
. Supplementary File .

SCIENCE CHINA
Information Sciences

Single-View Determinacy and Rewriting Completeness for a
Fragment of XPath Queries

ZHENG LiXiao1,2, MA Shuai3*, LUO XiangYu1 & Ma TieJun4

1College of Computer Science and Technology, Huaqiao University, Xiamen, 361021, China;
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China;

3State Key Laboratory of Software Development Environment, Beihang University, Beijing, 100191, China;
4Business School, University of Southampton, Southampton, SO17 1BJ, UK

Appendix A Preliminaries

Appendix A.1 Trees and Tree Patterns

Trees. We model an XML document as an unordered, rooted and labeled tree (tree for short) t over an infinite alphabet Σ. We denote by N (t),
E(t) and root(t) the set of nodes, the set of edges and the root of t respectively. Each node n∈N (t) has a label drawn from Σ, denoted by
label(n). A tree t′ is said to be a subtree of the tree t if N (t′)⊆N (t) and E(t′)⊆E(t). Given a node n of t, we denote by (t)nsub the subtree
of t that is rooted at n and induced by all the descendants of n. The subtree t−n is obtained by removing (t)nsub from t. We denote by ε the
empty tree and TΣ the set of all trees over Σ.

Given two trees t1 and t2, if there exists a node n in t2 such that t1 is equal to the subtree of t2 rooted at n, we say that t1 is contained in
t2, denoted by t1⊆ t2. Furthermore, we define the combination of a set of trees t1, ..., tm, denoted by t1+...+tm, as follows: if the roots of
t1, ..., tm have the same label, then merge them into a single node and take it as the root of the combination tree; otherwise the combination is
the empty tree ε.

A fragment of XPath queries. We study a fragment of XPath queries that has been widely investigated in literature [?, ?, ?, ?]. This fragment,
denoted as XP{∗,//,[]}, consists of label tests, child axes (/), wildcard (∗), descendant axes (//) and branches ([]). A query Q of XP{∗,//,[]}

is recursively defined as follows:
Q → l | ∗ | Q/Q | Q//Q | Q[Q]

where l is a node label drawn from Σ. We also study sub-fragments of XP{∗,//,[]}, denoted by listing the constructs supported: XP{//,[]},
XP{∗,[]} and XP{∗,//}. For instance, XP{//,[]} is the sub-fragment of XP{∗,//,[]} consists of the // and [] constructs.

Let Q1, ...,Qm be XP{∗,//,[]} queries. We use Q1∪...∪Qm and Q1∩...∩Qm to represent the union (∪) and intersection (∩) of
Q1, ...,Qm, denoted by XP{∗,//,[],∪} and XP{∗,//,[],∩} respectively. When Qi is restricted to the sub-fragment XP{//,[]}, we denote the
union and intersection by XP{//,[],∪} and XP{//,[],∩}. Similarly by XP{∗,[],∪}, XP{∗,[],∩} and XP{∗,//,∪}, XP{∗,//,∩} when restricted
to sub-fragments XP{∗,[]} and XP{∗,//} respectively.

Tree patterns. A tree pattern (pattern for short) P is a non-empty tree with a set of nodes N (P) labeled with symbols from Σ∪{∗} (∗ ̸∈Σ),
two types of edges: child edges E/(P) and descendant edges E//(P), and a distinguished node called the output node out(P). The root of P
is denoted as root(P). We also say that a pattern without specifying its output node is a boolean pattern.

If a pattern P ′ satisfies N (P ′)⊆N (P) and E(P ′)⊆E(P), then we say that P ′ is a subpattern of P . Given a node n of P , we denote by
(P)nsub the subpattern rooted at n and by P−n the subpattern obtained by removing (P)nsub from P . The selection path of a pattern is the
path from the root to the output node. The nodes on the selection path are called selection nodes. The height of a node n of P , denoted by
height(n), is the number of edges on the path from the root to n. The height of a pattern P , denoted by height(P), is the maximal height of
nodes of P . The depth of a pattern P , denoted by depth(P), is the height of the output node of P . We use Σ(P) to denote the set of labels of
Σ that appear in P . Note that the wildcard ∗ may appear in P , but not in Σ(P).

Remarks. Figure ?? shows an example of tree and an example of pattern, in which we use double and single lines to represent descendant and
child edges respectively, and use a circle to denote the output node. The height and depth of this pattern is 2 and 1 respectively. This pattern
is equivalent to the XPath query a[b]//∗[c][//d]. As stated in [?], each XP{∗,//,[]} query can be translated into a tree pattern with the same
semantics and vice versa. In light of this, we will use the term pattern instead of the term query in the sequel.

* Corresponding author (email: mashuai@buaa.edu.cn)

2 Zheng L X, et al. Sci China Inf Sci

*

a

c

b

dc

d

a

a

c d

b *

a

c

b

dc

d

a

a

c d

b

(a) (b)

tree pattern tree pattern

Figure A1 Example of embeddings from patterns to trees

We now define a notion of embedding to capture the semantics of tree patterns.

Embedding. Given a tree t and a pattern P , an embedding from P to t is a function e :N (P)→N (t) that satisfies the following conditions:
(1) Root preserving, i.e., e(root(P))=root(t);
(2) Label preserving, i.e., for each node n∈N (P), either label(n)=∗ or label(n)= label(e(n));
(3) Structure preserving, i.e., for each edge (n1,n2)∈E/(P), we have that (e(n1),e(n2))∈E(t), and for each edge (n1,n2)∈E//(P),
e(n2) is a descendant of e(n1) in t.

Note that an embedding maps the output node of P to a node of t. We next define the evaluation of patterns.

Evaluation of patterns on trees. Given a pattern P and a tree t. Let e be an embedding from P to t and n be the node of t mapped by the
output node of P through embedding e, i.e., n=e(out(P)). We say that the subtree (t)nsub of t is the result of this embedding. The evaluation
of P on t is the set of results of all embeddings from P to t. That is, P (t)={ (t)nsub | n=e(out(P)) where e is an embedding from P to t }.

As an example, Figure ?? shows two embeddings from pattern P to tree t. Actually, there exist no other embeddings from P to t in this
example. Thus the result of P (t) consists of two subtrees rooted at the two child nodes of root(t) labeled with a and b respectively.

The evaluation of a pattern P over a set of trees T is defined as: P (T)=
∪

t∈T P (t). Note that, without loss of generality, a set of trees
T can always be combined into a single tree t by introducing a common root r, and, hence, evaluating pattern P over T simply reduces
to evaluating pattern P ′=r/P over the single tree t. The meaning of union and intersection is as usual: for any set of trees T , (P1∪...∪
Pm)(T)=P1(T)∪...∪Pm(T), and (P1∩...∩Pm)(T)=P1(T)∩...∩Pm(T).

For a boolean pattern B, the result B(t) is either {()} or ∅, depending on whether there is an embedding from B to t. Note that {()} is
interpreted as true while ∅ stands for false. Thus, we write t |=B if there exists an embedding from B to t, and t ̸|=B, otherwise. For a pattern
P , we denote by P̂ the boolean version of P without specifying its output node. Clearly P (t) ̸=∅ iff t |= P̂ for any pattern P and tree t.

Appendix A.2 Containment and Equivalence of Tree Patterns

Containment and equivalence. We say that a pattern P1 is contained in another pattern P2, denoted by P1⊆P2, if for any tree t, P1(t)⊆
P2(t). Two patterns are equivalent, denoted by P1≡P2, if both P1⊆P2 and P2⊆P1 hold. For boolean patterns, the containment problem
reduces to the traditional implication problem: for boolean patterns B1 and B2, B1⊆B2 if t |=B1 implies t |=B2 for any tree t.

Canonical models. One technique to reason about the containment of tree patterns is using canonical models. Let B be a boolean pattern. A
model of B is a tree t such that t |=B. A canonical model of B is a tree t obtained from B by applying the following two steps. First, each
occurrence of the label ∗ is replaced with a symbol z of Σ that does not appear in any patterns elsewhere1). Second, each descendant edge is
replaced with a path of k (k>1) edges, where all the internal nodes are labeled with z. We use Mod(B) and CMod(B) to denote the set of
all models and all canonical models of B, respectively. The following result holds [?].

Lemma 1 ([?]). For any boolean patterns B1 and B2, B1⊆B2 iff Mod(B1)⊆Mod(B2) iff CMod(B1)⊆Mod(B2).

As shown in [?], the containment problems of patterns and boolean patterns are PTIME reducible. That is, two patterns P1 and P2 can
always be translated into two boolean patterns B1 and B2 such that P1⊆P2 iff B1⊆B2.

Another technique to reason about containment is using the notion of homomorphism.

Homomorphism. Given two patterns P1 and P2, a homomorphism from P2 to P1 is a function h :N (P2)→N (P1) that satisfies the
following conditions:
(1) Root preserving, i.e., h(root(P2))=root(P1);
(2) Output preserving, i.e., h(out(P2))=out(P1);
(3) Label preserving, i.e., for each node n∈N (P2), either label(n)=∗ or label(n)= label(h(n));
(4) Structure preserving, i.e., for each edge (n1,n2)∈E/(P2), we have that (h(n1),h(n2))∈E/(P1), and for each edge (n1,n2)∈
E//(P2), h(n2) is a descendant of h(n1) in P1.

As an example, Figure ?? shows a homomorphism from P2=a[b]//∗[c][//d] to P1=a[b//∗]/∗[c//d]. Note that for boolean patterns,
the notion of homomorphism only needs to satisfy conditions (1), (3) and (4), without the output preserving condition.

The existence of a homomorphism from one pattern to another is a sufficient condition for the containment problem. That is, if there exists
a homomorphism from P2 to P1, then P1⊆P2. The converse, however, does not hold. For patterns either in XP{//,[]} or XP{∗,[]}, the
existence of a homomorphism constitutes both a necessary and sufficient condition for deciding containment of single patterns [?, ?, ?]. This
also holds for patterns in XP{∗,//}after a standardization procedure which can be done in linear time [?].

Lemma 2 ([?,?,?]). For any patterns P1 and P2 in the three sub-fragments of XP{∗,//,[]}, P1⊆P2 iff there exists a homomorphism from
P2 to P1.

1) Such a symbol always exists as the alphabet Σ is infinite.

Zheng L X, et al. Sci China Inf Sci 3

*

a

c

b

d

*

a

c d

b

pattern P1 pattern P2

*

a

R R○V

b

*

V

*

a

b

c

*

d

a

b

c

a

bd *

*

Figure A2 An example of homomorphism from pattern P2 to P1
Figure A3 An example of pattern composition

Table A1 Summary of the symbols for notations

Notations Default Symbols

Pattern P,P1,P2, . . .

Boolean Pattern B,B1,B2, . . .

View V,V1,V2, . . .

Tree t, t1, t2, . . .

Node n,u,v,w

Label l,a,b,c, . . .

Embedding e,e1,e2, . . .

Homomorphism h,h1,h2, . . .

For convenience, we summarize the symbols used for all the key notations in Table ??.

Appendix B Proof of Theorem 1
We first show that for any pattern P and any view V with roots being output nodes, P ⊆V iff V determines P .

• Assume first that P ⊆V , then we show that P is a rewriting of P using V and thus determinacy holds. Since P ⊆V , label(out(V)) (i.e.,
label(root(V))) is either ∗ or the same with label(root(P)) (i.e., label(out(P))). Thus P ◦V is not empty. We next show that P ◦V ≡P .
Observe that the result of evaluating a pattern whose output node is root over a tree t is either {t} or ∅, depending on whether an embedding
exists. Therefore to show equivalence (or containment), we only need to focus on the existence of embeddings. For any tree t, if there is an
embedding e from P ◦V to t, then we can obtain an embedding e′ from P to t by dropping the V part of P ◦V . Hence P ◦V ⊆P . On the
other hand, if there exists an embedding e1 from P to t, by P ⊆V , there also exists an embedding e2 from V to t. Putting e1 and e2 together
we can construct an embedding from P ◦V to t and thus P ⊆P ◦V . Therefore P ◦V ≡P .

• Conversely, assume that V determines P , and we show P ⊆V by proof-by-contradiction. If P ̸⊆V , then there exists a non-empty tree t

such that P (t)={t} while V (t)=∅. Let t′=ε. We have that P (t′)=V (t′)=∅. That is, V (t)=V (t′) but P (t) ̸=P (t′), contradicting with
determinacy. Hence P ⊆V .

Consider a pattern P whose root is output node and its boolean version P̂ . For any tree t, if there exists an embedding from P (thus
P̂) to t, then P (t)={t} (similarly P̂ (t)={()}), and P (t)=∅ (similarly P̂ (t)=∅), otherwise. This means that patterns with roots being
output nodes have the similar behavior as boolean patterns. Therefore the containment problem of the former reduces to that of the latter.
Specifically, P1⊆P2 iff P̂1⊆ P̂2 for any patterns P1 and P2 with roots being output nodes. The containment problem for boolean patterns
is coNP-complete [?]. Thus the containment problem for patterns with roots being output nodes is also coNP-complete. We thus have that the
determinacy for patterns with roots being outputs nodes is coNP-complete. Since this is a special case of the determinacy for XP{∗,//,[]}, we
conclude that determinacy for XP{∗,//,[]} is coNP-hard.

Appendix C Proof of Theorem 2
We then show that for patterns and views in XP{∗,//,[]}, determinacy does not necessarily imply the existence of a rewriting. That is,
XP{∗,//,[]} is not complete for rewriting. In fact, we will show a stronger result: even for its sub-fragments, determinacy does not always
imply the existence of a rewriting either. Here we consider the three sub-fragments, namely XP{//,[]}, XP{∗,[]} and XP{∗,//}. Note that a
pattern in XP{//,[]} does not have ∗ labeled nodes, a pattern in XP{∗,[]} does not have descendant edges, and a pattern in XP{∗,//} does not
have branches.

Recall that the rewriting existence problem is to check , given a pattern P ∈L and a view V ∈L, whether there exists a pattern R∈L such
that R◦V ≡P . Although the exact complexity of rewriting existence problem when L is XP{∗,//,[]} remains open, Xu and Mözsoyoglu [?]
have shown that when L is one of the three sub-fragments of XP{∗,//,[]}, the problem is easily checkable in PTIME. The checking process is
described as follows.
(1) Let n be the node on the selection path of P with the same height as the output node of V ;
(2) Let R be the subpattern of P rooted at node n of pattern P ;
(3) Check whether R◦V ≡P ? If yes, there exists a rewriting; otherwise, no rewriting exists.

4 Zheng L X, et al. Sci China Inf Sci

a

x

(a) P

x

x

x

x

b

c

d

e

b

c

d

a

x

x

x

b

c

d

x

x

x

d

e

c

d

x

x
e d

(b) V (c) P1 (d) P2

a

x

x

x

x

x

b

c

d

e

c

d

a

x

x

x

x

b

c

d e

(e) P1 ○V (f) P2○V

Figure C1 Example of the XP{//,[]} case

a

(a) P

b

c

d

a

*

c

b

c

(b) V (c) P1 (d) P2 (e) P1○V (f) P2○V

c

d

c b

c

d

c

a a

Figure C2 Example of the XP{∗,[]} case

Consider pattern P =a//∗//∗//b/c and view V =a//∗//b. The height of out(V) on the selection path of V is 2. We then find the
subpattern R of P rooted at the selection node with the same height, i.e., R=∗//b/c. Since the composition R◦V =a//∗//b//b/c does not
equal to P , there exists no rewriting of P using V .

We now show that, even for the three sub-fragments of XP{∗,//,[]}, determinacy does not always imply the existence of a rewriting. We
demonstrate this by the following three counter examples, each of which is for one of the three sub-fragments. The first example for XP{//,[]}

is taken from [?] with slight modifications.

Example 1 (XP{//,[]} Case). Consider the pattern P and view V shown in Figure ?? (a) and (b) respectively. One can verify that P has
no rewriting using V : the composition of the subpattern (P)n4

sub, rooted at the fourth-node on the selection path of P , and V is not equivalent
to P . However, for any tree t, we can always find P (t) using the result of V (t), which implies that V determines P . Consider the patterns
P1 and P2 shown in Figure ?? (c) and (d) respectively. We evaluate the intersection P1∩P2 over the subtrees in V (t). It can be verified
that (P1∩P2)(V (t))=P1(V (t)) ∩ P2(V (t))=P (t). Indeed, consider the composition P1◦V and P2◦V shown in Figure ?? (e) and (f)
respectively. One can verify that P (t)≡P1◦V (t) ∩ P2◦V (t) for any tree t.

Example 2 (XP{∗,[]} Case). Consider the pattern P =a[d/c]/b/c and view V =a/∗[c] shown in Figure ?? (a) and (b) respectively. Again,
P has no rewriting using V according to Xu and Mözsoyoglu’s checking process. But given any tree t, we can still compute P (t) from V (t)

as follows. We first check the boolean pattern P2 (Figure ?? (d)) over the subtrees in V (t). If P2 is satisfied by at least one subtree in V (t),
we then evaluate P1=b/c (Figure ?? (c)) over the subtrees in V (t) and the result of P1(V (t)) is exactly the same with P (t).

Example 3 (XP{∗,//} Case). Consider the case that P =a/∗/b and V =a//∗. Again, there exists no rewriting of P using V . Observe
that for any tree t whose root is labeled with symbol a, V returns all the subtrees of t except t itself. Thus if V (t) ̸=∅, we can restore the
original tree t from V (t) and then evaluate P on t to get P (t). More specifically, the original tree t can be restored from V (t) as follows: (1)
apply the following first-order logic formula ϕ(x) :¬∃y Descendant(root(x), root(y)) on V (t) where Descendant(u,v) is a predicate
denoting that node u is a descendant of node v, and (2) then combine all the subtrees x∈V (t) such that ϕ(x) holds in V (t) by introducing a
common root labeled with symbol a. The combined tree is exactly the original tree t.

Those examples imply that we may need a more powerful language to answer a pattern using a view, even when the patterns and views are
defined in a language less powerful than XP{∗,//,[]}. Consider Example ??. As explained in this example, according to the rewriting existence
checking process described above, there exists no rewriting R∈XP{//,[]} such that R◦V ≡P , but we can find a query Q∈XP{//,[],∩} to
answer the pattern. Furthermore, it has been shown that XP{//,[]} is properly contained in XP{//,[],∩}. Consequently, XP{//,[]} is not
complete for XP{//,[]}-to-XP{//,[]} rewriting. Now consider Example ??. We analyze the expressive power of languages needed to answer
the pattern in terms of logics. The key point is to find those subtrees st whose roots are directly connected to the root of tree t. As shown in the
example, this can be expressed by a logic formula: ϕ(x) :¬∃y Descendant(root(x), root(y)). Thus the expressive power needed at least
contains negation ¬. However, Benedikt et al. [?] have shown that the whole fragment XP{∗,//,[],∪}, which properly contains XP{∗,//,[]} and
thus XP{∗,//}, is equivalent in expressive power to a version of positive-existential first-order logic consisting of conjunction ∧, disjunction ∨
and existential quantification ∃, without negation ¬. That is, XP{∗,//}, even XP{∗,//,[]}, cannot express negation ¬. Hence we can conclude
that XP{∗,//}, even XP{∗,//,[]}, is not complete for XP{∗,//}-to-XP{∗,//} rewriting. Since XP{∗,//} is a special case of XP{∗,//,[]},
we thus have that XP{∗,//,[]} is not complete for XP{∗,//,[]}-to-XP{∗,//,[]} rewriting, either.

Notice that in Example ??, we need two patterns P1 and P2 to answer pattern P using the result of view V , but only P1 contains an output
node and P2 is a boolean pattern. In fact, we will show that, for XP{∗,[]} case, even there exists no XP{∗,[]} rewriting of P using V according
to Xu and Özsoyoglu’s constructing method [?], we can still find an XP{∗,[]} pattern to compute the pattern P from the view V if, without loss
of generality, we combine the view result into a single tree by simply introducing a common root. We will further explain this in Appendix F.

Appendix D Proof of Proposition 1
We first give an analysis of tree patterns to help identify necessary conditions. As we have already discussed patterns and views with roots
being their output nodes in Appendix B, we assume that in the following, the output nodes of patterns and views are all below their roots.

For a pattern P whose root has m children c1, ..., cm, we denote by SP1, ...,SPm the subpatterns (P)c1sub, ...,(P)cmsub, respectively. We
denote by P[j] the subpattern of P obtained from SPj by adding the edge (root(P), cj) and call it a branch of P . Especially, for a branch

Zheng L X, et al. Sci China Inf Sci 5

*

a

c d

b

(1) P; (2) SP1; (3) SP2; (4) P-P[1]; (5) P[1]; (6) P[2]

*

(2) (3)

(4) a

b

*

*

a

c d

(5) (6)

(1)

Figure D1 Examples of notations on patterns

P[j] of P , we denote by P−P[j] the subpattern obtained by removing SPj from P . If a subpattern P[j] (16j6m) contains the output
node of P , we refer to this unique branch as P[o]. Furthermore, we denote by B(P) the set of all the branches of P . Note that all branches
except P[o] are actually boolean patterns. We occasionally call P[o] the output branch and the others the boolean branches. We illustrate those
notations with examples shown in Figure ??. For the homomorphism between two patterns and their branches, we have the following.

Lemma 3. There exists a homomorphism from pattern P2 to pattern P1 iff (i) for each boolean branch P2[i]∈B(P2), there exists a branch
P1[j]∈B(P1) such that a homomorphism exists from P̂2[i] to P̂1[j]; and, moreover, (ii) there exists a homomorphism from P2[o] to P1[o].

We define branches on trees similarly to those on patterns. From the definition of embedding from patterns to trees, it is easy to verify the
following results.

Lemma 4. Let P be a pattern. (i) For any tree t, P (t) ̸=∅ iff for each branch P[i]∈B(P) there exists a branch t[j]∈B(t) such that an
embedding exists from P[i] to t[j]. (ii) For any trees t1 and t2, if t1⊆ t2, then P (t1)⊆P (t2).

A pattern P is minimal if there exists no proper subpattern P ′ of P such that P ′≡P [?]. We assume in this paper that all patterns are
minimal. An important result on pattern minimality is stated by the following Lemma.

Lemma 5 ([?]). If a boolean pattern B is minimal, then (i) each branch B[i]∈B(B) is minimal, and (ii) for any branches B[i],B[j]∈B(B)

with i ̸=j, B[j] ̸⊆B[i].

Intuitively, Lemma ?? (ii) means that if branch B[i] contains branch B[j], then B[i] is redundant and can be eliminated. Note that the above
lemma focus only on boolean patterns. Based on this, we can readily derive the following result for patterns.

Lemma 6. If a pattern P is minimal, then (i) each branch P[i]∈B(P) is minimal, and (ii) for any branches P[i],P[j]∈B(P) such that i ̸=j

and P[i] ̸=P[o], P̂[j] ̸⊆ P̂[i].

We are now ready to proof Proposition 1. We show by contradiction that if one of the conditions does not hold, then V does not determine
P .

(1) Suppose that P̂ ̸⊆ V̂ . Then there exists a non-empty tree t such that t |= P̂ but t ̸|= V̂ . Hence we have that P (t) ̸=∅ but V (t)=∅. Let
t′=ε. Then t and t′ satisfy that V (t)=V (t′) but P (t) ̸=P (t′), contradicting with determinacy.

(2) Suppose that there exists a branch P̂[i]∈B(P̂) such that P̂[i] ̸⊆ V̂[1]∪...∪V̂[m]. We construct two trees t and t′ satisfying V (t)=V (t′)

but P (t) ̸=P (t′). Here we do not consider the case that P[i]=P[o] since we will prove later in (3) that P̂[o]⊆ V̂[o] which definitely ensures
P̂[o]⊆ V̂[1]∪...∪V̂[m].

As we assume that P is minimal, by Lemma ?? (ii), P̂[j] ̸⊆ P̂[i] for any branch P̂[j]∈B(P̂) with j ̸= i. Furthermore, by Lemma ??, there
exists a tree tj ∈CMod(P̂[j]) such that tj |= P̂[j] but tj ̸|= P̂[i] for each branch P̂[j]∈B(P̂) with j ̸= i. Let t be the combination of such tjs
(See Figure ?? (a)). It is easy to verify that t ̸=ε: each tj is from CMod(P̂[j]) and all P̂[j]s have a common root, which ensures that those tjs
have the same root label. By the assumption that P̂[i] ̸⊆ V̂[1]∪...∪V̂[m], there exists a tree ti∈Mod(P̂[i]) satisfying ti |= P̂[i] but ti ̸|= V̂[1]∪
...∪V̂[m]. Let t′= t+ti. If label(root(P))=a where a∈Σ, then obviously label(root(t))= label(root(ti))=a. If label(root(P))=

∗, then by the definition of canonical models (Recall Section ??), label(root(t))=z. In this case we replace label(root(ti)) with z if
label(root(ti)) ̸=z (Such replacement does not effect the property of ti, i.e., ti is still from Mod(P̂[i]) and satisfies ti |= P̂[i] but ti ̸|=
V̂[1]∪...∪V̂[m]). In this way we can assure that t′ ̸=ε. We next verify that V (t)=V (t′) but P (t) ̸=P (t′).

• Clearly t⊆ t′. By Lemma ??(ii), V (t)⊆V (t′). We now show V (t′)⊆V (t). Because ti ̸|= V̂[1]∪...∪V̂[m], for each branch V̂[k]∈B(V̂),
k=1, ...,m, ti ̸|= V̂[k]. That is, there exists no embedding from V̂[k] to ti for every branch V̂[k]∈B(V̂). Hence we can infer that any embedding
e from V to t′ producing subtree (t′)nsub is also an embedding from V to t producing the same subtree. Therefore V (t′)⊆V (t). We can thus
conclude that V (t)=V (t′), as desired.

• Consider P (t′). By construction, t′ is the combination of ti and tjs with ti∈Mod(P̂[i]) and tj ∈CMod(P̂[j]) for each j ̸= i. We can
infer that for each branch in B(P̂), there is a branch of t′ to which an embedding exists. Then by Lemma ??(i), P (t′) ̸=∅. Now consider
P (t). Note that t is the combination of those tjs and for each tj , tj ̸|= P̂[i]. In other words, there exists no embedding from P̂[i]∈B(P̂) to
any branch of t. Again by Lemma ??(i), P (t)=∅. Hence we have that P (t) ̸=P (t′).

(3) Along the same lines as above, we assume by contradiction that P̂[o] ̸⊆ V̂[o]. We then construct two trees to show that determinacy does not
hold.

From P̂[o] ̸⊆ V̂[o] along with Lemma ??, we know that there is a tree to∈CMod(P̂[o]) such that to |= P̂[o] but to ̸|= V̂[o]. Let tP− and

tV be any trees from CMod(P̂−P̂[o]) and CMod(V̂) respectively. Let t= tV +tP− and let t′= t+to (See Figure ?? (b)). One can easily
verify that t ̸= t′ ̸=ε.

6 Zheng L X, et al. Sci China Inf Sci

t t'(a)

t

tV tP-

(b) t'

tjstjs
ti

tV tP- to

Figure D2 Constructions of trees in the proof of Proposition 1

• We first show that V (t)=V (t′). Clearly the existence of tV in both t and t′ ensures non-empty of V (t) and V (t′). Moreover, t⊆ t′ and
by Lemma ??(ii), V (t)⊆V (t′). We next verify the other direction V (t′)⊆V (t). Suppose that e′ is an embedding from V to t′ producing the
subtree (t′)nsub. Based on e′ we construct an embedding e from V to t producing the same subtree as follows. For each branch V[k]∈B(V), if
the branch of t′ mapped by V[k] via e′ is not to, then let e=e′; otherwise let e map V[k] to its corresponding branch in the tV part of t′. This
branch always exists because tV ∈CMod(V). Observe that to ̸|= V̂[o] and thus there exists no embedding from V[o] to to. By construction,
embedding e=e′ for nodes in branch V[o] which contains the output node of V , and therefore e produces the same subtree as e′. We hence
have that V (t′)⊆V (t).

• To show P (t) ̸=P (t′), it suffices to find a subtree st such that st ̸∈P (t) but st∈P (t′). Notice that t′= t+to= tV +tP−+to with

tP− |= P̂−P̂[o] and to |= P̂[o]. One can readily verify that there is an embedding from P to t′ which maps subpattern P−P[o] to tP− of t′

and subpattern P[o] to to. Let no be the node of to mapped by the output node of P . Then we have the subtree (to)
no
sub∈P (t′). However

since to does not appear in tree t, the subtree rooted at node no of to could not be contained in P (t).

This completes the proof of Proposition 1.

Appendix E Proof of Proposition 2

Let t=τ(P). It is easy to verify that Σ(t)\{z}=Σ(P) (recall that in the construction of τ(P), occurrences of ∗ are replaced with a new
symbol z), label(root(t))= label(root(P)) if label(root(P)) ̸=∗, and height(t)=height(P). If V determines P , then from Proposi-
tion 1 (1), it follows that P̂ ⊆ V̂ . We then have t |= P̂ and thus t |= V̂ . The existence of an embedding from V̂ (thus V) to t implies that:
(1) for any symbol l∈Σ(V) (note that l ̸=∗), l∈Σ(t)\{z}, and thus l∈Σ(P); (2) if root(P) has a label l ̸=∗, then root(t) has the same
label and thus so does root(V) or root(V) is labeled with ∗; (3) any path of length k from the root to a leaf of V is mapped to a path
of length k′>k in t. We therefore conclude that (1) Σ(V)⊆Σ(P); (2) label(root(V))= label(root(P)) or label(root(V))=∗; and (3)
height(V)6height(P).

Let t=τ(P) and let n be the node of t that corresponds to the output node of P . By the construction of t, the height of n in t is exactly
depth(P).If V determines P , then V (t) contains node n. Thus there must exist an embedding from V to t that maps the output node out(V)

of V to a node u on the path from root to n in t. It then follows that height(u)6height(n). Notice that every embedding from a pattern
to a tree maps a node with height h to a node with height no less than h. That is, height(out(V))6height(u). Together we have that
height(out(V))6height(n). Since height(out(V))=depth(V), height(n)=depth(P), we then have that depth(V)6depth(P).

Appendix F Proof of Proposition 3
We first prove some Lemmas.

Lemma 7. Consider two patterns P1 and P2, and a homomorphism h from P̂2 to P̂1. Let n be the node of P1 mapped by the output node
of P2 via h. Then P̂1⊆ ̂(P1)nsub◦P2, and moreover, P1⊆(P1)nsub◦P2 if (P1)nsub contains the output node of P1.

Proof. First, observe that the composition pattern ̂(P1)nsub◦P2 is not empty. Second, based on h, we can construct a homomorphism h′

from ̂(P1)nsub◦P2 to P̂1 as follows: h′ maps each node from (P̂1)nsub part of ̂(P1)nsub◦P2 to the same node from (P̂1)nsub part of P̂1, and

maps the rest nodes from P2 part of ̂(P1)nsub◦P2 to the corresponding nodes of P1 as h does. Hence, we have that P̂1⊆ ̂(P1)nsub◦P2. If
(P1)nsub contains the output node of P1, then h′ is also a homomorphism from (P1)nsub◦P2 to P1 and thus P1⊆(P1)nsub◦P2. 2

Lemma 8. For any boolean patterns B1 and B2 in XP{∗,[]}, if B2 can be embedded into τ(B1), then B1⊆B2.

Proof. By the definitions of embedding and homomorphism, and the fact that there are no descendant edges in B1 and B2, we can easily
infer that if B2 can be embedded into τ(B1) then there must exist a homomorphism from B2 to B1. Thus by Lemma ??, B1⊆B2.

Zheng L X, et al. Sci China Inf Sci 7

t

 τ(P)-τ(P[i]) τ(P[i])

t'

 τ(P)-τ(P[i])

Case one:

t

 τ(P)-τ(P[i]) τ(P[i])

t'

 τ(P)-τ(P[i])

Case two:

...

 τ(V[j])s

t

 τ(P)-τ(P[i]) τ(P[i])

t'
Case three:

 τ(V)

no

τ(P[i])<k

 τ(P)-τ(P[i]) τ'(P[i]) τ(V)

no

τ(V[o])<k

Figure F1 Constructions of trees in the proof of Proposition 3

Lemma 9. Let P be a minimal pattern in XP{∗,[]}. (i) For any branch P[i]∈B(P) and any branch τ(P[j])∈B(τ(P)) such that i ̸=j and
P[i] ̸=P[o], there exists no embedding from P[i] to τ(P[j]); (ii) For any branch P[i]∈B(P), we have that P (t) ̸=P (t′) where tree t=τ(P)

and tree t′=τ(P)−τ(P[i]).

Proof. (i) Suppose by contradiction that there is a branch P[i]∈B(P) with P[i] ̸=P[o] and a branch τ(P[j])∈B(τ(P)) with i ̸=j such
that an embedding exists from the former to the later. Then by Lemma ??, P̂[j]⊆ P̂[i]. This, however, contradicts with Lemma ?? (ii) which
states that if a pattern is minimal then no inclusion relation exists between any two branches (except the one containing the output node) of this
pattern.

(ii) Clearly P (t) ̸=∅ and it contains the subtree of τ(P) rooted at τ(out(P)) (recall that τ(out(P)) is the corresponding node of out(P)

in τ(P) where out(P) is the output node of P). If P[i] ̸=P[o], then from Lemma ??(i) and Lemma ??(i) we have that P (t′)=∅ and hence
P (t) ̸=P (t′). If P[i]=P[o], then by construction, t′ does not have the branch τ(P[o]), which implies that the subtree of τ(P) rooted at
τ(out(P)) could not be contained in P (t′). Thus we still have that P (t) ̸=P (t′). 2

We are now ready to prove Proposition 3.
As explained before, if P and V are in XP{∗,[]}, then the DAG pattern R is still a tree pattern in XP{∗,[]}. Furthermore, by Lemma ??,

P ⊆R. Thus if R ̸≡P , we must have that R ̸⊆P . Then according to Lemma ??, no homomorphism exists from P to R. This means that, by
Lemma ??, (1) there exists a boolean branch P[i]∈B(P) such that P̂[i] could not be mapped to any branch R̂[k]∈B(R̂) via a homomorphism;
or (2) P[o] could not be mapped to R[o] via a homomorphism. We next show that in either of these two cases, V does not determine P .

One can easily verify that if the root of V is its output node, then V determines P iff P̂ ⊆ V̂ . In this case, Algorithm 1 is clearly sound and
complete. If the root of P is its output node, then P behaves as a boolean pattern. In this case we can assume that there is no output branch
P[o] and the proof coincides with Part (1) (See below). If both the output nodes of V and P are below their roots, then one can verify that,
in this case, V determines P only if their roots have the same label. Thus in the following we consider that both the output nodes of V and
P are descendants of their roots and assume that the root of V has the same label with that of P . The purpose of this assumption is to ensure
non-emptiness of the trees constructed in the following proof.

(1) Assume that P[i] is the boolean branch of P such that for any branch R[k] of R, no homomorphism exists from P̂[i] to R̂[k]. Recall the
construction of R in Algorithm 1. If the output node out(V) of V could be mapped to m nodes n1, ...,nm of P via homomorphisms from V̂

to P̂ , then R consists of all the boolean branches V[j] of V and the other m branches, each of which is obtained from V[o] by composed with
the subpattern (P)

ni
sub of P . We can easily verify that if there is no homomorphism from P̂[i] to any branch R̂[k] of R̂, then for any branch

V̂[j] of V̂ , no homomorphism exists from P̂[i] either.

Now consider the homomorphisms from V̂ to P̂ . There are three cases concerning the boolean branch P[i] of P and the homomorphisms
from V̂ to P̂ .

Case one : P̂[i] could not be mapped by any branch of V̂ via any homomorphism from V̂ to P̂ . By Lemma ??, no embedding exists from any
branch of V to τ(P[i]). We can infer that eliminating branch τ(P[i]) from tree τ(P) does not effect the evaluation result of V . That is, let tree
t=τ(P) and tree t′=τ(P)−τ(P[i]) (See Figure ?? Case one), and we have V (t)=V (t′). However, by Lemma ??(ii), P (t) ̸=P (t′). Thus
V does not determine P .

8 Zheng L X, et al. Sci China Inf Sci

Case two : P̂[i] could be mapped by some boolean branch V̂[j] (note that V[j] ̸=V[o]) of V̂ via some homomorphism from V̂ to P̂ . But for
each of such V̂[j], as by the assumption and as analyzed before, V[j] could not be mapped by P̂[i]. That is, by Lemma ??, V̂[j] ̸⊆ P̂[i] and
furthermore by Lemma ??, no embedding exists from P̂[i] to tree τ(V[j]). Let tV be the combination of such τ(V[j])s. Let t=τ(P) and
let t′ be the tree obtained from t by replacing the branch τ(P[i]) by tree tV (See Figure ?? Case two). We next show that V (t)=V (t′) but
P (t) ̸=P (t′).

• Clearly P (t) ̸=∅. Now consider P (t′). On one hand, by construction, branch P[i] could not be embedded into the tV part of t′; on
the other hand, by Lemma ??(i), P[i] could not be embedded into the τ(P)−τ(P[i]) part of t′ either. In all, we have that P[i] could not be
embedded into any branch of tree t′. Along with Lemma ??(i), we conclude that P (t′)=∅. Thus P (t) ̸=P (t′).

• Now consider the evaluation of V . By construction, the tV part of t′ ensures that if V can be embedded into t then it can also be embedded
into t′, and vice versa. By the assumption, there is no homomorphism from branch V̂[o] to branch P̂[i]. Thus by Lemma ??, V̂[o] can not be
embedded into branch τ(P[i]) of t. Along the same lines we can verify that V̂[o] can not be embedded into any branch of the tV part of t′.
Because if it could, then it could be mapped to some branch V[j] via a homomorphism, and furthermore could be mapped to P[i], contradicting
with the assumption. Notice that V[o] contains the output node of V and that t−τ(P[i])= t′−tV . Hence we conclude that V (t)=V (t′).

Case three : P̂[i] could be mapped by the branch V̂[o] of V̂ via some homomorphism from V̂ to P̂ . We assume first that there is only one
node of P (also of P[i]) that is mapped by the output node of V via all the homomorphisms from V̂ to P̂ , and let no be this node. By the
construction of R, we have that the composition (P)no

sub◦V[o] is a branch of R. Suppose that the height of the output node Vo is k (recall that
the height of a node is the number of edges on the path from the root to that node). Since there are no descendant edges, the height of node no

is also k. Let V <k
[o]

and P<k
[i]

be the subpatterns obtained from V[o] and P[i] by pruning the subpatterns rooted at out(V) and no, respectively.

We can infer that there exists no homomorphism from P<k
[i]

to V <k
[o]

. Because, if exists, there must exist a homomorphism from branch P[i]

of P to branch (P)no
sub◦V[o] of R, contradicting with the assumption that P[i] could not be mapped to any branch of R via a homomorphism.

Thus by Lemma ??, P<k
[i]

could not be embedded into τ(V <k
[o]

). Consider the canonical tree τ(P[i]). Let τ ′(P[i]) be obtained from τ(P[i])

by replacing the τ(P<k
[i]

) part by τ(V <k
[o]

). One can then easily infer that P[i] could not be embedded into τ ′(P[i]) either.

We now construct two trees t and t′ to show that determinacy does not hold. Let t be the combination of τ(V), τ(P)−τ(P[i]) and τ(P[i]).
Let t′ be the combination of τ(V), τ(P)−τ(P[i]) and τ ′(P[i]) (See Figure ?? Case three).

• Clearly P (t) ̸=∅. Now consider P (t′). As analyzed before, branch P[i] could not be embedded into branch τ ′(P[i]) of t′. As we
assume that P is minimal and that P[i] ̸=P[o], by Lemma ??(i), P[i] could not be embedded into any branch of the τ(P)−τ(P[i]) part of t′.
Furthermore by assumption that there is no homomorphism from P[i] to any branch of R and by the construction of R from V , we can infer
that P[i] could not be embedded into the τ(V) part of t′ either. Along with Lemma ??(i), we have that P (t′)=∅ and thus P (t) ̸=P (t′).

• Consider the evaluation of V . Note that the τ(V) part in both t and t′ ensures that V (t) ̸=∅ and V (t′) ̸=∅. Furthermore, the node no

which is mapped by the output node of V induces identical subtrees in t and t′. We can infer that V (t)=V (t′).

If the output node of V could be mapped to more than one node of P[i] via homomorphisms from V̂ to P̂ , then for each such node, we
construct a branch τ ′(P[i]) from τ(P[i]) along the same lines as above, and combine the constructed branch with t′. One can verify that in this
way we can still assure that V (t)=V (t′) but P (t) ̸=P (t′).

(2) Assume that P[o] could not be mapped to R[o] via a homomorphism. By Proposition 1 (iii), if V determines P then P̂[o]⊆ V̂[o]. Furthermore
by Lemma ??, there must exist a homomorphism from V̂[o] to P̂[o]. We assume that no is the only node of P[o] that is mapped by the output
node out(V) of V[o] via the homomorphisms from V̂[o] to P̂[o]. We can infer that node no must be on the path from the root of P to the output
node. Thus, by construction, branch R[o] is exactly the composition (P)no

sub◦V[o]. Along the same lines as the proof of Case three in Part
(1), we can construct two trees to show that if no homomorphism exists from P[o] to R[o], then V does not determine P . If the output node
out(V) of V[o] could be mapped to more than one node of P[o], then again, along the same lines as above, we can still construct two trees to
show that determinacy does not hold. We omit the details here to avoid repetition.

This completes the proof of Proposition 3.

References
1 Miklau G, Suciu D. Containment and equivalence for a fragment of XPath. Journal of the ACM, 2004, 51 (1):2–45
2 Xu W, MÖzsoyoglu Z. Rewriting XPath queries using materialized views. In: Proceedings of the International Conference on Very Large

Databases (VLDB). Trondheim: ACM, 2005. 121–132
3 Flesca S,Furfaro F, Masciari E. On the minimization of XPath queries. Journal of the ACM, 2008, 55 (1):2:1–2:46
4 Afrati F, Chirkova R, Gergatsoulis M, et al. On rewriting XPath queries using views. In: Proceedings of the International Conference on

Extending Database Technology (EDBT). Saint Petersburg: ACM, 2009. 168–179
5 Ameryahia S, Cho S, Lakshmanan L V, Srivastava D. Minimization of tree pattern queries. In: Proceedings of the ACM Symposium on

Management of Data (SIGMOD). Santa Barbara: ACM, 2001. 497–508
6 Wood P T. Minimising simple XPath expressions. In: Proceedings of the International Workshop on the Web and Databases (WebDB).

2001. 13–18
7 Wang J, Yu J X, Liu C. Independence of containing patterns property and its application in tree pattern query rewriting using views. World

Wide Web, 2009, 12 (1):87–105
8 Flesca S, Furfaro F, Masciari E. On the minimization of XPath queries. In: Proceedings of the International Conference on Very Large

Databases (VLDB). Berlin: ACM, 2003. 153–164

Zheng L X, et al. Sci China Inf Sci 9

9 Benedikt M, Fan W, Kuper G, Structural properties of xpath fragments. In: Proceedings of the International Conference on Database
Theory (ICDT). Siena: ACM, 2003. 79–95

