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Abstract
Spectral clustering is one of the most popular modern clustering algorithms. It is easy to
implement, can be solved efficiently, and very often outperforms other traditional clustering
algorithms such as k-means. However, spectral clustering could be insufficient when dealing
with most datasets having complex statistical properties, and it requires users to specify the
number k of clusters and a good distance metric to construct the similarity graph. To address
these problems, in this article, we propose an approach to extending spectral clustering
with deep embedding, cluster estimation, and metric learning. First, we generate the deep
embedding via learning a deep autoencoder, which transforms the raw data into their lower
dimensional representations suitable for clustering. Second,weprovide an effectivemethod to
estimate the number of clusters by learning a softmax autoencoder from the deep embedding.
Third, we construct a more powerful similarity graph by learning a distance metric from the
embedding using a Siamese network. Finally, we conduct an extensive experimental study
on image and text datasets, which verifies the effectiveness and efficiency of our approach.

Keywords Spectral clustering · Deep embedding · Autoencoder · Cluster estimation ·
Metric learning

1 Introduction

Clustering is one of the most fundamental unsupervised learning techniques, which has
been widely used in various fields from computer science to social science [1]. The goal
of clustering is to group a set of data points into multiple groups or clusters so that points
within a cluster have high similarity, but are very dissimilar to points in other clusters [17].
Thus, a notion of dissimilarity or similarity is central to clustering algorithms and most of
the existing methods focus on modeling the dissimilarity relationships among data points
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based on the data representation in a feature space. For example, the traditional clustering
method k-means [21] uses the Euclidean distances between data points in a given feature
space, which might be raw pixels for images or TF-IDF representations for text documents.

Different from k-means that directly clusters on the given feature space, spectral clustering
(SC) [38] works by embedding the data into the eigenspace of the Laplacian matrix that
derived from the pairwise similarities between data points and applying k-means on this
embedding to obtain the clusters. In fact, SC has many fundamental advantages. It is very
simple to implement, can be solved efficiently by standard linear algebra methods, and often
performs better than other traditional clustering methods. However, the pairwise similarities
are typically constructed on Euclidean distances, which might make SC work poorly on high
dimensional data due to the curse of dimensionality [3]. Furthermore, SC requires users to
supply the number k of clusters in the input data, which is not always clear what is the best
value for k in practical applications [16].

Recently, deep learning has achieved widespread success in numerous machine learning
tasks [14], where learning powerful feature representations by deep neural networks (DNN)
lies in the core. Thus, it is conceivable to conduct clustering on the powerful representa-
tions rather than on the raw data. The deep autoencoder [4,18] is one of the most popular
architectures of DNN for learning good representations, and several deep-autoencoder-based
methods have been proposed to improve the clustering performance. Deep embedded clus-
tering (DEC) [39] is proposed to simultaneously learn feature representations and cluster
assignments. It pre-trains a multilayer autoencoder to generate deep embedding and then
finetunes the parameters of the autoencoder and cluster centroids simultaneously by the
defined clustering loss with an iterative approach. However, the clustering loss cannot guar-
antee good embedding and might lead to corruption of embedded space [15,40]. Therefore,
we adopt the deep autoencoder in DEC to learn the embedded features, but after that we apply
spectral clustering on the embedding to obtain clusters, referred to as spectral clustering with
deep embedding (SCDE).

Another limitation of spectral clustering is that the number of clusters needs to be provided.
In the last decades, several methods [6,11,30–32] have been proposed to determine the value
of k automatically, and most of them are wrappers around k-means or some other clustering
algorithms for fixed k [16]. They usually use splitting or merging rules for cluster centroids
to increase or decrease k as the algorithms proceed and estimate the optimum number by
applying different clustering evaluation criteria, such as Calinski-Harabasz Index [6], Davies-
Bouldin Index [11], Silhouette Statistic [32], Bayesian Information Criterion [31]. However,
these methods mostly depend on the clustering algorithm in use, i.e., they may find an
incorrect number if the clustering algorithm performs poorly on the data. Furthermore, they
could be inefficient when a large range of k are considered. Therefore, we propose a new
method to find the correct number k by learning a special autoencoder, referred to as softmax
autoencoder (SA), which can estimate the number of clusters directly rather than runmultiple
k-means on the data. Moreover, this method could be conducted on the deep embedding,
which effectively improves the estimation accuracy. To this end, we integrate this estimation
method into SCDE, referred to as SCDE+.

Since SC clusters the data based on their pairwise similarities, how to construct a good
similarity graph is crucial for SC [38]. However, traditional methods for similarity graph
construction often use the Euclidean distances, which might be too simplistic [8,41]. Several
methods have been proposed to learn a distance metric from the data, and the Siamese net-
work is one of the most successful methods recently [19,33,34]. Inspired by the unsupervised
training of Siamese network in SpectralNet [34], we adopt the Siamese network to learn a
distance metric for constructing a better similarity graph to further improve the clustering
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performance. Different from SpectralNet, we train the Siamese network on the deep embed-
ding rather than on the original data. We also integrate this modification into SCDE+ and
refer to it as SCDE+ with metric learning (SCDEM+).
Contributions Our major contributions are follows:

1. We first provide an effective extension of spectral clustering with deep embedding by
utilizing a deep autoencoder to learn the representations from the raw data and then
applying spectral clustering to do clustering.

2. We then propose a novel method to estimate the number of clusters using a softmax
autoencoder and integrate it into the extension of spectral clustering. Incorporating with
the learned deep embedding is effective for cluster estimating.

3. We thirdly learn a distance metric from the deep embedding with a Siamese network to
replace the Euclidean distance in similarity graph construction, which further improves
the clustering performance.

4. We finally conduct a set of experiments on several image and text datasets and show that
our proposed approach for clustering is both effective and efficient.

Organization This article is organized as follows. Section 2 reviews the related work.
Section 3 provides the basic notations for clustering and describes spectral clustering with
deep embedding. Section 4 discusses how to determine the optimal number of clusters. Sec-
tion 5 presents a method to learn a distance metric from the deep embedding for similarity
graph construction. Section 6 presents the experimental results followed by conclusions in
Sect. 7.

2 Related work

This study extends our previous work [13] by adding (a) a metric learning method for
constructing a better similarity graph (Sect. 5) and (b) a more detailed experimental study
(Sect. 6).
Clustering methods Clustering is one of the most fundamental tasks in data mining and
machine learning [1,22], and a large number of clustering algorithms have been developed
and successfully applied in enormous realworld applications [17]. Thesemethods can be clas-
sified into feature-based clustering and similarity-based clustering. A feature-based method
takes a n × d matrix as its input, where n is the number of samples and d is the dimension of
features. One famous feature-based method is the k-means [21], which partitions the sam-
ples into k clusters so as to minimize the sum of the Euclidean distances between samples
to the corresponding centroids. However, the Euclidean distance metric is limited to the raw
data space and makes k-means ineffective when the input data are high dimensional [39].
Therefore, several variants of k-means have been proposed, including principal component
analysis (PCA) [12], nonnegative matrix factorization (NMF) [5,35], canonical correlation
analysis (CCA) [7] and sparse coding [43], to reduce the high dimensional data into a much
lower dimensional data space that is more suitable for performing k-means [40]. However,
most of these methods are linear embedding and not sufficient for complex data.

Different from feature-based methods, similarity-based methods construct a n × n simi-
larity matrix on the distance between each pair of the samples. Spectral clustering (SC) is a
classical similarity-basedmethod that leverages the Laplacian spectra of the similarity matrix
to generate low dimensional embedding of samples and runs a k-means in the embedding
to get the clusters [28,38]. Compared with k-means, SC has the advantage that kernel func-
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tions or domain-specific similarity can be incorporated into the construction of the similarity
matrix and generally performs better than k-means [28]. Thus, we adopt SC in our method.

Several methods have been proposed to improve the performance of SC. Spectral embed-
ded clustering (SEC) combines linear embedding and spectral clustering [29]. Another
improves SC to replace the eigenvalue decomposition with deep autoencoder [37], but it
increases memory consumption. Different from these studies, we learn a deep autoencoder
to generate better embedding to improve the clustering accuracy of SC and to automatically
estimate the number of clusters.
Deep embedded clustering Recently, clustering methods based on deep neural networks
(DNNs) have been proposed due to their high representational power. By using DNNs, it
is possible to learn nonlinear mappings that transform the raw data into more clustering-
friendly representations [2]. Deep embedded clustering (DEC) is proposed to learn feature
representations and cluster assignments simultaneously using DNNs [39]. DEC learns a
mapping fromdata space to a lower-dimensional feature space inwhich it iteratively optimizes
the clustering objective. Deep clustering network (DCN) is a joint dimensionality reduction
(DR) and k-means clustering approach in which DR is accomplished via learning a DNN
[40]. Variational deep embedding (VaDE) is a generative model for clustering by modeling
the data generative procedure with a Gaussian mixture model and a DNN [23]. Most of these
methods use a two-phased training procedure. The first phase pre-trains an autoencoder
with the standard reconstruction loss. The second phase combines the autoencoder with a
clustering method (e.g., k-means or agglomerative clustering), and fine-tunes the joint model
with a loss function consisting of the reconstruction loss and a clustering loss iteratively [2].
Note that the use of an iterative approach to fine-tune the joint model already makes several
assumptions, and an optimal solution to this problem is not easy to achieve, which might
distort the embedding and cost much time to find a well solution [15]. Therefore, we adopt
this two-phased procedure, but we apply spectral clustering on the deep embedding without
fine-tuning, which is more effective and efficient.
Estimating the number of clusters Estimating the optimal number of clusters is an important
and yet unsolved problem in unsupervised clustering and attracts considerable interests [9].
An effective solution for this problem is to run k-means clustering on the input data for a
range of values for k, and for each value of k, to calculate a cost function that incorporates the
k and the error in clustering [25]. A number of measure criteria for such cost function have
been proposed, such as Calinski-Harabasz Index [6], Davies-Bouldin Index [11], Silhouette
Statistic [32]. X -means uses a splitting rule for k-means centroids to search the optimal k
based on Bayesian Information Criterion [31]. G-means runs k-means with increasing k in a
hierarchical fashion until the test accepts the hypothesis that the data assigned to each centroid
is Gaussian [16]. Different from these methods, our estimation method is efficient, which
does not need to run multiple k-means for a range of k values. Further, by incorporating with
the deep embedding, our method finds a cluster number close to the ground truth.
Metric learning for clustering Metric learning is the task of learning a distance metric from
data, and the learned distance metric can then be used to perform various tasks, e.g., clas-
sification, clustering, and information retrieval. Metric learning algorithms can be classified
into supervised and unsupervised methods. Most unsupervised metric learning methods aim
to project data points into a low-dimensional space, where geometric relationships, such as
the pairwise distances, are preserved [41]. These methods could be applied to traditional
clustering methods, such as k-means, spectral clustering, and DBSCAN, which depend on
the pairwise distances of data points. AML [41] is an unsupervised adaptive metric learn-
ing method that performs clustering and distance metric learning simultaneously. NAML
[8] is another unsupervised adaptive metric learning method for clustering. SpectralNet [34]
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provides a method to learn an effective distance metric for spectral clustering from unla-
beled data using a Siamese network. Different from these methods using metric learning as a
dimensionality reduction technique, we learn the distance metric from the low-dimensional
embedding to construct a better similarity graph for spectral clustering.

3 SCDE: spectral clustering with deep embedding

In this section, we describe spectral clustering with deep embedding (SCDE), an effective
method for extending spectral clustering with deep embedding via learning a deep autoen-
coder from the raw data.

Assuming that the data set X = {x1, ..., xn} contains n data points and each point
x = (x1, ..., xd) is a d-dimensional row vector. The clustering problem is to organize
the set X into k partitions (k ≤ n), where each partition represents a cluster [1]. For
example, the classic clustering method k-means [21] divides X into k disjoint clusters
C = {C1, ...,Ck} by choosing centroids that minimize the within-cluster sum-of-squares
criterion

∑k
j=1

∑
xi∈C j

‖xi − µ j‖2, where µ j is the centroid of cluster C j . Note that k-
means is suitable for clustering the data scattered around their centroids, but would be poorly
to elongated clusters or manifolds with irregular shapes.Moreover, high dimensional data are
in general not very friendly to k-means [40]. In order to solve this problem, several methods
have been proposed by using a dimensionality reduction technique, such as principal com-
ponent analysis (PCA) [12] or nonnegative matrix factorization (NMF) [5,35], to reduce the
original input data into a lower dimensional space and then apply k-means, which usually
obtain better results. However, most of these methods are linear embedding and insufficient
for more complex data.

Spectral clustering makes use of a nonlinear embedding to reduce the dimensionality
of the data, and its process is shown in Algorithm 1. It first constructs a similarity matrix
A (also called affinity matrix) from X and then runs an eigenvalue decomposition on the
normalized Laplacian matrix Ln . Then SC finds the k largest eigenvectors of Ln to form new
representations Y and applies k-means on Y to obtain the final clusters [28]. SC takes O(n2d)

time to compute A and O(n2k) time to find eigenvectors. Thus, its total time complexity is
O(n2(d + k)).

SC often outperforms other traditional approaches due to the good representations gener-
ated by the top eigenvectors of the Laplacian matrix of the similarity matrix [28]. However,
SC does not directly cluster on the raw data but on the similarity matrix A, which is usually
constructed by a K -nearest neighbor graph based on Euclidean distances or a fully connected
graph based on the Gaussian similarity function [38]. This may be ineffective when the input

Algorithm 1 SC Algorithm
Input: X , a data set; k, the number of clusters
Output: C, a set of k clusters {C1, ...,Ck }
1: Construct the similarity matrix A = (ai j )i, j=1,...,n from the raw data X , where ai j is the pairwise similarity between
point xi and x j ;

2: Form the normalized Laplacian matrix Ln = I − D−1/2AD−1/2, where D is the diagonal matrix whose (i, i)-element is
the sum of A’s i-th row;

3: Find the k largest eigenvectors u1, ..., uk of Ln and then form a new matrix Y = [u1...uk ];
4: Normalize the rows of Y by yi j = yi j /

√∑k
j=1 y2i j ;

5: C = {C1, ...,Ck } ← cluster Y with k-means.
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Fig. 1 Framework of SCDE. The top is the network architecture of autoencoder and the bottom is the clustering
phase that SCDE applies spectral clustering on the deep embedding

dataset consists of complex statistical properties [20]. Therefore, we extract more effective
representations for SC by learning a deep autoencoder from the raw data.

A traditional autoencoder is a neural network for dimensionality reduction, which aims
to learn a compressed representation for an input by minimizing its reconstruction error
[14]. Internally, it has a hidden layer h that describes a code used to represent the input. The
network usually consists of two parts: an encoder function h = f (x) and a decoder producing
a reconstruction x′ = g(h). The learning process of the autoencoder is to minimize a loss
function L(x, g( f (x))), where L is a loss function penalizing g( f (x)) for being dissimilar
from x. When we constrain h to have a smaller dimension than x, it forces the autoencoder
to capture the most salient features and obtain useful representations of the data.

Several methods based on multilayer autoencoders (also called deep autoencoder) have
been proposed to learn powerful feature representations [18,20,39,40]. DEC is one of these
successful methods and uses an iterative way to update the parameters of the encoder and
cluster centroids jointly after obtain the deep embedding. The clustering loss of DEC is
the Kullback-Leibler (KL) divergence loss

∑n
i=1 K L( f (x;ω); θ), where ω is the encoder

parameters and θ is the cluster centroids. Optimizing this loss might lead to a trivial solu-
tion f (x;ω) = 0 which distorts the embedding. IDEC [15] improves DEC by taking the
reconstruction loss into consideration, but can not solve this problem completely.

To this end, we adopt the deep autoencoder in DEC to obtain good embedding of the
raw data. We then apply SC on the embedding to cluster the data. This method is referred
to as spectral clustering with deep embedding (SCDE), shown in Fig. 1, and the complete
procedure of SCDE is shown in Algorithm 2.

We first learn a deep autoencoder from X with the stochastic gradient descent (SGD)
algorithm to minimize the data reconstruction loss Lr , defined below:

Lr =
∑n

i=1
‖xi − x′

i‖2 (1)

We then obtain the deep embedding hi for each point xi using the encoder f on X and
finally apply SC on the embedding to finish the clustering. SCDE takes O(nwt) time to train
the deep autoencoder, where w and t are the number of weights in the autoencoder and the
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Algorithm 2 SCDE Algorithm
Input: X , a data set; k, the number of clusters
Output: C, a set of k clusters {C1, ...,Ck }
1: train a deep autoencoder: xi

f−→ hi
g−→ x′

i with data reconstruction loss in (1);
2: obtain deep embedding: hi = f (xi );
3: C = {C1, ...,Ck } ← cluster {hi } with SC (Algorithm 1).

total training epochs. Thus, the complexity of SCDE is O(nwt + n2(h + k)), where h is the
dimension of the embedding layer.
Discussions Using deep embedding for spectral clustering has several advantages. The deep
autoencoder is a nonlinear transformation to extract more powerful features from the raw
data and generates better data representations, which significantly improve the clustering
accuracy of spectral clustering. Moreover, compared with iterative clustering methods such
as DEC, our approach cannot distort the deep embedding. However, SC requires the number
of clusters, which is typically unclear for practical users. In order to handle this problem, we
propose an effective and efficient method to estimate cluster numbers.

4 SCDE+: Improving SCDE with automatic cluster estimation

In this section, we first propose a novel method to estimate the number of clusters based on
a softmax autoencoder. We then integrate this method into SCDE to estimate the number of
clusters automatically.
Estimation of the number of clusters The basic idea of this estimation method is to use the
softmax autoencoder as a clustering method and use the number of cluster labels assigned
by the softmax autoencoder as the estimation.

The softmax autoencoder derives its name from the fact that the innermost hidden layer
uses the softmax activation function.Note that the softmax activation function is often (almost
exclusively) reserved for the output layer in multiway prediction problems; therefore, its use
in a hidden layer seems somewhat unusual at first sight. However, the use of the softmax
activation within the hidden layer is actually quite logical in this setting, when one considers
the fact that it is intended for the innermost hidden layer to yield probabilistic clustermember-
ships. Although this can be viewed as a clustering method, we use these cluster memberships
to estimate the number of clusters rather than the data.

The softmax autoencoder contains a total of 2m + 1 layers, including the input layer.
The innermost layer, i.e., the (m + 1)-th layer, contains ku units, and it represents the upper
bound of the number of clusters into which we wish to partition. This layer uses the softmax
activation function and is not truly a hidden layer, because its output is visible and is used
to infer the probabilistic assignments of data points to clusters. The estimated number is
the total number of clusters assigned to data points. The encoder-decoder architecture is
symmetric in terms of the number of units in the matching layer, but not necessarily in terms
of the computations performed in those layers. In other words, for r ≤ m, the r -th layer
matches up with the (2m + 2 − r)-th layer in terms of the number of units. However, it is
possible using different activation functions in these layers. For example, the first layer is a
non-computational input layer, whereas the (2m+1)-th layer is computational in nature. The
(2m + 1)-th layer contains linear activations because it is possible for the inputs to take on
arbitrary real values. All other hidden layers (except for the innermost layer) use the ReLU
activation function. The innermost layer uses the softmax activation function, and therefore,
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Fig. 2 The architecture of softmax autoencoder

its ku outputs sum to 1. The overall architecture of softmax autoencoder is schematically
shown in Fig. 2.
Loss function An important part of the softmax autoencoder is its loss function, ensuring the
autoencoder to create good enough representations to estimate the number of clusters. The
principle behind the loss function depends on viewing the estimation as a specific type of
dimensionality reduction technique:

One can view estimating the number of clusters as a dimensionality reduction technique
in which the reduced representation of a data point corresponds to the probabilities
of its memberships to clusters, which is used for the estimation. Furthermore, a high-
quality clustering assigns membership probabilities that are spread out in an uneven
way across clusters. In other words, low entropy in cluster assignments is encouraged.

Therefore, the loss function contains two parts. The first part is a standard reconstruction
loss on the final output layer, which ensures that the reduced representations can reconstruct
the data. This is a standard squared loss and defined in (1). The second part uses theGini index
of the activations z1, ..., zku in the innermost layer containing ku units. Note that z1, ..., zku
sum to 1 because of the use of softmax activation, and the Gini index G is defined as follows:

G = 1 −
∑ku

i=1
z2i (2)

Note that the constant value of 1 can be ignored. Therefore, the second part of the loss,
referred to as the cluster coherence loss Lc defined as follows:

Lc = −
∑ku

i=1
z2i (3)

Interestingly, this is also a squared loss, albeit with a negative sign in front of it. However,
from a practical point of view, this squared loss does help in easily computing gradients with
existing deep learning tools, e.g., SGD, and relatively few customized changes. The overall
loss is a combination of the reconstruction and the cluster coherence loss:

L = Lr + Lc (4)

Although the approach naturally yields a soft clustering in terms ofmembership probabili-
ties, it is possible to convert it into a hard clustering by assigning each point to the cluster with
the highest membership probability. In practice, however, it is natural to have overlapping
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Algorithm 3 SCDE+ Algorithm
Input: X , a data set; ku , the upper bound of the estimation of the number of clusters
Output: C, a set of k′ clusters {C1, ...,Ck′ }
1: train a deep autoencoder: xi

f−→ hi
g−→ x′

i with data reconstruction loss in Equation (1);
2: obtain deep embedding: hi = f (xi );

3: train a softmax autoencoder: hi
f ′−→ zi

g′−→ h′
i with loss in (4); // dimension of zi is ku

4: obtain clustering membership probabilities: zi = f ′(hi );
5: k′ ← count the distinct labels argmaxkuj=1{zi j ∈ zi };
6: C = {C1, ...,Ck′ } ← cluster {hi } with SC (Algorithm 1).

clusters. In such cases, the soft clustering approach seems more reasonable from a practical
point of view.

After learning the softmax autoencoder from the data, we estimate the number of clusters
based on the clustering membership probabilities obtained from the autoencoder. We first
generate the cluster labels for all points by assigning each point to the cluster with the highest
probability and then count the number of distinct elements in the labels as the estimation of
the number of clusters.

4.1 SCDE+ framework

One advantage of the softmax autoencoder estimation method is that it can be easily incor-
porated with the deep embedding, i.e., taking the deep embedding as the input instead of the
raw data. As a result, good representations of the deep embedding can help the estimation
method. Thus, we integrate this estimation method into the SCDE clustering to determine
the number of clusters for spectral clustering. We now refer to SCDE with this technique of
estimating the number of clusters as SCDE+, shown in Algorithm 3.

We learn a deep autoencoder to obtain the deep embedding along the same lines as SCDE,
and then, we learn a softmax autoencoder from the embedding to generate the clustering
membership probabilities of each point. After that, we assign each point to the cluster with
the highest probability and count the number of distinct labels as the estimation k′. Finally, we
apply spectral clustering with the embedding and k′. The complexity of SCDE+ is O(n(wt+
w′t ′) + n2(h + k′)), where w′ and t ′ are the number of weights and the total training epochs
of the softmax autoencoder, respectively.
DiscussionsDifferent from traditional estimationmethods that runmultiple k-means to deter-
mine the optimal number of clusters, our method takes less time to estimation, especially
for the lower dimensional embedding, which also help to find a better estimation. It is worth
mentioning that our estimation method is not limited to SCDE and may be applied to other
clustering methods that require the number of clusters, such as k-means, SC and DEC.

5 SCDEM+: improving SCDE+withmetric learning

In this section, we provide a method to learn a distance metric from the deep embedding for
constructing a better similarity matrix, which could further improve the clustering accuracy
of SCDE+.

As mentioned in Sect. 3, SC clusters data on the similarity matrix that usually constructed
by K -nearest neighbor graph orGaussian similarity function based on the Euclidean distance,
not suitable for handling high dimensional and complex data. Several methods have been
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proposed to learn a good distance metric for similarity graph construction [8,41]. Siamese
networks [24,33] are trained to learn similarity relations between data points, and SpectralNet
[34] shows that the unsupervised application of a Siamese network to determine the distance
often improves the clustering performance. Thus, we adopt the Siamese network to learn a
distance metric for the similarity matrix construction.

The main idea of Siamese networks is to find a function that maps input data into a
target space such that a simple distance, such as Euclidean distances, in the target space
approximates the “semantic” distance in the input space [10]. Specifically, given a neural
network s = fψ(x) parameterized by ψ , Siamese networks aim to find the parameters ψ

such that the distancemetric Eψ(xi , x j ) = ‖ fψ(xi )− fψ(x j )‖ is small if xi and x j are in the
same category, and large if they are in different ones. The network is often trained on a set of
similar (positive) and dissimilar (negative) pairs of data points and usually uses a contrastive
loss function to minimize Eψ(xi , x j ) when xi and x j are from the same category and
maximize Eψ(xi , x j ) when xi and x j are belong to different categories. Since we focus on
the unsupervised clustering problem, we adopt the same training phase of Siamese networks
as SpectralNet [34], which learns the distance metric from a K -nearest neighbor graph of
input data. Since we learn the deep embedding h for each point, we train the Siamese network
on the deep embedding rather than on the original data. Thus, we generate the training set
by setting pair (hi , h j ) to positive if h j is one of the nearest neighbors of hi , and negative if
h j is far from hi (e.g., h j is not in the nearest neighbor set of hi ).

Once the Siamese network is trained, we apply it to construct the similarity matrix A of
SC by replacing the distance ‖hi − h j‖ with ‖si − s j‖. We integrate this modification into
SCDE+ to enhance the clustering performance, referred to as SCDE+ with metric learning
(SCDEM+). Training the Siamese network takes O(nKw′′t ′′) time, where K is the number of
nearest neighbors in the training set, w′′ and t ′′ are the number of weights and the number of
epochs. Thus, the total time complexity of SCDEM+ isO(n(wt+w′t ′+Kw′′t ′′)+n2(h+k′)).
Discussions Siamese networks can capture more complex similarity relations and yield
improved clustering quality compared with the Euclidean distance [34]. Different from tra-
ditional algorithms that learn the distance metric from the original data, we learn the metric
from the low dimensional embedding in a more efficient way. Moreover, this metric learning
method is not limited to SC and may be applied to other clustering methods, such as k-means
and DBSCAN [17].

6 Experimental study

In this section, we present experimental results on several real-life datasets to evaluate our
proposed method. We first introduce the experimental settings, and then, we conduct three
sets of experiments: (1) clustering with different numbers of clusters, (2) estimation of the
number of clusters, and (3) clustering with estimation of k to evaluate our method compared
with existing methods.

6.1 Experimental settings

We first present our experimental settings.
Datasets We performed experiments on four image datasets and two text datasets, widely
used for evaluating the performance of clustering methods.
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Table 1 Datasets statistics Dataset # Samples Dimension # Clusters

MNIST 70,000 784 10

Fashion-MNIST 70,000 784 10

USPS 11,000 256 10

STL-10 13,000 4096 10

Reuters-8 10,000 2000 8

20Newsgroups 18,846 2000 20

– MNIST [26]: Consists of total 70,000 handwritten digits (0–9) of 28 × 28 pixel size. We
reshaped each gray image to a 784 dimensional vector.

– Fashion-MNIST (https://github.com/zalandoresearch/fashion-mnist): Consists of total 70,000
data samples of Zalando’s article images, which is often served as a replacement of
MNIST because MNIST might be too easy and overused. Each sample is a 28 × 28 gray-
scale image, associated with a label from 10 classes. Similar toMNIST, we reshaped each
image to a 784 dimensional vector.

– USPS (https://cs.nyu.edu/%7Eroweis/data.html): Consists of total 11,000 gray-scale handwrit-
ten digits (0–9) with size of 16 × 16 pixels. We reshaped each gray image to a 256
dimensional vector.

– STL-10 (https://cs.stanford.edu/%7Eacoates/stl10): Consists of 13,000 color images of 96×96
pixel size and grouped into 10 classes. Since clustering directly on the high resolution
images is rather difficult, we extracted the image features by VGG16 [36] and the dimen-
sionality of the extracted features is 4096.

– Reuters-8 [27]: A text corpus that contains 804,414 English documents categorized into
103 different topics. Restricted by computational resources, we used a subset of the
corpus that contains 8 topics and 10,000 documents with a single topic label. As in DEC
[39], we computed TF-IDF features on the 2000 most frequently occurring word stems
for clustering.

– 20Newsgroups (http://qwone.com/%7Ejason/20Newsgroups): A collection of 18,846 text doc-
uments partitioned into 20 different newsgroups. We also extracted the TF-IDF features
on the 2000 most frequently used words for clustering.

We summarize the important statistics about these datasets in Table 1.
Evaluation metrics As all datasets have ground truth clusters, we evaluate the performance
of clustering algorithms with two standard metrics: Normalized Mutual Information (NMI)
[5] and Adjusted Rand Index (ARI) [42]. NMI has a range of [0,1] with one being the best
and zero the worst, and ARI has a range of [−1, 1] with one being the best and minus one
the worst.
Comparison algorithms We have carefully chosen methods for comparison. For clustering,
we compared our clustering methods SCDE and SCDE+ with k-means, spectral clustering
(SC) [28], spectral embedding clustering (SEC) that combines SC and linear embedding to
improve the performance [29], the classic dimensionality reductionmethodNMF followed by
SC (NMF+SC) and the autoencoder-based method DEC [39]. For estimating the number of
clusters, we compared our softmax autoencoder method (denoted as SA) with two splitting-
rule-based methods X -means [31] and G-means [16] and two methods that run multiple
k-means in an increasing list of k to determine the best k using Davies-Bouldin Index (DB)
[11] and Silhouette Statistic (SS) [32]. For metric learning, we compared our SCDE and
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SCDE+ with metric learning (denoted as SCDEM and SCDEM+) with their counterparts
SCDE and SCDE+, respectively.
Implementation We have implemented all algorithms based on Python and Keras
(https://github.com/keras-team). For deep embedding, we adopt the same network architecture
of the autoencoder in DEC by setting the network dimensions to d-500-500-2000-10-2000-
500-500-d , where d is the dimension of the input data. All layers are densely connected and
all hidden layers (except for the innermost layer) use the ReLU activations function. All the
autoencoders are trained for 50 epochs, and the mini-batch size is fixed to 256. For cluster
estimation, we set the SA network architecture to ds-50-ku-50-ds , where ds is the dimension
of the input and ku is the upper bound of the estimation of the number of clusters. For metric
learning, we set the Siamese network architecture to ds-1000-500-10 for MNIST, Fashion-
MNIST and USPS, and ds-500-10 for the others. All hidden layers use the ReLU activation
function. The number of epochs is 50 and the mini-batch size is 1024. We construct a 5-
nearest neighbor graph to train the Siamese network for each dataset. For spectral clustering,
we construct the similarity matrix by K -nearest neighbor graph, where K is fixed to [8, 10,
50, 20, 5] for USPS, STL-10, Reuters-8, 20Newsgroups and the others to make the graph is
fully connected.

All experiments are conducted on a machine with 2 Intel Xeon E5-2630 2.3 GHz CPUs
and 64 GB of Memory, running 64 bit Windows 10 Professional system. Each experiment is
repeated 5 times and the average is reported here.

6.2 Experimental results

We next present our findings.
Exp-1: Clustering with different numbers of clusters In the first set of tests, we deliberately
chose different numbers of clusters k to evaluate the effectiveness of our clustering methods
SCDEM and SCDE compared with k-means, SC, SEC and DEC. To better understand the
contribution of deep embedding, we compared SCDEM and SCDE with NMF+SC that uses
the classical dimensionality reduction method NMF to generate low dimensional embedding
of the raw data. We also tested k-means and SEC on the deep embedding, denoted as DE+k-
means and DE+SEC, respectively. For a fair comparison, we used the same embedding for
DE+k-means, DE+SEC, DEC and our methods. The number k was fixed to [6, 8, 10, 12, 14]
forMNIST, Fashion-MNIST, USPS and STL-10, [4, 6, 8, 10, 12] for Reuters-8 and [10, 15, 20,
25, 30] for 20Newsgroups, respectively. The results on NMI and ARI are reported in Figs. 3
and 4, respectively.

The results tell us that (a) our methods SCDEM and SCDE outperform the other methods
by large margins on all datasets except slightly weaker than DE+k-means on 20Newsgroups
when k is large and slightly weaker than DEC and DE+k-means with ARI on Reuters-8
when k is small, (b) SCDEM works better than its counterpart SCDE on all datasets due to
the Siamese network can learn a more useful distance metric than the simplistic Euclidean
distance, which is insufficient to deal with the data with complex similarity relations, (c)
the deep embedding significantly improves the NMI and ARI of SCDE and DE+k-means
compared with their counterparts SC and k-means on most of the datasets, which reveals the
usefulness of the deep embedding for clustering, (d) SC is the third best method on NMI
while DEC is the third best method on ARI, and (e) NMF+SCworks well on Fashion-MNIST,
USPS and STL-10, but performs poorly on the other datasets, which means that NMF cannot
generate good enough representations for clustering compared with deep embedding. This
verifies the effectiveness of our approach.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Clustering comparison on NMI: with respect to the number k of clusters

(a) (b) (c)

(d) (e) (f)

Fig. 4 Clustering comparison on ARI: with respect to the number k of clusters

To better illustrate the performance of SCDEM, we plot the top 10 scoring images of each
cluster from its results on MNIST, Fashion-MNIST, USPS and STL-10, shown in Fig. 5. Each
row corresponds to a cluster and images are sorted from left to right based on their distances
to the cluster centroid obtained by the k-means in SCDEM. We can see that (a) SCDEM
clusters very well on MNIST and assigns each point to the correct cluster, (b) SCDEM also
works well on Fashion-MNIST, which serves as a direct drop-in replacement for MNIST,
and is more difficult to cluster, (c) the clustering results on USPS are as good as on MNIST,
with the exception of confusing 4, 7 and 9, which also exists in DEC [39], and (d) for STL-
10, SCDEM is mostly correct on truck, ship, car, bird and airplane categories and provides
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Fig. 5 Results of SCDEM. Each row contains the top 10 scoring elements from one cluster

interesting clustering assignments on the other categories. For instance, all animals in the
cluster of the 10-th row of Fig. 5d have four legs.
Exp-2: Estimation of the number of clusters In the second set of tests, we evaluated the effec-
tiveness and efficiency of ourmethod SA for estimating the number of clusters comparedwith
X -means, G-means, DB and SS. To better understand the effectiveness of deep embedding
for estimation, we also tested SA, X -means, G-means, DB and SS on the deep embedding,
denoted as DE+SA, DE+X -means, DE+G-means, DE+DB andDE+SS, respectively. Similar
to X -means, we fixed the range of k to [2, 2kg] for all datasets, where kg is the ground truth
number of clusters of each dataset. We fixed the number ku = 2kg in SA on each dataset.
The best values obtained by each method and the corresponding running time are reported
in Tables 2 and 3, respectively.

The estimation results tell us that (a) our method DE+SA is the best at finding the correct
k and outperforms the other methods on all datasets, (b) when the deep embedding is not
available, our method SA also performs better than X -means, G-means, DB and SS on most
of the datasets, (c) the deep embedding significantly improves the estimation accuracy of SA,
DB and SS, and (d) X -means and G-means perform worse than the other methods on most
of the datasets, and their estimation accuracy cannot be improved by the deep embedding.
Specifically, DE+SA obtains the best values (10.2, 9.2, 9.6, 9.8, 8, 20.8) onMNIST, Fashion-
MNIST, USPS, STL-10, Reuters-8 and 20Newsgroups, which are very close to the ground
truth. X -means andG-means overestimate the numbers of true clusters and their performance
cannot be improved by deep embedding. However, DE+SA performs consistently better than
SA when incorporating with deep embedding. This verifies the effectiveness of our method.
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Table 2 Estimation of the number of clusters of each method on all datasets

Method MNIST Fashion-MNIST USPS STL-10 Reuters-8 20Newsgroups

Ground truth 10 10 10 10 8 20

X -means 20 20 20 20 16 40

G-means 15 16 20 20 16 40

DB 20 3 18.8 6.6 2 34.8

SS 2 2 5 3 15.4 2

SA (ours) 11.2 12 6.6 2.8 12.6 31.6

DE+X -means 20 20 20 20 16 40

DE+G-means 9 19.4 20 16 16 40

DE+DB 10.8 6.2 17.8 8.8 14.4 25

DE+SS 9 5.2 12.2 7.8 14.8 2

DE+SA (ours) 10.2 9.2 9.6 9.8 8 20.8

The k is a floating number since it is the average of found ks
The best estimations are highlighted in boldface

Table 3 The running time (sec.) of each method on all datasets

Method MNIST Fashion-MNIST USPS STL-10 Reuters-8 20Newsgroups

X -means 357 321 19 235 56 470

G-means 732 647 41 605 121 1892

DB 912 785 37 588 114 1840

SS 2972 2935 88 664 150 2232

SA (ours) 85 88 10 56 24 59

DE+X -means 1304 1328 169 474 164 508

DE+G-means 1301 1352 172 475 165 550

DE+DB 1313 1340 169 473 162 536

DE+SS 2475 2413 222 512 196 701

DE+SA (ours) 1301 1327 167 469 162 494

The best running time are highlighted in boldface

The running time results tell us that (a) our method SA outperforms the other methods
on all datasets, (b) our method DE+SA is faster than the other methods when using the deep
embedding, (c)most of themethods become slowerwhen incorporatingwith deep embedding
because generating the embedding takes much time, while some methods become faster due
to the dimension of the embedding is lower than that of the raw data, (d) DB is faster than SS,
and SS is the most time-consuming method since it needs to calculate the distances between
a point and all other points, and (e) X -means is faster than G-means, DB and SS. Note that
our method SA directly estimates the number k by training a softmax autoencoder rather than
running multiple k-means to find the best number. Thus, SA is faster than the other methods.
Indeed, SA is (11, 9, 4, 11, 5, 31) and (35, 33, 9, 12, 6, 38) times faster than DB and SS
on (MNIST, Fashion-MNIST, USPS, STL-10, Reuters-8, 20Newsgroups), respectively. Since
X -means and G-means cannot find the correct number and often hit our limit of 2kg clusters,
we omit the comparison with them. When incorporating with deep embedding, our method
DE+SA also runs faster than DE+DB and DE+SS. This verifies the efficiency of our method.

123



L. Duan et al.

Table 4 Comparison of clustering NMI (%) with cluster estimation on all datasets

Method MNIST Fashion-MNIST USPS STL-10 Reuters-8 20Newsgroups

SA+k-means 50.19 51.90 43.35 53.41 71.12 24.15

SA+SC 79.43 62.17 65.67 53.91 70.91 20.98

SA+SEC N/A N/A 45.23 51.65 67.48 20.80

SA+NMF+SC 70.67 63.21 61.00 56.59 69.96 18.50

DE+SA+k-means 74.81 61.12 53.00 62.38 62.82 28.41

DE+SA+SEC N/A N/A 54.69 58.54 54.31 23.13

DEC+SA 78.63 63.32 58.86 69.68 59.57 25.20

SCDE+ (ours) 89.02 67.45 77.04 75.91 71.61 28.92

SCDEM+ (ours) 90.64 67.86 79.30 78.13 74.27 29.28

N/A means no enough memory on the dataset
The best NMI are highlighted in boldface

Table 5 Comparison of clustering ARI (%) with cluster estimation on all datasets

Method MNIST Fashion-MNIST USPS STL-10 Reuters-8 20Newsgroups

SA+k-means 35.90 35.84 27.53 23.99 51.01 08.41

SA+SC 69.37 41.57 46.49 21.49 57.51 10.49

SA+SEC N/A N/A 27.96 24.02 45.90 08.91

SA+NMF+SC 54.81 42.60 42.13 21.74 58.12 09.72

DE+SA+k-means 70.01 44.95 38.10 49.74 55.62 12.79

DE+SA+SEC N/A N/A 41.31 45.89 45.97 06.58

DEC+SA 74.80 48.16 43.32 58.47 49.32 12.55

SCDE+ (ours) 86.31 49.29 63.97 68.61 64.56 13.44

SCDEM+ (ours) 89.19 49.94 68.01 70.86 66.46 13.52

N/A means no enough memory on the dataset
The best ARI are highlighted in boldface.

Exp-3: Clustering with estimation of k In the third set of tests, we evaluated the effectiveness
of our clustering methods SCDEM+ and SCDE+. Since k-means, SC, SEC, NMF+SC and
DEC need to specify the number of clusters, we revised them with the best method obtained
in the previous tests, i.e., SA for the raw data and DE+SA for the embedding. Thus, we
adopted SA for k-means, SC, SEC, NMF+SC (denoted as SA+k-means, SA+SC, SA+SEC
and SA+NMF+SC) on the raw data, and DE+SA for DE+k-means, DE+SEC and DEC
(denoted as DE+SA+k-means, DE+SA+SEC and DEC+SA) on the deep embedding. The
results on NMI and ARI are reported in Tables 4 and 5, respectively. Although the classic
DBSCAN [17] does not need to specify k, it performs poorly on these datasets. Thus, we did
not choose it for comparison.

The results tell us that (a) our proposed methods SCDEM+ and SCDE+ outperform the
other methods by large margins on all datasets, (b) SCDEM+ is better than its counterpart
SCDE+ on all datasets by using the Siamese network to learn a better distance that can
construct amore accurate similaritymatrix than the traditional Euclidean distance, (c) SCDE+
significantly improves the NMI and ARI over its counterpart SA+SC by incorporating with
the deep embedding, which is the same to DE+SA+k-means and DE+SA+SEC on most of
the datasets, (d) SCDE+ performs better than SC+NMF+SC due to the deep autoencoder
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can learn more powerful representations for estimating the number of clusters and clustering
than NMF, and (e) DEC+SA achieves the third best performance by jointly learning the
deep embedding and cluster assignments in an iterative way. In fact, our method SCDEM+
improves NMI and ARI by (2%, 1%, 3%, 3%, 4%, 1%) and (3%, 1%, 6%, 3%, 3%, 1%),
(15%, 7%, 35%, 12%, 25%, 16%) and (19%, 4%, 57%, 21%, 35%, 8%) over the second best
method SCDE+, the third best method DEC+SA on MNIST, Fashion-MNIST, USPS, STL-10,
Reuters-8 and 20Newsgroups, respectively. Note that SCDEM+ improves the clustering
quality over SCDE+ and obtains the best NMI and ARI on all datasets, which implies that
the Siamese network can learn a more powerful distance metric for clustering. This verifies
the effectiveness of our approach.
Summary From these experimental results, we find the following.

1. Our clusteringmethods SCDEMand SCDEperform better than existingmethods, includ-
ing k-means, SC, SEC, NMF+SC and DEC, on a large range of the number of clusters.
Actually, SCDEM achieves the highest NMI and ARI score on most of the datasets with
different values of k.

2. Our estimation method SA is effective and efficient, especially when incorporating with
the deep embedding. For instance, DE+SA finds the values of k (10.2, 9.2, 9.6, 9.8, 8,
20.8) on MNIST, Fashion-MNIST, USPS, STL-10, Reuters-8 and 20Newsgroups, which
are very close to the ground truth of cluster numbers. Furthermore, our method has the
efficiency advantage of a linear complexity in the number of data points, which makes
it faster than DB and SS that need multiple runs of k-means to determine the number of
clusters.

3. Incorporating with the estimation method SA, our method SCDE+ can estimate the num-
ber k automatically and cluster data effectively. Moreover, by constructing the similarity
matrix of SC with the good distance metric learned from the deep embedding using the
Siamese network, our method SCDEM+ improves NMI and ARI over the second best
method SCDE+ and outperforms the other methods by large margins on all datasets. For
instance, it improves NMI and ARI by (15%, 7%, 35%, 12%, 25%, 16%) and (19%, 4%,
57%, 21%, 35%, 8%) over the third best method DEC+SA on MNIST, Fashion-MNIST,
USPS, STL-10, Reuters-8 and 20Newsgroups, respectively.

7 Conclusions and future work

In this article, we have proposed an approach to improving spectral clustering with deep
embedding, cluster estimation andmetric learning.We first learn a good and low dimensional
deep embedding for the raw data based on a multilayer autoencoder. We then estimate the
number of clusters by a softmax autoencoder, and learn a distance metric by a Siamese
network from the deep embedding. An extensive experimental study on image and text
datasets has been conducted, which shows that our proposed approach can find a good number
of clusters and outperform existing clustering methods, and are scalable to large datasets.

A couple of topics need further investigation. First, we are to develop an embedding tech-
nique that can optimize the deep embedding, estimation of the number of clusters, distance
metric learning and clustering simultaneously to further improve the clustering performance.
Second, we are to apply our proposed method for estimating the number of clusters for other
clustering methods.
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