
Information Systems 114 (2023) 102158

a

b

c

o
[
t
d
r
o
l
p
(
(

f
t
i
f
e
t

t

C

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Guided conditional functional dependency discovery
Sijia Jiang a,b, Zijing Tan a,b,∗, Jiawei Wang a,b, Zhikang Wang a,b, Shuai Ma c

School of Computer Science, Fudan University, China
Shanghai Key Laboratory of Data Science, China
SKLSDE Lab, Beihang University, China

a r t i c l e i n f o

Article history:
Received 8 June 2022
Received in revised form 6 October 2022
Accepted 8 December 2022
Available online 17 December 2022
Recommended by Gottfried Vossen

Keywords:
Conditional functional dependency
Dependency discovery
Metadata

a b s t r a c t

Conditional functional dependencies (CFDs) generalize functional dependencies and lend themselves
to wide applicability. CFDs on data are usually unknown and too costly to be designed manually. To
this end, CFD discovery methods are studied for discovering hidden CFDs from data. In the setting of
data cleaning, only a small number of CFDs are used to detect and repair errors, while common CFD
discovery methods find all CFDs (approximately) holding on data, and an expensive post-processing
step is further required for selecting those relevant ones. In this paper, we present an approach to
discover CFDs that can detect errors in data, guided by a small set of erroneous attribute values
labeled by users. (1) We present a method that consists of several modules of data sampling, CFD
discovery and refinement guided by the user labeling and data re-sampling guided by the discovered
CFDs, working in an iterative way. (2) We present novel efficient techniques to facilitate our approach,
aiming at identifying CFDs useful for cleaning and reducing user interactions. (3) We conduct extensive
experimental evaluations to verify our approach, against the state-of-the-art CFD discovery algorithms
with or without user interactions.

© 2022 Elsevier Ltd. All rights reserved.
u
s
o

1. Introduction

Data quality management is one of the most important aspects
f data management, and data cleaning methods, e.g.,
1–11], are at the core of data quality management. Most of
he data cleaning methods employ integrity constraints, a.k.a.
ependencies, to state specifications that data should satisfy, and
esolve violations by updating data to satisfy the constraints. To
btain the dependencies used in data cleaning and avoid the
abor-intensive process of designing dependencies manually, (ap-
roximate) dependency discovery techniques are actively studied
see, e.g., [12,13] for surveys), aiming at finding dependencies that
approximately) hold on data.

Conditional functional dependencies (CFDs) [14] generalize
unctional dependencies (FDs). CFDs can express dependencies
hat hold only on a subset of data, and are hence more applicable
n practice and widely used in data cleaning tasks [15–17]. To
ind CFDs hidden in data, CFD discovery techniques [18–21] are
xtensively studied. However, we find their limitations hinder
hem from efficiently finding CFDs useful for data cleaning.

Traditional CFD discovery methods [18,19,21] discover all CFDs
hat (approximately) hold on data, which usually leads to a

∗ Corresponding author at: School of Computer Science, Fudan University,
hina.

E-mail address: zjtan@fudan.edu.cn (Z. Tan).
 f

ttps://doi.org/10.1016/j.is.2022.102158
306-4379/© 2022 Elsevier Ltd. All rights reserved.
very large result set. Since data cleaning requires a (small) set
of semantically meaningful CFDs and usually only users can
make judgement on the usefulness of CFDs, an additional post-
processing step is needed for choosing relevant CFDs among all
the discovered ones. This step is necessarily hard and tedious
even by domain experts. An alternative is to involve user interac-
tions at early states. Intuitively, this can help discover meaningful
CFDs, and also avoid the cost of discovering all CFDs. Explain [20]
makes the first effort toward this. It asks users to manually
identify and clean a set of dirty tuples only at the beginning,
and then automatically discovers a single CFD that is assumed
to ‘‘explain’’ all the user modifications. However, we argue it is
very difficult for users to manually clean data, and even this is
possible, it is almost impossible that all user cleaning behaviors
are related to one CFD since users typically have no idea of the
constraints ‘‘underlying’’ data.

In this paper, we present a novel solution to CFD discovery,
referred to as guided CFD discovery. Compared with existing
works, our approach has the following advantages. (a) Guided
by a small number of user labeling, we identify a set of CFDs
useful for data cleaning, rather than a single CFD or all CFDs
holding on data. (b) We adopt the idea of active learning in
ser labeling. Users are asked to label erroneous attributes on a
mall set of tuples automatically selected by our system, instead
f manually identifying and cleaning erroneous attribute values

rom all tuples.

https://doi.org/10.1016/j.is.2022.102158
https://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2022.102158&domain=pdf
mailto:zjtan@fudan.edu.cn
https://doi.org/10.1016/j.is.2022.102158

S. Jiang, Z. Tan, J. Wang et al. Information Systems 114 (2023) 102158

C
e
f
a

A

p
o

B
t
a
i

d
t
e

(
s
c

E
(
f

ontributions. (1) We propose a novel approach to CFD discov-
ry, leveraging a small number of user labeling (Section 4). We
irst sample a set of tuples, and users are asked to label tuples
s being true or false, and label erroneous attributes on the false

tuples. We then discover a set of CFDs concerning user’s labeling,
and re-sample tuples by considering the discovered CFDs. Users
are again asked to label the newly sampled tuples, and the set
of discovered CFDs is refined based on user’s new labeling. Our
approach works in an iterative way, until a set of CFDs that can
detect errors is discovered.
(2) We develop a set of techniques for sampling initial tuples,
discovering CFDs concerning user’s labeling, re-sampling tuples
guided by the discovered CFDs, and refining or generating new
CFDs according to user’s labeling (Section 5). Our aim is to find the
CFDs that facilitate data cleaning, and to help users label errors in
a convenient way by minimizing the number of required labeling.
(3) Using both real-life and synthetic data, we conduct an ex-
perimental study to verify the effectiveness and efficiency of our
approach, against the state-of-the-art techniques for CFD discov-
ery with or without user interactions (Section 6). The results
show that our approach can effectively discover a set of CFDs for
detecting errors, with limited user effort in labeling tuples.

2. Related work

In this section, we categorize related work as follows.

(Conditional) FD discovery without user interaction. (Condi-
tional) FD discovery methods without user interaction are ex-
tensively studied in the literature. See [22] for a comparison of
several methods. Different from FD discoveries, e.g., [23–27], non-
trivial extensions are required for CFD discoveries [18,19,21]. The
methods that discover all (C)FDs, however, usually suffer from the
huge number of the discovered (C)FDs.

Some methods aim for a more informative result set. Rank-
ing functions are used to help select relevant FDs [24], in a
post-processing step after all FDs are discovered. Some top FDs
according to an entropy-based measure are discovered [28], and
FDs are also measured with the reliable fraction of information [29].
The mutual information from multivariate and mixed-type data
is studied [30], and the mutual information is further improved
by using uniform priors and smoothing techniques [31]. The
relationship between FD discovery and the solution of a sparse
regression problem is also studied [32].

However, these approaches cannot guarantee that the discov-
ered FDs can detect errors in data. This work is different, since
interaction is involved to discover CFDs that can detect errors,
guided by user’s labeling.

(Conditional) FD discovery with user interaction. To our best
knowledge, user interaction is only considered in [20] for (C)FD
discovery. Specifically, users are asked to manually identify and
clean dirty tuples, and only one CFD is discovered based on
the assumption that all user modifications are related to it. We
argue that this assumption is too strong and users can hardly
manually identify incorrect attribute values from all tuples or
provide correct values for them. We adopt a practical setting,
where users are only required to label true or false values on the
tuples presented to them, and a set of CFDs is discovered.

User interaction in detecting and repairing errors. The method
of [33] tries to identify as many errors as possible, within a budget
of the number of user interactions, where the interaction can
be one of the validations of FDs, attribute values, or tuples. This
paper aims to discover CFDs useful for data cleaning, guided by
user’s labeling. Another approach [16] repairs data by interact-
ing with the user to confirm a set of SQL update queries. As

noted in [20], such query can be encoded as a constant CFD. We

2

Table 1
Example: a relation about customers.
TID CC AC PN NM STR CT ZIP LABEL

t1 01 908 1111111 Mike Tree Ave. LA 07974 ×

t2 01 908 1111111 Jack Tree Ave. LA 07974 ×

t3 01 908 1111111 Rick Tree Ave. GLA 07974 ×

t4 01 212 2222222 Joe 3rd Str. NYC 01202
√

t5 01 908 2222222 Jim 3rd Str. MH 07975
√

t6 44 131 3333333 Ben High Str. EDI EH4 1DT
√

t7 44 131 4444444 Ian High Str. EDI EH4 1DT
√

t8 44 908 4444444 Ian Port PI MH W1B1JH
√

t9 44 908 5555555 Sean 3rd Str. MH 07975 ×

consider discovering both constant and variable CFDs (defined
in Section 3), resulting in a much larger search space. The user
feedback is incorporated into data repairing [17], with a given set
of CFDs as data quality rules. This work is different and indeed
complementary to [17], by discovering CFDs to be used in data
repairing.

Recently, an error detection system is proposed [34]. It gener-
ates a feature vector for each attribute value, by collecting the
output of a set of error detection algorithms. It then samples
tuples for users to label, and trains a classification model for
each column based on the feature vectors and user labels. The
trained models are used to predict the correctness of remaining
attribute values. Based on [34], an error correction system is
then developed [35]. This paper only employs CFDs to identify
errors, without the need of configuring a set of different error
detection algorithms. We aim for a set of CFDs, guided by user’s
labeling. The discovered CFDs have clear semantics and can serve
as metadata, in addition to their usage in data cleaning.

3. Preliminaries

In this section, we review some basic notations of CFDs and
CFD discovery.

R(A1, . . . , An) denotes a relational schema with attributes
1, . . . , An, and dom(A) denotes the domain of attribute A. We use

r to denote a relation instance of schema R, s, t to denote tuples
in r , and t[A] to denote the value of attribute A in t .

Conditional functional dependency (CFD) [14,20]. A CFD ϕ is a
pair (X → A, tp), where (1) X is a set of attributes and A is an
attribute of schema R; (2) X → A is a traditional FD, called the
embedded FD; and (3) tp is called a pattern tuple, whose attributes
are from X∪ {A}. For each B ∈ X ∪ {A}, tp[B] is either a constant
value from dom(B), or an unnamed variable ‘_’. Note that in this
aper we consider normal CFDswith a single attribute on the RHS;
bviously, this does not lose generality.
A CFD ϕ is called a constant CFD if tp[B] is a constant for all
∈ X ∪ {A}, otherwise ϕ is called a variable CFD (it is assumed

hat tp[A] must be ‘_’ in a variable CFD). A constant CFD is indeed
n association rule, and a variable CFD is a traditional FD if tp[B]
s ‘_’ for all B ∈ X ∪ {A}.

The semantics of a CFD ϕ = (X → A, tp) on an instance r is
efined as follows. (1) A tuple t ∈ r is said to match a pattern
uple tp in attributes X , denoted by t[X] ≍ tp[X], if for all B ∈ X ,
ither tp[B] = ‘_’, or t[B] = tp[B]. Intuitively, this implies that

ϕ can be applied to t . (2) A tuple t violates a variable CFD ϕ =
X → A, tp) if t[X] ≍ tp[X] and there exists another tuple t ′ ∈ r
uch that t[X] = t ′[X] and t[A] ̸= t ′[A]. A tuple t violates a
onstant CFD ϕ = (X → A, tp), if t[X] = tp[X] and t[A] ̸=tp[A].
If there are no violations of ϕ on r , then ϕ holds on r , written as
r |H ϕ.

xample 1. In Table 1, we show a relation of customer data
neglect the attribute LABEL for now). We give some CFDs as
ollows.

S. Jiang, Z. Tan, J. Wang et al. Information Systems 114 (2023) 102158

(
t
t
‘
(
t
t

h
v

C
a
d
m
(
d

c

(

s
S
f
p
(
T
(
C
C
S
i
(
T

5

5

o
p
a
o
v
t
s

A
t

s

1) ϕ1 = ([CC, AC]→ CT, (01, 908 ∥MH)) is a constant CFD, where
p[CC] = ‘‘01’’, tp[AC] = ‘‘908’’, tp[CT] = ‘‘MH’’. It states that for a
uple t , if t[CC] = ‘‘01’’ and t[AC] = ‘‘908’’, then t[CT] must be
‘MH’’.
2) ϕ2 = ([CC, AC] → CT, (_, _ ∥ _)) is a traditional FD. Any two
uples s, t that have the same values on both CC and AC, also have
he same value on CT.

Since there are erroneous values (in red), ϕ1 and ϕ2 do not
old. For example, it can be seen that t1 violates ϕ1, and that t1, t5
iolate ϕ2. □

FD discovery. To cope with dirty data in practice, CFD discovery
lgorithms [18,19,21] discover CFDs approximately holding on
ata with some exceptions. There are three commonly adopted
easures.

1) The support of ϕ = (X → A, tp) in r , denoted by supp(ϕ,r), is
efined as the number of tuples t ∈ r such that t[X] ≍ tp[X], i.e.,

the number of tuples that ϕ can be applied to.
(2) The confidence of a CFD ϕ in r , denoted by conf(ϕ,r), is
omputed as 1− |r ′|

supp(ϕ,r) , where r ′ ⊆ r is a minimal subset such
that r \ r ′ |H ϕ. Intuitively, |r ′| is the minimum number of tuples
that must be removed such that ϕ is satisfied. The confidence
measures the degree of satisfaction of ϕ.
(3) The frequency of a constant value c on attribute A in instance
r , is the ratio of the number of tuples with c on A to the number
of total tuples in r .

CFDs for data cleaning. CFD discovery algorithms [18,19,21] find
all CFDs whose support ≥ θ , confidence ≥ µ, and all constants
used in any pattern tuple have a frequency ≥ ε, where θ, µ, ε are
given thresholds.

For discovered CFDs with a confidence in the range of [µ, 1),
several tuples from r violate them. Since these CFDs hold on most
of the data, the violating tuples are assumed to contain errors
and should be cleaned. However, many violations of CFDs, maybe
most, are not really related to errors in data. Hence, there is no
guarantee that the discovered CFDs are valuable in capturing data
errors and facilitating data cleaning.

Different from the previous works, our goal is to identify CFDs
that can detect errors on data. In the sequel, we develop novel
techniques for this purpose.

4. Overview of our approach

In this section, we briefly explain every module underlying our
approach (Fig. 1), followed by an illustrative example.
(1) We start with the Initial Sampling Module (Section 5.1), aiming
to automatically sample an initial set of tuples for users to label.
Since we do not have any user interactions yet, this module sam-
ples data only based on the characteristic of data, and organizes
sampled data for ease of labeling. The output of this module is
some tuple pairs and tuples in each pair have the same values on
several attributes. As will be illustrated in Example 2, this helps
users label tuples and facilitates CFD discovery.
(2) The sampled data are labeled by users and then used as the
input of the Initial CFD Discovery Module (Section 5.2). The goal of
this module is to discover an initial set of CFDs. The discovered
CFDs are put into the Rule Repository R, while the failed CFD
candidates are put into the Trash Repository T (Section 5.3). The
CFDs discovered at this stage are usually too general to have
enough confidence on the whole instance, and will be refined
(specialized).
(3) The Re-Sampling Module (Section 5.4) samples more tuples for
labeling, so as to refine CFDs from rule repository R. It considers a
set of carefully selected top-K CFDs fromR, and samples the most
likely violating tuples, i.e., tuples that violate the most number of
3

CFDs discovered so far. It also prefers to sample diversified tuples,
for providing good coverage of the original data.
(4) After users label the newly sampled tuples, the CFD Refinement
Module (Section 5.5) is called with the updated labeled data. The
goal is to update R by refining existing CFDs and introducing
new CFDs, in response to newly labeled errors. T is updated as
well. After several iterations of re-sampling and refinement, the
discovery terminates when a set of desirable CFDs is found.

Example 2 (Example 1 continued).. The errors in Table 1 are
related to the CFD ([CC, AC]→ CT, (_, _ ∥ _)). We show how this
CFD can be properly discovered by our approach.
(1) We sample some pairs, say (t1, t3) and (t1, t5). It can be seen
that the two tuples in a pair have the same values on several
attributes. Intuitively, variable CFDs can only be violated by tuples
having the same values on all the left hand side (LHS) attributes,
and it is easier to label tuples in pair than a single tuple, since
each tuple in the pair serves as a reference to the other.
(2) Assume users have perfect knowledge. They label t1, t3 as false
tuples, t1[CT], t3[CT] as false values, and t5 as a true tuple (false
is denoted by red in Table 1). Some general CFDs, e.g., (CC→ CT,
_ ∥ _)), (AC → CT, (_ ∥ _)), (CT → CC, (_ ∥ _)) are discovered
by the initial CFD discovery module. These CFDs have attribute
CT, i.e., the attribute containing false values, on the LHS or right-
hand-side (RHS). These CFDs pass the validation on the sampled
data. However, they are too general to (approximately) hold on
the original data and will be further refined, i.e., the confidence of
them is low.
(3) The re-sampling module may sample (t4, t5) that violates (CC
→ CT, (_ ∥ _)). If this pair is found to be a false negative after user’s
labeling, then it will help refine (CC → CT, (_ ∥ _)). We are less
likely to sample (t2, t3), although it violates (CC→ CT, (_ ∥ _)) and
(AC→ CT, (_ ∥ _)). The reason is that (t1, t3) and (t2, t3) have the
ame values on the same attribute set, i.e., {CC,AC, PN,STR, ZIP }.
ince (t1, t3) is already sampled, (t2, t3) is usually not considered
or better diversification. As detailed in Sections 5.1 and 5.4, a
arameter is used to favor the diversification.
4) Users label the sampled pair (t4, t5) as a pair of true tuples.
his helps refine (CC → CT, (_ ∥ _)) to be, e.g., ([CC, AC] → CT,
_, _ ∥ _)), ([CC, STR] → CT, (_, High Str. ∥ _)) and ([CC, NM] →
T, (_, _ ∥ _)). As will be studied in Section 5.3, (a) ([CC, AC] →
T, (_, _ ∥ _)) is of high rank in the rule repository R. (b) For ([CC,
TR]→ CT, (_, High Str. ∥ _)), there are no violations w.r.t. it, but
t only applies to t6, t7 and hence has relatively low support. (c)
[CC, NM]→ CT, (_, _ ∥ _)) will be put into the trash repository
, if (t7, t8) is sampled later and labeled by users. □

. Details of our approach

In this section, we discuss every module in detail.

.1. Initial sampling module

This module samples tuples from the original instance r , with-
ut interacting with users. The sampled tuples are organized in
airs, and two tuples in a pair have the same values on several
ttributes. The reason for this strategy is two-fold. (a) Violations
f variable CFDs are incurred by two tuples having the same
alues on all LHS attributes; and (b) it is much easier for users
o identify erroneous values from a pair of similar tuples than a
ingle tuple.

lgorithm. Algorithm 1 illustrates the initial sampling module. It
akes as input the instance r , and outputs a set D of tuple pairs.

Recall that we aim to sample tuples having the same values on
everal attributes. We first select the set bestAttrs of attributes for

S. Jiang, Z. Tan, J. Wang et al. Information Systems 114 (2023) 102158
Fig. 1. The workflow of our system.
o

i

a
(
i
A
o
7
c
i

E
g

=

v
i
[

Algorithm 1: InitialSamplingModule

Input: all tuples from the original instance r
Output: a set D of tuple pairs

1 build auxiliary data structures Plis and PliRecords;
2 bestAttrs← the set of attributes such that tuples in r have
many distinct values on these attributes;

3 for len = |bestAttrs | − 1; len ̸= 0; −−len do
4 combi← combination (bestAttrs, len);
5 randomAttrSets← randomSample (combi);
6 foreach attrSet in randomAttrSets do
7 eqClass← the set of tuples with the same values

on all attributes from attrSet;
8 D← D ∪ no more than λ tuple pairs from eqClass;
9 if D.size ⩾ the required sample size then

10 return;

Fig. 2. PliRecords of attribute CC and AC.

this purpose, after building the auxiliary data structures (Lines 1–
2). We favor an attribute A if there are many distinct values from
r on A. Such attributes can be efficiently identified leveraging
the auxiliary structures, as will be illustrated shortly. We then
combine attributes in bestAttrs to facilitate the next step. We
start from attribute sets with as many attributes as possible, and
gradually decrease the number of attributes (Lines 3 to 5). For
each attribute combination (set) attrSet, we get the set eqClass of
tuples that agree on values of all attributes from attrSet (Line 7).
We find the benefit of sampling tuple pairs with the same values
on an attribute set decreases as the number of pairs increases.
Hence, a threshold λ is used as the upper bound of the number of
tuples pairs for each attribute set (Line 8). We adopt an additional
optimization to reduce the number of sampled tuples (not shown
in Algorithm 1). When sampling a pair for one attribute set, we
favor tuples that are already sampled for other attribute set(s).
For example, suppose (ti, tj) is sampled. If possible, for another
attribute set we prefer to sample a pair also with ti (tj). The basic
intuition is that the reuse of the same tuple reduces the size of
initial sampling and hence the number of tuples to be labeled,
without affecting effectiveness of the sampling.

We give more details of our implementation (data structures).

Data structures. We adopt the data structures of position list
indexes (Plis) and PliRecords (line 1) to encode origin data in a
4

Algorithm 2: bestAttrs
Input: all tuples from the original instance r

1 Plis← buildPlis (r);
2 Plis← sort (Plis, Descending);
3 PliRecords← createPliRecords (Plis);
4 bestAttrs← {attrs \ attrs with few clusters | attrs ∈ Plis };

compact way [24–26]. A Pli πX is a set of clusters on attribute set
X , and tuples in the same cluster have the same value on X . Along
the same lines as previous works, it is safe to discard clusters
with only one tuple. The compact representations of all tuples
are PliRecords, in which each tuple’s value on attribute set X is the
cluster ID from Pli πX . Recall Plis and PliRecords are very memory-
efficient, and the original dataset is not needed any more after
building Plis and PliRecords. We use the same data structures of
Plis and PliRecords as former works [20,24–26], since the data
structures have already been well studied and proven efficient,
and are not the major concern of this paper.

Example 3. For Table 1, we have π{AC} = {{1, 2, 3, 5, 8, 9}, {6,
7}} and π{CC} = {{1, 2, 3, 4, 5}, {6, 7, 8, 9}}. We show PliRecords
f attributes CC and AC in Fig. 2. We have no value in AC of

tuple t4, since the cluster containing t4 has only one tuple and
s discarded. □

We illustrate the usage of Plis and PliRecords with a detailed
nalysis of Algorithm 1. To select the set bestAttrs of attributes
line 2), we sort attributes according to the number of clusters
n Plis, and discard attributes with very few clusters (shown in
lgorithm 2). For each attribute set attrSet, we get the set eqClass
f tuples that agree on values of all attributes from attrSet (line
). Leveraging PliRecords, clusters on multiple attributes can be
omputed in O(|r|), where |r| is the number of tuples in r (shown
n Algorithm 3).

xample 4 (Example 3 continued).. We illustrate the running of Al-
orithm 3, for computing π{CC,AC} from π{CC}. Consider lastEqClass
= π{CC} = {{1, 2, 3, 4, 5}, {6, 7, 8, 9}} (Line 1), and cluster= π{CC=44}

{6, 7, 8, 9} (Line 4). We partition tuples from {6, 7, 8, 9} by their
alues on AC, leveraging a key–value pair clusterMap whose key
s tuple’s cluster ID from π{AC}. Refer to Fig. 2. We have clusterMap
0] = {8, 9} and clusterMap [1] = {6, 7}, i.e., π{CC=44,AC=908} = {8,
9} and π{CC=44,AC=131} = {6, 7} (Lines 5–9). □

Remark. (1) Algorithm 1 has a worst-case complexity of O(|r|·2k)
by building Plis and PliRecords with hashing in O(|r|), where k is
the size of bestAttrs. (2) All further manipulations of data leverage
PliRecords, without visiting original data. The original tuples are
only presented to users for labeling.

S. Jiang, Z. Tan, J. Wang et al. Information Systems 114 (2023) 102158

s
o

U
c
a
(
l
(
s

f

i
(

a
(
A
s
t
S
s
(
‘
t
‘
(
S

g

S
a
a
f
S

S
a
u
S
t

A
u
l
t
(
R
D
a
M
c
6
a
m
c
c

V
(

Algorithm 3: eqClass
Input: Plis, attribute set attrSet
Output: equivalence class eqClass for attrSet

1 lastEqClass← Plis.at (attrSet [0]);
2 for i = 1; i ̸= attrSet.size; ++i do
3 nowEqClass← ∅;
4 foreach cluster in lastEqClass do
5 foreach recordID in cluster do
6 pliID← PliRecords [recordID][attrSet [i]];
7 clusterMap [pliID].add (recordID);
8 foreach splitClu in clusterMap do
9 if splitClu.size ≥ 2 then nowEqClass.add (splitClu) ;

10 lastEqClass← nowEqClass;
11 eqClass← lastEqClass;

5.2. Initial CFD discovery module

The initial CFD discovery module takes as input the sampled
et D. Leveraging user’s labeling on D, it discovers an initial set
f CFDs.

ser’s labeling. User interaction is employed to guide CFD dis-
overy in our system. A set of tuple pairs is automatically selected
nd presented to users, and users are asked to label it. Specifically,
a) if an attribute value is found to be incorrect, then users should
abel the attribute value and tuple with the value as false; and
b) if a tuple does not have any incorrect values, then users
hould label the tuple as true. Note that users are not asked to
provide correct values. Our aim here is to reduce the burden on
users. Indeed, labeling false values does not always imply that the
correct values are known by the users. In real-life dirty data, some
false values can be labeled even if the correct values are unknown.
They can be typos, e.g., ‘‘femle’’ for sex (users know this is an error
even if they do not know whether ‘‘female’’ is the correct value),
placeholder values, e.g., ‘‘XXX’’ for name, and outliers, e.g., ‘‘999’’
or age.

Tuples in D are presented to users in pairs. After user’s label-
ng, tuple pairs can be categorized into three types:
1) Type-{true, true }: we refer to a pair as a tt-type pair, if the
two tuples in it are both labeled as true tuples. Since users are
assumed to have perfect knowledge, we should guarantee that
tuples from tt-type pairs never violate any discovered CFDs.
(2) Type-{true, false }: we refer to a pair as a tf-type pair, if one
tuple is labeled as a true tuple, while the other is a false one.
Intuitively, the false value labeled in the false tuple is very likely to
be the same as the value on the same attribute of the true tuple.
We consider this factor when generating candidate CFDs.
(3) Type-{false, false }: if both tuples in a pair are false tuples, then
there are further three cases as follows.

(a) if the two tuples have the same incorrect value on the
same attribute, then we refer to this tuple pair as a ff-SS-type pair
(the same attribute with the same error value). Note that variable
CFDs may fail to detect errors on these two tuples, but constant
CFDs can. For example, both t1 and t2 have the same incorrect
value ‘‘LA’’ on attribute CT. The variable CFD ([CC, AC]→ CT, (_,
_ ∥ _)) is not violated by t1, t2, while the constant CFD ([CC, AC]
→ CT, (01, 908 ∥ MH)) can detect this error.

(b) if the two tuples have different incorrect values on the
same attribute, then we call this pair a ff-SD-type pair (the same
attribute with different error values). The error can be identified
by variable and constant CFDs. For example on attribute CT, the
error value of t1 is ‘‘LA’’, but that of t3 is ‘‘GLA’’. We see that ([CC,
AC] → CT, (_, _ ∥ _)) and ([CC, AC] → CT, (01, 908 ∥ MH)) can

detect this error.

5

(c) if the two tuples have error values on different attributes,
then we call this pair a ff-D-type pair (different attributes). We
treat a ff-D-type pair as two tf-type pairs.

Note that it is possible for a pair of false tuples to be classified
in different ways with respect to different attributes. We aim to
discover CFDs for detecting errors, leveraging users’s labeling. We
first present several definitions.

Attributes concerning user’s labeling. For a pair (ti, tj), we iden-
tify two sets of attributes according to user’s labeling.
(1) Serr [ti, tj] is a set of attributes on which false values are labeled.
(2) S free[ti, tj] is a set of attributes, such that (a) S free[ti, tj] ∧
Serr [ti, tj] = ∅; and (b) ti[A] = tj[A] for all A ∈S free[ti, tj], i.e., ti, tj
have the same values on all attributes from S free[ti, tj].

To enable constants in the pattern tuples of CFDs, attributes
in Serr [ti, tj] and S free[ti, tj] can be associated with frequent values
from instance r .1 The type of (ti, tj) is considered when constants
are introduced to Serr [ti, tj] and S free[ti, tj], as illustrated below.

Example 5 (Example 1 continued.). Suppose we sample tuple
pairs (t1, t3), (t1, t5) and (t1, t9), and users label false values on
ttributes CC and CT, as shown in Table 1.
1) (t1, t5) is a tf-type pair. We have Serr [t1, t5] = {CT, CT = ‘‘MH’’}.
s noted earlier, it is very likely that the false tuple t1 has the
ame value as the true tuple t5 on CT. Hence we only consider
he frequent value ’’MH’’ rather than all frequent values. We have
free
[t1, t5] = {CC, CC= ‘‘01’’, AC, AC= ‘‘908’’}, since t1, t5 have the

ame values on CC,AC with values ‘‘01’’ and ‘‘908’’, respectively.
2) (t1, t3) is a ff-SD-type pair. Serr [t1, t3] = {CT, CT = ‘‘MH’’, CT =
‘EDI’’}, since neither ‘‘LA’’ nor ‘‘GLA’’ is a correct value on CT for
1 (t3). S free[t1, t3] = {CC, CC = ‘‘01’’, AC, AC = ‘‘908’’, PN, PN =
‘1111111’’, STR, STR = ‘‘Tree Ave.’’, ZIP, ZIP = ‘‘07974’’}.
3) (t1, t9) is a ff-D-type pair. By treating it as two tf-type pairs,
err
[t1, t9] is the union of {CC, CC= ‘‘01’’} and {CT, CT= ‘‘MH’’}. □

Based on Serr [ti, tj] and S free[ti, tj], we present our method to
enerate candidate CFDs.
err
[ti, tj] as RHS attribute. Each attribute from Serr [ti, tj] is used

s the RHS attribute of CFDs one by one, and combinations of
ttributes from S free[ti, tj] are used as LHS attributes. We start
rom a single attribute on the LHS, and more attributes from
free
[ti, tj] are added to the LHS if necessary.

err
[ti, tj] as LHS attribute. One attribute from S free[ti, tj] is used

s the RHS of CFDs, and attributes from Serr [ti, tj], S free[ti, tj] are
sed on the LHS. We start from CFDs with only one attribute from
err
[ti, tj] on the LHS, and more attributes are gradually added to

he LHS if necessary.

lgorithm. Algorithm 4 illustrates the initial CFD discovery mod-
le. It is conducted on Dt , the ‘‘shuffled’’ version of D with user’s
abeling. That is, Dt is a set of tuples, containing exactly the same
uples as D. Algorithm 4 stores the discovered candidate CFDs
resp. candidates that fail in the validation) in the rule repository
(resp. trash repository T). It enumerates tuple pair (ti, tj) from

t with at least one false tuple from D, and considers Serr [ti, tj]
nd S free[ti, tj]. It first generates the most general candidate CFDs.
ore attributes are then added to the LHS for more specified
andidates if former ones fail in the validation (lines 2–5 and lines
–13), following the approach to generating candidates stated
bove. A parameter maxLength is used in appendAttr to limit the
aximum number of LHS attributes. Function Validation is at the
ore of Algorithm 4, which is called to check the validity of a CFD
andidate.

alidation. We check the validity of a candidate CFD ϕ as follows.
1) Query the trash repository T , to verify that ϕ did not fail in

1 We assume all frequent values are collected in the pre-processing step.

S. Jiang, Z. Tan, J. Wang et al. Information Systems 114 (2023) 102158

s
s
T
w

E
d

t
t
t
s

w
ϕ

a
t

R
c
p
a

f

t

s
1

a
c

T
m
t
s

e
m
c
D

5

r
i

l
s

A
I
i

Algorithm 4: InitialCFDDiscoveryModule

Input: Labeled data Dt , Rule and Trash Repository R, T ;
1 tp− ← all tuple pairs from Dt with false tuple(s) from D ;
2 for (ti, tj) in tp− do
3 foreach rhs in Serr [ti, tj] do
4 Stemp ← S free[ti, tj];
5 appendAttr (Stemp, maxLength, null, rhs);
6 foreach rhs in S free[ti, tj] do
7 Stemp ← S free[ti, tj] \ rhs;
8 foreach a_lhs in Serr [ti, tj] do
9 if Validation (a_lhs→ rhs, Dt) then

10 R.add (a_lhs→ rhs);
11 break ;
12 T .add (a_lhs→ rhs);
13 appendAttr (Stemp, maxLength − 1, a_lhs, rhs);
14 Function appendAttr (Stemp, maxLength, init_lhs, rhs)
15 for len = 1; len ̸= maxLength; ++len do
16 lhsList← combination(Stemp, len);
17 delSet← ∅;
18 foreach lhs in lhsList do
19 rule← (lhs ∪ init_lhs→ rhs);
20 if Validation (rule, Dt) then
21 R.add (rule);
22 delSet.add (attributes in lhs);
23 else
24 T .add (rule);
25 Stemp.remove(attributes in delSet);

the validation in former rounds. We give more details of T in
Section 5.3. (2) Check ϕ on Dt , against all tuple pairs from Dt (a
ingle tuple suffices for constant CFDs). If ϕ is violated, then make
ure in the violation there are some false values labeled by users.
hat is, ϕ must hold on the partial data without false values, since
e assume that users have perfect knowledge.

xample 6 (Example 3 continued.). Assume we generate a can-
idate ϕ1 = (AC → CT, (908 ∥ EDI)), using CT = ‘‘EDI’’ from

Serr [t1, t3] on the RHS. We see t5 can be used to invalidate ϕ1 since
5[AC] = ‘‘908’’ and t5[CT] = ‘‘MH’’, and then ϕ1 will be put into
he trash repository T . It can be seen that t9 can also be used for
his purpose. Although t9 is a false tuple, the correct values in t9
uffice.
After more attributes from S free[t1, t3] are added to the LHS, ϕ1

ill be refined to, e.g., ϕ2 = ([CC, AC]→ CT, (01, 908 ∥ EDI)) and
3 = ([AC, PN] → CT, (908, 1111111 ∥ EDI)). We see that ϕ2 is
gain invalidated by t5. In contrast, ϕ3 is not invalidated by t1 or
3, since the false values on CT are involved in the violations. □

emark. (1) Algorithm 4 discovers candidate CFDs with attributes
oncerning user’s labeling, on the labeled data Dt . It has a com-
lexity of O(|Dt | · 2m), where |Dt | is the number of tuples in Dt ,
nd m is the size of Serr [ti, tj] ∪ S free[ti, tj] for all ti, tj ∈Dt .
(2) Candidate CFDs can be generated by using attributes only

rom S free[ti, tj] (ti, tj ∈ Dt), even if there is no false tuple in the
initial sampling. Algorithm 4 can be easily modified for this, still
with the same complexity. The discovered CFDs will be put into
the trash repository T later if we find they cannot detect errors
(Section 5.3), or they can be refined after the re-sampling module
(Section 5.4).

5.3. Rule repository and trash repository

We maintain rule repository R and trash repository T . R is
used to store candidate CFDs discovered so far, while T is used
o store failed candidates. The two repositories are updated in
6

the initial discovery (Algorithm 4) and in each round of CFD
refinement (Section 5.5).

After initial discovery and refinement, for candidates in R we
compute their support and confidence on the whole instance r .
That is, we check on r the validity of CFD candidates that are
discovered on the sampled data. The computation of support and
confidence requires to enumerate candidates from R, with a cost
linear in |r| for each candidate leveraging PliRecords. We then
further updateR and T to facilitate the next round of re-sampling
as follows.

Trash repository T . We move some candidates from R to T ,
uch that T stores failed candidates that (a) have confidence of
00% in r , or (b) have support less than the threshold θ in r , or

(c) failed in the validations (Section 5.2). This is because (a) a
candidate CFD of 100% confidence is not useful for data cleaning
since there are no violations w.r.t. it, and (b) the support of a CFD
never increases when more attributes (with constants) are added
to the LHS. Besides each failed candidate, we also add all of the
more general CFDs to T . For example, if the CFD ([CC, CT]→ AC,
(01, MH ∥ 908)) is added into T , then all CFDs more general than
it, e.g., (CT→ AC, (MH ∥ 908)) and (CC→ AC, (01 ∥ 908)), are also
dded into T . In our discovery process, we can directly discard a
andidate if it is found in T .

op-K strategy. After moving some failed candidates to T , re-
aining ones inR are candidate CFDs that will be refined through

he re-sampling and refinement modules. It can be costly to re-
ample tuples for all candidates in R. To this end, we adopt a
strategy based on top-K results: we rank CFDs in R, only re-
sample tuples for the top-K CFDs, and terminate the discovery
if the confidence and support of each of the top-K CFDs are above
the given thresholds. This is consistent with our goal of finding a
small set of CFDs for detecting errors. It is worth mentioning that
the top-K CFDs in R are dynamic: the ranks are required to be
recomputed after each round of re-sampling and CFD refinement.

Rank CFDs in R. We rank CFDs ϕ in R (a) first in ascend-
ing order of the number of attributes, (b) then in descending
order of the number of attributes with false values, and (c) fi-
nally in descending order of vsupp(ϕ,Dt), where vsupp(ϕ,Dt) =∑

ti,tj∈Dt
vsupp(ϕ, (ti, tj)) and vsupp(ϕ, (ti, tj)) = 1 if all attributes

(with constants) from ϕ are in Serr [ti, tj] ∪ S free[ti, tj], and 0 oth-
rwise. Intuitively, we prefer to perform re-sampling and refine-
ent for CFDs that have fewer attributes, contain more attributes
oncerning false values, and can be applied to more tuple pairs in
t .

.4. Re-sampling module

The goal of re-sampling module is to re-sample tuples for
efining top-K CFDs from R. The top-K CFDs whose confidence
n the instance r is smaller than the given threshold µ are too
general. Therefore, some tuples without incorrect values may
violate the CFDs; the tuples are false negative tuples w.r.t. the
CFDs. By sampling false negative tuples from r and asking users to
label them, too general CFDs can be refined. After several rounds
of re-sampling and CFD refinement, candidate CFDs in R will
converge to final ones.

We again prefer a small set of tuples for labeling. Hence, the
intuition is to sample tuples that violate the most number of top-
K CFDs from R; we can refine several CFDs if they are true tuples
abeled by users. We also consider the diversification of attribute
ets, along the same line as initial sampling.

lgorithm. Algorithm 5 enriches D by re-sampling tuples from r .
t enumerates top-K CFDs ϕ from R. For each ϕ whose confidence
s smaller than the threshold µ, it samples tuple pairs such that

S. Jiang, Z. Tan, J. Wang et al. Information Systems 114 (2023) 102158

(
t

s
t
t

R
o

5

t
t
t
c
p
c
t
t
v

E
H
(
v
f

R
i
a
i
S
v
a
r

E
f
S
‘
r
I
c
(

Algorithm 5: Re-SamplingModule

Input: Rule and Trash Repository R and T , and Sampled set D;
1 tpSet← ∅, sampleCount ← 0;
2 foreach top-K CFD ϕ from R do
3 if the confidence of ϕ < threshold µ then
4 tpSet← tpSet ∪ several pairs of tuples that violate ϕ ;
5 sort tuple pair tp from tpSet in descending order by vio(tp),

where vio(tp) is the number of top-K CFDs violated by tp;
6 foreach tp in tpSet do
7 if D ∪ {tp} is diversified enough w.r.t. threshold λ then
8 D ← D ∪ {tp};
9 sampleCount ← sampleCount + 1;

10 if sampleCount ⩾ the required size then
11 break ;

the two tuples in a pair have the same values on the LHS but
different values on the RHS of ϕ, i.e., a pair of tuples violating ϕ
Lines 3–4). A parameter is used to limit the number of sampled
uple pairs for each such ϕ. It collects tuple pairs in the set tpSet ,
and then sorts them by the number of violated top-K CFDs in
descending order (line 5). This favors tuple pairs that violate more
CFDs. When adding tuple pairs into D, it additionally considers
the diversification of attribute sets, by using the threshold λ (the
ame as Algorithm 1) to restrict the number of tuple pairs in D on
he same attribute set (Line 7). The re-sampling continues until
he required number of tuples are collected (Lines 9–11).

emark. Algorithm 5 enumerates K CFDs and has a complexity
f O(|r|) for each CFD, leveraging PliRecords.

.5. CFD refinement module

After re-sampling tuples, the CFD refinement module is called
o refine CFDs in R and add new CFDs to R if necessary. The two
uples in a re-sampled pair violate CFDs in R, and are assumed
o contain errors. If they are found to be true when labeled, we
an refine CFDs violated by them. We can use not only tt-type
airs for this purpose, but also tf-type and ff-type pairs in some
ases. This is because a CFD only concerns some attributes of a
uple. When a tuple pair contains false values, we can still use it
o refine a CFD if the CFD is violated by the pair and only true
alues in the pair are concerned.

xample 7. For the pair (t1, t5), there is a false value on CT.
owever, this pair can still be used to refine ([CC, AC] → NM,
_, _ ∥ _)). The reason is that the pair violates the CFD, and all
alues concerning the CFD are true. That is, (t1, t5) still forms a
alse negative for ([CC, AC]→ NM, (_, _ ∥ _)). □

efine existing CFDs. If a false negative tuple pair, say (ti, tj),
s found for a CFD, then we refine the CFD by including more
ttributes (with constants) on the LHS. The refinement strategy
s different from that of the initial discovery module; those in
free
[ti, tj] are not used. Indeed, it is easy to see the CFD is still

iolated by the pair if attributes (with constants) from S free[ti, tj]
re added to its LHS, i.e., (ti, tj) remains a false negative w.r.t. the
efined CFD.

xample 8. As shown in Example 2 (3), (t4, t5) is a false negative
or the CFD (CC → CT, (_ ∥ _)). After user’s labeling, we have
err
[t4, t5] = ∅ and S free[t4, t5] = {CC, CC = ‘‘01’’, PN, PN =

‘2222222’’, STR, STR = ‘‘3rd Str.’’}. When more attributes are
equired to refine the CFD, those from S free[t4, t5] cannot be used.
nstead, we can use AC, NM, ZIP (with frequent constants). We
an also use CC = ‘‘44’’ to generate the refined CFD (CC → CT,
44 ∥ _)), but later it will be invalidated by, e.g., (t , t). □
7 8

7

Table 2
Statistics of datasets.
Dataset #Tuples #Attrs Threshold θ of support

Abalone 8,354 9 10%
Adult 48,842 11 1%
Soccer 100,000 10 10%
SP500 245,148 7 1%

Generate new CFDs. To discover CFDs that can detect all the
errors, after re-sampling and labeling, we combine (a) each new
false tuple with each of the previous true (resp. false) tuple to form
a tf-type (resp. ff-type) pair, and (b) each new true tuple with each
of the previous false tuple to form a tf-type pair. This is necessary
since after re-sampling, false values can occur on some attributes
that are free of false values before. A discovery process similar to
the initial CFD discovery is then carried out to generate new CFDs.
Since both T and the labeled dataset keep growing in each round,
the new process should consider the latest version of them.

Remark. Rule repository R and trash repository T are updated
in the CFD refinement module. Our approach terminates if we
have top-K CFDs with confidence and support above the given
thresholds, otherwise it starts the next round of re-sampling and
refinement.

6. Experimental evaluations

In this section, we present an experimental study to compare
our method with the state-of-the-art CFD discovery methods, and
to analyze the performance of our algorithms in detail.

6.1. Experimental setting

Datasets. We test four datasets that are also used in [20]. Abalone
and Adult are from the UCI Repository (http://archive.ics.uci.edu/
ml/), SP500 is real-life data about stock trading from [36], and
Soccer is synthetic data generated by BART [37] (http://www.db.
unibas.it/projects/bart/). The characteristics of each dataset are in
Table 2. Recall that previous works [15–17] on data cleaning with
CFDs mostly concern categorical attributes but not numerical
attributes.

Algorithms. We implement our method, referred to as GCFD
(code is available online from https://github.com/jariver/GCFD),
and obtain implementations of Explain [20], CTane [18], Itemset-
First and FD-First [21] (available online from https://bit.ly/2yFNksO
and https://bit.ly/2MYzjcH). Recall that [20] discovers a single
CFD to ‘‘explain’’ all user modifications, while CTane, Itemset-First
and FD-First discover all CFDs that approximately hold. All the
algorithms are implemented in C++.

Noise introduction. There are no ‘‘golden’’ CFDs for evaluat-
ing the effectiveness of CFD discoveries. Along the same lines
as [20,33], we use BART [37] to introduce noises (errors) to
attribute values, and evaluate the effectiveness of discovered
CFDs in terms of their abilities to detect the attribute values with
introduced noises. BART takes a clean dataset and a set of CFDs
as input, and produces a dataset with violations of the given
CFDs, controlled by two parameters: (a) the number of attributes
containing noises, and (b) the percentage of noise values. On each
dataset, we use 3 (resp. 5, 10) CFDs for introducing noises (the
CFDs are given in the Appendix for reference), and 80% (resp. 90%,
100%) of the attributes are concerned in the 3 (resp. 5, 10) CFDs.
For each CFD, we use η = 0.1%/0.5%/1%/2% as the percentage of

noises, where 20%–30% (resp. 70%–80%) of the noises are on the

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.db.unibas.it/projects/bart/
http://www.db.unibas.it/projects/bart/
http://www.db.unibas.it/projects/bart/
https://github.com/jariver/GCFD
https://bit.ly/2yFNksO
https://bit.ly/2MYzjcH

S. Jiang, Z. Tan, J. Wang et al. Information Systems 114 (2023) 102158

P
t
n
a
θ
t
s
F
i

b
n
o
(
e

6

E
s
r
f

o
w
s
s
o
3
s
r
r

n
W
o
r
s

Table 3
Statistics of user’s labeling.
Dataset #CFDs #InitLabel #InitFalse #TotalLabel #TotalFalse

Abalone
3 20 9.25 102.25 20.25
5 20 9.75 97.5 15.75
10 20 10.33 80.67 17.33

Adult
3 20 0 102 26.25
5 19.5 0 96.25 21.25
10 20 3.33 82.67 27.33

Soccer
3 19.5 9.5 82 19.25
5 19.25 9.75 93 22.25
10 19.33 9 86.67 26

SP500
3 20 10.75 61 15.75
5 20 10.25 60.5 23.25
10 20 11 64 13.67

LHS (resp. RHS) attributes of the CFD. Since noises introduced for
some CFDs can be on the same tuple, we experimentally find that
up to 10% of the tuples are modified by BART in our experiments.

arameters. Along the same setting as [20], we set the confidence
hreshold µ = 1 - η, where η is the percentage of introduced
oises in BART. The threshold θ of support is shown in Table 2,
nd all constants in pattern tuples of CFDs have frequency ε ≥
. For GCFD, we discover top-30 CFDs by default, and set the
hreshold λ (Algorithms 1 and 5) as 2, to enable diversification in
ampling. To favor the efficiency of CTane, Itemset-First and FD-
irst, we set an upper bound of 5 on the number of LHS attributes
n discovered CFDs.

In our experimental evaluations, we simulate tuple labeling
y software since the ground truth values are known. This does
ot affect the experimental results concerning the effectiveness of
ur approach. We use a machine with an Intel Core i5 Processor
2.9GHZ), 16 GB of memory and Ubuntu 18.04. We run each
xperiment 3 times and report the average.

.2. Experimental results

xp-1: User’s labeling in GCFD. In Table 3, the column of #CFDs
hows the number of CFDs to introduce noises. We vary η and
eport the average results of labeling. The results tell us the
ollowing.

(1) The #InitLabel and #InitFalse columns show the numbers
f labeled tuples and false values in the initial sampling. Since
e always sample pairs of tuples having the same values on
everal (many) attributes, we see there is a high probability that
ome tuples with noises are sampled. The only exception is found
n Adult; no false value is labeled on the initial sampling when
or 5 CFDs are used. However, the results verify that we can

till discover CFDs for detecting errors in this case, since we can
efine the initially discovered CFDs and (or) discover new ones by
e-sampling tuples with noises.

(2) The #TotalLabel and #TotalFalse columns show the total
umbers of labeled tuples and false values during the discovery.
e see only a very small number of tuples are labeled, e.g.,
nly 60+ tuples on SP500 of more than 245K tuples. Better,
ecall that the labeled tuples are automatically selected by our
ystem. We also see the total number of labeled tuples does not
increase with the number of CFDs (#CFDs). This justifies our
approach to re-sampling tuple pairs that violate more CFDs, so
as to simultaneously refine several CFDs.

(3) In Table 4, we run experiments by varying the number of
tuples of each dataset (25% and 50% of all tuples). The results
show that the number of labeled tuples is not sensitive to the
instance size. For example, the number of labels increases by only

40% for a fourfold increase in tuples on Abalone, and even less

8

on other datasets. In the columns of #Tuples, #FalseTuples and
#Noises, we show the number of tuples, the number of tuples
with noise attribute values and the number of noise attribute
values, respectively. The value in #Noises is larger than that in
#FalseTuples, since one tuple may contain several noise attribute
values. More specifically, we find one tuple can contain up to
3 noise attribute values in this set of experiments. The value
in #TotalLabel (resp. #TotalFalse) is much smaller than that in
#Tuples (resp. #FalseTuples) on large datasets. Only a very small
proportion of (false) tuples are required to be labeled, which
justifies the efficiency of our approach.

We do not report the number of labeling in Explain [20], which
would be too subjective since users are required to manually
identify and correct erroneous tuples concerning one CFD.

Exp-2: Effectiveness of GCFD. We evaluate the effectiveness of
CFD discoveries, aiming for a set of CFDs that can detect noises
introduced to attribute values, in the form of CFD violations. We
use f-measure Fβ =

(β2
+1)·prec·recall

β2·prec+recall
, where prec is the ratio of

the correctly detected attribute values with noises to all values
involved in violations of the discovered CFDs, and recall is the
ratio of values with noises detectable by the discovered CFDs
to values with noises detectable by the original 10 CFDs for
introducing noises.2 Note we aim for CFDs with better abilities to
detect errors, while judging CFDs based on other measures (given
below) is a departure from our goal.

CTane discovers all CFDs approximately holding, so do Itemset-
First and FD-First. This results in a much larger number of CFDs
than GCFD by orders of magnitude (shown in Fig. 3). All the
CFDs discovered by CTane, however, have very low prec , since
most CFD violations do not concern the introduced noises. To
favor the f-measure values of CTane, we perform additional post
processings to select CFDs from the result of CTane, with dif-
ferent measures: (a) confidence, (b) support, and (c) succinctness.
Succinctness is a common criterion for ranking discovered de-
pendencies [36,38]. It favors CFDs with fewer LHS attributes, i.e.,
more general CFDs. We use the top-100 CFDs instead of the top-
30 CFDs for CTane, because the f-measure values of the top-30
CFDs of CTane are still very low. The results in Table 5 tell us the
following.

(1) GCFD significantly outperforms all other methods. This
justifies the idea of this work, to enable an effective CFD dis-
covery leveraging user interactions. Specifically, Explain suffers
from very low recall since it discovers one CFD. CTane(succ) has
good recall but very low prec (not shown); it discovers general
CFDs incurring too many false negatives. CTane(supp) has better
prec but worse recall than CTane(succ). CTane(conf) performs the
worst.

(2) As β increases, the f-measure of GCFD increases. Indeed,
GCFD has very high recall (the top-30 CFDs include nearly all the
CFDs for introducing noises) and relatively low prec (17%–63% on
different datasets). This is reasonable since all CFDs have rela-
tively low prec , except the ones for introducing noises. Therefore,
a larger β favors the f-measure of GCFD. Similar trends are found
on different versions of CTane.

(3) All methods have the worst performance on SP500. There
are no frequent values in SP500 and hence all CFDs on SP500 are
actually FDs. This justifies CFDs are better than FDs in detecting
errors.

The discovery algorithms of CFDs are data-driven mining ap-
proaches with no guarantee that the discovered CFDs are genuine,

2 We use BART to introduce noises by changing attribute values involved in
CFDs with some fixed probability (the percentage of noises η). The noises are
random noises, such as typos, duplicated values, and outliers. Some of the noises
do not lead to CFD violations, and are hence not detectable even by the CFDs
used for introducing noises.

S. Jiang, Z. Tan, J. Wang et al. Information Systems 114 (2023) 102158

m
t
t
b
m

t
w
d
i

Table 4
Number of Labels with varying number of tuples.
Dataset #CFDs %Tuples #TotalLabel #TotalFalse #Tuples #FalseTuples #Noises

Abalone 10
25 56.25 12.25 2,089 106 109
50 68.33 14.5 4,177 212 217
100 80.67 17.33 8,354 425 434

Adult 10
25 75.5 24.25 12,210 576 591
50 77.33 25 24,421 1,152 1,183
100 82.67 27.33 48,842 2,305 2,366

Soccer 10
25 81.75 24.67 25,000 1,195 1,240
50 84.33 25.33 50,000 2,389 2,480
100 86.67 26 100,000 4,778 4,960

SP500 10
25 50.33 13 61,287 2,708 2,798
50 55.25 13.33 122,574 5,413 5,596
100 64 13.67 245,148 10,827 11,192
Fig. 3. The number of discovered CFDs.
I

E
t
(
a
(

P
u
f
t
S

E
s
w
b
n
n
λ
p

i
o

1
t
o
b

Table 5
Effectiveness of different methods.
Dataset β CTane Explain GCFD

supp conf succ

Abalone
2 40.8% 0.1% 11.6% 10.9% 82.2%
3 48.2% 0.1% 20.3% 9.8% 88.5%
4 52.1% 0.1% 29.5% 9.4% 91.4%

Adult
2 12.1% 1.7% 16.7% 6.9% 60.7%
3 12.4% 1.7% 22.7% 6.2% 70.7%
4 12.5% 1.6% 26.6% 5.9% 75.1%

Soccer
2 39.0% 0.3% 23.5% 8.3% 81.9%
3 48.1% 0.4% 31.6% 7.5% 85.1%
4 53.2% 0.4% 36.9% 7.2% 86.5%

SP500
2 10.0% 1.0% 9.6% 7.7% 48.0%
3 17.8% 1.9% 17.2% 6.9% 62.9%
4 26.3% 3.0% 25.6% 6.7% 72.2%

and hence a post-processing step may be required to select CFDs.
However, compared with asking a human to manually design
CFDs, discovering candidate CFDs and then asking a human to
select genuine ones is more practical in terms of the required hu-
man effort, especially for CFDs with multiple LHS attributes and
constant values. Compared with the previous discovery methods,
our approach can identify a smaller set of CFDs with better f-
measure values. Therefore, it is much easier to further select CFDs
from the result set of our method if necessary.

Exp-3: Efficiency of GCFD. We show running times of all the
ethods in Fig. 4. On each dataset, we vary the number of CFDs

o introduce noises in different figures, and in each figure vary
he percentage of introduced noises. Note the results should not
e considered as a comparison of the running times of different
ethods, since GCFD discovers top-K CFDs instead of all CFDs

and the labeling time of GCFD is not included.
We see the following from the results. (1) GCFD (excluding

he labeling time) is very efficient. The efficiency is due to (a)
e combine CFD discovery on the sampled data (initial CFD
iscovery and refinement) with CFD validation on the whole
nstance (confidence and support computation in rule repository
9

R); and (b) we aim for top-K CFDs that can detect errors instead
of all CFDs. (2) Neither the number of CFDs for introducing noises
nor the percentage of noises has evident effect on the efficiency
of GCFD. Similar results are found on other methods in most
cases.

The time for labeling is not reported, which could be too
subjective. Note that (a) we only label a small number of tuples;
(b) the time of user interactions in [20] is not included either,
and [20] places a heavier burden on users than us; and (c) it takes
substantially additional cost to choose meaningful CFDs in CTane,
temset-First and FD-First.

xp-4: Running time details of our method. In Table 6, we show
he times for initial sampling (InitSamp) and initial discovery
InitDis), the rounds of re-sampling and CFD refinement (Rounds),
nd the average times of re-sampling (Re-samp) and refinement
Refine) in each round. All times are reported in millisecond (ms).

We see the following. (1) Leveraging the data structure of
liRecords, sampling processes are very fast. (2) CFD discoveries
sually take a longer time than sampling, but are also very ef-
icient. (3) Each round of re-sampling and refinement takes less
han 1 s on Abalone and Soccer, and only 2–5 s on Adult and
P500. This implies a very quick response to user’s labeling.

xp-5: The impact of K and λ. In this set of experiments, we
tudy the impact of the parameters K and λ. Recall that in GCFD
e discover top-K CFDs with K = 30 by default, and set λ = 2
y default (Algorithms 1 and 5). We still use 10 CFDs to introduce
oises and β = 2 for f-measure. We vary K and λ, and report the
umber of labeled tuples (#Labels) and f-measure in Fig. 5. When
= ∞, it implies that we do not restrict the number of tuple

airs on the same attribute set. We see the following.
(1) The change of K usually slightly affects #Labels when K

ncreases from 10 to 50. The increase of #Labels becomes evident
nly when K = 100.
(2) For f-measure, top-30 CFDs deliver good results, while top-

0 or top-20 CFDs do not perform well. Although top-50 and
op-100 CFDs can slightly beat top-30 CFDs in terms of f-measure
n most datasets, recall that usually more tuples are required to
e labeled for top-50 and especially for top-100 CFDs. The poor

S. Jiang, Z. Tan, J. Wang et al. Information Systems 114 (2023) 102158

l

m
t
b

Fig. 4. Running time of all the methods.
Fig. 5. The impact of K and λ.
Table 6
Running time of each module.
Dataset #CFDs InitSamp InitDis Rounds Re-samp Refine

Abalone
3 154 (ms) 735 14.75 58 251
5 156 826 15.33 44 221
10 157 742 12.22 43 187

Adult
3 1363 2949 19.17 104 2067
5 1446 3286 17.50 101 1454
10 1574 3351 14.44 98 2562

Soccer
3 1399 393 20.17 39 161
5 1432 560 24.25 40 193
10 1460 1064 23.00 40 221

SP500
3 3779 9482 10.00 296 975
5 3791 13578 8.50 308 1251
10 3966 12081 10.67 3034 1450

performance of top-50 and top-100 CFDs on SP500 is due to very
ow prec with too many discovered CFDs.

(3) #Labels significantly increases as λ increases. Although
ore labels always help improve f-measure, we cannot afford

oo many manual labels. By setting λ = 2, we strike a balance
etween effectiveness and efficiency.
10
Table 7
CFDs used in Abalone.
(whole, viscera, rings = 10) → height
(diameter, height, whole, whucked) → rings
(length, whole, shell, rings = 9) → height
(sex=M, whole, whucked, viscera) → shell
(whole, whucked, shell) → height
(whole, viscera, shell) → height
(diameter, whucked, viscera, shell) → height
(diameter, height, whole, whucked) → shell
(height, whucked, viscera, shell) → sex
(height, whole, whucked, shell) → sex

7. Conclusion

We have proposed an approach to CFD discovery, for iden-
tifying CFDs that can detect errors in data and minimizing the
number of required labeling. We have developed a set of tech-
niques underlying our approach, and conducted experimental
evaluations to verify the effectiveness.

We intend to study more dependency discoveries with user
interactions, e.g., denial constraints [2] and order dependencies
[39,40]. We also intend to adapt our approach to the distributed
setting for dealing with very large datasets, along the same lines

S. Jiang, Z. Tan, J. Wang et al. Information Systems 114 (2023) 102158

c
t

D

A

T
m
S

A

C
T
o
e
i
_

Table 8
CFDs used in Adult.
(maritalstatus = Never-married, education = HS-grad, age = 18-21) → income = LessThan50K
(relationship = Husband, education = Some-college) → sex = Male
(relationship = Husband, income = MoreThan50K) → sex = Male
(relationship = Husband, age =>50) → marital-status = Married-civ-spouse
(relationship = Wife, country = United-States, age = 31–50) → sex = Female
(Marital-status = Married-civ-spouse, Education = Prof-school, Sex = Male) → Relationship = Husband
(age =<18) → income = LessThan50K
(marital-status = Never-married, sex = Male, education = Some-college, age = 18–21) → income = LessThan50K
(workclass = ?) → occupation = ?
(occupation = ?, age =>50) → workclass =?
R

Table 9
CFDs used in Soccer.
(stadium = King_Power_Stadium, position, surname, season) → team
(city, birthplace, season = 2013) → position
(position, surname, city = Solna) → season
(surname, birthplace, season) → position
(surname, city, season = 2013) → position
(position, surname) → name
(name, season) → position
(name, season) → birthplace
(name, season) → surname
(city, season = 2015) → team

Table 10
CFDs used in SP500.
(High, Low, Volume) → Close
(Symbol, Close, Volume) → High
(Open, Close, Volume) → High
(Date, Open, Volume) → High
(Date, Low, Volume) → High
(Date, High, Volume) → Low
(Open, High, Volume) → Date
(High, Low, Volume) → Date
(Date, High, Volume) → Symbol
(Open, High, Volume) → Symbol

as [41–43]. The dynamic scenario also deserves further inves-
tigation, to perform dynamic CFD discovery in response to the
changes of data. Dynamic discovery techniques have been re-
cently developed for FDs without user interactions [44,45].

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

code is available online from https://github.com/jariver/GCFD

cknowledgments

We thank anonymous reviewers for their valuable suggestions.
his work is supported by National Key Research and Develop-
ent Program of China 2018YFB1700403 and National Natural
cience Foundation of China 62172102, 61925203.

ppendix

FDs used in the experiments. In Table 7, Table 8, Table 9 and
able 10, we show the CFDs that are used to introduce noises
n the tested datasets. We use shorthands in the tables. As an
xample, the expression (whole, viscera, rings = 10) → height
s used to denote the CFD ([whole, viscera, rings] → height, (_,
, 10 ∥ _)). The ratios between constant CFDs and variable CFDs
11
vary on different datasets. For example, all the CFDs used on
Adult are constant CFDs. The numbers of the LHS attributes of
the used CFDs are in the range of [1, 4]. Please note that in the
dataset Adult (Table 8), ‘‘?’’ is a value for attributes workclass and
occupation, so are ‘‘<18’’ and ‘‘>50’’ for the attribute age.

eferences

[1] X. Chu, I.F. Ilyas, S. Krishnan, J. Wang, Data cleaning: Overview and
emerging challenges, in: SIGMOD, 2016.

[2] X. Chu, I.F. Ilyas, P. Papotti, Holistic data cleaning: Putting violations into
context, in: ICDE, 2013.

[3] M. Dallachiesa, A. Ebaid, A. Eldawy, A.K. Elmagarmid, I.F. Ilyas, M. Ouzzani,
N. Tang, Nadeef: a commodity data cleaning system, in: SIGMOD, 2013.

[4] F. Geerts, G. Mecca, P. Papotti, D. Santoro, The LLUNATIC data-cleaning
framework, PVLDB 6 (9) (2013).

[5] C. He, Z. Tan, Q. Chen, C. Sha, Repair diversification: A new approach for
data repairing, Inform. Sci. 346–347 (2016) 90–105.

[6] I.F. Ilyas, X. Chu, Trends in cleaning relational data: Consistency and
deduplication, Found. Trends Databases 5 (4) (2015) 281–393.

[7] I.F. Ilyas, X. Chu, Data Cleaning, ACM, 2019.
[8] N. Prokoshyna, J. Szlichta, F. Chiang, R.J. Miller, D. Srivastava, Combining

quantitative and logical data cleaning, Proc. VLDB Endow. 9 (4) (2015)
300–311.

[9] A.A. Qahtan, N. Tang, M. Ouzzani, Y. Cao, M. Stonebraker, Pattern functional
dependencies for data cleaning, PVLDB 13 (5) (2020) 684–697.

[10] J. Rammelaere, F. Geerts, Cleaning data with forbidden itemsets, IEEE Trans.
Knowl. Data Eng. 32 (8) (2020) 1489–1501.

[11] M. Volkovs, F. Chiang, J. Szlichta, R.J. Miller, Continuous data cleaning, in:
ICDE, 2014.

[12] Z. Abedjan, L. Golab, F. Naumann, T. Papenbrock, Data profiling, in:
Synthesis Lectures on Data Management, Morgan & Claypool Publishers,
2018.

[13] S. Song, F. Gao, R. Huang, C. Wang, Data dependencies extended for variety
and veracity: A family tree, IEEE Trans. Knowl. Data Eng. 34 (10) (2022)
4717–4736.

[14] W. Fan, F. Geerts, X. Jia, A. Kementsietsidis, Conditional functional
dependencies for capturing data inconsistencies, TODS 33 (2) (2008)
6:1–6:48.

[15] G. Cong, W. Fan, F. Geerts, X. Jia, S. Ma, Improving data quality: Consistency
and accuracy, in: VLDB, 2007.

[16] J. He, E. Veltri, D. Santoro, G. Li, G. Mecca, P. Papotti, N. Tang, Interactive
and deterministic data cleaning, in: SIGMOD, 2016.

[17] M. Yakout, A.K. Elmagarmid, J. Neville, M. Ouzzani, I.F. Ilyas, Guided data
repair, PVLDB 4 (5) (2011) 279–289.

[18] W. Fan, F. Geerts, J. Li, M. Xiong, Discovering conditional functional
dependencies, IEEE Trans. Knowl. Data Eng. 23 (5) (2011) 683–698.

[19] L. Golab, H.J. Karloff, F. Korn, D. Srivastava, B. Yu, On generating near-
optimal tableaux for conditional functional dependencies, PVLDB 1 (1)
(2008) 376–390.

[20] J. Rammelaere, F. Geerts, Explaining repaired data with cfds, PVLDB 11
(11) (2018) 1387–1399.

[21] J. Rammelaere, F. Geerts, Revisiting conditional functional dependency
discovery: Splitting the c from the fd, in: ECML PKDD, 2018.

[22] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J. Rudolph, M. Schönberg, J.
Zwiener, F. Naumann, Functional dependency discovery: An experimental
evaluation of seven algorithms, PVLDB 8 (10) (2015) 1082–1093.

[23] Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen, TANE: an efficient algo-
rithm for discovering functional and approximate dependencies, Comput.
J. 42 (2) (1999) 100–111.

[24] S. Kruse, F. Naumann, Efficient discovery of approximate dependencies,
PVLDB 11 (7) (2018) 759–772.

[25] T. Papenbrock, F. Naumann, A hybrid approach to functional dependency
discovery, in: SIGMOD, 2016.

https://github.com/jariver/GCFD
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb1
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb1
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb1
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb2
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb2
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb2
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb3
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb3
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb3
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb4
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb4
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb4
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb5
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb5
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb5
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb6
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb6
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb6
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb7
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb8
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb8
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb8
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb8
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb8
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb9
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb9
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb9
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb10
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb10
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb10
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb11
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb11
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb11
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb12
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb12
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb12
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb12
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb12
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb13
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb13
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb13
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb13
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb13
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb14
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb14
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb14
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb14
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb14
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb15
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb15
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb15
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb16
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb16
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb16
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb17
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb17
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb17
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb18
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb18
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb18
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb19
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb19
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb19
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb19
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb19
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb20
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb20
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb20
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb21
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb21
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb21
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb22
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb22
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb22
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb22
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb22
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb23
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb23
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb23
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb23
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb23
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb24
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb24
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb24
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb25
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb25
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb25

S. Jiang, Z. Tan, J. Wang et al. Information Systems 114 (2023) 102158
[26] Z. Wei, S. Link, Discovery and ranking of functional dependencies, in: ICDE,
2019, pp. 1526–1537.

[27] C.M. Wyss, C. Giannella, E.L. Robertson, Fastfds: A heuristic-driven, depth-
first algorithm for mining functional dependencies from relation instances,
in: DaWaK, 2001.

[28] P. Mandros, M. Boley, J. Vreeken, Discovering reliable approximate
functional dependencies, in: SIGKDD, 2017.

[29] P. Mandros, M. Boley, J. Vreeken, Discovering reliable dependencies from
data: Hardness and improved algorithms, in: ICDM, 2018.

[30] P. Mandros, D. Kaltenpoth, M. Boley, J. Vreeken, Discovering functional
dependencies from mixed-type data, in: SIGKDD, 2020.

[31] F. Pennerath, P. Mandros, J. Vreeken, Discovering approximate functional
dependencies using smoothed mutual information, in: SIGKDD, 2020.

[32] Y. Zhang, Z. Guo, T. Rekatsinas, A statistical perspective on discovering
functional dependencies in noisy data, in: SIGMOD, 2020.

[33] S. Thirumuruganathan, L. Berti-Équille, M. Ouzzani, J. Quiané-Ruiz, N. Tang,
Uguide: User-guided discovery of fd-detectable errors, in: SIGMOD, 2017.

[34] M. Mahdavi, Z. Abedjan, R.C. Fernandez, S. Madden, M. Ouzzani, M.
Stonebraker, N. Tang, Raha: A configuration-free error detection system,
in: SIGMOD, 2019, pp. 865–882.

[35] M. Mahdavi, Z. Abedjan, Baran: Effective error correction via a unified
context representation and transfer learning, Proc. VLDB Endow. 13 (11)
(2020) 1948–1961.
12
[36] X. Chu, I.F. Ilyas, P. Papotti, Discovering denial constraints, PVLDB 6 (13)
(2013) 1498–1509.

[37] P.C. Arocena, B. Glavic, G. Mecca, R.J. Miller, P. Papotti, D. Santoro, Messing
up with bart: error generation for evaluating data-cleaning algorithms,
PVLDB 9 (2) (2015) 36–47.

[38] E.H.M. Pena, E.C. de Almeida, F. Naumann, Discovery of approximate (and
exact) denial constraints, PVLDB 13 (3) (2019) 266–278.

[39] J. Szlichta, P. Godfrey, J. Gryz, Fundamentals of order dependencies, PVLDB
5 (11) (2012) 1220–1231.

[40] J. Szlichta, P. Godfrey, J. Gryz, C. Zuzarte, Expressiveness and complexity
of order dependencies, PVLDB 6 (14) (2013) 1858–1869.

[41] H. Saxena, L. Golab, I.F. Ilyas, Distributed discovery of functional
dependencies, in: ICDE, 2019, pp. 1590–1593.

[42] H. Saxena, L. Golab, I.F. Ilyas, Distributed implementations of dependency
discovery algorithms, PVLDB 12 (11) (2019) 1624–1636.

[43] S. Schmidl, T. Papenbrock, Efficient distributed discovery of bidirectional
order dependencies, VLDB J. 31 (1) (2022) 49–74.

[44] P. Schirmer, T. Papenbrock, S. Kruse, F. Naumann, D. Hempfing, T. Mayer,
D. Neuschäfer-Rube, Dynfd: Functional dependency discovery in dynamic
datasets, in: EDBT, 2019.

[45] R. Xiao, Y. Yuan, Z. Tan, S. Ma, W. Wang, Dynamic functional dependency
discovery with dynamic hitting set enumeration, in: ICDE, 2022, pp.
286–298.

http://refhub.elsevier.com/S0306-4379(22)00136-3/sb26
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb26
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb26
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb27
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb27
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb27
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb27
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb27
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb28
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb28
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb28
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb29
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb29
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb29
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb30
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb30
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb30
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb31
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb31
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb31
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb32
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb32
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb32
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb33
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb33
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb33
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb34
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb34
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb34
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb34
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb34
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb35
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb35
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb35
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb35
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb35
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb36
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb36
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb36
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb37
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb37
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb37
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb37
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb37
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb38
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb38
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb38
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb39
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb39
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb39
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb40
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb40
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb40
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb41
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb41
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb41
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb42
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb42
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb42
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb43
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb43
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb43
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb44
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb44
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb44
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb44
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb44
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb45
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb45
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb45
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb45
http://refhub.elsevier.com/S0306-4379(22)00136-3/sb45

	Guided conditional functional dependency discovery
	Introduction
	Related Work
	Preliminaries
	Overview of Our Approach
	Details of Our Approach
	Initial Sampling Module
	Initial CFD Discovery Module
	Rule Repository and Trash Repository
	Re-sampling Module
	CFD Refinement Module

	Experimental Evaluations
	Experimental setting
	Experimental Results

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix
	References

