
Information Systems 108 (2022) 102041

a

b

c

i
c
a
s
e
c
d
d
d
s

E
i
p
l
(
o

C

1
m

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Diversifying repairs of Denial constraint violations
Shuai Li a,b, Yue Zhang a,b, Zijing Tan a,b,∗, Shuai Ma c

School of Computer Science, Fudan University, China
Shanghai Key Laboratory of Data Science, China
SKLSDE Lab, School of Computer Science and Engineering, Beihang University, China

a r t i c l e i n f o

Article history:
Received 12 November 2021
Received in revised form 21 February 2022
Accepted 25 March 2022
Available online 31 March 2022
Recommended by Lukasz Golab

Keywords:
Algorithms
Data repairing
Denial constraints

a b s t r a c t

Denial constraints (DCs) are expressive enough to subsume many other dependencies, and proven
useful in data cleaning for improving data quality. As a complement to the methods of computing
a single (nearly) optimum repair of DC violations, in this paper we make the first effort to diversify
repairs of DC violations, aiming to generate a set of diversified repairs. (1) We adapt the concept of
cardinality-set-minimal repairs to DCs, and relate a cardinality-set-minimal repair to a minimal vertex
cover of the conflict hypergraph w.r.t. a given set Σ of DCs on a relational instance I . (2) We formalize
the problem of diversifying cardinality-set-minimal repairs of DC violations, and address the problem
by presenting a set of algorithms and optimizations to generate a set of diversified minimal vertex
covers of the conflict hypergraph. (3) Using both real-life and synthetic data, we conduct extensive
experiments to verify the effectiveness and efficiency of our methods.

© 2022 Elsevier Ltd. All rights reserved.
t

(
t

(

(
t

s

1. Introduction

Real-life data are usually dirty, due to, e.g., errors, conflicts and
nconsistencies. This highlights the quest for effective and effi-
ient data quality management [1,2]. Data repairing techniques
re at the core of data quality management and extensively
tudied in the literature. Denial constraints (DCs) [3,4] are general
nough to subsume many other data dependencies, e.g., unique
olumn combinations (UCCs), functional dependencies (FDs), con-
itional functional dependencies (CFDs) [5], and pointwise order
ependencies (PODs) [6,7]. Therefore, DCs are well employed in
ata repairing for improving data quality [4,8–11]. We first give
ome examples of DCs.

xample 1. Consider a sample relational instance I , as shown
n Table 1. It contains 7 tuples and each tuple concerns an em-
loyee’s information, including name (Name), phone (Phone), pay
evel (Level), department (DepID), salary (Salary), tax (Tax), city
City) and state (State). There are some data dependencies defined
n I .

∗ Corresponding author at: School of Computer Science, Fudan University,
hina.

E-mail addresses: 20210240207@fudan.edu.cn (S. Li),
9210240126@fudan.edu.cn (Y. Zhang), zjtan@fudan.edu.cn (Z. Tan),
ashuai@buaa.edu.cn (S. Ma).
 t

ttps://doi.org/10.1016/j.is.2022.102041
306-4379/© 2022 Elsevier Ltd. All rights reserved.
(1) A UCC states two tuples cannot have the same values in
attributes Name and Phone, i.e., the combination of Name and
Phone forms a candidate key.

(2) An FD states that two employees that work in the same
department (DepID) and have the same salary (Salary) must have
the same pay level (Level).

(3) A CFD states that for any tuple, if its value in attribute City is
‘‘Las Vegas’’, then it has ‘‘NV’’ in attribute State.

(4) A POD states that for any two tuples that have the same value
in State, the tuple with a larger value in Salary cannot have a
smaller value in Tax than the other tuple.

All of the above four constraints can be encoded as DCs, in
a universally quantified first order logic formalism (the formal
definition of DCs will be reviewed in Section 3).

(1) ϕ1: ∀ tα, tβ ∈ R, ¬(tα[Name] = tβ [Name] ∧ tα[Phone] =
β [Phone])

2) ϕ2: ∀tα, tβ∈R, ¬(tα[DepID] = tβ [DepID] ∧ tα[Salary] =
β [Salary] ∧ tα[Level] ̸= tβ [Level])

3) ϕ3: ∀tα ∈ R, ¬(tα[City] = ‘‘Las Vegas’’ ∧ tα[State] ̸= ‘‘NV’’)

4) ϕ4: ∀ tα, tβ ∈ R, ¬(tα[State] = tβ [State] ∧ tα[Salary] >

β [Salary] ∧ tα[Tax] < tβ [Tax]) □

Due to errors in data, the instance I is inconsistent w.r.t. the
et {ϕ1, ϕ2, ϕ3, ϕ4} of DCs in the sense that it violates some of

he DCs. Data repairing techniques can be employed to restore I

https://doi.org/10.1016/j.is.2022.102041
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2022.102041&domain=pdf
mailto:20210240207@fudan.edu.cn
mailto:19210240126@fudan.edu.cn
mailto:zjtan@fudan.edu.cn
mailto:mashuai@buaa.edu.cn
https://doi.org/10.1016/j.is.2022.102041

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

t

Table 1
Relation of Employee: I .
TID Name Phone Level DepID Salary Tax City State

t1 W. Donald 303–572 4 A550 30,000 2,300 Middleport OH
t2 L. John 225–945 1 A031 8,000 1,200 Shreveport LA
t3 R. Scott 219–904 2 A002 50,000 1,000 Shreveport LA
t4 E. Jason 215–793 3 A550 30,000 600 Las Vegas LA
t5 R. Gregory 262–404 2 A550 11,000 1,100 Maida ND
t6 W. Donald 303–572 2 A005 12,000 800 Middleport OH
t7 B. Scott 229–336 1 A005 7,000 0 Lima NY
to a consistent state, i.e., a repair of I . In the literature [4,11–16],
he most commonly used operation for repairing an instance I is
to modify some attribute values in I . Note that there are usually
many different ways to resolve inconsistencies.

Example 2. We first show some DC violations in the instance I .
(a) The tuple pair ⟨t1, t6⟩ violates ϕ1 because t1, t6 have the same
values in attributes (Name, Phone). (b) ⟨t1, t4⟩ violates ϕ2, because
t1, t4 are in the same department and have the same salary, but
have different pay levels. (c) Tuple t4 violates ϕ3 by itself. (d)
There are two tuple pairs ⟨t2, t3⟩ and ⟨t2, t4⟩ that violate ϕ4.

We then modify attribute values to resolve the violations.
Recall that repairing violations is usually measured by the repair
cost. The simplest and also mostly adopted cost measure, is com-
puted as the number of changes in the repair [4,11,15]. It can be
verified we must modify at least four attribute values to obtain a
repair of I . For example, we can get a repair by setting t1[Name]
= ‘‘L.Johh’’, t2[Salary] = ‘‘60,000’’, t4[City] = ‘‘Shreveport’’ and
t4[DepID] = ‘‘A005’’. The ways to get a repair are usually not
unique. We can get a different repair by setting t1[Phone]= ‘‘218-
750’’, t2[Tax] = ‘‘600’’, t4[State] = ‘‘NV’’, t4[Salary] = ‘‘20,000’’,
and another one by setting t1[DepID] = ‘‘A031’’, t2[Tax] = ‘‘400’’,
t4[City] = ‘‘Shreveport’’ and t6[Name] = ‘‘B.Scott’’.

In terms of the number of modified attribute values, we cannot
judge which of the three repairs is the best. Intuitively, this
motivates the quest for studying an approach to multiple repairs
instead of a single one.

From another point of view, the above-mentioned three re-
pairs are diversified in the sense they are dissimilar to each other
and hence provide good coverage of the different ways to restore
the consistency. In contrast, there are repairs that fall short of
diversification, i.e., repairs having the same or similar set of
modified attribute values. For example, a repair of {t1[Name] =
‘‘L.John’’, t2[Tax]= ‘‘400’’, t4[Salary]= ‘‘20,000’’, t4[State]= ‘‘NV’’}
is similar to that of {t1[Name] = ‘‘L.John’’, t2[Salary] = ‘‘60,000’’,
t4[Salary] = ‘‘20,000’’, t4[State] = ‘‘NV’’}, and that of {t6[Phone]
= ‘‘101-708’’, t2[Tax] = ‘‘400’’, t4[Salary] = ‘‘20,000’’, t4[State]
= ‘‘NV’’}. Similar repairs bring limited novel information. This
suggests besides repair cost, the idea of diversification should be
considered when generating a set of repairs. □

Existing works on repairing DC violations, e.g., [4,9–11], mainly
focus on the problem of optimum repair computation, aiming
at computing a single (nearly) optimum repair according to the
repair cost. As opposed to these works, in this paper we make
the first effort to study the problem of generating a set of repairs
of DC violation, and in particular, a set of diversified repairs.
We highlight some scenarios where optimum repair computation
is not sufficient but generating multiple (diversified) repairs is
desirable.

(1) Optimum repair computation methods aim to find a single
repair with the smallest cost among all repairs, but some repairs
can indeed have the same smallest cost. Even if the ‘‘best’’ repair
exists, no methods guarantee to find it because all methods are
heuristics due to the intractability of the optimum repair com-
putation problem [4]. Indeed, our experimental evaluations show
2

that our methods of generating multiple repairs can find repairs
better than the repairs from [4,11] in terms of repair cost.

(2) Automatic data repairing is hard to operate in practice,
and is usually combined with some manual involvement in an
interactive way [17–20]. In an interactive repairing approach,
usually several (representative) repairs can help users give feed-
backs or comments in a convenient way, since repairs can serve
as references to each other, while a single repair is not sufficient.

(3) As remarked in [21,22], by treating each possible repair as
a possible world, uncertain query answering can be obtained on
a dirty dataset following the Monte Carlo approach [23]. Similar
idea is recently adopted in [8], which performs probabilistic re-
pair of DC violations on-demand for user queries. Again, a set of
repairs rather than a single repairs is required in this scenario.

Contributions. In this paper, we make the first effort to generate
a set of diversified repairs of DC violations.

(1) We justify the space of repair generation by adapting
cardinality-set-minimal repairs to DCs. For a given set Σ of DCs
on a relational instance I , we relate a cardinality-set-minimal
repair to a minimal vertex cover of the conflict hypergraph of Σ

on I , by providing an algorithm that generates a cardinality-set-
minimal repair that modifies exactly all cells (attribute values)
from the vertex cover (Section 4).

(2) We formalize the problem of diversifying repairs, and
address it by providing a set of algorithms and optimizations
to generate a set of diversified minimal vertex covers of the
conflict hypergraph (Section 5 and Section 6). The methods to
enumerate all minimal vertex covers of a hypergraph, a.k.a. hy-
pergraph traversal or hitting set enumeration, are extensively
studied [24,25]. However, we are not aware of any methods of
diversifying minimal vertex covers. We contend that our methods
are valuable in themselves and can find applications in many
domains.

(3) We conduct an experimental study to verify our approach,
on both real-life and synthetic data (Section 7). The results show
that our methods can efficiently generate a set of repairs with
good diversification, and can find repairs with smaller repair cost
than the repairs produced by former works on optimum repair
computation.

2. Related work

As one of the most important aspects of data quality manage-
ment, data repairing (cleaning) methods are studied for a host of
constraints and data quality rules; see [1,2,26] for overviews of
this topic. In this section we discuss works close to ours: data
repairing of DC violations and techniques for sampling repairs of
constraints.

Data repairing with DCs. DCs [3,4] subsume many kinds of
constraints, and lend themselves to wide applicability for data
repairing. [27,28] study the problem of repairing numerical at-
tributes with linear denial constraints. Repairing an inconsistent
instance I w.r.t. a set Σ of general DCs is studied in [4], aim-
ing to find a repair I ′ satisfying Σ with the minimum repair
cost. [11] considers the case Σ may be inaccurate, proposes to

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

r
t
d
l
b
a
p
a
[
r
s
p
t
D

o
r
o
o
t
s
v

S
e
r
r
L
a

i
h
c
r
1
o
c
v
t

3

o

i
a
A

D
j
l

v

epair I by allowing a small variation on Σ and finds a repair
hat satisfies at least one variant of Σ . [10] unifies qualitative
ata repairing leveraging DCs with quantitative data repairing
everaging statistical properties, in a framework based on proba-
ilistic inference. [29] resolves the inconsistencies and conflicts in
unified approach, by combining DCs with source reliability. [8]
resents a query result relaxation approach that performs prob-
bilistic repairing of DC violations as requested by user queries.
9] introduces the notion of Delta Rules that combines DCs, causal
ules and database deletion triggers, studies several alternative
emantics for repairs, and investigates expressiveness and com-
utational complexity of these different semantics. In addition,
here are some centralized or distributed systems built to repair
C violations [30–32].
Different from these works, we study the generation of a set

f diversified repairs. We justify the space of repair generation,
elate a cardinality-set-minimal repair to a minimal vertex cover
f the conflict hypergraph, and present a set of algorithms and
ptimizations to diversify minimal vertex covers. In particular,
he techniques of conflict hypergraph [4] and repair context over
uspect [4,11] are employed in our methods, for encoding DC
iolations and for generating repairs from minimal vertex covers.

ampling repairs of constraint violations. To our best knowl-
dge, we are not aware of any works on generating multiple
epairs of DC violations. The methods of random sampling of one
epair of FD and CFD violations each time are studied in [21,22].
everaging the sampling method in [21], techniques for selecting
set of diversified repairs of FD violations are studied in [33].
This work differs in the following. (1) We study generat-

ng multiple repairs of DC violations, which is necessarily much
arder than sampling repairs of FD (CFD) violations. The in-
reasing complexity is demonstrated in techniques for computing
epairs with DCs [4,11], compared to those with FDs (CFDs) [12–
5]. (2) We establish the connection between diversified repairs
f DC violations and diversified minimal vertex covers of the
onflict hypergraph. We present novel methods to generate di-
ersified minimal vertex covers; the methods are valuable in
hemselves.

. Preliminaries

In this section, we review basic notations of DCs and repairs
f DC violations.
We denote a relation schema by R(A1, . . . , Ak), a relational

nstance of R by I , and tuples in I by t, s. For a given tuple t from I
nd an attribute A ∈ R, we denote by I(t, A) the value of attribute
in t from I .

enial constraints (DCs) [3,4]. Each DC ϕ is a negation of con-
unction of predicates, given in a universally quantified first order
ogic formalism: ϕ: ∀tα, tβ ∈ R, ¬(P1 ∧ · · · ∧ Pm)

Herein, each predicate Pi (i ∈ [1,m]) is in the form of v1φv2 or
1φc , where v1, v2 is of the form tx[A], x ∈ {α, β}, A is an attribute

of R, c is a constant, and φ ∈ {<,≤, >,≥,=, ̸=}. A DC is called
a single-tuple DC if all predicates are in the form of tα[A]φc or
tα[A]φtα[B], i.e., only one tuple is concerned. When ϕ is imposed
on an instance I , I(tα, A) and I(tβ , A) are used to compute the
satisfaction of all the predicates. ϕ is satisfied iff at least one of
the predicates is unsatisfied. Otherwise, there are DC violations. I
is consistent w.r.t. ϕ iff there is no tuple pair ⟨t, s⟩ that violates ϕ

(or a single tuple t if ϕ is a single-tuple DC), written as I |H ϕ. For
a set Σ of DCs, we write I |H Σ iff I |H ϕ for every ϕ ∈ Σ .

Repairs of DC violations. Given an inconsistent instance I w.r.t.
a set Σ of DCs, a repair of I is another instance I ′ obtained by
modifying attribute values in I such that I ′ |H Σ .
3

Along the same lines as former works [4,11–16], only value
modifications are used to repair an inconsistent instance. Hence,
given a tuple t and an attribute A ∈ R, we identify the same
position in I and its repair I ′. We refer to the position as a cell,
and use t[A] to denote the position. In contrast, I and I ′ may have
different values in the same cell, and we denote by I(t, A) (resp.
I ′(t, A)) the value of attribute A in t from I (resp. I ′).

4. From minimal vertex cover to repair

In this section, we first adapt the concept of cardinality-set-
minimal repairs to DCs, to justify the space of repair genera-
tion. We then establish the connection between a cardinality-
set-minimal repair and a minimal vertex cover of the conflict
hypergraph of a given set Σ of DCs on a relational instance I .

4.1. Repair space

It is important to figure out the criterion we adopt in gener-
ating repairs of DC violations. In this subsection, we review three
notions of repair and justify the cardinality-set-minimal repair
considered in this paper.

For a given repair I ′ of I w.r.t. a set Σ of DCs, we denote by
∆(I, I ′) the set of cells at which I and I ′ have different values, i.e.,
∆(I, I ′) = {t[A] | I(t, A) ̸= I ′(t, A)}. We denote by λ(I, I ′) the set
of pairs of the cell modified in I ′ and the new value, i.e., λ(I, I ′) =
{(t[A], I ′(t, A)) | t[A] ∈ ∆(I, I ′)}.

There are different notions of repair in the literature, namely
cardinality-minimal, set-minimal, cardinality-set-minimal repairs,
respectively. They are considered for sampling repairs of FD (CFD)
violations in [21,22].

Cardinality-minimal repair [4,15]. A repair I ′ of I is cardinality-
minimal iff there is no repair I ′′ of I such that |∆(I, I ′′)| <
|∆(I, I ′)|.

Set-minimal repair [34]. A repair I ′ of I is set-minimal iff there
is no repair I ′′ of I such that λ(I, I ′′) ⊂ λ(I, I ′).

Cardinality-set-minimal repair [21,22]. A repair I ′ of I is cardin-
ality-set-minimal iff there is no repair I ′′ of I such that ∆(I, I ′′) ⊂
∆(I, I ′).

We see the following. (1) I ′ is a cardinality-minimal repair iff
it has the minimum number of modified cells among all possible
repairs. (2) I ′ is a set-minimal repair, iff I ′ ̸|H Σ if we change the
value of any modified cell in I ′ back to its original value in I . (3) I ′
is a cardinality-set-minimal repair, iff there does not exist another
repair I ′′ such that the set of modified cells in I ′′ is a proper subset
of the set of modified cells in I ′. Note the same cell can have
different values in I ′ and I ′′. (4) By the definitions, a cardinality-
minimal repair is always a cardinality-set-minimal repair, and a
cardinality-set-minimal repair is always a set-minimal repair.

Example 3. In Fig. 1, the instance I violates the DC ϕ, and we
show different types of repairs. Specifically, (1) I1 is a cardinality-
minimal repair. It can be verified that the number of modified
cells in I1 is the minimum among all possible repairs. (2) I2
is a cardinality-set-minimal repair, since we cannot generate a
repair by modifying only t1[C] or t2[C] (possibly with different
values from I2). (3) I3 is a set-minimal repair, since changing any
subset of {t1[C], t2[C], t3[C]} back to their original values does
not lead to a repair. (4) I4 is not a set-minimal repair. This is
because it already suffices to repair I by setting t3[C] = 2, i.e.,
the modification of t3[B] is unnecessary. □

Different notions of repair lead to different spaces of repair
generation. We consider generating cardinality-set-minimal re-
pairs of DC violations, along the same lines as [21,22] for sampling
repairs of FD (CFD) violations.

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

w
v
c

E
g
d
t
v

t

a
{
c

l
a
i
e
t

S
t
i
⟨

⟨

c

E
t
i
ϕ

{

Fig. 1. Different types of repairs.

(1) It is known cardinality-minimal repairs cannot be effi-
ciently generated. It is NP-hard to generate a single cardinality-
minimal repair of FD violations [12,13,15], and this negative
result also applies to DCs that subsume FDs. Existing heuristic
DC repairing methods, e.g., [4,11], cannot guarantee to compute
cardinality-minimal repairs.

(2) The space of set-minimal repairs is larger than that of
cardinality-set-minimal repairs. If a set-minimal repair is not a
cardinality-set-minimal repair, then there must exist a cardinality-
set-minimal repair that only modifies some (not all) cells that
are modified in the set-minimal repair. Thus, cardinality-set-
minimal repairs are preferable to set-minimal repairs, following
the principle of minimality of changes [4,11–13,15].

4.2. Method to compute cardinality-set-minimal repair

In this subsection, we present an algorithm to compute
cardinality-set-minimal repairs, which is built upon the con-
nection between a cardinality-set-minimal repair and a minimal
vertex cover of the conflict hypergraph.

Conflict hypergraph. The technique of conflict hypergraph is
originally introduced for encoding FD violations [15], and further
extended to DC violations [4]. A hypergraph contains a set of
hyperedges and each hyperedge can contain an arbitrary number
of vertices. In the conflict hypergraph G = (V , E) of an instance I
.r.t. a set Σ of DCs, each hyperedge from E corresponds to a DC
iolation with all cells involved in the violation as vertices, and a
ell belongs to V if it involves in any DC violations.

xample 4 (Example 2 Continued). We show the conflict hyper-
raph in Fig. 2. There are 5 hyperedges, and each hyperedge
enotes a DC violation. For example, e5 denotes t4[State] and
4[City] violate ϕ3; the value of t4[City] is ‘‘Las Vegas’’ but the
alue of t4[State] is not ‘‘NV’’. □

A repair must modify at least one cell involved in a violation
o resolve the violation, and all violations must be eliminated to
4

Fig. 2. Conflict hypergraph of Example 2.

obtain a repair. In terms of the conflict hypergraph, this implies
that all cells modified in a repair form a vertex cover, a.k.a. hitting
set [24,25], of the conflict hypergraph, i.e., the set of modified cells
(vertices) intersects with every hyperedge.

Based on this observation, former works on repairing DC vi-
olations [4,11] first obtain a minimum vertex cover that has the
minimum number of modified cells, and then repair cells from
the cover. The methods are necessarily heuristics, since it is NP-
hard to find a minimum vertex cover [35]. In contrast, as will
be seen shortly, we can obtain a cardinality-set-minimal repair
based on a minimal vertex cover. Recall a vertex cover is minimal
if no proper subset of it is a vertex cover, and it is polynomial to
find a minimal vertex cover.

Example 5 (Example 4 Continued). We can see {t1[Name], t3[Sal-
ry], t4[City], t4[Level], t4[Tax]} is a minimal vertex cover, while
t1[Name], t3[Salary], t4[Salary], t4[City]} is a minimum vertex
over. □

In the sequel, we establish the connection between a cardina-
ity-set-minimal repair and a minimal vertex cover, by presenting
n algorithm (Algorithm 1) that takes a minimal vertex cover as
nput and outputs a cardinality-set-minimal repair by modifying
xactly all cells from the cover. We first review some DC repairing
echniques [4,11] employed in the algorithm.

uspect set [11]. Given a cell c = t[A] and a ϕ from the set Σ ,
he suspect set susp(c, ϕ) is a set of tuple pairs. Each tuple pair
n susp(c, ϕ) is of the form ⟨t, s⟩ or ⟨s, t⟩. Specifically, ⟨t, s⟩ (resp.
s, t⟩) belongs to susp(c, ϕ) iff (a) ϕ concerns c; and (b) ⟨t, s⟩ (resp.
s, t⟩) satisfies all the predicates in ϕ excluding those concerning
. We denote by susp(c, Σ) the set of susp(c, ϕ) for all ϕ ∈ Σ .

xample 6 (Example 2 Continued).We compute the suspect set for
4[Salary] w.r.t. Σ = {ϕ1, ϕ2, ϕ3, ϕ4}. (1) For ϕ2, four tuple pairs,
.e.,⟨t1, t4⟩, ⟨t4, t1⟩, ⟨t4, t5⟩ and ⟨t5, t4⟩, satisfy all the predicates of
2 excluding the one concerning t4[Salary]. Thus, susp(c, ϕ2) =
⟨t1, t4⟩, ⟨t4, t1⟩, ⟨t4, t5⟩, ⟨t5, t4⟩ }. (2) Similarly, we have susp(c, ϕ4)
= {⟨t4, t2⟩, ⟨t4, t3⟩ }. (3) ϕ1 and ϕ3 have no predicates concerning
t4[Salary]. (4) Finally, we have susp(t4[Salary], Σ) = {ϕ2: {⟨t1, t4⟩,
⟨t4, t1⟩, ⟨t4, t5⟩, ⟨t5, t4⟩ }, ϕ4: {⟨t4, t2⟩, ⟨t4, t3⟩ }}. □

For c = t[A] and ⟨t, s⟩ ∈ susp(c, ϕ), note whether the pred-
icates concerning c are satisfied by ⟨t, s⟩ is irrelevant in the
computation of susp(c, ϕ). Observe the following. (1) Recall a
tuple pair violates ϕ if all the predicates in ϕ are satisfied by
the pair. If ⟨t, s⟩ satisfies the predicates concerning c , then ⟨t, s⟩
violates ϕ. That is, susp(c, ϕ) contains all the violating tuples of
ϕ w.r.t. the tuple t . (2) If ⟨t, s⟩ does not satisfy the predicates
concerning c , then s is considered as a suspect [11]. Intuitively,

⟨t, s⟩ may form a violating tuple pair of ϕ after modifying the

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

e
t
i
f
ϕ

t
i
v

A
c
f
i
n
c
a
a
t
s
s
t
d
u
n
n
v

s

t
w
b
S
t

C
c
t
O
i
≤

a
w

R
m
w
r
t
c
c
f
c
q
l
c
f
t
o
w

5

d

5

e
c
t
w
g

q
r
t
v
t
u
t
c
R
b
L
r
w
t

d

Fig. 3. The repair context of cell t4[Salary].

Algorithm 1: GetRepair
Input: An instance I , a set Σ of DCs, and a minimal vertex

cover C of the conflict hypergraph G
Output: A cardinality-set-minimal repair I ′

1 I ′ ← I;
2 foreach cell c ∈ C do
3 repairOneCell(c);
4 return I ′;
5

6 Function repairOneCell(cell c)
7 susp← compute susp(c, Σ) on I ′;
8 rc ← compute the repair context over susp;
9 newvalue← compute a value for c according to rc;

10 modify the value of c to be newvalue in I ′;

value of t[A], since all the predicates irrelevant to c in ϕ are
already satisfied.

Repair context over suspect set [11]. The repair context of a cell
c = t[A] is the conjunction of expressions that are comparisons
between c and another cell or a constant. Specifically, in the
repair context (a) each cell is either c , or a cell s[B] where ⟨t, s⟩ or
⟨s, t⟩ ∈ susp(c, Σ) and s[B] is involved in a predicate concerning
c; and (b) each constant is involved in a predicate concerning
c. The rationale behind repair context is that if a value for c
can be found such that all the expressions in the repair context
are satisfied simultaneously, then all violations concerning c are
resolved without introducing no new DC violations.

Example 7 (Example 6 Continued). According to the suspect set,
we have the repair context of t4[Salary] as shown in Fig. 3. As an
xample, consider ⟨t4, t2⟩ from susp(c, ϕ4). We get the expression
4[Salary] ≤ t2[Salary] by reversing t4[Salary] > t2[Salary] accord-
ng to ϕ4. Intuitively, by choosing a value for t4[Salary] that satis-
ies the expression, we guarantee that ⟨t4, t2⟩ no longer violates
4. As another example, consider ⟨t4, t5⟩ from susp(c, ϕ2). We get
he expression t4[Salary] ̸= t5[Salary]. The new value of t4[Salary]
s required to satisfy this expression, to avoid introducing new
iolations. □

lgorithm. GetRepair (Algorithm 1) is given to generate a
ardinality-set-minimal repair, by repairing exactly all the cells
rom a minimal vertex cover of the conflict hypergraph. The key
s to modify cells from the cover one by one and avoid introducing
ew violations. This is achieved by computing a value for each cell
based on the repair context of c. The repair context of c is built
ccording to I ′. Hence, the new values assigned to cells before c
re considered in computing the repair context of c. The methods
o choose a new value for c according to its repair context are
tudied in [4,11]. Roughly speaking, (a) if possible, a value that
atisfies all the expressions in the repair context is chosen. When
here are several possible values, the value that minimizes the
ifference between the original and new values is selected, by
sing, e.g., string cardinality minimality for string attributes and
umerical distance minimality for numerical attributes. (b) As
oted in [4,11], a repair context may fail to be satisfied if no

alue exists that can satisfy all the expressions in the context

5

imultaneously. In this case, a fresh new value is used. A fresh
new value is a value outside the current active domain and does
not satisfy any predicates with it, which guarantees to eliminate
any DC violations.

Example 8. For a given minimal vertex cover C = {t1[Name],
3[Salary], t4[Salary], t4[City]} of the conflict hypergraph in Fig. 2,
e can modify the value of t4[Salary] from 30,000 to 8,000
ased on the repair context of t4[Salary] illustrated in Example 7.
imilarly, we can modify the values of t3[Salary], t1[Name] and
4[City] to be 8,000, ‘‘L.John’’ and ‘‘Maida’’, respectively. □

omplexity. To repair a cell c from C, (1) it takes O(|I||Σ |) to
ompute the suspect set susp(c, Σ), where |I| is the number of
uples in I and |Σ | is the number of DCs in Σ; (2) it takes
(|susp(c, Σ)|) to compute the repair context, where |susp(c, Σ)|
s the number of tuple pairs in susp(c, Σ). Note that |susp(c, Σ)|
2|I||Σ |; and (3) for simplicity, we omit the time for finding
value of c according to the repair context. To sum up, the
orst-case complexity of GetRepair is O(|C||I||Σ |).

emark. We highlight the differences between GetRepair and the
ethods of [4,11]. The method of [4] considers repair context
ithout suspect set, and it may introduce new violations in the
epair process, as noted in [11]. The method of [11] computes
he repair contexts of all the cells from the minimum vertex
over, and tries to find values for all the cells to satisfy the repair
ontexts simultaneously. If this is not possible, then it assigns
resh new values to some cells until the remaining repair contexts
an be simultaneously satisfied. Intuitively, this may favor repair
uality but complicate the resolution of repair contexts with a
arge number of expressions. In contrast, GetRepair deals with
ells one by one, by computing repair context for each cell and
inding a value for each cell based on its repair context. We adopt
his strategy since we aim for a set of repairs rather than a single
ne. As will be seen in Section 7, the experimental evaluations
ell demonstrate the benefits of GetRepair.

. Diversifying repairs of DC violations

In this section, we present algorithms to generate a set of
iversified cardinality-set-minimal repairs.

.1. Diversification objective

As illustrated in Section 1, in practice we often need to gen-
rate multiple repairs instead of one repair. The number of
ardinality-set-minimal repairs can be huge. Hence, it is impor-
ant to generate repairs according to some criterion. In this paper,
e focus on diversification, aiming at generating repairs to provide
ood coverage of the different ways to repair DC violations.
Given a set of cardinality-set-minimal repairs, we need to

uantify their differences. Restrictions in DCs can be imposed by a
ange. For example, we can use a value no greater than 500 from
he active domain as the new value of tα[Salary], to resolve the DC
iolation of ¬ (tα[Salary] > 500). It is usually not very instructive
o tell the difference between, e.g., 500 and 499. To this end, we
se a measure based on the cells modified in repairs to quantify
he difference between repairs. The intuition is that the fewer
ommon cells two repairs share, the more different they are.
ecall that GetRepair computes a cardinality-set-minimal repair
y modifying exactly all cells in a given minimal vertex cover.
everaging the algorithm, we can relate the diversification of
epairs to the diversification of minimal vertex covers. Formally,
e measure the difference between two covers (sets) C1, C2 using
he well known Jaccard distance:

is(C1, C2) = 1−
|C1 ∩ C2|

|C1 ∪ C2|

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

m
u
m

f

w
m
t
d
s
t
u
t
p
i
t

5

t
f
i

v
c
t
m
c
a
a
b
s
D
T
c

A
G

Algorithm 2: SubMVC
Input: Hypergraph G = (V , E) and a number k
Output: a set S of k minimal vertex covers

1 S ← ∅;
2 Cpre ← ∅;
3 mainProcess(∅, E of G);
4 return S;
5

6 Function mainProcess(C, uncov)
7 if |S| = k then
8 return;
9 if uncov = ∅ then

10 if Cpre ̸= ∅ ∧ dis(C, Cpre) < σ then
11 return;
12 Cpre ← C;
13 S ← S ∪ {C};
14 return;
15 edge← chooseEdgeToCover(uncov);
16 vertices← vertices of edge;
17 foreach v ∈ vertices do
18 if checkMinimal(C ∪ {v}) = true then
19 mainProcess(C ∪ {v}, uncov \ {edges containing v});
20 if |S| = k then
21 return;

We then formalize the diversification objective. There are
any different objectives in the literature; see, e.g., [36–38]. We
se one of the most commonly used objectives, referred to as
ax–min diversification function:

(S) = min
Ci,Cj∈S

dis(Ci, Cj) (1)

here S is a set of k minimal vertex covers, and the aim is to
aximize f (S). It is NP-hard to select S from a given set U such

hat the function in Eq. (1) is maximized [39]. Note k is a user-
efined parameter [36–38]. For diversifying repairs, a relatively
mall k can be used to generate some diversified repairs for users
o inspect, while a relatively large k can be used to approximate
ncertain query answers (recall Section 1). It is worth mentioning
hat our problem is more difficult than common diversification
roblem, since the set U , i.e., the set of all minimal vertex covers,
s not available. Nevertheless, in the sequel we will develop
echniques for the problem that work well in practice.

.2. Algorithms for diversifying minimal vertex covers

Since the difference between repairs is fully determined by
he difference between minimal vertex covers they are produced
rom, in this subsection we develop techniques to diversify min-
mal vertex covers.

Our first algorithm to generate a set S of k diversified minimal
ertex covers is based on the enumeration of minimal vertex
overs. It is inefficient to enumerate all covers and then apply
he diversification function for choosing k covers, since the enu-
eration can have a result set of exponential size in the worst
ase [24,25] and k is typically much smaller than the size. We
im to enable early termination as soon as k desirable covers
re obtained. Intuitively, depth first search (DFS) is preferable to
readth first search (BFS) in quickly generating some covers, but it
uffers from the limitation that the successive covers generated in
FS are usually very similar, i.e., with very few different vertices.
o this end, we improve the basic DFS to ‘‘skip’’ similar covers by
onsidering the difference between successive covers.

lgorithm. SubMVC (Algorithm 2) takes the conflict hypergraph

and a number k as inputs, and outputs k diversified minimal

6

Algorithm 3: RandomMVC
Input: Hypergraph G = (V , E) and a number k
Output: a set S of k minimal vertex covers

1 S ← ∅;
2 while |S| < k do
3 backSteps← 0;
4 mainProcess(∅, E of G);
5 return S;
6

7 Function mainProcess(C, uncov)
8 if |S| = k then
9 return;

10 if uncov = ∅ then
11 if C /∈ S then
12 S ← S ∪ {C};
13 backSteps← a random value no greater than |C| −

1;
14 return;
15 edge← chooseEdgeToCover(uncov);
16 vertices← messUp(vertices of edge);
17 foreach v ∈ vertices do
18 if backSteps ̸= 0 then
19 break ;
20 if checkMinimal(C ∪ {v}) = true then
21 mainProcess(C ∪ {v}, uncov \ {edges containing v});
22 if |S| = k then
23 return;
24 if backSteps ̸= 0 then
25 backSteps← backSteps− 1;

vertex covers. It follows a DFS strategy by recursively calling
function mainProcess. A hyperedge edge is covered by a cover C
if at least one of its vertex is in C, and C becomes a vertex cover
if all hyperedges from E of G are covered by C. In mainProcess,
a hyperedge edge not covered yet is chosen, and vertices from
edge are enumerated to cover it (lines 15–16). When the set
uncov becomes empty, a cover is found (line 9). The key is
to guarantee that only minimal vertex covers are generated. In
function checkMinimal, it is checked whether adding v into the
current cover C violates the minimality (line 18). Intuitively, v

is added into C only when v covers uncovered hyperedges from
uncov. However, v may also cover hyperedges that are already
covered by vertices in C, such that some vertices from C become
unnecessary. The technique of critical hyperedges [40] is used to
check the minimality in our implementation. Roughly speaking,
it is to check whether all vertices in C are still critical in the sense
that each vertex covers hyperedges that are not covered by any
other vertices.

SubMVC differs from common DFS enumeration algorithms in
two aspects. (1) SubMVC terminates when k covers are obtained,
i.e., |S| = k (lines 7–8). (2) Cpre is used to save the most recent
cover added into S. When a new cover C is found, we add it into
S only if the difference dis(C, Cpre) is no less than a threshold σ

(lines 10–14).
Intuitively, SubMVC may fall short of overall performance

since it only considers the difference between two successive
covers. To this end, we present another algorithm based on ran-
domness.

Algorithm. RandomMVC (Algorithm 3) also follows a DFS strat-
egy to generate k diversified covers, but differs from SubMVC in
the following.

(1) After a minimal vertex cover C is generated, a random
value backSteps no greater than the size of C minus 1 is used
to reverse the DFS (line 13, lines 18–19 and lines 24–25). Intu-
itively, the successive minimal vertex covers generated in DFS

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

I
b
l

f
(

E

i
n
o
i
s
f

R
t
N
t

s

5

c
r

S
t

(
S

S
r
o
F
a
d
C
C
c
o

S
t
m
r
c
t
t
b
e

c
o

M
(
t
U
f
d
i

W
S
w
w
d
s

a
o
E
I
e

E
t
o
C
a
i
W
A

Fig. 4. Example 9 for Algorithm 3.

Algorithm 4: GMM [41]
Input: An integer k and a set U of minimal vertex covers
Output: a set S of k minimal vertex covers

1 S ← ∅;
2 find C, C′ with the largest dis(C, C′) from U;
3 S ← S ∪ {C, C′};
4 while |S| ̸= k do
5 C′′ ← argmaxC′′∈U\SminCi∈Sdis(Ci, C′′);
6 S ← S ∪ {C′′};
7 return S;

are similar to each other since they share many common vertices,
i.e., the vertices added into the cover following the search path.
n order to generate diversified covers, RandomMVC ‘‘walks up’’
ackSteps + 1 steps instead of a single step of the original DFS. The
arger backSteps is, the fewer common prefixes (vertices) the two
successive covers will share. (2) Before the loop of mainProcess,
unction messUp is called to randomly reorder the vertices of edge
line 16), to vary the order of dealing with them (line 17).

xample 9 (Example 4 Continued). We show in Fig. 4 how
RandomMVC generates minimal vertex covers of the conflict
hypergraph from Example 4. Let k = 4. After the first cover C1
s generated, suppose we have backSteps = 1. Note backSteps de-
otes the additional steps for backtracking. Besides the necessary
ne step taken by DFS, it additionally goes one step backwards,
.e., from v3 to v2, and continues searching from v2 again. The DFS
earch and additional backtracking continue until the required
our minimal vertex covers are generated. □

emarks. (1) SubMVC and RandomMVC are necessarily heuris-
ics, due to the high complexity of our problem. It is already
P-hard to select S from a given set U to maximize diversifica-
ion, and worse, in our setting the set U of all minimal vertex
covers is not available. (2) A small parameter σ in SubMVC helps
reduce the running time, possibly at the cost of diversification.
We will experimentally study the impact of σ in Section 7. The
worst-case complexity of SubMVC is the same as that of the enu-
meration of minimal vertex covers, since we have to enumerate
all minimal vertex covers in the worst case if σ is (too) large.
(3) The total number of minimal covers is typically larger than
k by several orders of magnitude, and hence, duplicate covers
are very unlikely to occur during the process of RandomMVC
(line 11 is almost always true). That is, in most cases exactly k
minimal covers are computed during RandomMVC. The worst-
case complexity for generating one minimal vertex cover with
critical hyperedges is O(∥G∥|V |) [40], where ∥G∥ is the sum of the

izes of hyperedges in G and |V | is the number of vertices of V . F

7

.3. Enhanced strategies

In this subsection, we present several strategies that can be
ombined with the algorithms given in Section 5.2, to trade
unning time for better diversification.

trategy one. The first strategy, referred to as BestOfTimes, aims
o avoid the bias of random algorithm RandomMVC. Specifically,
it runs RandomMVC m times for a set {S1, S2, . . . , Sm}, where Si
i ∈ [1,m]) is a set of k minimal vertex covers. It then selects the
i with the maximum f (Si) (the best diversification).

trategy two. The second strategy, referred to as Maxmin, first
uns RandomMVC for a set U of m ∗ k covers (the same number
f covers as BestOfTimes), and then selects k covers from U .
or the second step, we employ a well-known 2-approximation
lgorithm GMM (Algorithm 4), proposed for the max–min facility
ispersion problem [41]. Specifically, it first selects two covers C,
′ with the largest dis(C, C′) from U , and then continues selecting
′′ that maximizes the minimal difference until k covers are
hosen. In the sequel, we denote by GMM(U, k) the result set S
f k minimal vertex covers found on U .

trategy three. The third strategy, referred to as IncMaxmin, aims
o improve the efficiency of Maxmin. Recall Maxmin computes
∗ k covers, but there is no guarantee all the computed covers

eally help improve the diversification. In light of this, after a new
over C is generated, IncMaxmin checks whether GMM(U, k) is
he same as GMM(U ′, k), where U ′ = U∪{C}, and decides whether
o generate more covers. IncMaxmin continuously monitors the
enefit of the new covers in terms of diversification. This enables
arly termination to improve efficiency.
Different from Maxmin, IncMaxmin calls GMM for every new

over C. We first present an incremental version of GMM, based
n a novel data structure.

axmin-graph. A maxmin-graph MG(U, k) = (V , E) where V
resp. E) is the set of vertices (resp. edges), is constructed during
he process of GMM. Recall that GMM takes as an input a set
of minimal vertex covers, and outputs a set S of k covers

rom U . For each cover from S , we add a vertex to V of MG to
enote the cover. In the following, we use covers and vertices
nterchangeably when they are clear from the context.

Specifically, MG is constructed along with S as follows. (1)
hen two covers C, C′ with the largest dis(C, C′) are added into
, we add C, C′ into V , and add an edge e = (C, C′) into E with a
eight ω(e) = dis(C, C′). (2) When a cover C′′ is added into S ,
e add C′′ into V and an edge e′ = (C′′, C1) into E, such that
is(C1, C′′) = minC∈Sdis(C, C′′). We set ω(e′) = dis(C1, C′′). This
tep continues until k covers are added into S.
Vertices in V are numbered according to the order that they

re added into V , where vi denotes the vertex with index i (the
rder of v1, v2 is irrelevant). We denote by ei the edge (added into
) along with vi+1 (added into V), and call ei the evidence of vi+1.
ntuitively, ei justifies the addition of vi+1. In particular, e1 is the
vidence of v1 and v2 that are added into V simultaneously.

xample 10. Given U = {C1, C2, C3, C4, C5}, k = 4 and the dis-
ance matrix for covers from U in Fig. 5, we show the construction
f maxmin-graph. (1) The first two elements added into S are
1 and C5, for their distance M1,5 = 0.65. (2) The next element
dded into S is C3. We have minCi∈Sdis(Ci, C3) = 0.25, while it
s 0.05 for C2 and 0.2 for C4. (3) Similarly, C4 is added into S.
e have minCi∈Sdis(Ci, C4) = 0.15, while it is 0.05 for C2. (4)
ccording to the order, we show indexes of vertices and edges in

ig. 5. □

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

s
b

a
a
0
d
d
t
m
t

S
R
t
e
a
M
i
r
n
w
t
M

5

e
f

A
a
G
I
G
e

6

i

H
l
c
I
t
m
v
t
r

Algorithm 5: IncGMM
Input: MG(U, k) = (V , E), a new cover C, and GMM(U, k)
Output: A boolean value to indicate whether MG(U, k) and

GMM(U, k) need to be updated
1 m← maxvi∈U dis(vi, C);
2 pos← 0;
3 if m ≤ ω(e1) then
4 m← min(dis(C, v1), dis(C, v2));
5 pos← 2;
6 foreach pos < |V | do
7 if ω(epos) < m then
8 break ;
9 pos← pos+ 1;

10 m← min(m, dis(C, vpos));
11 if pos = |V | then
12 if |V | = k then
13 return false;
14 else
15 complete GMM(U ∪ {C}, k) together with MG(U ∪ {C}, k);
16 else
17 remove all vertices vj (j > pos) from V , their related

evidences (edges) from E and the covers denoted by them
from GMM(U, k);

18 if |V | = 0 then
19 complete GMM(U ∪ {C}, k) together with MG(U ∪ {C}, k);
20 return true;

Fig. 5. Example 10 (the construction of maxmin-graph).

Algorithm. IncGMM (Algorithm 5) updates GMM(U, k) in re-
ponse to a new cover C, by leveraging MG(U, k). It returns a
oolean value to indicate whether GMM(U, k) ̸= GMM(U∪{C}, k).
It first checks whether GMM(U, k) needs to be updated in

response to C, by simulating the process of GMM (lines 1–10). It
only computes dis(C, C′) for C′∈ U in this process, by leveraging
the evidences stored in MG. If C is found to be ‘‘better’’ than a
cover denoted by vertex vi in MG (but not any vertices vj such
that j < i) according to the evidence of vi, then the verifica-
tion fails. Intuitively, this implies that the difference between
MG(U, k) (resp. GMM(U, k)) and MG(U ∪ {C}, k) (resp. GMM(U ∪
{C}, k)) starts from the position of vi. We use pos to save the
largest index of vertex that has been successfully verified. All
the vertices vj (j>pos) and their related evidences (edges) (resp.
all the covers denoted by vj in GMM(U, k)) are removed from
MG(U, k) (resp. GMM(U, k)) on line 17. To complete the results
of MG(U ∪ {C}, k) and GMM(U ∪ {C}, k), Algorithm GMM and the
method to build maxmin-graph are employed in the incremental
way: their operations start from the position where the verifi-
cation fails. To further improve the efficiency, a lazy evaluation
strategy is adopted. Specifically, the updates are performed only
when C passes all verifications on a partial MG (the case of
|V | < k on lines 14–15), or when MG is empty (lines 18–19). To
complement the strategy, GMM is additionally called for one time
if the final GMM(U, k) is incomplete (|GMM(U, k)| < k), when
IncMaxmin terminates (will be illustrated shortly).
 c

8

Algorithm 6: Diverse
Input: An instance I of schema R, a set Σ of DCs and a number

k
Output: A set X of k diversified cardinality-set-minimal repairs

1 X ← ∅;
2 build the conflict hypergraph G on I w.r.t. Σ;
3 generate a set S of k diversified minimal vertex covers;
4 foreach C ∈ S do
5 repair ← GetRepair(I, Σ, C);
6 X ← X ∪ {repair};
7 return X;

Example 11 (Example 10 Continued). Suppose we have a new
cover C6 and dis(C6, Ci) = 0.05 for all Ci from U = {C1, C2, C3, C4,
C5}. We show the running of IncGMM as follows. (1) v1(C1)
nd v2(C5) pass the verification because 0.05 < 0.65. (2) v3(C3)
nd v4 (C4) also pass the verification because 0.05 < 0.25 and
.05 < 0.15 respectively. We have another cover C7, where
is(C7, C1) = dis(C7, C5) = 0.3, dis(C7, C2) = dis(C7, C3) =
is(C7, C4) = dis(C7, C6) = 0.05. We see v1(C1) and v2(C5) pass
he verification because 0.3 < 0.65, while v3(C3) fails because
invi∈{v1,v2} dis(vi, C7) = 0.3 and 0.3 > 0.25. Thus, only the first

wo vertices of MG will be kept. □

trategy IncMaxmin. We present IncMaxmin. (1) It first employs
andomMVC to generate k minimal vertex covers, add all of
hem into U , and compute GMM(U, k) and MG(U, k). (2) It then
mploys RandomMVC to generate more covers. For each gener-
ted cover C′, it calls IncGMM to compute GMM(U ∪ {C′}, k) and
G(U∪{C′}, k), and sets U = U∪{C′}. (3) It completes GMM(U, k)

f GMM(U, k) is incomplete and then terminates, when IncGMM
eturns false p times continuously, i.e., the successive p covers do
ot help improve the diversification. Herein, p is a parameter, and
e set p = 5 in our experimental evaluations. We experimen-
ally find IncMaxmin typically generates much fewer covers than
axmin (Section 7).

.4. Algorithm for diversifying repairs of DC violations

We put together methods for diversified minimal vertex cov-
rs and the method to compute a cardinality-set-minimal repair
rom a given minimal vertex cover.

lgorithm. Diverse (Algorithm 6) generates k diversified cardin-
lity-set-minimal repairs. After building the conflict hypergraph
, it obtains k diversified minimal vertex covers by employing
ncMaxmin (or BestOfTimes, Maxmin) (lines 2–3). It then employs
etRepair to compute a cardinality-set-minimal repair based on
very cover (lines 4–6).

. Optimizations

In this section, we present some optimizations to further
mprove our approach.

ypergraph Compression. The conflict hypergraph G can be very
arge, leading to an extremely large number of minimal vertex
overs. Obviously, not all of the covers are equally important.
ntuitively, cells involved in more DC violations are more likely
o be erroneous and are hence modified in former DC repairing
ethods [4,11] for nearly optimum repairs, while cells only in-
olved in very few violations are likely to be correct. In light of
his, we develop techniques to compress the hypergraph. This
educes the search space of minimal vertex covers by avoiding
overs with vertices concerning very few DC violations and hence

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

i
s

t
c

m
s
h
v
a
h
f
t
o
g
a

E
t
h
h
a
h
w
h
T
c
d
t
m
t
a
h

O
t
g
t

Table 2
Extension of Table 1.
TID Name Phone Level DepID Salary Tax City State

t8 H. Lucy 230–436 3 A550 30000 2500 Los Angeles CA
t9 L. David 320–835 3 A550 30000 2500 Los Angeles CA
t10 T. Mike 333–264 2 A005 7000 0 Lima NY
Fig. 6. Conflict hypergraphs of Example 12.
t
r
v
o
t
d
S
t
d
a

mproves the efficiency. The method is necessarily heuristics,
ince it is beyond reach to only generate minimum vertex covers.
The degree of a vertex in the conflict hypergraph G denotes

he number of hyperedges sharing the vertex, i.e., DC violations
oncerning the cell. We deal with G as follows. (1) For every ϕ ∈

Σ , identify the subgraph Gϕ of G that contains only hyperedges
concerning violations of ϕ. On each disjoint component of Gϕ ,
ark every vertex unless its degree in the component is the
mallest among all the vertices; mark all the vertices if they
ave the same degree in the component. (2) From the unmarked
ertices after (1), mark those with the largest degree in G among
ll the unmarked ones; do nothing if all the unmarked vertices
ave the same degree in G. (3) Remove the unmarked vertices
rom G, and merge hyperedges with the same set of vertices after
hat. For each hyperedge from G, it can be verified that as least
ne vertex of the hyperedge is retained. Thus, it still suffices to
enerate repairs from the compressed hypergraph. Intuitively, we
im to discard the vertices contained in very few hyperedges.

xample 12. To illustrate our method, we additionally add three
uples to Table 1, as shown in Table 2. We show the conflict
ypergraph G in Fig. 6(a) for all the tuples. We compress the
ypergraph as follows. (1) There are four hyperedges e2, e6, e7
nd e8 concerning ϕ2, which form the subgraph Gϕ2 . Further, Gϕ2
as two disjoint components, one with e2, e6 and e7, and the other
ith e8. In the first component, t1[DepID], t1[Level] and t1[Salary]
ave a degree of 3, while the other vertices have a degree of 1.
hus, we mark the vertices with a degree of 3. In the second
omponent, we mark all the vertices because they have the same
egree. After dealing with all DCs from Σ , we mark t4[State],
4[City] and all the vertices from t1, t2, t6, t7 and t10. (2) We
ark t4[Salary], because its degree in G is the largest among all

he unmarked vertices. (3) We remove all the unmarked vertices,
nd merge e6 and e7. (4) Finally, we show the compressed conflict
ypergraph in Fig. 6(b). □

rdering Cells. Given a minimal vertex cover, GetRepair (Sec-
ion 4) repairs cells from the cover one by one. It guarantees to
enerate a cardinality-set-minimal repair, regardless of the order
o repair the cells. However, it may assign different values to
9

he same cell c when cells are treated in different orders. The
eason is that the repair context of the cell c is affected by the
alues of the cells modified before c. Along the same lines as
ptimum repair computations [4,11], we prefer to first repair cells
hat are more likely to be erroneous. To this end, we heuristically
etermine an order O for cells in the conflict hypergraph G.
pecifically, in O vertices are ordered in a descending order of
heir degrees. To break ties, for vertices vi, vj with the same
egree, vi is before vj if i < j, where i, j are random integer ids
ssigned to vertices in G. We improve GetRepair by repairing cells

one by one in the order of O.

7. Experiments

In this section, we conduct extensive experiments to ver-
ify the effectiveness and efficiency of our repair diversification
techniques.

7.1. Experimental settings

Datasets. We use two datasets that are employed to evaluate
DC repairing methods in former works [4,8,10,11]. (a) Hospital
is a real-life dataset from the US Department of Health & Hu-
man Services. It has 50K tuples and 15 attributes, and mainly
contains categorical data. (b) Tax is a synthetic relational table
with 50K tuples and 15 attributes, containing both categorical and
numerical data. Along the same settings as [4,11], we define 4
DCs on each dataset. The DCs on Hospital mainly concern equality
comparisons, i.e., ‘‘=’’, while those on Tax contain more ordering
comparisons, i.e., ‘‘<’’ and ‘‘>’’.

Error introduction. We use BART, an error-generation tool
[42], to introduce errors into the datasets. Compared with the ad-
hoc strategies adopted in [4,11], it is shown in [42] BART allows
the introduction of errors in a controlled way. Specifically, it can
guarantee all the introduced errors are detectable using the given
DCs, i.e., the introduced errors always lead to DC violations. Along
the same lines as [42], we define the error rate as the ratio of the
number of error cells to the number of tuples in the dataset.

Algorithms. We implement all the algorithms in Java. (1) Our

minimal vertex cover diversification strategies BestOfTimes,

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

M
R
S
n
V

3
u
t
[

7

7

s
c

E
R
W
r

e

a
c
s
s

r
t
i
s
H
w
S
t
f
w
t
R
w
2
o
d

t
f
t

Fig. 7. SubMVC against RandomMVC for diversifying minimal vertex covers.
o
a
t

R
t
1
c
a
j
t

e
g
R
3
s
I
t
s
t
t
o
c
i

t
o
a
r

b

E
G
c
f
c
u
t
t
b
t

o

axmin and IncMaxmin, together with the methods SubMVC and
andomMVC. (2) Our repair diversification method Diverse. (3)
ome variants of our methods for testing optimization tech-
iques (the details will be illustrated shortly). (4) Holistic [4] and
free [11], the state-of-the-art repairing methods leveraging DCs.
All experiments are conducted on a Win11 machine with

.6 GHz CPU and 16 GB RAM. Gurobi Optimizer 8.0.1 has been
sed as the external Quadratic Programming (QP) tool to solve
he system of inequalities in the repair context when necessary
4,11].

.2. Experimental results

We report our experimental findings in detail.

.2.1. Diversifying minimal vertex covers
We first experimentally study the algorithms and enhanced

trategies given in Section 5, for diversifying minimal vertex
overs.

xp-1. In this set of experiments, we employ SubMVC and
andomMVC to generate 100 minimal vertex covers, respectively.
e report the diversification values (Eq. (1) in Section 5.1) and

unning times of the methods.
Recall a threshold σ is used to set the lower bound of the

difference between two successive covers in SubMVC. A small σ

nables SubMVC to generate k covers more efficiently, but may
harm the diversification. We consider σ = 0.01 or 0.1 in this set
of experiments. Recall we use a parameter backSteps to set the
dditional backtracking steps in RandomMVC. We consider two
ases: RandomMVC-0 uses a random value no greater than the
ize of the cover minus 1, while RandomMVC-1 forces the DFS to
tart from the root for each cover.
(1) In Figs. 7a–b, we vary the number of tuples and fix an error

ate of 2% on Hospital. We see the following. (a) For SubMVC,
he diversification values are always low with σ = 0.01. This
s because the successive covers generated in SubMVC are too
imilar. A larger σ is expected to help overcome the limitation.
owever, SubMVC-0.1 is too slow to terminate within 30 min
hen the number of tuples is larger than 20K. Indeed, we find
ubMVC-0.1 has to discard tens of thousands of covers before ob-
aining a cover satisfying the requirement of σ . That is, SubMVC
alls short of either scalability or effectiveness. (b) Compared
ith RandomMVC-0, RandomMVC-1 leads to better diversifica-
ion at the cost of slightly more time, as expected. Note that
andomMVC-1 is actually very efficient and always terminates
ithin 5 s in this set of experiments. RandomMVC-1 is on average
0% better than RandomMVC-0 in diversification. As the number
f tuples increases, the diversification value of RandomMVC-0
ecreases, while that of RandomMVC-1 remains stable.
(2) In Figs. 7c–d, we vary the error rate and fix the number of

uples at 20K on dataset Tax. We see the following. (a) The per-
ormance of SubMVC is still very poor, and SubMVC-0.1 fails to
erminate within 30 min for every error rate. (b) The effectiveness
10
f RandomMVC is not affected as the error rate increases. (c) All
lgorithms cost more time when the error rate increases, since
he conflict hypergraph becomes larger. SubMVC-0.01 becomes
slower than RandomMVC when the error rate is larger than 3%.

To conclude, we find that RandomMVC-1 is always the best in
diversification, and is also very efficient.

Exp-2. In this set of experiments, we combine RandomMVC-
1 with the strategies presented in Section 5.3, to experimen-
tally study different strategies. We aim to obtain 100 diversified
minimal vertex covers. Specifically, (a) in BestOfTimes, we run
andomMVC 10 times, generate 100 covers each time, and select
he best result among the 10 runs. (b) In Maxmin, we generate
,000 covers with RandomMVC, and employ GMM to choose 100
overs from them. (c) In IncMaxmin, we first generate 100 covers,
nd continue generating more covers until the termination is
udged by IncGMM. For comparison, we also employ RandomMVC
o directly generate 100 covers.

(1) In Figs. 8a–b, we vary the number of tuples and fix an
rror rate of 2% on Hospital. We see the following. (a) The strate-
ies really help improve diversification. Compared with the basic
andomMVC, the diversification values on average improve by
%, 12% and 10% for BestOfTimes, Maxmin and IncMaxmin, re-
pectively. (b) We can obtain a similar diversification result with
ncMaxmin as Maxmin (the gap is usually within 2%). (c) Maxmin
akes slightly more time than BestOfTimes; they generate the
ame number of covers, and Maxmin additionally calls GMM
o choose covers. (d) The time of IncMaxmin is about 25% of
hose of BestOfTimes and Maxmin. We find IncMaxmin generates
nly 200–300 covers (not shown), and the additional cost of
alling IncGMM is not significant due to the high efficiency of
ncremental computations.

(2) We then use Tax of 20K tuples, vary error rates and report
he results in Figs. 8c–d. The results confirm our observations
n Hospital. The diversification values on average improve by
bout 3%, 11% and 10% for BestOfTimes, Maxmin and IncMaxmin,
espectively, compared with RandomMVC.

In conclusion, we find that IncMaxmin strikes a better balance
etween effectiveness and efficiency.

xp-3. In this set of experiments, we compare IncGMM against
MM in detail. We aim to obtain 200 diversified minimal vertex
overs with IncMaxmin. Specifically, leveraging RandomMVC, we
irst generate 200 covers and then continue generating more
overs. For each new cover, we call IncGMM (resp. GMM) to
pdate GMM(U, k) and MG(U, k) (resp. GMM(U, k)) to test the
ermination condition. The application of IncGMM or GMM affects
he efficiency but not the termination condition (the same num-
er of covers are generated in both settings). We report the total
ime of running IncGMM (resp. GMM).

We vary the number of tuples and fix an error rate of 2%
n Hospital, as shown in Fig. 9a. IncGMM is about 4 or 5 times

faster than GMM. In Fig. 9b, we vary the number of tuples and
fix an error rate of 2% on Tax. Although the gap between the two
methods decreases on Tax, IncGMM is still about 3 times faster

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

t
i
t
i

E
h
2
h
M
s
I
t
t

e
w
(
o
c
g
i
c
c
t
T
8
c

s
w
t

7

i

(

Fig. 8. Comparison among different enhanced strategies.
Fig. 9. GMM against IncGMM.

han GMM. IncGMM is much more efficient than GMM due to the
ncremental computation and lazy evaluation strategy. Besides
he fewer number of covers generated, we conclude that IncGMM
s critical to the efficiency of IncMaxmin.

xp-4. In this set of experiments, we evaluate the effectiveness of
ypergraph compression (Section 6). InMaxmin, we first generate
00 covers of the original hypergraph (resp. the compressed
ypergraph), from which 20 covers are then selected. We use
axmin here for a fair comparison. It is guaranteed that the
ame number of covers are generated in Maxmin (but not in
ncMaxmin) with or without hypergraph compression. We report
he sizes (the numbers of vertices) of the covers, total running
ime and diversification value.

(1) In Figs. 10a–c, we vary the number of tuples and fix an
rror rate of 2% on Hospital. We see the following. (a) In Fig. 10a,
e show the size of every cover obtained on the hypergraph with
resp. without) compression. With hypergraph compression, we
btain covers of small sizes and most covers have similar sizes. In
ontrast, the sizes of the 20 covers of the original conflict hyper-
raph can be much larger and vary significantly. As will be seen
n Exp-5, the sizes of covers may heavily affect the quality of their
orresponding repairs. (b) It takes less time to obtain diversified
overs on the compressed hypergraph, as expected. For example,
he time reduces by about 20% on Hospital with 50K tuples. (c)
he diversification value on average slightly decreases by about
% on the compressed hypergraph, since fewer vertices in the
ompressed hypergraph imply fewer chances of diversification.
(2) We test dataset Tax by varying the error rate and fixing a

ize of 20K, as shown in Fig. 11. With hypergraph compression,
e find the diversification value decreases by about 7%, but the
ime reduces by half on average.

.2.2. Repair quality and scalability
Finally, we compare our algorithm Diverse against DC repair-

ng algorithms Holistic [4] and Vfree [11] that compute a single
nearly optimum repair. Diverse first employs IncMaxmin to obtain
diversified minimal vertex covers on the compressed hypergraph,
and then employs GetRepair to repairs cells in the order of O
Section 6) to generate a set of diversified repairs.
11
Our aim is to show that in reasonable time, Diverse may
well generate repairs that are the same as or better than the
repairs produced by Holistic and Vfree in terms of repair quality.
This is possible, since (a) DC repairing is NP-hard and heuristic
approaches Holistic and Vfree cannot guarantee repair quality;
and (b) there may be many repairs that have the same or similar
repair quality.

We use the same criteria as [4,11,21] to evaluate repair quality.
Specifically, precision (P) is the ratio of the number of corrected
changed cells to the number of all changed cells in repairing
methods, recall (R) is the ratio of the number of corrected changed
cells to the number of all error cells, and F-measure (F) = 2× (P×
R)/(P+R). To count the number of corrected changed cells, we use
1 (resp. 0.5) if an error cell is updated with the original correct
value (resp. is modified but with a value different from the correct
one).

Exp-5. In this set of experiments, we use Diverse to obtain a set of
100 diversified repairs and use Holistic and Vfree to compute one
repair, respectively. We compare the number of changed (mod-
ified) cells, precision, F-measure and running time of different
methods. For Diverse, we report the average time for one repair,
i.e., the time of Diverse divided by 100.

(1) In Figs. 12a–d, We fix an error rate of 2% and vary the
number of tuples on Hospital. We see the following. (a) The
numbers of changed cells of Vfree and Diverse are significantly
smaller than that of Holistic. This is because Holistic may intro-
duce new violations in the repairing process. The 100 repairs
of Diverse usually have very similar numbers of changed cells,
due to the usage of the compressed hypergraph (recall the sizes
of covers shown in Exp-4). (b) The precision and F-measure
of Holistic are lower than those of Vfree and Diverse. We find
Holistic has low precision and hence low F-measure, because it
modifies much more cells than the other methods. Among the
diversified repairs of Diverse, there are always some repairs that
have better quality than those of Vfree and Holistic. We are very
likely to obtain covers of the compressed hypergraph that cover
more error cells than the single cover in Vfree (resp. Holistic). (c)
The average time of one repair of Diverse is nearly two times
(resp. two orders of magnitude) faster than the time of Holistic
(resp. Vfree). Holistic may need several rounds to terminate, for
handling the new DC violations introduced. Vfree tries to repair
all related cells together, but the repair contexts may become
very complicated and hence costly to be resolved. In contrast,
Diverse repairs cells one by one. This makes the repair context
small and the value assignment fast. Moreover, Diverse can share
some computations among multiple repairs, e.g., the building of
the conflict hypergraph.

(2) In Figs. 12e–h, we vary error rates and fix the number of
tuples at 20K on dataset Hospital. We see similar results as those
shown in (1).

(3) In Figs. 13a–d, we vary the number of tuples and fix an
error rate of 2% on Tax. We see the following. (a) Holistic incurs
more cell modifications than the other methods, although the

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

g
r
a

(
t
H

8

l
s
h
v

Fig. 10. The effectiveness of hypergraph compression on Hospital.
Fig. 11. The effectiveness of hypergraph compression on Tax.
Fig. 12. Repair quality and running time on Hospital: Diverse against Holistic and Vfree.
ap decreases compared to that on Hospital. (b) Diverse can find
epairs with better quality than the other methods. (c) The aver-
ge time of generating one repair in Diverse is much faster than

the times of Holistic and Vfree. This is because value assignments
concerning order comparisons are more difficult to be resolved
when complicated repair contexts occur in Holistic and Vfree.

4) In Figs. 13e–h, we vary the error rate and fix the number of
uples at 20K on Tax. The results confirm our observations on
ospital.

. Conclusion

Wemake the first effort to study diversifying repairs of DC vio-
ations. We have established the connection between cardinality-
et-minimal repairs and minimal vertex covers of the conflict
ypergraph, developed a set of algorithms to diversify minimal
ertex covers, given optimizations to improve effectiveness and
12
(or) efficiency of our approach, and conducted extensive exper-
iments to verify our methods on both real-life and synthetic
data.

There are a host of diversification objectives in the literature,
e.g., [36–38], which are suitable to different applications. We
intend to adapt more diversification objectives to DC repairs.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported by National Key R&D Program of China
2018YFB1700403 and National Natural Science Foundation of
China 62172102, 61572135, 61925203. All authors approved the
version of the manuscript to be published.

S. Li, Y. Zhang, Z. Tan et al. Information Systems 108 (2022) 102041

R

Fig. 13. Repair quality and running time on Tax: Diverse against Holistic and Vfree.
eferences

[1] W. Fan, F. Geerts, Foundations of Data Quality Management, in: Synthesis
Lectures on Data Management, Morgan & Claypool Publishers, San Rafael,
2012.

[2] I.F. Ilyas, X. Chu, Data Cleaning, ACM, New York City, 2019.
[3] X. Chu, I.F. Ilyas, P. Papotti, Discovering denial constraints, in: PVLDB, Vol.

6, 2013, pp. 1498–1509.
[4] X. Chu, I.F. Ilyas, P. Papotti, Holistic data cleaning: Putting violations into

context, in: ICDE, 2013, pp. 458–469.
[5] W. Fan, F. Geerts, X. Jia, A. Kementsietsidis, Conditional functional depen-

dencies for capturing data inconsistencies, ACM Trans. Database Syst. 33
(2008) 6:1–6:48.

[6] S. Ginsburg, R. Hull, Order dependency in the relational model, Theor.
Comput. Sci. 26 (1983) 149–195.

[7] S. Ginsburg, R. Hull, Sort sets in the relational model, J. ACM 33 (1986)
465–488.

[8] S. Giannakopoulou, M. Karpathiotakis, A. Ailamaki, Cleaning
denial constraint violations through relaxation, in: SIGMOD, 2020,
pp. 805–815.

[9] A. Gilad, D. Deutch, S. Roy, On multiple semantics for declarative database
repairs, in: SIGMOD, 2020, pp. 817–831.

[10] T. Rekatsinas, X. Chu, I.F. Ilyas, C. Ré, Holoclean: Holistic data repairs with
probabilistic inference, Proc. VLDB Endow. 10 (2017) 1190–1201.

[11] S. Song, H. Zhu, J. Wang, Constraint-variance tolerant data repairing, in:
SIGMOD, 2016, pp. 877–892.

[12] P. Bohannon, M. Flaster, W. Fan, R. Rastogi, A cost-based model and
effective heuristic for repairing constraints by value modification, in:
SIGMOD, 2005, pp. 143–154.

[13] G. Cong, W. Fan, F. Geerts, X. Jia, S. Ma, Improving data quality: Consistency
and accuracy, in: VLDB, 2007, pp. 315–326.

[14] S. Hao, N. Tang, G. Li, J. He, N. Ta, J. Feng, A novel cost-based model for
data repairing, IEEE Trans. Knowl. Data Eng. 29 (2017) 727–742.

[15] S. Kolahi, L.V.S. Lakshmanan, On approximating optimum repairs for
functional dependency violations, in: ICDT, 2009, pp. 53–62.

[16] J. Wang, N. Tang, Dependable data repairing with fixing rules, ACM J. Data
Inf. Qual. 8 (2017) 16:1–16:34.

[17] J. He, E. Veltri, D. Santoro, G. Li, G. Mecca, P. Papotti, N. Tang, Interactive
and deterministic data cleaning, in: SIGMOD, 2016, pp. 893–907.

[18] M. Musleh, M. Ouzzani, N. Tang, A. Doan, Coclean: Collaborative data
cleaning, in: SIGMOD, 2020, pp. 2757–2760.

[19] S. Thirumuruganathan, L. BertiÉquille, M. Ouzzani, J. Quiané-Ruiz, N. Tang,
Uguide: User-guided discovery of fd-detectable errors, in: SIGMOD, 2017,
pp. 1385–1397.

[20] M. Yakout, A.K. Elmagarmid, J. Neville, M. Ouzzani, I.F. Ilyas, Guided data
repair, Proc. VLDB Endow. 4 (2011) 279–289.

[21] G. Beskales, I.F. Ilyas, L. Golab, Sampling the repairs of functional de-
pendency violations under hard constraints, Proc. VLDB Endow. 3 (2010)
197–207.
13
[22] G. Beskales, I.F. Ilyas, L. Golab, A. Galiullin, Sampling from repairs of
conditional functional dependency violations, VLDB J. 23 (2014) 103–128.

[23] R. Jampani, F. Xu, M. Wu, L.L. Perez, C.M. Jermaine, P.J. Haas, MCDB: A
monte carlo approach to managing uncertain data, in: SIGMOD, 2008, pp.
687–700.

[24] Gainer-Dewar A., P. Vera-Licona, The minimal hitting set generation
problem: Algorithms and computation, SIAM J. Discret. Math. 31 (2017)
63–100.

[25] L. Lin, Y. Jiang, The computation of hitting sets: Review and new
algorithms, Inf. Process. Lett. 86 (2003) 177–184.

[26] I.F. Ilyas, X. Chu, Trends in cleaning relational data: Consistency and
deduplication, Found. Trends Databases 5 (2015) 281–393.

[27] L.E. Bertossi, L. Bravo, E. Franconi, A. Lopatenko, The complexity and
approximation of fixing numerical attributes in databases under integrity
constraints, Inf. Syst. 33 (2008) 407–434.

[28] A. Lopatenko, L. Bravo, Efficient approximation algorithms for repairing
inconsistent databases, in: ICDE, 2007, pp. 216–225.

[29] C. Ye, H. Wang, K. Zheng, J. Gao, J. Li, Multi-source data repairing powered
by integrity constraints and source reliability, Inf. Sci. 507 (2020) 386–403.

[30] M. Dallachiesa, A. Ebaid, A. Eldawy, A.K. Elmagarmid, I.F. Ilyas, M. Ouzzani,
N. Tang, NADEEF: A commodity data cleaning system, in: SIGMOD, 2013,
pp. 541–552.

[31] F. Geerts, G. Mecca, P. Papotti, D. Santoro, Cleaning data with llunatic,
VLDB J. 29 (2020) 867–892.

[32] Z. Khayyat, I.F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J. Quiané-
Ruiz, N. Tang, S. Yin, Bigdansing: A system for big data cleansing, in:
SIGMOD, 2015, pp. 1215–1230.

[33] C. He, Z. Tan, Q. Chen, C. Sha, Z. Wang, W. Wang, Repair diversification for
functional dependency violations, in: DASFAA 2014, 2014, pp. 468–482.

[34] M. Arenas, L.E. Bertossi, J. Chomicki, Consistent query answers in
inconsistent databases, in: PODS, 1999, pp. 68–79.

[35] V.V. Vazirani, Approximation Algorithms, Springer, Heidelberg, 2001.
[36] M. Drosou, E. Pitoura, Search result diversification, SIGMOD Rec. 39 (2010)

41–47.
[37] X. Ge, P.K. Chrysanthis, Prefdiv: Efficient algorithms for effective top-k

result diversification, in: EDBT, 2020, pp. 335–346.
[38] S. Gollapudi, A. Sharma, An axiomatic approach for result diversification,

in: WWW, 2009, pp. 381–390.
[39] S.S. Ravi, D.J. Rosenkrantz, G.K. Tayi, Approximation algorithms for facility

dispersion, in: T.F. Gonzalez (Ed.), Handbook of Approximation Algorithms
and Metaheuristics, second ed., in: Volume 2: Contemporary and Emerging
Applications, Chapman and Hall/CRC, New York, 2018.

[40] K. Murakami, T. Uno, Efficient algorithms for dualizing large-scale
hypergraphs, Discret. Appl. Math. 170 (2014) 83–94.

[41] S.S. Ravi, D.J. Rosenkrantz, G.K. Tayi, Heuristic and special case algorithms
for dispersion problems, Oper. Res. 42 (1994) 299–310.

[42] Arocena P.C., B. Glavic, G. Mecca, R.J. Miller, P. Papotti, D. Santoro, Messing
up with bart: error generation for evaluating data-cleaning algorithms, in:
Proceedings of the VLDB Endowment, 2015, pp. 36–47.

http://refhub.elsevier.com/S0306-4379(22)00039-4/sb1
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb1
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb1
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb1
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb1
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb2
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb3
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb3
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb3
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb4
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb4
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb4
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb5
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb5
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb5
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb5
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb5
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb6
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb6
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb6
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb7
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb7
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb7
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb8
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb8
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb8
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb8
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb8
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb9
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb9
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb9
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb10
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb10
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb10
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb11
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb11
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb11
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb12
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb12
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb12
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb12
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb12
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb13
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb13
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb13
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb14
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb14
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb14
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb15
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb15
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb15
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb16
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb16
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb16
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb17
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb17
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb17
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb18
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb18
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb18
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb19
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb19
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb19
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb19
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb19
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb20
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb20
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb20
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb21
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb21
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb21
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb21
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb21
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb22
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb22
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb22
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb23
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb23
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb23
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb23
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb23
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb24
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb24
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb24
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb24
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb24
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb25
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb25
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb25
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb26
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb26
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb26
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb27
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb27
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb27
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb27
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb27
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb28
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb28
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb28
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb29
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb29
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb29
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb30
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb30
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb30
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb30
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb30
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb31
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb31
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb31
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb32
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb32
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb32
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb32
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb32
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb33
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb33
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb33
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb34
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb34
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb34
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb35
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb36
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb36
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb36
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb37
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb37
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb37
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb38
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb38
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb38
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb39
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb39
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb39
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb39
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb39
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb39
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb39
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb40
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb40
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb40
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb41
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb41
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb41
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb42
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb42
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb42
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb42
http://refhub.elsevier.com/S0306-4379(22)00039-4/sb42

	Diversifying repairs of Denial constraint violations
	Introduction
	Related work
	Preliminaries
	From minimal vertex cover to repair
	Repair space
	Method to compute cardinality-set-minimal#xrepair

	Diversifying repairs of DC violations
	Diversification objective
	Algorithms for diversifying minimal vertex covers
	Enhanced strategies
	Algorithm for diversifying repairs of DC violations

	Optimizations
	Experiments
	Experimental settings
	Experimental results
	Diversifying minimal vertex covers
	Repair quality and scalability

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

