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Abstract
While Point-of-Interest (POI) recommendation has
been a popular topic of study for some time, lit-
tle progress has been made for understanding why
and how people make their decisions for the selec-
tion of POIs. To this end, in this paper, we pro-
pose a user decision profiling framework, named
PROUD, which can identify the key factors in peo-
ple’s decisions on choosing POIs. Specifically, we
treat each user decision as a set of factors and pro-
vide a method for learning factor embeddings. A
unique perspective of our approach is to identify
key factors, while preserving decision structures
seamlessly, via a novel scalar projection maximiza-
tion objective. Exactly solving the objective is non-
trivial due to a sparsity constraint. To address this,
our PROUD adopts a self projection attention and
an L2 regularized sparse activation to directly esti-
mate the likelihood of each factor to be a key fac-
tor. Finally, extensive experiments on real-world
data validate the advantage of PROUD in preserv-
ing user decision structures. Also, our case study
indicates that the identified key decision factors can
help us to provide more interpretable recommenda-
tions and analyses.

1 Introduction
Decision-making is an inevitable part of our life. As esti-
mated by various sources, an adult makes about 35,000 re-
motely conscious decisions each day [Hoomans, 2015]. With
this number, understanding the reasons behind people’s de-
cisions is of great importance and benefit. In this paper, we
study user decision profiling which aims to identify the key
factors of people’s decisions. An example of user decision
profiling is illustrated in Fig. 1, in which a user has made
three decisions on choosing Point-of-Interests (POIs). More
specifically, POI A is chosen mainly due to distance reasons.
POI B locates in downtown and its popularity and food qual-
ity are attracting factors. Finally, the user chooses POI C for

∗equal contribution

Figure 1: An illustrative example of user decision profiling

better user experience, e.g., low waiting time and quiet envi-
ronment. These reasons/factors provide a deeper understand-
ing of user behaviors, which can in turn facilitate numerous
applications, such as user profiling, product recommendation,
business intelligence, etc.

The advances of location-based services enable us to inves-
tigate large-scale human mobile behaviors. We thus focus on
profiling POI-choosing decisions. In literature, most related
studies consider POI recommendation [Feng et al., 2015;
Yang et al., 2017; Massimo and Ricci, 2018]. Despite the ef-
fectiveness, these methods usually have troubles in explaining
their results. Efforts have also been made to interpretable POI
recommendation [Wu and Ester, 2015; Wang et al., 2018b].
However, the interpretability comes from external data [Wu
and Ester, 2015] and the effectiveness might be sacrificed ow-
ing to feature selection [Wang et al., 2018b]. Therefore, they
are not suitable for our task.

The challenges of our problem also arise from the unique
characteristics of user decisions. To start with, decision pro-
filing needs to unify heterogeneous factors, e.g., the basic spa-
tiotemporal influence and the hidden preference and function-
ality impacts for choosing POIs. Second, the contributions of
factors can differ greatly from one decision to another, which
is hard to pre-define. Instead, it is more desired to deter-
mine the various factor contributions automatically. Finally,
although our goal is to identify key factors, the complex deci-
sion structures need to be preserved at the same time to ensure
the goodness of the identified key factors.
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To this end, in this paper, we propose a novel frame-
work, named PROUD, for PROfiling User Decisions. We
collect multifaceted decision factors from different aspects
and model factors via representation learning. In this way,
all factors are organically integrated. To cope with the di-
verse factor contributions, i.e., each decision is mainly con-
tributed by a few key factors, we propose a novel objective:
For each decision, we maximize the sum of scalar projection
of all factor embeddings on an aggregated embedding of key
factors. By projection, the impacts of non-key factors are re-
duced. However, exactly solving the objective is non-trivial
due to a sparsity constraint. We show that the optimization
is non-convex and, worse still, the problem involves sparsity-
constrained linear system, which is often NP-hard [Natarajan,
1995]. Thus, we turn to find the desired aggregated embed-
ding in a purely data-driven manner and directly estimate the
likelihood of each factor to be a key factor. As a side effect,
our approach can identify key factors and preserve decision
structures at the same time by maximizing scalar projection.
Finally, using two real-world data sets, we conduct extensive
experiments. We find that PROUD outperforms baselines by
at least 30% for preserving decision structures. Also, our case
study demonstrates that the identified key factors are reason-
able and insightful. Our main contributions are as follows:

• We study user decision profiling to provide explanations
for people’s decisions.
• We propose a novel scalar projection maximization ob-

jective for the problem.
• We devise a framework PROUD which is able to directly

estimate the likelihood of each factor to be a key factor.
• We demonstrate the effectiveness of PROUD quantita-

tively and qualitatively through extensive experiments.

2 User Decision Profiling
In this section, we first formally define user decision profiling.
Afterward, we introduce our main idea to attack the problem.
We start by defining several concepts.
Definition 1 (Factor). A factor f is a concrete and explain-
able item that has impacts on decision-making.

Definition 2 (Decision). A decision D is represented as a set
of factors, i.e., D = {f1, . . . , fn}.

Factors should be well designed, e.g., by domain experts,
to ensure their impacts on user decisions and interpretability.
In this work, we consider factors of POI-choosing decisions
from three aspects: user, POI, and context [Zhu et al., 2012;
Bao et al., 2012]. User-related factors are user identifier
and frequently-visited areas/POIs. POI-related factors con-
tain POI identifier, category, brand, and POI popularity. Fi-
nally, those context-related ones are decision time (i.e., hour)
and the distance to home, work, and POI at the decision
time, respectively. We incorporate user and POI identifiers
to model the distinct impacts of individual users and POIs.
Besides, according to our statistics, we discretize the contin-
uous popularity into six levels based on the standard scores z
of log-scaled popularity: (i) strongly unpopular if z ≤ −1,
(ii) unpopular if z ∈ (−1,−0.5], (iii) weakly unpopular if

Figure 2: Decision profiling by scalar projection maximization (the
number of key factors is bounded by 2)

z ∈ (−0.5, 0], (iv) weakly popular if z ∈ (0, 0.5], (v) popular
if z ∈ (0.5, 1], and (vi) strongly popular if z > 1. We also
discretize distance into five levels: (i) 1km and less, (ii) 1 to
3 km, (iii) 3 to 7 km, (iv) 7 to 15 km, and (v) 15 km and more.

To better understand user behaviors, we profile user deci-
sions to discover the reasons behind.
Problem 1 (User decision profiling). Given each decisionD,
identify a small subset of key factors that actively contribute
to D and determine the contributing weights of key factors.

A scalar projection maximization perspective. We next
present our main idea, i.e., scalar projection maximization,
to tackle user decision profiling. Recall that we use factors
from various aspects to represent user decisions. This is to
avoid missing any possible clues. However, in practice, it
is unlikely that all factors play a role in the decision-making
process. Typically, each decision is mainly contributed by a
few (e.g., 2 to 5) key factors that we aim to identify, while the
rest are supporting factors of minor impacts.

Inspired by this, we propose to distinguish key factors from
supporting ones for user decision profiling. More specifically,
we learn hidden representations for factors and, for each de-
cision, compute an aggregated key embedding as a weighted
combination of the embeddings of its key factors. We then
maximize the sum of scalar projection of each factor embed-
ding on the aggregated key embedding to preserve decision
structures. By scalar projection, the impacts of supporting
factors are reduced. Finally, the optimal aggregated embed-
dings reveal key decision factors.

The idea is further illustrated by an example in Fig. 2. Sup-
pose we aim to profile a decision D = {f1, . . . , f4} by iden-
tifying up to two key factors. We learn factor embeddings
f1, . . . ,f4, and the core is to compute an aggregated key em-
bedding d, e.g., along the direction of f1 + f4 in our case,
such that the sum of scalar projection f̂ᵀd/|d| is maximized,
where f̂ =

∑4
i=1 fi and | · | is the Euclidean norm. Finally,

f1 and f4 are selected as key factors, while factors f2 and f3

only have limited (or opposite) impacts to the decision.
Optimization details. Let F = [f1, . . . ,fn]ᵀ ∈ Rn×d

be the factor embedding matrix of decision D and a ∈ Rn

be an n-dimensional vector. Formally, the objective of scalar
projection maximization for decision D is as follows:

max
F,a

(∑
i(aifi)

)ᵀ∑
i fi

|
∑

i(aifi)|
s.t. a � 0, nzr(a) ≤ λ. (1)

Here, a � 0 means that ai ≥ 0 for every i ∈ {1, . . . , n},
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Figure 3: Framework overview of PROUD

nzr(a) is the number of non-zero items in a, and λ is a spar-
sity threshold to bound the number of key factors. That is,
vector a indicates the contributions of key factors in the ag-
gregated embedding, i.e., d =

∑
i(aifi). For simplicity,

scalar projection is not normalized with |
∑

i fi| since an L2
regularization will be used on all factor embeddings.

The sparsity constraint makes the optimization problem
challenging. First, it is easy to verify that the optimiza-
tion is non-convex, e.g., the mean of two sparse a might
be non-sparse. Second, even fixing F, Eq. (1) remains as a
sparsity-constrained linear system [Natarajan, 1995], which
is often NP-hard. To solve this combinatorial optimization
problem efficiently, we apply machine learning techniques
to learn good heuristics from data [Vinyals et al., 2015;
Khalil et al., 2017]. Specifically, instead of explicitly opti-
mizing a, we estimate the likelihood of each factor to be a
key factor given the factor embeddings which will be updated
to maximize the scalar projection.

3 Proposed Model
In this section, we present our decision profiling framework
PROUD, which learns to identify key factors and preserve de-
cision structures simultaneously. The overview is illustrated
in Fig. 3, which consists of four components:

• Input & embedding takes a decision as input and assigns
a d-dimensional embedding to each of the factors.

• Self projection attention assigns another attention em-
bedding to each factor in which projection information
is well encoded. It computes a pairwise scalar projection
matrix and uses it as attention weights.

• Sparse likelihood estimator evaluates the likelihood of
each factor to be a key factor. It combines the initial and
attention factor embeddings via a multilayer perceptron
(MLP) and adopts an L2 regularized sparse activation.

• Decision structure learner computes the aggregated
key embedding given likelihood and preserves decision
structures by maximizing the sum of scalar projection of
factor embeddings on that aggregated embedding.

3.1 Self Projection Attention
Our PROUD learns to directly evaluate the likelihood of each
factor to be a key factor in a purely data-driven manner. Ob-
serve that, for each factor, whether it is a key factor or not
depends much on the scalar projection of other factors on it.
Intuitively, a key factor ought to be well supported by a num-
ber of other factors whose scalar projection on that factor is
large. Thus, we adopt a self projection attention to compute
another embedding for each factor, which encodes projection
information for learning likelihood in subsequent steps.

Formally, given factors f1, . . . , fn in a decision and the
corresponding factor embedding matrix F = [f1, . . . ,fn]ᵀ, it
first computes a pairwise scalar projection matrix P ∈ Rn×n,
in which Pij = fᵀ

i fj/|fi| is the scalar projection of fj on
fi. It then normalizes P with row-wise softmax:

P̂i: = softmax(Pi:), i ∈ {1, . . . , n}. (2)

Afterward, it computes an attention embedding f̂i =∑n
j=1 P̂ijfj ∈ Rd for each factor fi, which is the sum of

all factor embeddings fj weighted by P̂ij . An example is
illustrated at the upper-right of Fig. 3. As can be seen, pro-
jection information is well encoded in f̂1 such that factors
with higher scalar projection, i.e., f1 and f2, contribute more
to f̂1. The corresponding matrix form is F̂ = P̂F ∈ Rn×d.

3.2 Sparse Likelihood Estimator
With both initial and attention factor embeddings, the sparse
likelihood estimator component evaluates the likelihood of
each factor to be a key factor. We first concatenate the two
factor embedding matrices into F ⊕ F̂ ∈ Rn×2d and feed it
to a three-layer MLP to derive an unnormalized likelihood
vector l ∈ Rn for the n factors:

L = Dropout(ReLU((F⊕ F̂)W1 + b1)),

l = Dropout(ReLU(LW2 + b2))W3.
(3)

Here W1 ∈ R2d×d, W2 ∈ Rd×d, W3 ∈ Rd×1, b1 ∈ Rd, and
b2 ∈ Rd are trainable MLP parameters. The unnormalized
likelihood li of factor fi is determined by both fi and f̂i. In
other words, the likelihood of each factor has considered both
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the factor itself and other factors, with an emphasis on those
having high scalar projection on fi.

We then adopt a sparse activation to normalize l. We con-
sider sparsemax [Martins and Astudillo, 2016] which is sim-
ilar to softmax except for outputting sparse probabilities:

sparsemax(l) = argmin
p∈∆n−1

|p− l|, (4)

where ∆n−1 = {p ∈ Rn | 1ᵀp = 1,p � 0} is the n-
dimensional probability simplex and sparsity is ensured by
Euclidean projection onto ∆n−1. In practice, sparsemax(l)
can be easily computed in O(n log n) time.

Finally, l̂ = sparsemax(l) ∈ Rn is the valid likelihood
vector indicating which factors are key factors and their con-
tributing weights. The number of non-zero entries in l̂ is not
controllable given its definition. However, there is usually a
need to provide flexibility for the number of key factors, e.g.,
parameter λ of Eq. (1). Thus, we further equip an L2 reg-
ulator on the unnormalized l before sparsemax. The larger
the L2 weight is, the more key factors l̂ identifies. However,
we note that our L2 regularized sparse activation is a relaxed
version and cannot guarantee that the number of key factors
is bounded by some threshold.

3.3 Decision Structure Learner
Given likelihood vector l̂, the aggregated key embedding d ∈
Rd of decision D is computed as d =

∑n
i=1 l̂ifi = l̂ᵀF. We

then preserve decision structures by maximizing the sum of
scalar projection of all related factor embeddings on d:

max
F

f̂ᵀd/|d|. (5)

Recall that f̂ =
∑n

i=1 fi and, compared with Eq. (1), this
objective does not need to search for vector a.

To train factor embeddings, we need both positive and neg-
ative decision instances [Wang et al., 2018a]. The decisions
D we refer to by far are all positive: The user chooses the
POI to visit under certain context. We then denote the empir-
ical visit rate V̂R(D) = 1. For each positive decision D, we
can generate several negative instances D− by replacing the
POI-related factors with factors of other POIs that the user
does not decide to visit. Typical alternative POIs for nega-
tive instances can be those near the visited one or those of
the same category as the visited POI. Similarly, we denote
V̂R(D−) = 0. The predictive visit rates VR(D) and VR(D−)

are determined by scalar projection, i.e., σ(f̂ᵀd/|d|), where
σ(x) = 1/(1 + e−x) is the sigmoid function. Note that VR(·)
and V̂R(·) can be regarded as the predictive and empirical dis-
tributions of visit rates of decision instances. We then learn
to preserve decision structures via minimizing the distance
dist
(
VR(·), V̂R(·)

)
between the two distributions. Replacing

dist(·, ·) with KL-divergence and ignoring the constants, we
have the following to minimize [Tang et al., 2015]:

O = −
∑
D

logVR(D)−
∑
D−

log(1− VR(D−)). (6)

That is, the objective sums over all decision instances
and maximizes VR(D) for positive ones while minimizes

Description BEIJING NYC
time spanning 3/20/18∼8/30/18 4/12/12∼2/16/13

# of users 90,090 1,083
# of POIs 169,528 109,018

# of positive D 199,106 146,325
# of negative D− 1,694,365 1,282,302

# of factors per D/D− 20.5 45

Table 1: Data set statistics

VR(D−) for negative ones. Note that maximizing VR(D) (or,
minimizing VR(D−)) is indeed maximizing (or, minimizing)
the corresponding scalar projection f̂ᵀd/|d|.

4 Experiments
In this section we conduct extensive experiments to evalu-
ate our PROUD. Due to the unavailability of decision records
with ground-truth key factors, we evaluate the effectiveness
of PROUD for preserving user decision structures. Besides,
we also present a case study for qualitatively assessing the
key factors identified by PROUD.

4.1 Experimental Setups
Data sets. We chose two data sets to test our approach.
(1) BEIJING was produced using the map query and POI-visit
record data provided by a third-party map service platform.
Each query was associated with an anonymous user identi-
fier, a location, a time stamp, and a list of related POIs. For
each query, we constructed a positive decision instance if the
user visited one POI in the list in following two days, and
constructed negative instances with those unvisited POIs. We
discarded a map query if no POIs in the list were visited.
(2) NYC was produced based on a public Foursquare check-
in data set [Yang et al., 2015]. We collected POIs of NYC and
the numbers of likes to POIs (for evaluating POI popularity)
with Foursquare developers APIs. We treated each check-
in as a positive decision and generated negative instances by
replacing the POI with (i) those nearby and (ii) those of the
same categories. We did not consider distance factors since
decision locations were unknown.

For each data set, we randomly split the data into 70% for
training, 10% for validation, and 20% for testing. The statis-
tics of our data are illustrated in Table 1.

Metrics. We adopted Prec (Precision), Recall, F1, and
AUC (Area Under the ROC Curve) to evaluate the perfor-
mance. We used the optimal threshold on validation set to
compute Prec, Recall, and F1 on test data.

Algorithms. We compared our approach with various
baselines that could be used to preserve decision structures.

• LINE [Tang et al., 2015] is a classic network embedding
method. We constructed a co-visiting POI graph to ap-
ply LINE for preserving user decision structures.

• GE [Xie et al., 2016] is a graph embedding approach to
location recommendation. It adopts a logistic regression
to combine the proximities between different entities.

• MP2VEC [Dong et al., 2017] is a heterogeneous net-
work embedding method. We considered the follow-
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Algorithm BEIJING NYC
Prec Recall F1 AUC Prec Recall F1 AUC

LINE 0.2684 0.2433 0.2552 0.5827 0.3528 0.3835 0.3261 0.6459
GE 0.3005 0.3499 0.3234 0.6271 0.3767 0.5262 0.4391 0.7134

MP2VEC 0.4594 0.4180 0.4377 0.6801 0.4665 0.5247 0.4939 0.7281
LEARNSUC 0.2222 0.5849 0.3221 0.6791 0.3984 0.4011 0.3993 0.5600

PROUD 0.7637* 0.6375* 0.6949* 0.9248* 0.5487* 0.7743* 0.6422* 0.9439*

Table 2: Accuracy evaluation on preserving decision structures (* significantly outperform at the 0.01 level, paired t-test)
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Figure 4: Precision-recall curves

ing metapath: POI-X-user-X-POI-· · · , where X could
be any types except for user and POI.
• LEARNSUC [Wang et al., 2018a] denotes behavior

records as multi-type itemsets and learns behavior suc-
cess by preserving itemset structures.

Implementation. We used the Adam optimizer and a
batch size of 512 to train PROUD. The learning rate γ was
set to 0.01 at first and decayed to 0.7γ after each epoch. We
employed (i) an L2 regularization with weight 10−5, (ii) a
dropout with Pdrop = 0.2 in Eq. (3), and (iii) an early stop-
ping if the F1 on validation set did not increase in 5 epochs.
The number d of dimensions was fixed to 64. When quantity
measures were evaluated, the test was repeated over 5 times
using different data splits and the average was reported.

4.2 Experimental Results
Exp-1: Preserving decision structures. We first evaluate
the overall performance of considered approaches for distin-
guishing positive and negative user decision instances. Its re-
lationship to decision profiling is that PROUD preserves de-
cision structures via identifying key factors and maximizing
scalar projection, and the effectiveness of PROUD for pre-
serving decision structures directly relies on the goodness of
identified key factors. The results are reported in Table 2.

With Prec, Recall, and F1, i.e., predicting each instance as
either positive or negative, PROUD significantly outperforms
all baselines at the 0.01 level with paired t-test. Notably,
PROUD is the only method whose majority of predicted pos-
itive instances are true positive. This is achieved without sac-
rificing Recall. Indeed, PROUD also recalls the most positive
instances. As a result, the F1 of PROUD is on average (172%,
115%, 59%, 116%) and (97%, 46%, 30%, 61%) higher than
(LINE, GE, MP2VEC, LEARNSUC) on BEIJING and NYC,
respectively. The task is hard since positive and negative deci-
sion instances only partially differ in POI-related factors. The
advantage of PROUD comes from our novel objective which
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Figure 5: Top-20 key factors of Starbucks and ChinaMobile

distinguishes key and non-key factors and our entire model to
effectively achieve the objective.

With AUC, i.e., ranking instances according to their likeli-
hood of being positive, PROUD also dominates the compar-
ison on both data sets. Indeed, the AUC of PROUD is on
average (59%, 47%, 36%, 36%) and (46%, 32%, 30%, 69%)
higher than (LINE, GE, MP2VEC, LEARNSUC) on BEIJING
and NYC, respectively. According to the meaning of AUC,
PROUD can rank a random positive instance higher than a
random negative instance with probability 0.92.

To give a comprehensive understanding of how these ap-
proaches preserve user decision structures, we present the
precision-recall curves in Fig. 4. The Prec of LINE and GE
soon drops to between 0.4 and 0.5 when the Recall slightly
exceeds 0, and then keeps decreasing with the increment of
Recall. The situation of MP2VEC on NYC is similar. On the
other hand, the Prec of MP2VEC on BEIJING and of LEARN-
SUC remains at a relatively high level when Recall is small.
In other words, they can identify a fraction of positive in-
stances with a high accuracy. Finally, the Prec of PROUD
is consistently higher than others at all levels of Recall. The
gap between PROUD and other approaches clearly confirms
its superiority for preserving user decision structures.

Exp-2: Case study. We next present a case study on the
identified key factors to further evaluate PROUD. We col-
lected all positive decisions for Starbucks and ChinaMobile
(a major communication service provider in China) on BEI-
JING and listed their top-20 key factors in Fig. 5.

For Starbucks, the top-1 key factor is the brand. Note that
nowadays Starbucks has become the most popular chain cof-
fee brand in Beijing. Similarly, the category Coffee is another
main key factor. Moreover, people also consider the popular-
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Figure 6: Impacts of L2 regulator for likelihood vectors

ity of stores when making decisions. Besides, we identify two
scenic spots and, inspired, Starbucks may consider to expand
its business in their surrounding areas. We also find that dis-
tance and time are two key factors: People make decisions for
Starbucks when they are near their homes and usually visit
stores in late morning and afternoon hours. Finally, stores
themselves can be an important factor. The identified four
stores are located in business areas or popular residence areas
of foreigners and, thus, attract a large number of regular cus-
tomers. For ChinaMobile, the impacts of brand and service
decrease while distance and popularity factors play a more
crucial role. Similarly, time such as early morning and after-
noon remains influential. Moreover, we identify four resident
areas as key factors for ChinaMobile.

Exp-3: Impacts of L2 regulator. We adopt an L2 reg-
ulator on the unnormalized likelihood vector to control the
number of key factors. We finally evaluate the impacts of
the regulator. The results of F1, AUC, and the entropy of the
normalized likelihood vector l̂ are reported in Fig. 6.

When increasing the L2 weight from 10−7 to 10−3, both
F1 and AUC keep stable in general, with an exception that
the F1 on BEIJING is slightly better with larger L2 weights.
We omit Prec and Recall, and their results are similar. On
the other hand, the entropy keeps increasing: More key fac-
tors are identified with a stronger L2 regulator. To conclude,
the regulator can provide flexibility for key factors without
sacrificing the overall effectiveness.

5 Related Work
Explainable recommender systems aim to yield both rec-
ommendations and explanations [Zhang and Chen, 2018]. As
such, user satisfaction as well as system effectiveness and
transparency can be improved. The popular matrix factoriza-
tion methods usually have troubles in interpreting the mean-
ings of representation vectors. To tackle the issue, several
models, such as explicit factor models [Zhang et al., 2014]
and explainable matrix factorization [Abdollahi and Nas-
raoui, 2017], have been developed. In addition, graph learn-
ing is also leveraged, such as graph-based propagation [He et
al., 2015] and graph clustering [Heckel et al., 2017]. More
recently, deep learning is widely exploited for recommenda-
tion [Seo et al., 2017; Donkers et al., 2017].

Although explainable recommendation has been applied in
many scenarios, the progress for POIs is limited. In [Wu
and Ester, 2015], the authors propose a probabilistic model

which combines aspect-based opinion mining and collabora-
tive filtering to provide explainable recommendations. Be-
sides, [Wang et al., 2018b] exploits a tree-enhanced embed-
ding model for interpretable tourist and restaurant recommen-
dation. In this paper, we study how to identify the key fac-
tors contributing to people’s decisions on choosing POIs. We
learn representations for interpretable factors to preserve de-
cision structures, which differentiates our work from priors.
With this “decision profiling” capability, we are able to make
recommendations and, at the same time, provide the key fac-
tors behind as explanations.

Contextual representation learning proposes to tackle
relationship-centric tasks and combinational problems via
learning latent representations, and has been proven effec-
tive for various tasks [Hu et al., 2016; Zhou et al., 2019;
Zhang et al., 2020]. Network embedding is among the most
successful for capturing semantics of item interactions, e.g.,
LINE [Tang et al., 2015] and MetaPath2Vec [Dong et al.,
2017]. Recently, [Wang et al., 2018a] represents a behavior
as a multi-type itemset and learns the collective interactions
of items to preserve the success rate of each behavior. More-
over, by learning good heuristics automatically from data,
representation learning approaches have been exploited for
combinatorial optimization problems [Vinyals et al., 2015;
Khalil et al., 2017]. Our work also learns representations for
a set of factors. However, we devise a novel scalar projection
maximization objective, which has not been considered be-
fore. The self projection attention and L2-regularized sparse
activation are also deeply coupled with our problem.

6 Concluding Remarks
In this paper, we studied user decision profiling to provide ex-
planations for people’s decisions. We represented each user
decision as a set of factors and identified key factors. By
learning factor representations, we showed that maximizing
the sum of scalar projection of related factor embeddings on
the aggregated embedding of key factors is a good objective
to tackle the problem. Exactly solving the objective is not
easy due to a sparsity constraint. We proposed to directly
learn the likelihood of each factor to be a key factor, with
a self projection attention and an L2-regularized sparse ac-
tivation. Using real-world data, we conducted extensive ex-
periments to demonstrate the advantage of our approach. It
achieved the best performance for preserving user decision
structures, which indirectly verified the goodness of the iden-
tified key factors. We also presented a case study to show the
interpretability and usefulness of key factors.

Our solution could profile decisions in various domains as
long as the decision factors are well defined. In the future, we
are to explore automatic decision factor identification, which
further enhances the practical applicability of our framework,
and to construct benchmarks for user decision profiling.
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