bound of the number of clusters into which we wish to

partition the data points. This layer uses the softmax activation

function, and is not truly a hidden layer, because its output

is visible, and used to infer the probabilistic assignments

of the points to clusters. The estimated number is the total

number of clusters assigned to the points. The encoder-decoder

architecture is symmetric in terms of the number of units

in the matching layer, but not necessarily in terms of the

computations performed in those layers. In other words, for

r ≤ m, the r-th layer matches up with the (2m + 2 − r)-th
layer in terms of the number of units. However, it is possible

for the activation functions to be different in these layers. For

example, the first layer is a non-computational input layer,

whereas the (2m + 1)-th layer is computational in nature.

The (2m + 1)-th layer contains linear activations because it

is possible for the inputs to take on arbitrary real values. All

other hidden layers (except for the innermost layer) use the

172

Fig. 2. The architecture of softmax autoencoder.

ReLU activation function. The innermost layer, which is the

(m + 1)-th layer, uses the softmax activation function, and

therefore its ku outputs sum to 1. The overall architecture of

softmax autoencoder is schematically shown in Fig. 2.

1) Loss Function: A key part of the workings of the

softmax autoencoder is the loss function, which ensures that

the autoencoder creates representations that are good enough

to estimate the number of clusters. The principle behind the

loss function depends on viewing the estimation as a specific

type of dimensionality reduction technique:

One can view estimating the number of clusters as

a dimensionality reduction technique in which the

reduced representation of the data corresponds to

the probabilities of memberships of points to clus-

ters, which is used for the estimation. Furthermore,

a high-quality clustering will assign membership

probabilities that are spread out in an uneven way

across clusters. In other words, low entropy in cluster

assignments is encouraged.

Therefore, the loss function contains two parts. The first

part is a standard reconstruction loss on the final output layer,

which ensures that the reduced representation can reconstruct

the data. This is a standard squared loss and defined in (1). The

second part of the loss uses the Gini index of the activations

z1, ..., zku in the innermost layer containing ku units. Note that

z1, ..., zku sum to 1 because of the use of softmax activation,

and the Gini index G is defined as follows:

G = 1−
ku∑
i=1

z2i (2)

Note that the constant value of 1 can be ignored. Therefore,

the second part of the loss, referred to as the cluster coherence
loss Lc defined as follows:

Lc = −
ku∑
i=1

z2i (3)

Interestingly, this is also a squared loss, albeit with a

negative sign in front of it. However, from a practical point of

view, this squared loss does help in easily computing gradients

with existing deep learning tools, e.g., SGD, and relatively few

customized changes. The overall loss is a combination of the

reconstruction and the cluster coherence loss:

Algorithm 3 SCDE+ Algorithm

Input:
X , a data set; ku, the upper bound of the estimation of

the number of clusters

Output:
C, a set of k′ clusters {C1, ..., Ck′}

1: train a deep autoencoder: xi
f−→ hi

g−→ x′i with data

reconstruction loss in (1);

2: obtain deep embedding: hi = f(xi);

3: train a softmax autoencoder: hi
f ′
−→ zi

g′
−→ h′i with loss

in (4); // the dimension of zi is ku
4: obtain clustering membership probabilities: zi = f ′(hi);
5: k′ ← count the distinct labels argmaxku

j=1{zij ∈ zi};
6: C = {C1, ..., Ck′} ← cluster {hi} with SC (Algorithm 1).

L = Lr + Lc (4)

Although the approach naturally yields a soft clustering

in terms of membership probabilities, it is also possible to

convert it into a hard clustering by assigning each point to the

cluster with the highest membership probability. In practice,

however, many applications might have naturally overlapping

clusters. In such cases, the soft clustering approach seems

more reasonable from a practical point of view.

After learning the softmax autoencoder from the data,

we estimate the number of clusters based on the clustering

membership probabilities obtained from the autoencoder. We

first generate the cluster labels for all points by assigning each

point to the cluster with the highest probability, and then count

the number of distinct elements in the labels as the estimation

of the number of clusters in the input data.

B. SCDE+ Framework

One advantage of the softmax autoencoder estimation

method is that it can be easily incorporated with the deep

embedding, i.e., taking the deep embedding as the input

instead of the raw data. As a result, the good representations

of the deep embedding help the estimation method to find the

correct number. Thus, we integrate this estimation method into

the SCDE clustering to determine the number of clusters for

spectral clustering. We now refer to SCDE with this technique

of estimating the number of clusters as SCDE+. The procedure

of SCDE+ is shown in Algorithm 3.

We learn a deep autoencoder to obtain the deep embedding

as the same as SCDE, and then we learn a softmax autoencoder

from the embedding to generate the clustering membership

probabilities of each point. After that, we assign each point to

the cluster with the highest probability and count the number

of distinct labels as the estimation k′. Finally, we apply

spectral clustering with the embedding and k′ to cluster. The

complexity of SCDE+ is O(n(wt+w′t′)+n2(h+k′)), where

w′ and t′ are the number of weights and the total training

epochs of the softmax autoencoder.

173

Discussions. Different from traditional estimation methods

that run multiple k-means to determine the optimal number of

clusters, our method takes less time to estimation, especially

for the lower dimensional embedding, which also help to find

a better estimation. It is worth mentioning that our estimation

method is not limited to SCDE, and may be applied to other

clustering methods that require the number of clusters, such

as k-means, SC and DEC.

IV. EXPERIMENTAL STUDY

In this section, we present experimental results on several

real-life datasets to evaluate our proposed method. We first

introduce the experimental settings, and then we conduct three

sets of experiments: (1) clustering with different numbers

of clusters, (2) estimation of the number of clusters, and

(3) clustering with estimation of k, to evaluate our method

compared with the comparison methods.

A. Experimental Settings

We first present our experimental settings.

1) Datasets: We performed experiments on four image

datasets and two text datasets, which are widely used for

evaluating the performance of clustering methods.

• MNIST [22]: Consists of total 70,000 handwritten digits

(0 ∼ 9) of 28 × 28 pixel size. We reshaped each gray

image to a 784 dimensional vector.

• Fashion-MNIST1: Consists of total 70,000 data samples

of Zalando’s article images, which is often served as

a direct drop-in replacement for the MNIST dataset

for benchmarking machine learning algorithms because

MNIST might be too easy and overused. Each sample is

a 28× 28 gray-scale image, associated with a label from

10 classes. Similar to MNIST, we reshaped each image

to a 784 dimensional vector.

• USPS2: Consists of total 11,000 gray-scale handwritten

digits (0 ∼ 9) with size of 16× 16 pixels. We reshaped

each gray image to a 256 dimensional vector.

• STL-103: Consists of 13,000 color images of 96 × 96
pixel size and grouped into 10 classes. Since clustering

directly on the high resolution images is rather difficult,

we extracted the image features by VGG16 [23] and the

dimensionality of the extracted features is 4096.

• Reuters-8 [24]: A text corpus that contains 804,414

English documents categorized into 103 different topics.

Restricted by computational resources, we used a subset

of the corpus that contains 8 topics and 10,000 documents

with a single topic label. As in DEC [10], we computed

TF-IDF features on the 2,000 most frequently occurring

word stems for clustering.

• 20Newsgroups4: A collection of 18,846 text documents

which are partitioned into 20 different newsgroups. We

1https://github.com/zalandoresearch/fashion-mnist
2https://cs.nyu.edu/%7Eroweis/data.html
3https://cs.stanford.edu/%7Eacoates/stl10/
4http://qwone.com/%7Ejason/20Newsgroups/

also extracted the TF-IDF features on the 2,000 most

frequently used words for clustering.

We summarize the important statistics about these datasets

in Table I.

TABLE I
DATASETS STATISTICS

Dataset # Samples Dimension # Clusters

MNIST 70,000 784 10

Fashion-MNIST 70,000 784 10

USPS 11,000 256 10

STL-10 13,000 4,096 10

Reuters-8 10,000 2,000 8

20Newsgroups 18,846 2,000 20

2) Evaluation Metrics: Since all datasets have the ground

truth assignments of clusters, we evaluate the performance of

a clustering algorithm by two standard metrics: Normalized

Mutual Information (NMI) [18] and Adjusted Rand Index

(ARI) [25]. MNI has a range of [0,1] with one being the

perfect clustering and zero the worst, and ARI has a range

of [-1,1] with one being the best clustering performance and

minus one the opposite.

3) Algorithms for Comparison: We have carefully chosen

several methods for comparison. For clustering, we compared

our clustering methods SCDE and SCDE+ with k-means,

spectral clustering (SC) [20], Spectral Embedding Clustering

(SEC) that combines SC and linear embedding to improve

the clustering performance [26], the classic dimensionality

reduction method NMF followed by SC (NMF+SC) and

the autoencoder-based method DEC [10]. For estimating the

number of clusters, we compared our softmax autoencoder

method (denoted as SA) with two splitting-rule-based methods

X-means [16] and G-means [6] and other two methods that run

multiple k-means in an increasing sequence of k to determine

the best value of k by following criteria: Davies-Bouldin Index

(DB) [14] and Silhouette Statistic (SS) [15].

4) Implementation: We implemented all algorithms based

on Python and Keras5. For deep embedding, we adopted the

same network architecture of the autoencoder in DEC. Specif-

ically, we set the network dimensions of the autoencoder to d-

500-500-2000-10-2000-500-500-d, where d is the dimension

of the input data. All layers are densely connected and all

hidden layers (except for the innermost layer) use the ReLU

activation function. All the autoencoders on different datasets

are trained for 50 epochs and the mini-batch size is fixed

to 256. For estimating the number of clusters, we set the

network architecture of the SA to ds-50-ku-50-ds, where ds
is the dimension of the input and ku is the upper bound of the

estimation of the number of clusters. For spectral clustering,

we constructed the similarity matrix by Gaussian similarity

function for 20Newsgroups and K-nearest neighbor graph

5https://github.com/keras-team

174

40

50

60

70

80

90

6 8 10 12 14

N
M

I
(%

)

k

k-means
SC

NMF+SC

DE+k-means
DEC

SCDE

(a) MNIST

50

60

70

80

6 8 10 12 14

N
M

I
(%

)

k

k-means
SC

NMF+SC

DE+k-means
DEC

SCDE

(b) Fashion-MNIST

40

50

60

70

80

90

6 8 10 12 14

N
M

I
(%

)

k

k-means
SC

SEC
NMF+SC

DE+k-means
DE+SEC

DEC
SCDE

(c) USPS

50

60

70

80

90

6 8 10 12 14

N
M

I
(%

)

k

k-means
SC

SEC
NMF+SC

DE+k-means
DE+SEC

DEC
SCDE

(d) STL-10

50

60

70

80

4 6 8 10 12

N
M

I
(%

)

k

k-means
SC

SEC
NMF+SC

DE+k-means
DE+SEC

DEC
SCDE

(e) Reuters-8

20

25

30

35

10 15 20 25 30

N
M

I
(%

)

k

k-means
SC

SEC
NMF+SC

DE+k-means
DE+SEC

DEC
SCDE

(f) 20Newsgroups

Fig. 3. Clustering comparison on NMI: with respect to the number k of clusters. It is better to view the figure in color.

40

50

60

70

80

90

6 8 10 12 14

A
R

I
(%

)

k

k-means
SC

NMF+SC

DE+k-means
DEC

SCDE

(a) MNIST

30

40

50

60

6 8 10 12 14

A
R

I
(%

)

k

k-means
SC

NMF+SC

DE+k-means
DEC

SCDE

(b) Fashion-MNIST

30

40

50

60

70

80

6 8 10 12 14

A
R

I
(%

)

k

k-means
SC

SEC
NMF+SC

DE+k-means
DE+SEC

DEC
SCDE

(c) USPS

40

50

60

70

80

6 8 10 12 14

A
R

I
(%

)

k

k-means
SC

SEC
NMF+SC

DE+k-means
DE+SEC

DEC
SCDE

(d) STL-10

20

30

40

50

60

70

80

4 6 8 10 12

A
R

I
(%

)

k

k-means
SC

SEC
NMF+SC

DE+k-means
DE+SEC

DEC
SCDE

(e) Reuters-8

5

10

15

20

10 15 20 25 30

A
R

I
(%

)

k

k-means
SC

SEC
NMF+SC

DE+k-means
DE+SEC

DEC
SCDE

(f) 20Newsgroups

Fig. 4. Clustering comparison on ARI: with respect to the number k of clusters. It is better to view the figure in color.

for other datasets. To guarantee the K-nearest neighbor graph

is fully connected, we fixed K = 10 for STL-10, K = 50 for

Reuters-8 and K = 5 for the others.

All experiments were conducted on a machine with 2 Intel

Xeon E5-2630 2.3GHz CPUs and 64GB of Memory, running

64 bit Windows 10 Professional system. Each experiment was

repeated 5 times, and the average is reported here.

B. Experimental Results

We next present our findings.

1) Clustering with Different Numbers of Clusters: In the

first set of tests, we deliberately chose different numbers

of clusters k to evaluate the effectiveness of our clustering

method SCDE compared with k-means, SC, SEC and DEC.

To better understand the contribution of deep embedding, we

175

(a) MNIST (b) Fashion-MNIST (c) USPS (d) STL-10

Fig. 5. Clustering results of our approach SCDE. Each row contains the top 10 scoring elements from one cluster. Best viewed in color.

compared SCDE with NMF+SC that uses the classical dimen-

sionality reduction method NMF to generate low dimensional

embedding of the raw data. We also tested k-means and

SEC on the deep embedding, denoted as DE+k-means and

DE+SEC, respectively. For a fair comparison, we used the

same embedding for DE+k-means, DE+SEC, DEC and our

method. The number k is fixed to [6, 8, 10, 12, 14] for MNIST,

Fashion-MNIST, USPS and STL-10, [4, 6, 8, 10, 12] for

Reuters-8 and [10, 15, 20, 25, 30] for 20Newsgroups,

respectively. The results of clustering comparison on NMI and

ARI are reported in Fig. 3 and Fig. 4, respectively.

The results tell us that (a) our proposed method SCDE

outperforms other methods by large margins on all datasets

except slightly weaker than DE+k-means on 20Newsgroups
when k is large and slightly weaker than DEC and DE+k-

means with ARI on Reuters-8 when k is small, (b) the deep

embedding significantly improve the NMI and ARI of SCDE

and DE+k-means compared with their counterparts SC and k-

means on most of the datasets, which reveals the usefulness of

the deep embedding for clustering, (c) SC is the second best

method on NMI while DEC is the second best method on ARI,

and (d) NMF+SC works well on Fashion-MNIST, USPS and

STL-10, but performs poorly on other datasets, which means

that NMF cannot generate good enough representations for

clustering compared with deep embedding. This verifies the

effectiveness of our approach.

To better illustrate the performance of SCDE, we plot the

top 10 scoring images of each cluster from the results of SCDE

on MNIST, Fashion-MNIST, USPS and STL-10, shown in

Fig. 5. Each row corresponds to a cluster and images are sorted

from left to right based on their distance to the cluster centroid

obtained by the k-means in SCDE.

From Fig. 5 we can see that (a) SCDE clusters very well on

MNIST and assigns each point to the correct cluster, (b) SCDE

also works well on Fashion-MNIST, which serves as a direct

drop-in replacement for MNIST but is more difficult to cluster,

(c) the clustering results on USPS are as well as on MNIST,

with the exception of confusing 4 and 9, which also exists

in DEC [10], and (d) for STL-10, SCDE is mostly correct

on truck, ship, bird, car and airplane categories, and provides

interesting clustering assignments on other categories. For

instance, all the animals in the cluster of the 5-th row of Fig.

5(d) have four legs.
2) Estimation of the Number of Clusters: In the second set

of tests, we evaluated the effectiveness and efficiency of our

method SA for estimating the number of clusters compared

with X-means, G-means, DB and SS. To better understand

the effectiveness of deep embedding for estimation, we also

tested SA, X-means, G-means, DB and SS on the deep

embedding, denoted as DE+SA, DE+X-means, DE+G-means,

DE+DB and DE+SS, respectively. Similar to X-means, we

fixed the range of k to [2, 2kg] for all datasets, where kg is the

ground truth number of clusters of each dataset. We fixed the

number ku = 2kg in SA on each dataset. The optimal values

obtained by each method and the corresponding running time

are reported in Table II.
The estimation results tell us that (a) our method DE+SA

does the best at finding the correct k and outperforms other

methods on all datasets, (b) when the deep embedding is

not available, our method SA also performs better than X-

means, G-means, DB and SS on most of the datasets, (c)

the deep embedding significantly improves the estimation

accuracy of SA, DB and SS, and (d) X-means and G-means

perform worse than other methods on most of the datasets

and their estimation accuracy cannot be improved by the deep

embedding. Specifically, DE+SA obtains the optimal values

(10.2, 9.2, 9.6, 9.8, 8, 20.8) on MNIST, Fashion-MNIST,

USPS, STL-10, Reuters-8 and 20Newsgroups, which are

very close to the ground truth numbers of clusters on these

datasets. X-means and G-means overestimate the numbers

of true clusters and their performance cannot be improved

by deep embedding. However, DE+SA performs consistently

better than SA when incorporating with deep embedding. This

verifies the effectiveness of our method.
The running time results tell us that (a) our method SA

outperforms other methods on all datasets, (b) our method

DE+SA is faster than other methods when using the deep

embedding, (c) most of the methods become slower when

incorporating with deep embedding because generating the

embedding takes much time, while some methods become

faster due to the dimension of the embedding is lower than

that of the raw data, (d) DB is faster than SS, and SS is the

most time consuming method since it needs to calculate the

176

TABLE II
ESTIMATION OF THE NUMBER OF CLUSTERS AND RUNNING TIME (SEC.) OF EACH METHOD ON ALL DATASETS.

Method
MNIST Fashion-MNIST USPS STL-10 Reuters-8 20Newsgroups

k Time k Time k Time k Time k Time k Time

Ground Truth 10 - 10 - 10 - 10 - 8 - 20 -

X-means 20 357 20 321 20 19 20 235 16 56 40 470

G-means 15 732 16 647 20 41 20 605 16 121 40 1892

DB 20 912 3 785 18.8 37 6.6 588 2 114 34.8 1840

SS 2 2972 2 2935 5 88 3 664 15.4 150 2 2232

SA (ours) 11.2 85 12 88 6.6 10 2.8 56 12.6 24 31.6 59

DE+X-means 20 1304 20 1328 20 169 20 474 16 164 40 508

DE+G-means 9 1301 19.4 1352 20 172 16 475 16 165 40 550

DE+DB 10.8 1313 6.2 1340 17.8 169 8.8 473 14.4 162 25 536

DE+SS 9 2475 5.2 2413 12.2 222 7.8 512 14.8 196 2 701

DE+SA (ours) 10.2 1301 9.2 1327 9.6 167 9.8 469 8 162 20.8 494

The best estimation and running time are highlighted in boldface. The k is a floating number since it is the average of found ks.

distance between a point and all other points, and (e) X-

means is faster than G-means, DB and SS. Note that our

method SA directly estimates the number k by training a

softmax autoencoder rather than running multiple k-means to

find the best number. Thus, SA is faster than other methods.

Indeed, SA is (11, 9, 4, 11, 5, 31) and (35, 33, 9, 12, 6, 38)

times faster than DB and SS on (MNIST, Fashion-MNIST,

USPS, STL-10, Reuters-8, 20Newsgroups), respectively.

Since X-means and G-means cannot find the correct number

and often hit our limit of 2kg clusters, we omit the comparison

with them. When incorporating with deep embedding, our

method DE+SA also runs faster than DE+DB and DE+SS.

This verifies the efficiency of our method.

3) Clustering with Estimation of k: In the last set of

tests, we evaluated the effectiveness of our clustering method

SCDE+. Since k-means, SC, SEC, NMF+SC and DEC need to

specify the number of clusters, we revised them with the best

method obtained in the previous test, i.e., SA for the raw data

and DE+SA for the embedding. Thus, we adopted SA for k-

means, SC, SEC, NMF+SC (denoted as SA+k-means, SA+SC,

SA+SEC and SA+NMF+SC) on the raw data, and DE+SA

for DE+k-means, DE+SEC and DEC (denoted as DE+SA+k-

means, DE+SA+SEC and DEC+SA) on the deep embedding.

The results of NMI and ARI are reported in Table III. Note

that the classic density-based clustering DBSCAN [2] does not

need to specify the number k, but it performs poorly on these

datasets. Thus, we do not choose it for comparison.

The results tell us that (a) our proposed method SCDE+

outperforms other methods by large margins on all datasets,

(b) SCDE+ significantly improves the NMI and ARI over its

counterpart SA+SC by incorporating with deep embedding,

which is also the same to DE+SA+k-means and DE+SA+SEC

on most of the datasets, (c) SCDE+ performs better than

SC+NMF+SC due to the deep autoencoder can learn more

powerful representations for estimating the number of clusters

and clustering than NMF, and (d) DEC+SA achieves the sec-

ond best performance by jointly learning the deep embedding

and cluster assignments in an iterative way. Indeed, our method

SCDE+ improves NMI by (13%, 7%, 31%, 9%, 20%, 15%)

over the second best method DEC+SA on MNIST, Fashion-
MNIST, USPS, STL-10, Reuters-8 and 20Newsgroups, re-

spectively. Moreover, our method also obtains higher ARI than

other methods on all datasets. This verifies the effectiveness

of our proposed approach.

4) Summary: From these experimental results on several

image and text datasets, we find the following.

1) Our clustering method SCDE has significantly improved

the clustering accuracy and performs better than other

methods, including k-means, SC, SEC, NMF+SC and

DEC, on a large range of the number of clusters.

Actually, SCDE achieves the highest NMI and ARI score

on most of the datasets with different values of k.

2) Our estimation method SA is effective and efficient to

find the correct number of clusters, especially when

incorporating with the deep embedding. For instance,

DE+SA finds the values of k (10.2, 9.2, 9.6, 9.8, 8,

20.8) on MNIST, Fashion-MNIST, USPS, STL-10,

Reuters-8 and 20Newsgroups, which are very close

to the ground truth numbers of clusters. Furthermore,

our method also has the efficiency advantage of linear

complexity in the number of data points, which makes it

faster than DB and SS that have to run multiple k-means

to determine the number of clusters.

3) Incorporating with the estimation method SA, our pro-

posed method SCDE+ could estimate the number k au-

tomatically and cluster data effectively. It improves MNI

by (13%, 7%, 31%, 9%, 20%, 15%) over the second best

method DEC+SA on MNIST, Fashion-MNIST, USPS,

STL-10, Reuters-8 and 20Newsgroups, respectively.

177

TABLE III
COMPARISON OF CLUSTERING NMI (%) AND ARI (%) WITH ESTIMATION OF THE NUMBER OF CLUSTERS ON ALL DATASETS.

Method
MNIST Fashion-MNIST USPS STL-10 Reuters-8 20Newsgroups

NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

SA+k-means 50.19 35.90 51.90 35.84 43.35 27.53 53.41 23.99 71.12 51.01 24.15 08.41

SA+SC 79.43 69.37 62.17 41.57 65.67 46.49 53.91 21.49 70.91 57.51 20.98 10.49

SA+SEC N/A N/A N/A N/A 45.23 27.96 51.65 24.02 67.48 45.90 20.80 08.91

SA+NMF+SC 70.67 54.81 63.21 42.60 61.00 42.13 56.59 21.74 69.96 58.12 18.50 09.72

DE+SA+k-means 74.81 70.01 61.12 44.95 53.00 38.10 62.38 49.74 62.82 55.62 28.41 12.79

DE+SA+SEC N/A N/A N/A N/A 54.69 41.31 58.54 45.89 54.31 45.97 23.13 06.58

DEC+SA 78.63 74.80 63.32 48.16 58.86 43.32 69.68 58.47 59.57 49.32 25.20 12.55

SCDE+ (ours) 89.02 86.31 67.81 50.11 77.04 63.97 75.91 68.61 71.61 64.56 28.92 13.44
The best NMI and ARI are highlighted in boldface. N/A means that not enough memory for the method on the dataset.

V. RELATED WORK

Clustering Methods. Clustering is one of the most funda-

mental tasks in data mining and machine learning [1], [27], and

a large number of clustering algorithms have been developed

and successfully applied in enormous real world applications

[2]. These methods can be classified into feature-based clus-

tering and similarity-based clustering. A feature-based method

takes a n×d matrix as input, where n is the number of samples

and d is the dimension of features. One famous feature-based

method is the k-means [3], which partitions the samples into

k clusters so as to minimize the sum of the Euclidean distance

between samples to the corresponding centroids. However,

the Euclidean distance metrics are limited to the raw data

space and make k-means ineffective when the input data is

high dimensional [10]. Therefore, several variants of k-means

have been proposed, including principal component analysis

(PCA) [17], nonnegative matrix factorization (NMF) [18],

[19], canonical correlation analysis (CCA) [28] and sparse

coding [29], to reduce the high dimensional data into a much

lower dimensional data space that more suitable for performing

k-means [11]. However, most of these methods are linear

embedding and not sufficient for more complex data.

Different from feature-based methods, similarity-based

methods construct a n×n similarity matrix that measures the

distance between each pair of the samples. Spectral clustering

(SC) is a classical similarity-based method that leverages the

Laplacian spectra of the similarity matrix to generate low

dimensional embedding of samples and runs a k-means in

the embedding to get the clusters [4], [20]. Compared with k-

means, SC has the advantage that kernel functions or domain-

specific similarity can be incorporated into the construction

of the similarity matrix and generally performs better than k-

means [20]. Thus, we adopt SC in our method.

Several methods have been proposed to improve the per-

formance of SC. Spectral Embedded Clustering (SEC) com-

bines linear embedding and spectral clustering [26]. Another

improved SC to replace the eigenvalue decomposition with

deep autoencoder has been proposed in [30], but it increases

memory consumption. Different from the above extensions,

we learn a deep autoencoder to generate better embedding,

which is not only used to improve the clustering accuracy of

SC but also to estimate the number of clusters.

Deep Embedded Clustering. Recently, some clustering

methods based on deep neural networks (DNNs) have been

proposed due to their high representational power. By using

DNNs, it is possible to learn non-linear mappings that trans-

form the raw data into more clustering-friendly representations

[31]. Deep Embedded Clustering (DEC) is proposed to learn

feature representations and cluster assignments simultaneously

using DNNs [10]. DEC learns a mapping from data space

to a lower-dimensional feature space in which it iteratively

optimizes a clustering objective. Deep Clustering Network

(DCN) is a joint dimensionality reduction (DR) and k-means

clustering approach in which DR is accomplished via learning

a DNN [11]. Variational Deep Embedding (VaDE) is a gen-

erative model for clustering by modeling the data generative

procedure with a Gaussian Mixture Model and a DNN [32].

Most of these methods use a two-phased training proce-

dure. In the first phase, pre-training an autoencoder with the

standard reconstruction loss. In the second phase, combining

the autoencoder with a clustering method (e.g., k-means or

agglomerative clustering) and then fine-tuning the joint model

with a loss function consisting of the reconstruction loss and a

clustering loss iteratively [31]. Note that the use of an iterative

approach to fine-tune the joint model already makes several

assumptions and an optimal solution to this problem is not

easy to achieve, which might distort the embedding and cost

much time to find a well solution [12]. Therefore, we adopt

this two-phased procedure, but we apply spectral clustering

on the deep embedding without fine-tuning, which is more

effective and efficient for clustering.

Estimating the Number of Clusters. Estimating the op-

timal number of clusters is an important and yet unsolved

problem in unsupervised clustering and attracts considerable

interest in the literature (for reviews, see [33]). An effective

solution for this problem is to run k-means clustering on the

178

input data for a range of values k (e.g., k ∈ [2, 20]), and

for each value of k calculate a cost function that incorpo-

rates the k and the error in clustering [34]. A number of

measure criteria for such cost function have been proposed,

such as Calinski-Harabasz Index [13], Davies-Bouldin Index

[14], Silhouette Statistic [15], etc. X-means uses a splitting

rule for k-means centroids to search the optimal k based on

Bayesian Information Criterion [16]. G-means runs k-means

with increasing k in a hierarchical fashion until the test accepts

the hypothesis that the data assigned to each centroid are

Gaussian [6]. Different from these methods, our estimation

method does not need to run multiple k-means for a range of k,

which is an efficiency advantage. Moreover, by incorporating

with the deep embedding, our method can find a number that

very close to the ground truth number of clusters.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an approach to improving

spectral clustering with deep embedding and estimation of

the number of clusters. We first learn the deep embedding of

the raw data based on a multilayer autoencoder, which effec-

tively generates good and lower-dimensional representations

for clustering. We then estimate the number of clusters by

learning a softmax autoencoder from the deep embedding and

integrate it into the proposed clustering method. The extensive

experiments on image and text datasets demonstrate that our

proposed approach can find a correct number of clusters and

outperform other clustering methods, such as DEC, NMF-SC,

SEC, SC and k-means. Another advantage of our approach is

efficiency, which allows it to scale to large datasets.

Several topics need further investigation. First, we are

to develop an embedding technique that can optimize the

deep embedding, estimation of the number of clusters and

clustering simultaneously to further improve the clustering

performance. Second, we are to apply our proposed method for

estimating the number of clusters to other clustering methods.

Third, we are to scale up the proposed method to deal with

large-scale datasets such as the ImageNet (http://www.image-

net.org/index) dataset.

ACKNOWLEDGMENTS

This work is supported in part by National Key

R&D Program of China 2018YFB1700403 and NSFC

U1636210&61421003. For any correspondence, please refer

to Shuai Ma.

REFERENCES

[1] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and
Applications. CRC Press, 2013.

[2] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques
(Third Edition). Morgan Kaufmann, 2012.

[3] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[4] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[5] R. E. Bellman, Adaptive Control Processes: A Guided Tour. Princeton
University Press, 1961.

[6] G. Hamerly and C. Elkan, “Learning the k in k-means,” in NIPS, 2004,
pp. 281–288.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[8] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, pp. 504–507, 2006.

[9] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising
auto-encoders as generative models,” in NIPS, 2013, pp. 899–907.

[10] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in ICML, 2016, pp. 478–487.

[11] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-means-
friendly spaces: Simultaneous deep learning and clustering,” in ICML,
2017, pp. 3861–3870.

[12] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded clustering
with local structure preservation,” in IJCAI, 2017, pp. 1753–1759.

[13] T. Caliński and J. Harabasz, “A dendrite method for cluster analysis,”
Communications in Statistics, vol. 3, no. 1, pp. 1–27, 1974.

[14] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp.
224–227, 1979.

[15] P. J.Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, no. 2, pp. 53–65, 1987.

[16] D. Pelleg and A. Moore, “X-means: Extending k-means with efficient
estimation of the number of clusters,” in ICML, 2000, pp. 727–734.

[17] C. Dian and X. He, “K-means clustering via principal component
analysis,” in ICML, 2004, p. 29.

[18] D. Cai, X. He, and J. Han, “Locally consistent concept factorization
for document clustering,” IEEE Transactions on Knowledge and Data
Engineering, vol. 23, no. 6, pp. 902–913, 2011.

[19] F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J. Plemmons, “Document
clustering using nonnegative matrix factorization,” Information Process-
ing and Management, vol. 42, pp. 373–386, 2006.

[20] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in NIPS, 2002, pp. 849–856.

[21] P. Huang, Y. Huang, W. Wang, and L. Wang, “Deep embedding network
for clustering,” in ICPR, 2014, pp. 1532–1537.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[24] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1: A new benchmark
collection for text categorization research,” Journal of Machine Learning
Research, vol. 5, no. Apr, pp. 361–397, 2004.

[25] K. Y. Yeung and W. L. Ruzzo, “Details of the adjusted rand index
and clustering algorithms, supplement to the paper an empirical study
on principal component analysis for clustering gene expression data,”
Bioinformatics, vol. 17, no. 9, pp. 763–774, 2001.

[26] F. Nie, Z. Zeng, I. W. Tsang, D. Xu, and C. Zhang, “Spectral embed-
ded clustering: A framework for in-sample and out-of-sample spectral
clustering,” IEEE Transactions on Neural Networks, vol. 22, no. 11, pp.
1796–1808, 2011.

[27] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[28] K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridharan, “Multi-
view clustering via canonical correlation analysis,” in ICML, 2009, pp.
129–136.

[29] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai,
“Graph regularized sparse coding for image representation,” IEEE
Transactions on Image Processing, vol. 20, no. 5, pp. 1327–1336, 2011.

[30] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep
representations for graph clustering,” in AAAI, 2014.

[31] E. Aljalbout, V. Golkov, Y. Siddiqui, M. Strobel, and D. Cremers,
“Clustering with deep learning: Taxonomy and new methods,” arXiv,
vol. 1801.07648v2, 2018.

[32] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep
embedding: An unsupervised and generative approach to clustering,” in
IJCAI, 2017, pp. 1965–1972.

[33] M. M.-T. Chiang and B. Mirkin, “Intelligent choice of the number of
clusters in k-means clustering: An experimental study with different
cluster spreads,” Journal of Classification, vol. 27, no. 1, pp. 3–40, 2010.

[34] A. Kolesnikov, E. Trichina, and T. Kauranne, “Estimating the number of
clusters in a numerical data set via quantization error modeling,” Pattern
Recognition, vol. 48, no. 3, pp. 941–952, 2015.

179

