PRATA: A System for XML Publishing, Integration and View Maintenance

Gao Cong Wenfei Fan®

Xibei Jia Shuai Ma

University of Edinburgh

{gao.congl,wenfei@inf.,x.jialsms.,smal@inf.}ed.ac.uk

Abstract

We present PRATA, a system that supports the following in a uniform framework: (a) XML publishing, i.e., converting
data from databases to an XML document, (b) XML integration, i.e., extracting data from multiple, distributed databases,
and integrating the data into a single XML document, and (c) incremental maintenance of published or integrated XML
data (view), i.e., in response to changes to the source databases, efficiently propagating the source changes to the XML
view by computing the corresponding XML changes. A salient feature of the system is that publishing, integration and view
maintenance are schema-directed. they are conducted strictly following a user-specified (possibly recursive and complex)
XML schema, and guarantee that the generated or modified XML document conforms to the predefined schema. We discuss
techniques underlying PRATA and report the current status of the system.

1 Introduction

It is increasingly common that scientists want to inte-
grate and publish their data in XML. As an example, con-
sider how biologists exchange their data (the story is the
same in other areas such as astronomy, earth sciences and
neuroinformatics.) A biologist may manage a collection of
experimental data by using some database management sys-
tem (DBMS). In addition, information will be brought in
from other databases and integrated with the basic data. To
share information, the community of biologists interested in
the topic get together and decide that there should be some
standard format for data exchange, typically XML. In addi-
tion, they produce some XML DTD or schema to describe
that format such that all members of the community ex-
change their data in XML with respect to the schema. Now
one needs to handle the migration of data through various
formats and to ensure that the resulting XML data conforms
to the predefined schema. This is known as schema-directed
publishing/integration. More specifically, XML publish-
ing is to extract data from a traditional database, and con-
struct an XML document that conforms to a predefined XML
schema. XML integration is to extract data from multiple,
distributed data sources, and construct an XML document
(referred to as XML view) that conforms to a given schema.

With XML publishing/integration also comes the need
for maintaining the published XML data (view). Biologists
constantly update their databases. To propagate the source
changes to the XML view, a naive approach might be to redo
the publishing and integration from scratch. However, when
the source data is large, the publishing and integration pro-
cess may take hours or even days to complete. A better
idea is by means of incremental XML view maintenance:
instead of re-computing the entire XML view in response
to source changes, only changes to the XML view are com-
puted, which is often much smaller than the XML view and
takes far less time to compute.

Schema-directed XML publishing and integration are,

however, highly challenging. XML schemas are often com-
plex, arbitrarily nested and even recursive, as commonly
found in e.g., biological ontologies [6]. This makes it hard
to ensure that an XML view conforms to such a predefined
schema. Add to this the difficulties introduced by XML con-
straints (e.g., keys and foreign keys) which are often speci-
fied in a schema and have also to be satisfied by published
and integrated XML data. These are further complicated
by incremental XML view maintenance, which requires that
changes to XML views should not violate the schema.

It is clear that new automated tools are needed. In par-
ticular, much in need is a uniform system to support XML
publishing, integration and incremental view maintenance
such that all these interact in the right way. However, no
commercial systems are capable of supporting these. In-
deed, while Microsoft SQL 2005 [9], Oracle XML DB [11]
and IBM DB2 XML Extender [7] support XML publishing,
they either ignore the schema-directed requirement (by us-
ing a fixed document template instead of an XML schema),
or do not allow recursive XML schema. Worse still, none
of these supports XML integration. When it comes to incre-
mental XML view maintenance, to the best of our knowl-
edge, no commercial DBMS provides the functionality. As
for research prototypes, Clio [10] focuses on relational data
integration based on schema mapping and does not address
XML integration. While SilkRoute [5] and XPERANTO [12]
are developed for XML publishing, they allow neither recur-
sive XML schemas nor constraints. None of these systems
supports XML integration or incremental view maintenance.

To this end we present PRATA, a system under devel-
opment, that supports schema-directed XML publishing, in-
tegration and incremental view maintenance in a uniform
framework. As depicted in Fig. 1, the system consists of
three main components (modules): XML publishing, XML
integration and incremental XML view maintenance.

To our knowledge, PRATA is the first and the only sys-
tem that is capable of supporting all of these. It is worth

*Supported in part by EPSRC GR/S63205/01, GR/T27433/01 and BBSRC BB/D006473/1. Wenfei Fan is also affiliated to Bell Laboratories, Murray Hill, USA.

mentioning that while XML publishing is a special case of
XML integration where there is a single source database, we
treat it separately since it allows us to develop and lever-
age specific techniques and conduct the computation more
efficiently than in the generic integration setting.

5 Incremental Maintenance

Integration

AIG RDB

[Publishing

unfolding l

- scheduling

i
Query Plan Generation

~‘}m4»‘ query plgn\query plan
~ I

Figure 1. the System Architecture
2 XML Publishing

This module allows users to specify mappings from a
relational database schema R to a predefined XML schema
D, via a GUI and in a novel language Attribute Translation
Grammar (ATG) that we proposed in [2]. Given an ATG
o and a database instance I of R, the system automatically
generates an XML document (view) o(I) of I such that o(I)
is guaranteed to conform to the given DTD D. This process

is called schema-directed publishing.

Source relational schema Ry :
chapters (chapter_id, name)
receptors (receptor_id, chapter_id, name, code)
refs(ref_id, chapter_id, year, title)
cite(ref_id, receptor_id)

Figure 2. Relational schema R, for Receptors

We next demonstrate the ATG approach for publishing
relational data in XML, by using a simplified example taken
from the [IUPHAR (International Union of Pharmacology)
Receptor Database [8], which is a major on-line reposi-
tory of characterisation data for receptors and drugs. We
consider tables chapters, receptors, refs and cite shown in
Fig. 2 (the primary keys for all tables are underlined). Table
chapters stores the receptor families where each family has
a chapter_id (primary key) and a name. Table receptors
stores the receptor_id, chapter_id, name and code of re-
ceptors. Table refs stores publications on receptor families.
Each reference has a ref _id, title and a year of the publica-
tion. It is associated with a unique receptor family through
the attribute (foreign key) chapter_id. Finally, table cite
records many-to-many relationships between receptors and
references with ref _id and receptor_id (as foreign keys)

pointing to references and receptors, respectively.
Target DTD Do :
<!ELEMENT db
<!ELEMENT family*
<!ELEMENT references
<!ELEMENT reference
<!ELEMENT receptors receptor*)>
<!ELEMENT receptor name, receptors)>
/* #PCDATA is omitted here. */

Figure 3. DTD D, for publishing data of R,

family*)>

reference*)>
title, year)

name, receptors, references)>

One wants to represent the relational Receptor data as
an XML document that conforms to the DTD Dg shown in
Fig. 3. The document consists of a list of receptor fami-
lies, identified by chapter ids. Each family collects the list
of receptors and the list of references in the family (chap-
ter). Note that receptor (thus Dy) is recursively defined: the
receptors child of receptor element Ey can also take an ar-
bitrary number of receptor E,, E», - -+, E,, as its children,
which are the receptors related to Ey through references.
To avoid redundant information, if a receptor appears more
than once in the reference hierarchy, the document stores it
only once, i.e., its first appearance.

The ATG o for publishing the Receptor data is given in
Fig. 4, which extends the predefined DTD Dy by associating
semantic rules (e.g., ()1) to assign values to the variables
(e.g., $family). Given the Receptor Database, the ATG o
is evaluated top-down: starting at the root element type of
Dy, it evaluates the semantic rules associated with each el-
ement type encountered, and creates XML nodes following
the DTD to construct the XML tree. The values of the vari-
ables $A’s are used to control the construction. Now we
give part of the ATG evaluation process.

(1) At each receptors element s, the target tree T is
further expanded as follows. As $receptors.tag is assigned
“0” from the family element’s evaluation, the first branch of
SQL query @5 is triggered. This branch finds the tuples of
receptor_id and name associated with each family f from
the receptors relation, by using variable $receptors.id
(passed from $ family.chapter id in the last step) as a con-
stant parameter. For each r of these tuples, a receptor
child of s is created carrying r as the value of its variable.

(2) At each receptor element r, name element and
receptors element s’ are created (note that “1” is as-
signed to $receptors.tag, and $receptor.receptor_id is
accumulated into $receptors.ids in this process).

(3) Ateach receptors element s’, the second branch of
SQL query Q- is triggered because $receptors.tag is now
“1”. This branch finds the tuples of receptor_id and name
from the receptors and cite relations related to recep-
tor r that have not been processed in previous steps, by us-
ing variable $receptors.id and $receptors.ids as constant
parameters. Note here that the variable $receptors.ids is
used to decide whether or not a receptor has been pro-
cessed earlier, and thus avoid redundant inclusion of the
same receptor in the document T'. For each 7' of these
tuples, a receptor child of s’ is created carrying 7' as the
value of its variable, and the receptor element is in turn
created as described in (2).

Details on the above conceptual level evaluation process
and more effective techniques to generate efficient evalua-
tion plans are show in [2]. These include query-partitioning
and materializing intermediate results, in order to reduce
communication cost between the publishing module and the
underlying DBMS, based on estimates of the query cost and
data size. We omit the details here due to the space con-

straint, but encourage the reader to consult [2].

Semantic Attributes: /*omitted*/

Semantic Rules:

db — family*

Q1: $family < select chapter_id, name from chapters

family — name, receptors, references
$fname = ($family.name), $references = ($family.chapter_id),
S$receptors = (0, $family.chapter_id, @)
receptors — receptor*
Q2: $receptor «— case $receptors.tag of
0: select receptor_id, name, $receptors.ids
from receptors
where chapter_id = $receptors.id
1: select a.receptor_id, a.name, $receptors.ids
from receptors a, cite b, cite ¢
where b.receptor-id = $receptors.id and
b.ref_id = c.ref_id and
b.receptor_id <> c.receptor_id and
a.receptor_id = c.receptor_id and
a.receptor_id not in $receptors.ids

receptor — name, receptors
$rname = ($receptor.name),

$receptors = (1, $receptor.receptor-id, $receptor.ids U $receptor.receptor-id)

references — reference*
Q3: $reference < select title, year
from refs
where chapter_id = $references.chapter_id

reference — title, year
$year = ($reference.year), $title = ($reference.title)

A — S /* Ais one of name, title, year */
$S = ($A.val)

Figure 4. An example ATG og
3 XML Integration

Extending the support for ATGs, this module provides a
GUI for users to specify mappings from multiple, distributed
databases to XML documents of a schema D, in our lan-
guage Attribute Integration Grammar [1]. In addition, given
an AIG and source databases, this module extracts data from
the distributed sources and produces an XML document that
is guaranteed to conform to the given DTD D and satisfy
predefined XML contraints X.

As an example, suppose that the tables chapters and
receptors in Fig. 2 are stored in a database DB1, while the
tables refs and cite are stored in DB2. Now the IPUHAR
department wants to generate a report about the recep-
tors and corresponding publications. The report is re-
quired to conform to a fixed DTD D;, which extends the
Dy of Fig. 3 as follows: elements £id and rec_id are
added to the family production and receptor produc-
tion as their first subelements respectively; and ref_id
and £id are added to the reference production as its
first two subelements (from table DB2 : refs we can see one
reference can only relate itself to one family). In ad-
dition, for each family, the document is to collect all the
references that are publications cited directly or indi-
rectly by receptors in the family.

These introduce the following challenges. First, the in-
tegration requires multiple distributed data sources. As a
result a single SQL query may access multiple data sources,

referred to as multi-source queries. Second, receptors are
defined recursively. Third, for each family, references
can only be computed after the receptors’ computa-
tion is completed since it is to collect all references in the
receptors subtree, which is recursively defined and has
an unbounded depth. In other words, this imposes a de-
pendency between the references and the receptors
subtrees. As a result the XML tree can not be simply com-
puted as ATGs [1] by using a top-down method.

In addition, the XML report is also required to satisfy the
flowing XML constraints:

¢1: references(reference.ref id — reference)

¢o: db(reference.fid C family.fid)

Here ¢; is akey constraint asserting that each subtree rooted
atareferencesnode, ref_idisakey of reference
elements; and ¢ is an inclusion constraint asserting that the
families cited by references in the db must be presented in
the family subtree of the db.

As remarked in Section 1, no commercial systems or re-
search prototype can support schema-directed XML integra-
tion with respect to both DTD and XML constraints. The
only effective technique for doing this is our Attributes In-
tegration Grammars (AIGs) reported in [1], which is the un-
derlying technique for the integration module of PRATA.

Based on multi-source query decomposition and con-
straints compilation PRATA is capable of integrating data
from multiple sources and generating an XML document
that is guaranteed to both conform to a given DTD and
satisfy predefined XML constraints. PRATA also leverages
a number of optimization techniques to generate efficient
query evaluation plans [1]. In particular, it uses a cost-
based scheduling algorithm, by taking into account depen-
dency relations on subtrees, to maximize parallelism among
underlying relational engines and to reduce response time.
Due to the lack of space we omit the details here (see [1]).

4 Incremental XML Views Maintenance

This module maintains published XML viewsc o(I)
based on our incremental computation techniques devel-
oped in [3]. In response to changes AI to the source
database I, this module computes the XML changes AT to
o(I) such that (I @ AI) = AT @ o(I),while minimizing
unnecessary recomputation. The operator & denotes the ap-
plication of these updates,

As remarked in Section 1, scientific databases keep be-
ing updated. Consider the XML view published by the ATG
oo of Fig. 4 from the the Receptor Database I specified by
Fig. 2. Suppose that the relational Receptor database is up-
dated by insertions Arefs and Acite to the base relations
refs and cite respectively. This entails that the new refer-
ence information must be augmented to the corresponding
reference subtrees in XML views. Moreover, the insertions
also increase the related receptors for some receptor nodes
in the XML view and the augment may result in further ex-
pansion of the XML view. Given the recursive nature of oy,

this entails recursive computation and is obviously nontriv-
ial.

The incremental algorithm in [3] is based on a notion
of AATG. A AATG Ao is statically derived from an ATG
o by deducing and incrementalizing SQL queries for gen-
erating edges of XML views. The XML changes AT are
computed by Ac, and represented by of a pair of edge re-
lations (E*, E™) , denoting the insertions(buds) and dele-
tions(cuts). The whole process is divided into three phases:
(1) a bud-cut generation phase that determines the impact
of AT on existing parent-child(edge) relations in the old
XML view T' by evaluating a fixed number of incremental-
ized SQL queries; (2) a bud completion phase that iteratively
computes newly inserted subtrees top-down by pushing SQL
queries to the relational DBMS; and finally, (3) a garbage
collection phase that removes the deleted subtrees.

The rational behind this is that the XML update AT is
typically small and more efficient to compute than the en-
tire new view o(I @ AI). The key criterion for any incre-
mental view maintenance algorithm is to precisely identify
AT} in other words, it is to minimize recomputation that
has been conducted when computing the old view 7. Our
incremental maintenance techniques make maximal use of
XML sub-trees computed for the old view and thus mini-
mize unnecessary recomputation. It should be pointed out
that the techniques presented in this section are also appli-
cable to XML views generated by AIG. We focused on ATG
views just to simplify the discussion. Due to the limited
space we omit the evaluation details here (see [3]).

5 PRATA: Features and Current Status

Taken together, PRATA has the following salient features,
which are beyond what are offered by commercial tools or
prototype systems developed thus far.

Schema conformance. PRATA is the first system that au-
tomatically guarantees that the published or integrated XML
data conforms to predefined XML DTDs and schemas, even
if the DTDs or schemas are complex and recursive.
Automatic validation of XML constraints. In a uni-
form framework for handling types specified by DTDs or
schemas, PRATA also supports automatic checking of in-
tegrity constraints (keys, foreign keys) for XML.
Integration of multiple, distributed data sources. PRATA
is capable of extracting data from multiple, distributed
databases, and integrating the extracted data into a single
XML document. A sophisticated scheduling algorithm al-
lows PRATA to access the data sources efficiently in parallel.
Incremental updates. PRATA is the only system that
supports incremental maintenance of recursively defined
views, and is able to efficiently propagate changes from data
sources to published/integrated XML data.

Novel evaluation and optimization techniques. Underly-
ing PRATA are a variety of innovative techniques including

algorithms and indexing structures for query merging [2],
constraint compilation, multi-source query rewriting, query
scheduling [1], and bud-cut incremental computation [3],
which are not only important for XML publishing and in-
tegration, but are also useful in other applications such as
multi-query evaluation and database view maintenance.

Friendly GUIs. PRATA offers several tools to facilitate users
to specify publishing/integration mappings, browse XML
views, analyze published or integrated XML data, and mon-
itor changes to XML views, among other things.

The current implementation of PRATA fully supports
(a) schema-directed XML publishing, and (b) incremental
maintenance of XML views of a single source, based on the
evaluation and optimization techniques discussed in previ-
ous sections. For XML schemas, it allows generic (possi-
bly recursive and non-deterministic) DTDs, but has not yet
implemented the support for XML constraints. A prelim-
inary prototype of the system was demonstrated at a ma-
jor database conference [4], and is deployed and evaluated
at Lucent Technologies and European Bioinformatics Insti-
tute [4]. We are currently implementing (a) XML integration
and (b) incremental maintenance of XML views of multiple
sources. Pending the availability of resources, we expect to
develop a full-fledged system in the near future.

References

[1] M. Benedikt, C. Y. Chan, W. Fan, J. Freire, and R. Rastogi.
Capturing both types and constraints in data integration. In

SIGMOD, 2003.
[2] M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi, S. Zheng, and

A. Zhou. DTD-directed publishing with attribute translation

grammars. In VLDB, 2002.
[3] P. Bohannon, B. Choi, and W. Fan. Incremental evaluation

of schema-directed XML publishing. In SIGMOD, 2004.
[4] B. Choi, W. Fan, X. Jia, and A. Kasprzyk. A uniform sys-

tem for publishing and maintaining XML. In VLDB, 2004.

Demo.
[5] M. F. Fernandez, A. Morishima, and D. Suciu. Efficient eval-

uation of XML middleware queries. In SIGMOD, 2001.
[6] GO Consortium. Gene Ontology.

http://www.geneontology.org/.
[7] IBM. DB2 XML Extender.

http://www-306.ibm.com/software/data/db2/extenders/xmlext/.
[8] TUPHAR. Receptor Database.

http://www.iuphar-db.org.
[9] Microsoft. XML support in Microsoft SQL erver 2005, De-

cember 2005. http://msdn.microsoft.com/

library/en-us/dnsql90/html/sql2k5xml.asp/.
[10] R. J. Miller, M. A. Herndndez, L. M. Haas, L.-L. Yan,

C. T. H. Ho, R. Fagin, and L. Popa. The Clio project: Man-

aging heterogeneity. SIGMOD Record, 30(1):78-83, 2001.
[11] Oracle. Oracle Database 10g Release 2 XML DB Technical

Whitepaper. http://www.oracle.com/technology/tech/

xml/xmldb/index.html.
[12] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey,

B. G. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently
publishing relational data as XML documents. VLDB Jour-
nal, 10(2-3):133-154, 2001.

	Abstract
	1. Introduction
	2. XML Publishing
	3. XML Integration
	4. Incremental XML Views Maintenance
	5. PRATA: Features and Current Status
	References

