
. LETTER .

SCIENCE CHINA
Information Sciences

September 2016, Vol. 59 099102:1–099102:3

doi: 10.1007/s11432-016-5603-z

c⃝ Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

Single-view determinacy and rewriting completeness
for a fragment of XPath queries

Lixiao ZHENG1,2 , Shuai MA3*, Xiangyu LUO1 & Tiejun MA4

1College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China;
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China;

3State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China;
4Business School, University of Southampton, Southampton, SO17 1BJ, UK

Received October 9, 2015; accepted February 3, 2016

Citation Zheng L X, Ma S, Luo X Y, et al. Single-view determinacy and rewriting completeness for a fragment

of XPath queries. Sci China Inf Sci, 2016, 59(9): 099102, doi: 10.1007/s11432-016-5603-z

Dear editor,

The problem of answering queries using views,
where a view is a set of predefined queries, arises
in a variety of data management applications. To
formalize the fact that a set of views V contains
enough information for answering a specific query
Q, Segoufin et al. [1] proposed the notion of de-
terminacy: V determines Q iff V (D1) = V (D2)
implies Q(D1) = Q(D2) for all database instances
D1 and D2. Another formalization comes from a
syntactic perspective, using the notion of rewrit-
ing: Q can be (equivalently) rewritten in terms
of V using a rewriting language LR iff there ex-
ists a query R ∈ LR such that Q(D) = R(V (D))
for all database instance D. A rewriting language
LR is said to be complete for LV -to-LQ rewriting,
where LV is a view language and LQ is a query
language, if whenever a set of views V ∈ LV deter-
mines a queryQ ∈ LQ then there exists a rewriting
R ∈ LR of Q in terms of V .

Determinacy has been well studied on relational
databases for languages such as Datalog and con-
junctive queries [1–3], and recently on graph
databases for path queries [4]. However, little
work has been reported in the context of XML
databases, in which an XML document is modelled
as an unordered, rooted and labeled tree (tree for

short) t over an infinite alphabet Σ. In this letter,
we consider determinacy in an XML context when
queries and views are both defined in XP{∗,//,[]}, a
fragment of XPath queries constructed with wild-
card (∗), descendant edges (//) and branches ([]),
together with its three sub-fragments XP{//,[]},
XP{∗,[]} and XP{∗,//} obtained by disallowing con-
structs ∗, // and [], respectively. We will focus on
the single-view case, in which a view consists of
only a single query, and the query language, view
language and rewriting language are all the same.
We also use the symbol V to refer to a single view
and the symbol L to denote XP{∗,//,[]} or one of its
sub-fragments, respectively, in the following.

We first analyze the complexity of deciding de-
terminacy for XP{∗,//,[]}. We notice that for a
Boolean query Q and a Boolean view V , V de-
termines P iff V contains Q. Query contain-
ment for Boolean XP{∗,//,[]} is known to be conp-
complete. This implies that determinacy for
Boolean XP{∗,//,[]} is also conp-complete. Since
this is a special case of determinacy for XP{∗,//,[]},
we get a lower bound.

Theorem 1. The determinacy problem for
queries and views in XP{∗,//,[]} is conp-hard.

We then show by counterexamples that even
though an XP{∗,//,[]} view determines an XP{∗,//,[]}

*Corresponding author (email: mashuai@buaa.edu.cn)

The authors declare that they have no conflict of interest.

Zheng L X, et al. Sci China Inf Sci September 2016 Vol. 59 099102:2

query, there may not exist an XP{∗,//,[]} rewriting
of the query using the view. That is, XP{∗,//,[]}

is not complete for rewriting. For the two sub-
fragments XP{//,[]} and XP{∗,//}, we obtain a sim-
ilar result.

Theorem 2. L is not complete for L-to-L rewrit-
ing when L is XP{∗,//,[]}, XP{//,[]} or XP{∗,//}.

To cope with these negative results, we provide
a set of necessary conditions for a view V deter-
mining a query Q, from which we know that deter-
minacy does not hold if the properties do not hold.
We first explain some concepts and notations.

XP{∗,//,[]} queries are also known as tree pat-
terns. A tree pattern P is a tree with a set of
nodes labeled with ∗ or symbols from an alphabet
Σ (∗ ̸∈ Σ), two types of edges (child edges and
descendant edges) and a distinguished node called
the output node out(P). Each XP{∗,//,[]} query can
be translated into a tree pattern with the same se-
mantics and vice versa [5]. In light of this, we will
use pattern instead of query in the following.

For a pattern P , we denote by P̂ the Boolean
version of P without specifying its output node.
Suppose that cj is a child of the root of P ; we de-
note by P[j] the branch of P connected from cj to
the root. If a branch contains the output node,
we refer to this unique branch as P[o]. We denote
by B(P) the set of all the branches of P . The
following set of necessary conditions concerns the
Boolean versions and branches of P and V .

Proposition 1. If a view V determines a pat-
tern P , then the following hold: (1) P̂ ⊆ V̂ ; (2)

for each branch P̂[i] ∈ B(P̂), P̂[i] ⊆ V̂[1] ∪ · · · ∪ V̂[m]

where V̂[1], . . . , V̂[m] ∈ B(V̂) and m = |B(V̂)|; and
(3) P̂[o] ⊆ V̂[o].

Define the height of a node n of pattern P to be
the number of edges on the path from the root to
n. The height and depth of pattern P , denoted by
height(P) and depth(P), are the maximal height of
nodes of P and the height of the output node of P ,
respectively. We use Σ(P) to denote the set of la-
bels of Σ appearing in P . Note that the wildcard ∗
may appear in P , but not in Σ(P). By the seman-
tic conditions developed above, we further derive
a set of syntactic conditions for determinacy.

Proposition 2. If a view V determines a pat-
tern P , then the following hold: (1) Σ(V) ⊆
Σ(P); (2) label(root(V)) = label(root(P)) or
label(root(V)) = ∗; (3) height(V) 6 height(P);
and (4) depth(V) 6 depth(P).

According to Proposition 1(1), if a pattern P is

determined by a view V , then P̂ ⊆ V̂ . For the
three sub-fragments of XP{∗,//,[]}, the inclusion of
P̂ into V̂ implies the existence of homomorphisms

from V̂ to P̂ [5]. A homomorphism from V̂ to

P̂ is a function h mapping the nodes of V̂ to the
nodes of P̂ and satisfying the following conditions:
h(root(V̂)) = root(P̂); for each node n of V̂ , either
label(n) = ∗ or label(n) = label(h(n)); and for

each child edge (n1, n2) of V̂ , (h(n1), h(n2)) is also
a child edge, and for each descendant edge (n1, n2)

of V̂ , h(n2) is a descendant of h(n1) in P̂ . One can

easily verify that each homomorphism from V̂ to
P̂ induces a subpattern of P that computes a su-
perset of P (t) when evaluated on V (t) for any tree
t. By taking the intersection of those supersets,
we obtain the exact result of P (t).

The above analysis leads to the following algo-
rithm for checking determinacy. Notice that the
intersection of a pattern P with a Boolean pattern
B is defined as follows: Given tree t, if B(t) ̸= ∅
then P ∩ B (t) = P (t), otherwise P ∩ B (t) = ∅.

Algorithm 1: CheckDeterminacy(P ,V)

Input: A pattern P and a view V
Output: ‘Yes’ if V determines P and ‘No’, otherwise

(1) Find all the homomorphisms from V̂ to P̂ , denoted
by H = {h1, . . . , hm}.
(2) If H = ∅, then return ‘No’.

(3) For each homomorphism hi ∈ H: (a) Let ni be
the node hi(out(V)) and Pi be the subpattern of P
rooted at ni. (b) Compute the composition pattern
Ri := Pi ◦ V .

(4) Let R := R1 ∩ · · · ∩Rm.

(5) If R ≡ P , then return ‘Yes’, else return ‘No’.

If the algorithm returns Yes, it means that we
can compute the result of pattern P from the result
of view V and thus V determines P . Therefore,
the soundness holds. Clearly, the algorithm is also
sound for the whole fragment XP{∗,//,[]}. However,
it may return more false-negative answers because
in this case the existence of a homomorphism is no
longer a necessary condition for containment, and
thus, it is very likely that the set H in Step (1) is
empty even though V determines P .

We now analyze the time complexity of this al-
gorithm. The main computational cost in Algo-
rithm 1 is Step (5): testing equivalence between
a tree pattern and an intersection of a set of tree
patterns. This has been shown to run in the worst-
case exponential time. The other main computa-
tional cost is computing homomorphisms that can
be done in polynomial time. Thus, in total, Algo-
rithm 1 has exponential time complexity.

Claim 1. Algorithm 1 is sound and takes expo-
nential time in the size of pattern P and view V .

However, we observe that, for XP{∗,[]}, Algo-
rithm 1 takes only polynomial time. Observe that
XP{∗,[]} patterns contain no descendant edges. It
can be verified that there is only one subpattern

Zheng L X, et al. Sci China Inf Sci September 2016 Vol. 59 099102:3

in Step (3)(a) of Algorithm 1 that contains the
output node of P and all the other subpatterns
are Boolean. We, hence, infer that the pattern
R in Step (4) is still a tree pattern in XP{∗,[]},
which leads to ptime equivalence testing in Step
(5). Thus, Algorithm 1 takes only polynomial time
if patterns and views are in XP{∗,[]}. Besides the
ptime complexity, we furthermore show that, for
this fragment, the No answer from Algorithm 1
implies that determinacy does not hold.

Proposition 3. Consider a minimal pattern P
and a minimal view V in XP{∗,[]}. Let R be the
intersection of patterns constructed from P and V
as described in Algorithm 1. If R ̸≡ P , then V
does not determine P .

By now, we can claim the following result.

Claim 2. Algorithm 1 is complete and runs in
polynomial time for XP{∗,[]}.

In Proposition 3, we assume that patterns and
views are minimal. Minimizing XP{∗,[]} patterns
can be easily done in polynomial time. Thus, given
a pattern P and a view V defined in XP{∗,[]}, we
can check whether V determines P by first mini-
mizing P and V and then applying Algorithm 1.
This process takes in total polynomial time with
the size of P and V . Moreover, Algorithm 1 pro-
vides a method for computing the result of P from
the result of V if determinacy holds. Note that in
Algorithm 1 Step (3)(a), if V determines P , then
there is only one subpattern of P that contains
the output node and all the others are Boolean.
Let Po be the subpattern containing the output
node. One can verify that, given a tree t, if all the
Boolean patterns are satisfied by some of the sub-
trees of V (t), then Po(V (t)) is equal to P (t). In
fact, we can express the above computation with
only one XP{∗,[]} pattern by slightly reorganizing
the subtrees in V (t), as described as follows.

Algorithm 2: AnswerPattern(P , V , ST)

Input: A pattern P ∈ XP{∗,[]}, a view V ∈ XP{∗,[]}

and a set of subtrees ST = V (t) for some tree t
Output: The answer of pattern P on tree t
(1) Find all the homomorphisms from V̂ to P̂ , denoted
by H = {h1, . . . , hm}.
(2) Find all the subpatterns P = {P1, . . . , Pm} where
Pi is the subpattern rooted at ni and ni is the node
hi(out(V)) of P , for each i ∈ [1,m].
(3) Merge the subpatterns in P into one pattern R
by introducing a common root labeled by any symbol
l ∈ Σ, and merge the subtrees in ST into one tree tV
by introducing a common root with the same label l.
(4) Evaluate R on tree tV . Return the result R(tV).

Indeed, if all the Boolean subpatterns are sat-
isfied by some of the subtrees of V (t), then by
construction, we can verify that R(tV) is equal to
Po(V (t)) where Po is the unique subpattern of P

that contains the output node. Note that pattern
R is still in XP{∗,[]} and the combination of ST
into one tree tV is gained without loss of general-
ity. This means that, whenever a view V ∈ XP{∗,[]}

determines a pattern P ∈ XP{∗,[]}, we can find a
pattern R ∈ XP{∗,[]} to answer the pattern using
the view. In this sense, we say that XP{∗,[]} is
complete for XP{∗,[]}-to-XP{∗,[]} rewriting.

Theorem 3. (1) The determinacy problem for
patterns and views in XP{∗,[]} is decidable in
ptime. (2) XP{∗,[]} is complete for XP{∗,[]}-to-
XP{∗,[]} rewriting.

Conclusion. We have investigated the single-view
determinacy and rewriting completeness problems
for a widely used fragment of XPath queries con-
structed by wildcard labels, descendant edges and
branches. We have proven that this fragment
is not complete for rewriting and that deciding
whether a view determines a query is conp-hard.
We have also provided a set of necessary condi-
tions, from both semantic and syntactic aspects,
for a view determining a query. Further, we have
developed a sound algorithm for checking determi-
nacy and identified a well-behaved sub-fragment
for which determinacy is tractable in ptime.

Acknowledgements Zheng is supported in part

by NSFC (61472405&61502184) and NSF of Fu-

jian Province (2015J01259). Ma is supported in

part by 973 Program (2014CB340300) and NSFC

(61322207&61421003). Luo is supported in part by

NSFC (61170028) and Promotion Program for Young

and Middle-aged Teachers in Science and Technology

Research of Huaqiao University (ZQN-YX109).

Supporting information The supporting infor-

mation is available online at info.scichina.com and link.

springer.com. The supporting materials are published

as submitted, without typesetting or editing. The re-

sponsibility for scientific accuracy and content remains

entirely with the authors.

References
1 Nash A, Segoufin L, Vianu V. Views and queries: de-

terminacy and rewriting. ACM Trans Database Syst,
2010, 35: 21

2 Fan W, Geerts F, Zheng L X. View determinacy for
preserving selected information in data transforma-
tions. Inform Syst, 2012, 37: 1–12

3 Gogacz T, Marcinkowski J. The hunt for a red spi-
der: conjunctive query determinacy is undecidable. In:
Proceedings of the Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), Kyoto, 2015. 281–
292

4 Francis N. Asymptotic determinacy of path queries us-
ing union-of-paths views. In: Proceedings of the In-
ternational Conference on Database Theory (ICDT),
Brussels, 2015. 44–59

5 Miklau G, Suciu D. Containment and equivalence for
a fragment of XPath. J ACM, 2004, 51: 2–45

