
Interaction between Record Matching and Data Repairing

Wenfei Fan 1,2 Jianzhong Li2 Shuai Ma3 Nan Tang1 Wenyuan Yu1

1University of Edinburgh 2Harbin Institute of Technology 3Beihang University
{wenfei@inf., ntang@inf., wenyuan.yu@}ed.ac.uk lijzh@hit.edu.cn mashuai@act.buaa.edu.cn

Abstract
Central to a data cleaning system are record matching and
data repairing. Matching aims to identify tuples that re-
fer to the same real-world object, and repairing is to make a
database consistent by fixing errors in the data by using con-
straints. These are treated as separate processes in current
data cleaning systems, based on heuristic solutions. This pa-
per studies a new problem, namely, the interaction between
record matching and data repairing. We show that repair-
ing can effectively help us identify matches, and vice versa.
To capture the interaction, we propose a uniform frame-
work that seamlessly unifies repairing and matching oper-
ations, to clean a database based on integrity constraints,
matching rules and master data. We give a full treatment
of fundamental problems associated with data cleaning via
matching and repairing, including the static analyses of con-
straints and rules taken together, and the complexity, termi-
nation and determinism analyses of data cleaning. We show
that these problems are hard, ranging from NP- or coNP-
complete, to PSPACE-complete. Nevertheless, we propose
efficient algorithms to clean data via both matching and re-
pairing. The algorithms find deterministic fixes and reliable
fixes based on confidence and entropy analysis, respective-
ly, which are more accurate than possible fixes generated by
heuristics. We experimentally verify that our techniques sig-
nificantly improve the accuracy of record matching and data
repairing taken as separate processes, using real-life data.

Categories and Subject Descriptors
H.2 [Database Management]: General—integrity

General Terms
Theory, Algorithms, Experimentation

Keywords
conditional functional dependency, matching dependency,
data cleaning

1. Introduction
It has long been recognized that data residing in a

database is often dirty [31]. Dirty data inflicts a daunting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

cost: it costs us businesses 600 billion dollars each year [15].
With this comes the need for data cleaning systems. As an
example, data cleaning tools deliver “an overall business val-
ue of more than 600 million GBP” each year at BT [30]. In
light of this, the market for data cleaning systems is grow-
ing at 17% annually, which substantially outpaces the 7%
average of other IT segments [21].

There are two central issues about data cleaning:
◦ Recording matching is to identify tuples that refer to

the same real-world entity [16,25].
◦ Data repairing is to find another database (a candidate

repair) that is consistent and minimally differs from
the original data, by fixing errors in the data [4, 20].

Most data cleaning systems in the market support record
matching, and some also provide the functionality of data
repairing. These systems treat matching and repairing as
separate and independent processes. However, the two pro-
cesses typically interact with each other: repairing helps us
identify matches and vice versa, as illustrated below.

Example 1.1: Consider two databases Dm and D from
a UK bank: Dm maintains customer information collected
when credit cards are issued, and is treated as clean master
data [27]; D consists of transaction records of credit cards,
which may be dirty. The databases are specified by schemas:

card(FN, LN,St, city,AC, zip, tel, dob, gd),
tran(FN, LN, St, city,AC, post, phn, gd, item,when,where).

Here a card tuple specifies a UK credit card holder identified
by first name (FN), last name (LN), address (street (St), city,
zip code), area code (AC), phone (tel), date of birth (dob)
and gender (gd). A tran tuple is a record of a purchased item
paid by a credit card at place where and time when, by a UK

customer who is identified by name (FN, LN), address (St,
city, post code), AC, phone (phn) and gender (gd). Example
instances of card and tran are shown in Figures 1(a) and 1(b),
which are fractions of Dm and D, respectively (the cf rows
in Fig. 1(b) will be discussed later).

Following [17, 18], we use conditional functional depen-
dencies (CFDs [17]) φ1–φ4 to specify the consistency of tran
data D, and a matching dependency (MD [18]) ψ as a rule
for matching tuples across D and master card data Dm:

φ1: tran([AC = 131] → [city = Edi]),
φ2: tran([AC = 020] → [city = Ldn]),
φ3: tran([city, phn] → [St,AC, post]),
φ4: tran([FN = Bob] → [FN = Robert]),
ψ: tran[LN, city, St, post] = card[LN, city,St, zip] ∧

tran[FN] ≈ card[FN] → tran[FN, phn]
 card[FN, tel],

where (1) CFD φ1 (resp. φ2) asserts that if the area code is
131 (resp. 020), the city must be Edi (resp. Ldn); (2) CFD

φ3 is a traditional functional dependency (FD) asserting that
city and phone number uniquely determine street, area code

FN LN St city AC zip tel dob gd
s1: Mark Smith 10 Oak St Edi 131 EH8 9LE 3256778 10/10/1987 Male
s2: Robert Brady 5 Wren St Ldn 020 WC1H 9SE 3887644 12/08/1975 Male

(a) Master data Dm: An instance of schema card

FN LN St city AC post phn gd item when where
t1: M. Smith 10 Oak St Ldn 131 EH8 9LE 9999999 Male watch, 350 GBP 11am 28/08/2010 UK
cf (0.9) (1.0) (0.9) (0.5) (0.9) (0.9) (0.0) (0.8) (1.0) (1.0) (1.0)
t2: Max Smith Po Box 25 Edi 131 EH8 9AB 3256778 Male DVD, 800 INR 8pm 28/09/2010 India
cf (0.7) (1.0) (0.5) (0.9) (0.7) (0.6) (0.8) (0.8) (1.0) (1.0) (1.0)
t3: Bob Brady 5 Wren St Edi 020 WC1H 9SE 3887834 Male iPhone, 599 GBP 6pm 06/11/2009 UK
cf (0.6) (1.0) (0.9) (0.2) (0.9) (0.8) (0.9) (0.8) (1.0) (1.0) (1.0)
t4: Robert Brady null Ldn 020 WC1E 7HX 3887644 Male necklace, 2,100 USD 1pm 06/11/2009 USA
cf (0.7) (1.0) (0.0) (0.5) (0.7) (0.3) (0.7) (0.8) (1.0) (1.0) (1.0)

(b) Database D: An instance of schema tran

Figure 1: Example master data and database

and postal code; (3) CFD φ4 is a data standardization rule:
if the first name is Bob, then it should be “normalized”
as Robert; and (4) MD ψ assures that for any tuple in D
and any tuple in Dm, if they have the same last name and
address, and moreover, if their first names are similar, then
their phone and FN attributes can be identified.
Consider tuples t3 and t4 inD. The bank suspects that the

two refer to the same person. If so, then these transaction
records show that the same person made purchases in the UK

and in the US at about the same time (taking into account
the 5-hour time difference between the two countries). This
indicates that a fraud has likely been committed.
Observe that t3 and t4 are quite different in their FN, city,

St, post and Phn attributes. No rule allows us to identify the
two directly. Nonetheless, they can indeed be matched by a
sequence of interleaved matching and repairing operations:
(a) get a repair t′3 of t3 such that t′3[city] = Ldn via CFD

φ2, and t
′
3[FN]=Robert by normalization with φ4;

(b) match t′3 with s2 of Dm, to which ψ can be applied;
(c) as a result of the matching operation, get a repair t′′3

of t3 by correcting t′′3 [phn] with the master data s2[tel];
(d) find a repair t′4 of t4 via the FD φ3: since t′′3 and t4

agree on their city and phn attributes, φ3 can be ap-
plied. This allows us to enrich t4[St] and fix t4[post] by
taking corresponding values from t′′3 , which have been
confirmed correct with the master data in step (c).

At this point t′′3 and t′4 agree on every attribute in connection
with personal information. It is now evident enough that
they indeed refer to the same person; hence a fraud.
Observe that not only repairing helps matching (e.g., from

step (a) to (b)), but matching also helps us repair the data
(e.g., step (d) is doable only after the matching in (b)). 2

This example tells us the following. (1) When taken to-
gether, record matching and data repairing perform much
better than being treated as separate processes. (2) To make
practical use of their interaction, matching and repairing
operations should be interleaved. It does not help much to
execute these processes consecutively one after another.
There has been a host of work on record matching

(e.g., [3, 5, 7, 18, 24, 36]; see [16, 25] for surveys) as well as
on data repairing (e.g., [4, 6, 9, 19, 20, 28, 38]). However, the
problem of interleaving record matching and data repairing
to improve the accuracy has not been well addressed.

Contributions. We approach this problem by unifying
record matching and data repairing, and to provide a da-
ta cleaning solution that stresses accuracy.

(1) We investigate a new problem, stated as follows.
Given a database D, master data Dm, and data quality

rules consisting of CFDs Σ and matching rules Γ, the data
cleaning problem is to find a repair Dr of D such that (a)
Dr is consistent (i.e., satisfying the CFDs Σ), (b) no more
tuples in Dr can be matched to master tuples in Dm by rules
of Γ, and (c) Dr minimally differs from the original data D.

As opposed to record matching and data repairing, the
data cleaning problem aims to fix errors in the data by unify-
ing matching and repairing, and by leveraging master data.
Here master data (a.k.a. reference data) is a single reposi-
tory of high-quality data that provides various applications
with a synchronized, consistent view of its core business en-
tities [27]. It is being widely used in industry, supported
by, e.g., IBM, SAP, Microsoft and Oracle. To identify tuples
from D and Dm, we use matching rules that are an exten-
sion of MDs [18] by supporting negative rules (e.g., a male
and female may not refer to the same person) [3, 36].

(2) We propose a uniform framework for data cleaning. We
treat both CFDs and MDs as cleaning rules, which tell us
how to fix errors. This yields a rule-based logical frame-
work, which allows us to seamlessly interleave repairing and
matching operations. To assure the accuracy of fixes, we
make use of (a) the confidence placed by the user in the ac-
curacy of the data, (b) entropy measuring the certainty of
data, by the self-information of the data itself [11, 33], and
(c) master data [27]. We distinguish three classes of fixes:
(i) deterministic fixes for the unique solution to correct an
error; (ii) reliable fixes for those derived using entropy; and
(iii) possible fixes for those generated by heuristics. The
former two are more accurate than possible fixes.

(3) We investigate fundamental problems associated with
data cleaning via both matching and repairing. We show
the following. (a) When CFDs and matching rules are tak-
en together, the classical decision problems for dependen-
cies, namely, the consistency and implication analyses, are
NP-complete and coNP-complete, respectively. These prob-
lems have the same complexity as their counterparts for
CFDs [17], i.e., adding matching rules does not incur extra
complexity. (b) The data cleaning problem is NP-complete.
Worse still, it is approximation-hard, i.e., it is beyond reach
in practice to find a polynomial-time (PTIME) algorithm
with a constant approximation ratio [34] unless P = NP.
(c) It is more challenging to decide whether a data cleaning
process terminates and whether it yields deterministic fixes:
these problems are both PSPACE-complete.

(4) In light of the inherent complexity, we propose a three-
phase solution consisting of three algorithms. (a) One algo-
rithm identifies deterministic fixes that are accurate, based
on confidence analysis and master data. (b) When confi-

dence is low or unavailable, we provide another algorithm
to compute reliable fixes by employing information entropy,
inferring evidence from data itself to improve accuracy. (c)
To fix the remaining errors, we extend the heuristic based
method [9] to find a consistent repair of the dirty data.
These methods are complementary to each other, and can
be used either alone or together.

(5) We experimentally evaluate the quality and scalability
of our data cleaning methods with both matching and
repairing, using real-life datasets (DBLP and hospital data
from US Dept. of Health & Human Services). We find that
our methods substantially outperform matching and repair-
ing taken as separate processes in the accuracy of fixes, up
to 15% and 30%, respectively. Moreover, deterministic fixes
and reliable fixes are far more accurate than fixes generated
by heuristic methods. Despite the high complexity of the
cleaning problem, we also find that our algorithms scale
reasonably well with the size of the data.

We contend that a unified process for repairing and match-
ing is both important and feasible in practice, and that it
should logically become part of data cleaning systems.
While master data is desirable in the process, it is not a

must. Indeed, in its absence, our approach can be adapted
by interleaving (a) record matching in a single data table
with MDs, as described in [18], and (b) data repairing with
CFDs. While deterministic fixes may have lower accuracy,
reliable and heuristic fixes would not degrade substantially.

Organization. Section 2 reviews CFDs and extends MDs.
Section 3 introduces the framework for data cleaning. Sec-
tion 4 studies the fundamental problems for data cleaning.
Algorithms for finding deterministic and reliable fixes are
provided in Sections 5 and 6, respectively. Section 7 reports
our experimental study, followed by open issues in Section 8.

Related work. Record matching is also known as record
linkage, entity resolution, and duplicate detection [3,5,7,13,
18, 22, 24, 35, 36] (see [16, 25] for surveys). Matching rules
are studied in [18,24] (positive) and [3,36] (negative). Data
repairing was first studied in [4,20]. A variety of constraints
have been used to specify data consistency in data repairing,
e.g.,FDs [37], FDs and inds [6], and CFDs [9,17]. We employ
CFDs, and extend MDs of [18] with negative rules.
The consistency and implication problems have been stud-

ied for CFDs [17] and MDs [18]. We study these problems for
MDs and CFDs put together. It is known that data repairing
is NP-complete [6,9]. We show that data cleaning via repair-
ing and matching is NP-complete and approximation-hard.
We also study the termination and determinism analyses of
data cleaning, which are not considered in [6, 9].
Several repairing algorithms have been proposed [6, 9, 19,

20,28,38]. Heuristic methods are developed in [6,9,20], based
on FDs and inds [6], CFDs [17], and edit rules [20]. The
methods of [6,9] employ confidence placed by users to guide
a repairing process. Statistical inference is studied in [28]
to derive missing values. To ensure the accuracy of repairs
generated, [28,38] require to consult users. In contrast to the
previous work, we (a) unify repairing and matching, (b) use
confidence just to derive deterministic fixes, and (c) leverage
master data and entropy to improve the accuracy. Closer to
our work is [19], also based on master data. It differs from
our work in the following. (i) While [19] aims to fix a single
tuple via matching with editing rules (derived from MDs),
we repair a database via both matching (MDs) and repairing

(CFDs), a task far more challenging. (ii) While [19] only
relies on confidence to warrant the accuracy, we use entropy
analysis when the confidence is either low or unavailable.

There have also been efforts to interleave merging and
matching operations [13, 22, 35, 36]. Among these, (1) [22]
proposes to use uniqueness constraints to cluster object-
s from multiple data sources, and employs machine learn-
ing techniques to discover the true values of the objects; it
differs from this work in the set of constraints used; and
(2) [13, 35, 36] investigate record matching in the presence
of error data, and advocate the need for data repairing to
match records. The merge/fusion operations adopted there
are more restrictive than updates (value modifications) sug-
gested by cleaning rules of this work. Furthermore, when
no matches are found, no merge or fusion can be conducted,
whereas this work may still repair data with CFDs.

There has also been a host of work on ETL tools (see
[25] for a survey), which support data transformations, and
can be employed to merge and fix data [29], although they
are typically not based on a constraint theory. These are
essentially complementary to data repairing and this work.

Information entropy measures the degree of uncertain-
ty [11]: the less the entropy is, the more certain the data
is. It has proved effective in, e.g., database design, schema
matching, data anonymization and data clustering [33]. We
make a first effort to use it in data cleaning: we mark a fix
reliable if its entropy is below a predefined threshold.

2. Data Quality Rules
Below we first review CFDs [17], which specify the consis-

tency of data for data repairing. We then extend MDs [18]
to match tuples across (a possibly dirty) database D and
master data Dm. Both CFDs and MDs can be automatically
discovered from data via profiling algorithms (e.g., [8, 32]).

2.1 Conditional Functional Dependencies

Following [17], we define conditional functional dependen-
cies (CFDs) on a relation schema R as follows.

A CFD φ defined on schema R is a pair R(X → Y , tp),
where (1) X → Y is a standard FD on R, referred to as
the FD embedded in φ; and (2) tp is a pattern tuple with
attributes in X and Y , where for each A in X ∪ Y , tp[A] is
either a constant in the domain dom(A) of attribute A, or
an unnamed variable ‘ ’ that draws values from dom(A).

We separate the X and Y attributes in tp with ‘∥’, and
refer to X and Y as the LHS and RHS of φ, respectively.

Example 2.1: Recall the CFDs φ1, φ3 and φ4 given in Ex-
ample 1. These can be formally expressed as follows.

φ1: tran([AC] → [city], tp1 = (131 ∥ Edi)),
φ3: tran([city, phn] → [St,AC, post], tp3 = (, ∥ , ,))
φ4: tran([FN] → [FN], tp4 = (Bob ∥ Robert))

Note that FDs are a special case of CFDs in which pattern
tuples consist of only wildcards, e.g., φ3 given above. 2

To give the formal semantics of CFDs, we use an operator
≍ defined on constants and ‘ ’: v1 ≍ v2 if either v1 = v2,
or one of v1, v2 is ‘ ’. The operator ≍ naturally extends to
tuples, e.g., (131, Edi) ≍ (, Edi) but (020, Ldn) ̸≍ (, Edi).

Consider an instance D of R. We say that D satisfies the
CFD φ, denoted by D |= φ, iff for all tuples t1, t2 in D, if
t1[X] = t2[X] ≍ tp[X], then t1[Y] = t2[Y] ≍ tp[Y].

Example 2.2: Recall the tran instance D of Fig. 1(b) and
the CFDs of Example 2.1. Observe that D ̸|= φ1 since tuple

t1[AC] = tp1 [AC], but t1[city] ̸= tp1 [city], i.e., the single tuple
t1 violates φ1. Similarly, D ̸|= φ4, as t3 does not satisfy φ4.
Intuitively, φ4 says that no tuple t can have t[FN] = Bob (it
has to be changed to Robert). In contrast, D |= φ3: there
exist no distinct tuples in D that agree on city and phn. 2

We say that an instance D of R satisfies a set Σ of CFDs,
denoted by D |= Σ, if D |= φ for each φ ∈ Σ.

2.2 Positive and Negative Matching Dependencies

Following [18,24], we define matching dependencies (MDs)
in terms of a set Υ of similarity predicates, e.g., q-grams,
Jaro distance or edit distance (see e.g., [16] for a survey).
We define positive MDs and negative MDs across a data

relation schema R and a master relation schema Rm.

Positive MDs. A positive MD ψ on (R,Rm) is defined as:∧
j∈[1,k](R[Aj] ≈j Rm[Bj]) →

∧
i∈[1,h](R[Ei]
 Rm[Fi]),

where (1) for each j ∈ [1, k], Aj and Bj are attributes of R
and Rm, respectively, with the same domain; similarly for
Ei and Fi (i ∈ [1, h]); and (2) ≈j is a similarity predicate in
Υ that is defined in the domain of R[Aj] and Rm[Bj]. We
refer to

∧
j∈[1,k](R[Aj] ≈j Rm[Bj]) and

∧
i∈[1,h](R[Ei]

Rm[Fi]) as the LHS (premise) and RHS of ψ, respectively.
Note that MDs were originally defined on one or more

unreliable data sources (see [18] for a detailed discussion of
their dynamic semantics). In contrast, we focus on matching
tuples across a dirty source D and a master relation Dm. To
cope with this, we refine the semantics of MDs as follows.
For a tuple t ∈ D and a tuple s ∈ Dm, if for each j ∈ [1, k],

t[Aj] and s[Bj] are similar, i.e., t[Aj] ≈j s[Bj], then t[Ei] is
changed to s[Fi], the clean master data, for each i ∈ [1, h].
We say that an instance D of R satisfies the MD ψ w.r.t.

master data Dm, denoted by (D,Dm) |= ψ, iff for all tuples
t in D and all tuples s in Dm, if t[Aj] ≈j s[Bj] for j ∈ [1, k],
then t[Ei] = s[Fi] for all i ∈ [1, h].
Intuitively, (D,Dm) |= ψ if no more tuples from D can be

matched (and hence updated) with master tuples in Dm.

Example 2.3: Recall MD ψ given in Example 1.1. Con-
sider an instance D1 of tran consisting of a single tuple t′1,
where t′1[city] = Ldn and t′1[A] = t1[A] for all the other at-
tributes, for t1 given in Fig. 1(b). Then (D1, Dm) ̸|= ψ,
since t′1[FN, phn] ̸= s1[FN, tel] while (t′1[LN, city, St, post] =
s1[LN, city, St,Zip] and t

′
1[FN] ≈ s1[FN]. This suggests that

we correct t′1[FN, phn] using the master data s1[FN, tel]. 2

Negative MDs. Along the same lines as [3, 36], we define
a negative MD ψ− as follows:∧

j∈[1,k](R[Aj] ̸= Rm[Bj]) →
∨
i∈[1,h](R[Ei] ̸
 Rm[Fi]).

It states that for any tuple t ∈ D and any tuple s ∈ Dm, if
t[Aj] ̸= s[Bj] (j ∈ [1, k]), then t and s may not be identified.

Example 2.4: A negative MD defined on (tran, card) is:

ψ−
1 : tran[gd] ̸= card[gd] →

∨
i∈[1,7](tran[Ai] ̸
 card[Bi]),

where (Ai, Bi) ranges over (FN,FN), (LN, LN), (St,St),
(AC,AC), (city, city), (post, zip) and (phn, tel). It says that a
male and a female may not refer to the same person. 2

We say that an instance D of R satisfies the negative MD

ψ− w.r.t. master data Dm, denoted by (D,Dm) |= ψ−, if for
all tuples t inD and all tuples s inDm, if t[Aj] ̸= s[Bj] for all
j ∈ [1, k], then there exists i ∈ [1, h] such that t[Ei] ̸= s[Fi].
An instance D of R satisfies a set Γ of (positive, negative)

MDs w.r.t. master data Dm, denoted by (D,Dm) |= Γ, if
(D,Dm) |= ψ for all ψ ∈ Γ.

Normalized CFDs and MDs. Given a CFD (resp. MD) ξ,
we use LHS(ξ) and RHS(ξ) to denote the LHS and RHS of ξ,
respectively. It is called normalized if |RHS(ξ)| = 1, i.e., its
right-hand side consists of a single attribute (resp. attribute
pair). As shown by [17,18], every CFD ξ (resp. MD) can be
expressed as an equivalent set Sξ of CFDs (resp. MDs), such
that the cardinality of Sξ is bounded by the size of RHS(ξ).

For instance, CFDs φ1, φ2 and φ4 of Example 1.1 are nor-
malized. While φ3 is not normalized, it can be converted to
an equivalent set of CFDs of the form ([city, phn] → Ai, tpi),
where Ai ranges over St, AC and post, and tpi consists of
wildcards only; similarly for MD ψ.

We consider normalized CFDs (MDs) only in the sequel.

3. A Uniform Framework for Data Cleaning
We propose a rule-based framework for data cleaning. It

treats CFDs and MDs uniformly as cleaning rules, which tel-
l us how to fix errors, and seamlessly interleaves matching
and repairing operations (Section 3.1). Using cleaning rules
we introduce a tri-level data cleaning solution, which gener-
ates fixes with various levels of accuracy, depending on the
information available about the data (Section 3.2).

Consider a (possibly dirty) relation D of schema R, a mas-
ter relation Dm of schema Rm, and a set Θ = Σ ∪ Γ, where
Σ is a set of CFDs on R, and Γ is a set of MDs on (R,Rm).

3.1 A Rule-based Logical Framework

We first state the data cleaning problem, and then define
cleaning rules derived from CFDs and MDs.

Data cleaning. Following [4], we state the data cleaning
problem, referred to as DCP, as follows. It takes D, Dm and
Θ as input, and computes a repair Dr of D, i.e., another
database such that (a) Dr |= Σ, (b) (Dr, Dm) |= Γ, and (c)
cost(Dr, D) is minimum. Intuitively, (a) Dr should be con-
sistent, (b) no more tuples in Dr can be matched to master
data, and (c) Dr is accurate and is close to the original data
D. Following [9], we define cost(Dr, D) as:∑

t∈D

∑
A∈attr(R)

t(A).cf ∗ disA(t[A], t
′[A])

max(|t[A]|, |t′[A]|)

where (a) tuple t′ ∈ Dr is the repair of tuple t ∈ D, (b)
disA(v, v

′) is the distance between values v, v′ ∈ dom(A);
the smaller the distance is, the closer the two values are to
each other; (c) |t[A]| denotes the size of t[A]; and (d) t[A].cf
is the confidence placed by the user in the accuracy of the
attribute t[A] (see the cf rows in Fig. 1(b)).

This quality metric says that the higher the confidence of
the attribute t[A] is and the more distant v′ is from v, the
more costly the change is. Thus, the smaller cost(Dr, D) is,
the more accurate and closer to the original data Dr is. We
use dis(v, v′)/max(|v|, |v′|) to measure the similarity of v and
v′ to ensure that longer strings with 1-character difference
are closer than shorter strings with 1-character difference.

As remarked in [9], confidence can be derived via prove-
nance analysis, which can be reinforced by recent work on
determining the reliability of data sources (e.g., [14]).

Cleaning rules. A variety of integrity constraints have
been studied for data repairing (e.g., [6, 9, 17, 37]). As ob-
served by [19], while there constraints help us determine
whether data is dirty or not, i.e., whether errors are present
in the data, they do not tell us how to correct the errors.

To make better practical use of constraints in data clean-

ing, we define cleaning rules, which tell us what attributes
should be updated and to what value they should be
changed. From each MD in Γ and each CFD in Σ, we derive
a cleaning rule as follows, based on fuzzy logic [26].

(1) MDs. Consider an MD ψ =
∧
j∈[1,k](R[Aj] ≈j Rm[Bj])

→ (R[E]
 Rm[F]). The cleaning rule derived from ψ,
denoted by γψ, applies a master tuple s ∈ Dm to a tuple
t ∈ D if t[Aj] ≈j s[Bj] for each j ∈ [1, k]. It updates t by
letting (a) t[E] := s[F] and (b) t[C].cf := d for each C ∈ E,
where d is the minimum t[Aj].cf for all j ∈ [1, k] if ≈j is ‘=’.
That is, γψ corrects t[E] with clean master value s[F], and

infers the new confidence of t[E] following fuzzy logic [26].

(2) Constant CFDs. Consider a CFD φc = R(X → A, tp1),

where tp1 [A] is a constant. The cleaning rule derived from φc
applies to a tuple t ∈ D if t[X] ≍ tp1 [X] but t[A] ̸= tp1 [A].
It updates t by letting (a) t[A] := tp1 [A], and (b) t[A].cf =
d, where d is the minimum t[A′].cf for all A′ ∈ X. That is,
the rule corrects t[A] with the constant in the CFD.

(3) Variable CFDs. Consider a CFD φv = (Y → B, tp2),

where tp2 [B] is a wildcard ‘ ’. The cleaning rule derived
from φv is used to apply a tuple t2 ∈ D to another tuple
t1 ∈ D, where t1[Y] = t2[Y] ≍ tp2 [Y] but t1[B] ̸= t2[B]. It
updates t1 by letting (a) t1[B] := t2[B], and (b) t1[B].cf be
the minimum t1[B

′].cf and t2[B
′].cf for all B′ ∈ Y .

While cleaning rules derived from MDs are similar to edit-
ing rules of [19], rules derived from (constant or variables)
CFDs are not studied in [19]. We use confidence information
and infer new confidences based on fuzzy logic [26].

Embedding negative MDs. Recall negative MDs from Sec-
tion 2.2. The example below tells us that negative MDs can
be converted to equivalent positive MDs. As a result, there
is no need to treat them separately.

Example 3.1: Consider MD ψ in Example 1.1 and negative
MD ψ− in Example 2.4. We define ψ′ by incorporating the
premise (gd) of ψ− into the premise of ψ:
ψ′: tran[LN, city,St, post, gd] = card[LN, city,St, zip, gd] ∧

tran[FN] ≈ card[FN] → tran[FN, phn]
 card[FN, tel].
Then no tuples with different genders can be identified as
the same person, which is precisely what ψ− is to enforce. In
other words, the positive MD ψ′ is equivalent to the positive
MD ψ and the negative MD ψ−. 2

Indeed, it suffices to consider only positive MDs.

Proposition 3.1: Given a set Γ+
m of positive MDs and a set

Γ−
m of negative MDs, there exists an algorithm that computes

a set Γm of positive MDs in O(|Γ+
m||Γ−

m|) time such that Γm
is equivalent to Γ+

m ∪ Γ−
m. 2

A uniform framework. By treating both CFDs and MDs as
cleaning rules, one can uniformly interleave matching and
repairing operations, to facilitate their interactions.

Example 3.2: As shown in Example 1.1, to clean tuples
t3 and t4 of Fig. 1(b), one needs to interleave matching and
repairing operations. These can be readily done by using
cleaning rules derived from φ2, φ4, ψ and φ3. Indeed, the
cleaning process described in Example 1.1 is actually carried
out by applying these rules. There is no need to distinguish
between matching and repairing in the cleaning process. 2

3.2 A Tri-level Data Cleaning Solution

Based on cleaning rules, we develop a data cleaning sys-
tem UniClean. It takes as input a dirty relation D, a master

D'

Master

data D

Data

quality

rules

Dirty

Data D

Deterministic fixes

Confidence-based
Reliable fixes

Entropy-based
Possible fixes

Heuristic-based

D'' D

Userm

confidence
entropy

≥ η

δ≤

r

Figure 2: Framework Overview

relation Dm, a set of cleaning rules derived from Θ, as well
as thresholds η, δ ∈ [0, 1] set by the users for confidence and
entropy, respectively. It generates a repair Dr of D with a
small cost(Dr, D), such that Dr |= Σ and (Dr, Dm) |= Γ.

As opposed to previous repairing systems [6, 9, 19, 20, 28,
38], UniClean generates fixes by unifying matching and re-
pairing, via cleaning rules. Further, it stresses the accuracy
by distinguishing these fixes with three levels of accuracy.
Indeed, various fixes are found by three algorithms executed
one after another, as shown in Fig. 2 and illustrated below.

(1) Deterministic fixes based on confidences. The first algo-

rithm identifies erroneous attributes t[A] to which there ex-
ists a unique fix, referred to as a deterministic fix, when
some attributes of t are accurate. It fixes those errors based
on confidence: it uses a cleaning rule to update t[A] only if
certain attributes of t have confidence above the threshold
η. It is evident that such fixes are accurate up to η.

(2) Reliable fixes based on entropy. For attributes with low
or unavailable confidence, we correct them based on the rel-
ative certainty of the data, measured by entropy. Entropy
has proved effective in data transmission [23] and compres-
sion [39], among other things. We use entropy to clean data:
we apply a cleaning rule γ to update an erroneous attribute
t[A] only if the entropy of γ for certain attributes of t is
below the threshold δ. Fixes generated via entropy are ac-
curate to a certain degree, and are marked as reliable fixes.

(3) Possible fixes. Not all errors can be fixed in the first
two phases. For the remaining errors, we adopt heuristic
methods to generate fixes, referred to as possible fixes. To
this end we extend the method of [9], by supporting cleaning
rules derived from both CFDs and MDs. It can be verified
that the heuristic method always finds a repair Dr of D
such that Dr |= Σ, (Dr, Dm) |= Γ, while keeping all the
deterministic fixes produced earlier unchanged (a proof can
be found in the full version of the paper).

At the end of the process, fixes are marked with three
distinct signs, indicating deterministic, reliable and possible,
respectively. We shall present methods based on confidence
and entropy in Sections 5 and 6, respectively. Due to the
space constraints, we omit the algorithm for possible fixes,
but encourage the reader to consult [9] for details.

4. Fundamental Problems for Data Cleaning
We now investigate fundamental problems associated with

data cleaning. We first study the consistency and implica-
tion problems for CFDs and MDs taken together, from which
cleaning rules are derived. We then establish the complexity
bounds of the data cleaning problem as well as its termina-
tion and determinism analyses. These problems are not only

of theoretical interest, but are also important to the devel-
opment of data cleaning algorithms. The main conclusion of
this section is that data cleaning via matching and repairing
is inherently difficult: all these problems are intractable.
Consider a relation D, a master data Dm, and a set Θ =

Σ ∪ Γ of CFDs and MDs, as stated in Section 3.

4.1 Reasoning about Data Quality Rules

There are two classical problems for data quality rules.
The consistency problem is to determine, given Dm and

Θ = Σ ∪ Γ, whether there exists a nonempty instance D of
R such that D |= Σ and (D,Dm) |= Γ.
Intuitively, this is to determine whether the rules in Θ

are dirty themselves. The practical need for the consistency
analysis is evident: it does not make sense to derive cleaning
rules from Θ before Θ is assured consistent itself.
We say that Θ implies another CFD (resp. MD) ξ, denoted

by Σ |= ξ, if for any instance D of R, whenever D |= Σ and
(D,Dm) |= Γ, then D |= ξ (resp. (D,Dm) |= ξ).
The implication problem is to determine, given Dm, Σ and

another CFD (or MD) ξ, whether Σ |= ξ.
Intuitively, the implication analysis helps us find and re-

move redundant rules from Σ, i.e., those that are a logical
consequence of other rules in Σ, to improve performance.
These problems have been studied for CFDs and MDs sep-

arately. It is known that the consistency problem for MDs

is trivial: any set of MDs is consistent [18]. In contrast,
there exist CFDs that are inconsistent, and the consistency
analysis of CFDs is NP-complete [17]. It is also known that
the implication problem for MDs and CFDs is in quadratic
time [18] and coNP-complete [17], respectively.
We show that these problems for CFDs and MDs put to-

gether have the same complexity as their CFDs counterparts.
That is, adding MDs to CFDs does not make our lives harder.

Theorem 4.1: For CFDs and MDs put together, the consis-
tency problem is NP-complete, and the implication problem
is coNP-complete (when ξ is either a CFD or an MD). 2

Proof: The upper bounds are verified by establishing a s-
mall model property. The lower bounds follow from the
intractability for their CFD counterparts, a special case. 2

In the rest of the paper we consider only collections Σ of
CFDs and MDs that are consistent.

4.2 Analyzing the Data Cleaning Problem

Recall the data cleaning problem (DCP) from Section 3.

Complexity bounds. One wants to know how costly it is
to compute a repair Dr. Below we show that it is intractable
to decide whether there exists Dr with cost(Dr, D) below
a predefine bound. Worse still, it is infeasible in practice
to find PTIME approximation algorithm with performance
guarantee. Indeed, the problem is not even in apx, the class
of problems that allow PTIME approximation algorithms
with approximation ratio bounded by a constant.

Theorem 4.2: (a) The data cleaning problem (DCP) is NP-
complete. (b) Unless p = NP, for any constant ϵ, there exists
no PTIME ϵ-approximation algorithm for DCP. 2

Proof: (a) The upper bound is verified by giving an NP al-
gorithm. The lower bound is by reduction from 3sat [34].
(b) This is verified by reduction from 3sat, using gap tech-
niques [34]. Given any constant ϵ, we show that there exists
an algorithm with approximation ratio ϵ for DCP iff there is
a PTIME algorithm for deciding 3sat. 2

Symbols Semantics

Θ = Σ ∪ Γ A set Σ of CFDs and a set Γ of MDs
Confidence threshold, update threshold, andη, δ1, δ2
entropy threshold, respectively

ρ Selection operator in relational algebra
π Projection operator in relational algebra

The set {t | t ∈ D, t[Y] = ȳ} for each ȳ in
∆(ȳ) πY (ρY≍tp[Y]D) w.r.t. CFD (Y → B, tp)

Table 1: Summary of notations

It is known that data repairing alone is NP-complete [9].
Theorem 4.2 tells us that when matching with MDs is incor-
porated, the problem is intractable and approximation-hard.

Termination and determinism analyses. There are two
natural questions about rule-based data cleaning methods
such as the one proposed in Section 3. (a) The termination
problem is to determine whether a rule-based process stops.
That is, it reaches a fixpoint, such that no cleaning rules
can be further applied. (b) The determinism problem asks
whether all terminating cleaning processes end up with the
same repair, i.e., all of them reach a unique fixpoint.

The need for studying these problems is evident. A rule-
based process is often non-deterministic: multiple rules can
be applied at the same time. We want to know whether the
output of the process is independent of the order of the rules
applied. Worse, it is known that even for repairing only, a
rule-based method may lead to an infinite process [9].

Example 4.1: Consider the CFD φ1 = tran([AC] → [city],
tp1 = (131 ∥ Edi)) given in Example 2.1, and another CFD

φ5 = tran([post] → [city], tp5 = (EH8 9AB ∥ Ldn)). Consider
D1 consisting of a single tuple t2 given in Fig. 1. Then a re-
pairing process for D1 with φ1 and φ5 may fail to terminate:
it changes t2[city] to Edi and Ldn back and forth. 2

No matter how important, it is beyond reach in practice
to find efficient solutions to these two problems.

Theorem 4.3: The termination and determinism problems
are both PSPACE-complete for rule-based data cleaning. 2

Proof: We verify the lower bound of these problems by re-
duction from the halting problem for linear bound automata,
which is PSPACE-complete [2]. We show the upper bound by
providing an algorithm for each of the two problems, which
uses polynomial space in the size of input. 2

5. Deterministic Fixes with Data Confidence
As shown in Fig. 2, system UniClean first identifies deter-

ministic fixes based on confidence analysis and master data.
In this section we define deterministic fixes (Section 5.1),
and present an efficient algorithm to find them (Section 5.2).

In Table 1 we summarize some notations to be used in
this Section and Section 6, for the ease of reference.

5.1 Deterministic Fixes

We define deterministic fixes w.r.t. a confidence threshold
η determined by domain experts. When η is high enough,
e.g., if it is close to 1, an attribute t[A] is assured correct
if t[A].cf ≥ η. We refer to such attributes as asserted at-
tributes. Recall from Section 3 the definition of cleaning
rules derived from MDs and CFDs. In the first phase of
UniClean, we apply a cleaning rule γ to tuples in a database
D only when the attributes in the premise (i.e., LHS) of γ
are all asserted. We say that a fix is deterministic w.r.t. γ
and η if it is generated as follows, based on how γ is derived.

(1) From an MD ψ =
∧
j∈[1,k](R[Aj] ≈j Rm[Bj]) → (R[E]

 Rm[F]). Suppose that γ applies a tuple s ∈ Dm to a tuple
t ∈ D, and generates a fix t[E] := s[F] (see Section 3.1).
Then the fix is deterministic if t[Aj].cf ≥ η for all j ∈ [1, k]
and moreover, t[E].cf < η. That is, t[E] is changed to the
master value s[F] only if (a) all the premise attributes t[Aj]’s
are asserted, and (b) t[E] is not yet asserted.

(2) From a constant CFD φc = R(X → A, tp1). Sup-

pose that γ applies to a tuple t ∈ D and changes t[A] to
the constant tp1 [A] in φc. Then the fix is deterministic if
t[Ai].cf ≥ η for all Ai ∈ X and t[A].cf < η.

(3) From a variable CFD φv = (Y → B, tp). For each ȳ

in πY (ρY≍tp[Y]D), we define ∆(ȳ) to be the set {t | t ∈
D, t[Y] = ȳ}, where π and ρ are the projection and selection
operators, respectively, in relational algebra [1]. That is, for
all t1, t2 in ∆(ȳ), t1[Y] = t2[Y] = ȳ ≍ tp[Y].
Suppose that γ applies a tuple t2 in ∆(ȳ) to another t1

in ∆(ȳ) for some ȳ, and changes t1[B] to t2[B]. Then the
fix is deterministic if (a) for all Bi ∈ Y , t1[Bi].cf ≥ η and
t2[Bi].cf ≥ η, (b) t2[B].cf ≥ η, and moreover, (c) t2 is the
only tuple in ∆(ȳ) with t2[B].cf ≥ η (hence t1[B].cf < η).
That is, all the premise attributes of γ are asserted, and
t2[B] is the only value of B-attribute in ∆(ȳ) that is assumed
correct, while t1[B] is suspected erroneous.
As observed by [19], when data quality rules and asserted

attributes are assured correct, the fixes generated are unique
(called “certain” in [19]). While [19] only considers MDs, the
observation remains intact for CFDs and MDs.
Note that when an attribute t[A] is updated by a deter-

ministic fix, its confidence t[A].cf is upgraded to be the min-
imum of the confidences of the premise attributes (see Sec-
tion 3.1). As a result, t[A] also becomes asserted, since all
premise attributes have confidence values above η. In turn
t[A] can be used to generate deterministic fixes for other at-
tributes in the cleaning process. In other words, the process
for finding deterministic fixes in a database D is recursive.
Nevertheless, in the rest of the section we show that de-

terministic fixes can be found in PTIME, stated as follows.

Theorem 5.1: Given master data Dm and a set Θ of CFDs

and MDs, all deterministic fixes in a relation D can be found
in O(|D||Dm|size(Θ)) time, where size(Θ) is Θ’s length. 2

5.2 Confidence-based Data Cleaning

We next present the algorithm, followed by the indexing
structures and procedures that it employs.

Algorithm. The algorithm, denoted by cRepair, is shown in
Fig. 3. It takes as input CFDs Σ, MDs Γ, master data Dm,
dirty data D, and a confidence threshold η. It returns a
partially cleaned repair D′ with deterministic fixes marked.
Algorithm cRepair first initializes variables and indexing

structures (lines 1–6). It then recursively computes deter-
ministic fixes (lines 7–15), by invoking procedures vCFDInfer
(line 12), cCFDInfer (line 13), or MDInfer (line 14), for rules
derived from variable CFDs, constant CFDs, or MDs, respec-
tively. It checks each tuple at most once w.r.t. each rule,
makes more attributes asserted at each step, and uses these
attributes to identify more deterministic fixes. It terminates
when no more deterministic fixes can be found (line 15). Fi-
nally, a partially cleaned database D′ is returned in which
all deterministic fixes are marked (line 16).

Indexing structures. The algorithm uses the following
indexing structures, to improve performance.

Algorithm cRepair

Input: CFDs Σ, MDs Γ, master data Dm, dirty data D, and
confidence threshold η.

Output: A partial repair D′ of D with deterministic fixes.

1. D′ := D; Hξ := ∅ for each variable CFD ξ ∈ Σ;
2. for each t ∈ D′ do
3. Q[t] := ∅; P[t] := ∅;
4. count[t, ξ] :=0 for each ξ ∈ Σ ∪ Γ;
5. for each attribute A ∈ attr(Σ ∪ Γ) do
6. if t[A].cf ≥ η then update(t, A);
7. repeat
8. for each tuple t ∈ D′ do
9. while Q[t] is not empty do
10. ξ := Q[t].pop();
11. case ξ of
12. (1) variable CFD: D′ := vCFDInfer(t, ξ, η);
13. (2) constant CFD: D′ := cCFDInfer(t, ξ, η);
14. (3) MD: D′ := MDInfer(t, η, Dm, ξ);
15. until Q[t′] is empty for any t′ ∈ D′;
16. return D′.

Figure 3: Algorithm cRepair

Hash tables. We maintain a hash table for each variable
CFD φ = R(Y → B, tp), denoted as Hφ. Given a ȳ ∈
ρY≍tp[Y](D) as the key, it returns a pair (list, val) as the
value, i.e., H(ȳ) = (list, val), where (a) list consists of all the
tuples t in ∆(ȳ) such that t[Bi].cf ≥ η for each attribute
Bi ∈ Y , and (b) val is t[B] if it is the only item in ∆(ȳ) with
t[B].cf ≥ η; otherwise, val is nil. Notably, there exist no
two t1, t2 in ∆(ȳ) such that t1[B] ̸= t2[B], t1[B].cf ≥ η and
t2[B].cf ≥ η, if the confidence placed by the users is correct.

Queues. We maintain for each tuple t a queue of rules that
can be applied to t, denoted as Q[t]. More specifically, Q[t]
contains all rules ξ ∈ Θ, where t[C].cf ≥ η for all attributes
C in LHS(ξ). That is, the premise of ξ is asserted in t.

Hash sets. For each tuple t ∈ D, P[t] stores the set of vari-
able CFDs φ ∈ Q[t] such that Hφ(t[LHS(φ)]).val= nil, i.e., no
B attribute in ∆(t[LHS(φ)]) has a high enough confidence.

Counters. For each tuple t ∈ D and each rule ξ ∈ Θ,
count[t, ξ] maintains the number of current values of the at-
tributes C ∈ LHS(ξ) such that t[C].cf ≥ η.

Procedures. We now present the procedures of cRepair.

update. Given a new deterministic fix for t[A], it propa-
gates the change, to find other deterministic fixes with t[A].
(a) For each rule ξ, if A ∈ LHS(ξ), count[t, ξ] is increased
by 1 as one more attribute becomes asserted. (b) If all at-
tributes in LHS(ξ) are asserted, ξ is inserted into the queue
Q[t]. (c) For a variable CFD ξ′ ∈ P[t], if RHS(ξ′) is A and
Hξ′(t[LHS(ξ′)]).val = nil, the newly asserted t[A] makes it
possible for tuples in Hξ′(t[LHS(ξ′)]).list to have a determin-
istic fix. Thus ξ′ is removed from P[t] and added to Q[t].

vCFDInfer. Given a tuple t, a variable CFD ξ and the confi-
dence threshold η, it finds a deterministic fix for t by apply-
ing ξ if it exists. If the tuple t and the pattern tuple t(p,ξ)
match on their LHS(ξ) attributes, it does the following.

(a) If t[RHS(ξ)].cf ≥ η and if no B-attribute value in
Hξ(t[LHS(ξ)]).list is asserted, it takes t[RHS(ξ)] as the B val-
ue in the set, and propagates the change via update.

(b) If t[RHS(ξ)] < η but there is an asserted B-attribute
value val in Hξ(t[LHS(ξ)]).list, it makes a deterministic fix
by t[RHS(ξ)] := val, and propagates the change via update.

(c) If t[RHS(ξ)] < η and there is no asserted B-attribute in
Hξ(t[LHS(ξ)]).list, no deterministic fix can be made yet, and
t is added to Hξ(t[LHS(ξ)]).list and P[t], for later checking.

cCFDInfer and MDInfer. The first one takes as input a tuple
t, a constant CFD ξ and the threshold η. The second one
takes as input t, η, master data Dm and an MD ξ. They
find deterministic fixes by applying the rules derived from
ξ, as described earlier. The changes made are propagated
by invoking procedure update(t,RHS(ξ)).

Example 5.1: Consider master data Dm and relation D
of Fig. 1. Assume Θ consists of rules ξ1, ξ2 and ξ3 derived
from CFDs φ1, φ3 and MD ψ of Example 1.1, respectively.
Let the threshold η be 0.8. Using Θ and Dm, cRepair finds
deterministic fixes for t1, t2 ∈ D w.r.t. η as follows.

(1) After initialization (lines 1–6), we have: (a) Hξ2 = ∅;
(b) Q[t1] = {ξ1}, Q[t2] = {ξ2}; (c) P[t1] = P[t2] = ∅; and
(d) count[t1, ξ1] = 1, count[t1, ξ2] = 0, count[t1, ξ3] = 3,
count[t2, ξ1] = 0, count[t2, ξ2] = 2, and count[t2, ξ3] = 2.

(2) After ξ2 ∈ Q[t2] is checked (line 12), we have Q[t2] = ∅,
P[t2] = {ξ2}, and Hξ2(t2[city, phn]) = ({t2}, nil).
(3) After ξ1 ∈ Q[t1] is applied (line 13), Q[t1] = {ξ3},
count[t1, ξ2] = 1 and count[t1, ξ3] = 4. This step finds a
deterministic fix t1[city] := Edi. It upgrades t1[city].cf:=0.8.

(4) When ξ3 ∈ Q[t1] is used (line 14), it makes a determin-
istic fix t1[phn] := s1[tel], and lets t1[phn].cf = 0.8. Now we
have Q[t1] = {ξ2} and count[t1, ξ2] = 2.

(5) When ξ2 ∈ Q[t1] is used (line 14), it finds a deterministic
fix by letting t2[St] = t1[St] := 10 Oak St, and t2[St].cf :=
0.8. Now we obtain Q[t1] = ∅ and P[t2] = ∅.
(6) Finally, the process terminates since Q[t1] = Q[t2] = ∅.
Similarly, for tuples t3, t4 ∈ D, cRepair finds a determin-

istic fix by letting t3[city] := Ldn and t3[city].cf := 0.8. 2

Suffix trees for similarity checking of MDs. For clean-
ing rules derived from MDs, we need to conduct similarity
checking, to which traditional indexing techniques are not
directly applicable. To cope with this, we develop a tech-
nique based on suffix trees [12]. The measure of similarity
adopted is the length of the longest common substring of
two strings. Generalized suffix trees are built for the block-
ing process with all the strings in the active domain. When
querying the k-most similar strings of v of length |v|, we
can extract the subtree T of suffix tree that only contains
branches related to v, containing at most |v|2 nodes. We
traverse T to find the k-most similar strings. In this way,
we can identify k similar values from Dm in O(k|v|2) time,
which reduces the search space from |Dm| to a constant
number k of tuples. Our experimental study verifies that
the technique significantly improves the performance.

Complexity. Each tuple t in D is examined at most twice
for each CFD in Σ, and is checked at most |Dm| times for
each MD, each tuple. Hence cRepair is in O(|D||Dm|size(Σ∪
Γ)) time. With the optimization methods above, the time
complexity of cRepair is reduced to O(|D|size(Σ ∪ Γ)).

6. Reliable Fixes with Information Entropy
Deterministic fixes may not exist for some attributes, e.g.,

when their confidences are low or unreliable. To find accu-
rate fixes for these attributes, UniClean looks for evidence
from data itself instead of confidence, using entropy to mea-
sure the degree of certainty. Below we first define entropy for
data cleaning (Section 6.1), and present an algorithm to find
reliable fixes using entropy (Section 6.2). We then present an
indexing structure underlining the algorithm (Section 6.3).

Algorithm eRepair

Input: CFDs Σ, MDs Γ, master data Dm, dirty data D,
update threshold δ1, entropy threshold δ2.

Output: A partial repair D′ of D with reliable fixes.
1. O := the order of Σ ∪ Γ, sorted via their dependency graph;
2. D′ := D;
3. repeat
4. for (i = 1; i ≤ |Σ ∪ Γ|; i++) do
5. ξ := the i-th rule in O;
6. case ξ of
7. (1) variable CFD: D′ := vCFDReslove(D′, ξ, δ1, δ2);
8. (2) constant CFD:D′ := cCFDReslove(D′, ξ, δ1);
9. (3) MD: D′ := MDReslove(D′, Dm, ξ, δ1);
10. until there are no changes in D′;
11. return D′.

Figure 4: Algorithm eRepair

6.1 Measuring Certainty with Entropy

We start with an overview of the standard information
entropy, and then define entropy for resolving conflicts.

Entropy. The entropy of a discrete random variable X with
possible values {x1, . . . , xn} is defined as [11,33]:

H(X) = Σni=1(pi ∗ log 1/pi),
where pi is the probability of xi for i ∈ [1, n]. The entropy
measures the degree of the certainty of the value of X : when
H(X) is sufficiently small, it is highly accurate that the value
of X is the xj having the largest probability pj . The less
H(X) is, the more accurate the prediction is.

Entropy for variable CFDs. We use entropy to resolve
data conflicts. Consider a CFD φ = R(Y → B, tp) defined
on a relation D, where tp[B] is a wildcard. Note that a
deterministic fix may not exist when, e.g., there are t1, t2 in
∆(ȳ) (see Table 1) such that t1[B] ̸= t2[B] but both have
high confidence. Indeed, using the cleaning rule derived from
φ, one may either let t1[B] := t2[B] by applying t2 to t1, or
let t2[B] := t1[B] by applying t1 to t2.

To find an accurate fix, we define the entropy of φ for Y
= ȳ, denoted by H(φ|Y = ȳ), as

H(φ|Y = ȳ) = Σki=1(
cntY B(ȳ,bi)

|∆(ȳ)| ∗ logk
|∆(ȳ)|

cntY B(ȳ,bi)
),

where (a) k = |πB(∆(ȳ))|, the number of distinctB values in
∆(ȳ), (b) for each i ∈ [1, k], bi ∈ πB(∆(ȳ)), (c) cntY B(ȳ, bi)
denotes the number of tuples t ∈ ∆(ȳ) with t[B] = bi, and
(d) |∆(ȳ)| is the number of tuples in ∆(ȳ).

Intuitively, we treat X (φ|Y = ȳ) as a random variable for
the value of the B attribute in ∆(ȳ), with a set πB(∆(ȳ))
of possible values. The probability for bi to be the value is

pi =
cntY B(ȳ,bi)

|∆(ȳ)| . When H(φ|Y = ȳ) is small enough, it is

highly accurate to resolve the conflict by letting t[B] = bj for
all t ∈ ∆(ȳ), where bj is the one with the highest probability,
i.e., cntY B(ȳ, bj) is maximum among all bi ∈ πB(∆(ȳ)).

In particular, H(φ|Y = ȳ) = 1 when cntY B(ȳ, bi) =
cntBA(ȳ, bj) for all distinct bi, bj ∈ πB(∆(ȳ)). If H(φ|Y =
ȳ) = 0 for all ȳ ∈ πY (ρY≍tp[Y]D), then D |= φ.

6.2 Entropy-based Data Cleaning

We first describe an algorithm based on entropy, followed
by its main procedures and auxiliary structures.

Algorithm. The algorithm, referred to as eRepair, is shown
in Fig. 4. Given a set Σ of CFDs, a set Γ of MDs, a master
relation Dm, dirty data D, and two thresholds δ1 and δ2 for
update frequency and entropy, respectively, it finds reliable
fixes for D and returns a (partially cleaned) database D′

in which reliable fixes are marked. The deterministic fixes
found earlier by cRepair remain unchanged in the process.

Figure 5: Example dependency graph

In a nutshell, algorithm eRepair first sorts cleaning rules
derived from the CFDs and MDs, such that rules with rela-
tively bigger impact are applied early. Following the order,
it then applies the rules one by one, until no more reliable
fixes can be found. More specifically, it first finds an order
O on the rules in Σ ∪ Γ (line 1). It then repeatedly applies
the rules in the order O to resolve conflicts in D (lines 3–10),
by invoking procedures vCFDReslove (line 7), cCFDReslove
(line 8) or MDReslove (line 9), based on the types of the
rules (lines 5-6). It terminates when either no more rules
can be applied or all data values have been changed more
than δ1 times, i.e., when there is no enough information to
make reliable fixes (line 10). A partially cleaned database is
returned with reliable fixes being marked (line 11).

Procedures. We next present the procedures of eRepair.

Sorting cleaning rules. To avoid unnecessary computation,
we sort Σ ∪ Γ based on its dependency graph G = (V,E).
Each rule of Σ ∪ Γ is a node in V , and there is an edge
from a rule ξ1 to another ξ2 if ξ2 can be applied after the
application of ξ1. There exists an edge (u, v) ∈ E from node
u to node v if RHS(ξu) ∩ LHS(ξv) ̸= ∅. Intuitively, edge
(u, v) indicates that whether ξv can be applied depends on
the outcome of applying ξu. Hence, ξu should be applied
before ξv. For instance, the dependency graph of the CFDs

and MDs given in Example 1.1 is shown in Fig. 5.
Based on G, we sort the rules as follows. (1) Find strongly

connected components (SCCs) in G, in linear time [10]. (2)
By treating each SCC as a single node, we convert G into
a DAG. (3) Find a topological order on the nodes in the
DAG. That is, a rule ξ1 is applied before another ξ2 if the
application of ξ1 affects the application of ξ2. (4) Finally,
the nodes in each SCC are further sorted based on the ratio
of its out-degree to in-degree, in a decreasing order. The
higher the ratio is, the more effects it has on other nodes.

Example 6.1: The dependency graph G in Fig. 5 is an
SCC. The ratios of out-degree to in-degree of the nodes φ1,
φ2, φ3, φ4 and ψ are 2

1
, 2

1
, 1

1
, 3

3
and 2

4
, respectively. Hence

the order O of these rules is φ1 > φ2 > φ3 > φ4 > ψ, where
those nodes with the same ratio are sorted randomly. 2

vCFDReslove. It applies the cleaning rule derived from a
variable CFD ξ = R(Y → B, tp). For each set ∆(ȳ) with ȳ in
πY (ρY≍tp[Y]D), if H(ξ|Y = ȳ) is smaller than the entropy
threshold δ2, it picks the value b ∈πB(∆(ȳ)) that has the
maximum cntY B(ȳ, b). Then for each tuple t ∈ ∆(ȳ), if t[B]
has been changed less than δ1 times, i.e., when t[B] is not
often changed by rules that may not converge on its value,
t[B] is changed to b. As remarked earlier, when the entropy
H(ξ|Y = ȳ) is small enough, it is highly accurate to resolve
the conflicts in πB(∆(ȳ)) by assigning b as their value.

cCFDReslove. It applies the rule derived from a constant
CFD ξ = R(X → A, tp1). For each tuple t ∈ D, if (a) t[X] ≍
tp1 [X], (b) t[A] ̸= tp1 [A], and (c) t[A] has been changed less
than δ1 times, then t[A] is changed to the constant tp1 [A].

MDReslove. It applies the cleaning rule derived from an MD

ξ =
∧
j∈[1,k] (R[Aj] ≈j Rm[Bj]) → R[E]
 Rm[F]. For

each tuple t ∈ D, if there exists a master tuple s ∈ Dm such

A B C E F H
t1: a1 b1 c1 e1 f1 h1

t2: a1 b1 c1 e1 f2 h2

t3: a1 b1 c1 e1 f3 h3

t4: a1 b1 c1 e2 f1 h3

t5: a2 b2 c2 e1 f2 h4

t6: a2 b2 c2 e2 f1 h4

t7: a2 b2 c3 e3 f3 h5

t8: a2 b2 c4 e3 f3 h6

Figure 6: Example relation of schema R

that (a) t[Aj] ≈j s[Bj] for j ∈ [1, k], (b) t[E] ̸= s[F], and
(c) t[E] has been changed less than δ1 times, then it assigns
the master value s[F] to t[E].

These procedures do not change those data values that
are marked deterministic fixes by algorithm cRepair.

Example 6.2: Consider an instance of schema R(ABCEFH)
shown in Fig. 6, and a variable CFD ϕ = R(ABC → E, tp1),
where tp1 consists of wildcards only, i.e., ϕ is an FD. Observe
that (a) H(ϕ|ABC = (a1, b1, c1)) ≈ 0.8, (b) H(ϕ|ABC =
(a2, b2, c2)) is 1, and (c) H(ϕ|ABC = (a2, b2, c3)) and
H(ϕ|ABC = (a2, b2, c4)) are both 0.

From these we can see the following. (1) For ∆(ABC =
(a2, b2, c3)) and ∆(ABC = (a2, b2, c4)), the entropy is 0;
hence these sets of tuples do not violate ϕ, i.e., there is no
need to fix these tuples. (2) The fix based on H(ϕ|ABC =
(a1, b1, c1)) is relatively accurate, but not those based on
H(ϕ|ABC = (a2, b2, c2)). Hence algorithm eRepair will only
change t4[E] to e1, and marks it as a reliable fix. 2

Complexity. The outer loop (lines 3–10) in algorithm
eRepair runs in O(δ1|D|) time. Each inner loop (lines 4–9)
takes O(|D||Σ| + k|D|size(Γ)) time using the optimization
techniques of Section 5, where k is a constant. Thus, the
algorithm takes O(δ1|D|2|Σ| + δ1k|D|2size(Γ)) time.

6.3 Resolving Conflicts with a 2-in-1 Structure

We can efficiently identify tuples that match the LHS of
constant CFDs by building an index on the LHS attributes
in the database D. We can also efficiently find tuples that
match the LHS of MDs by leveraging the suffix tree structure
developed in Section 5. However, for variable CFDs, two is-
sues still remain: (a) detecting violations and (b) computing
entropy. These are rather costly and have to be recomputed
when data is updated in the cleaning process. To do these we
develop a 2-in-1 structure, which can be easily maintained.

Let ΣV be the set of variables CFDs in Σ, and attr(ΣV)
be the set of attributes appearing in ΣV . For each CFD φ
= R(Y → B, tp) in ΣV , we build a structure consisting of
a hash table and an AVL tree [10] T as follows.

Hash table HTab. Recall ∆(ȳ) = {t | t ∈ D, t[Y] = ȳ} for
ȳ ∈ πY (ρY≍tp[Y]D) described earlier. For each ∆(ȳ), we
insert an entry (key, val) into HTab, where key = ȳ, and val
is a pointer linking to a node u = (ϵ, l, r, o), where (a) u.ϵ =
H(φ|Y = ȳ), (b) u.l is the value-count pair (ȳ, |∆(ȳ)|), (c)
u.r is the set {(b, cntY B(ȳ, b)) | b ∈ πB(∆(ȳ))}, and (d) u.o
is the set of (partial) tuple IDs {t.id | t ∈ ∆(ȳ)}.
AVL tree T . For each ȳ ∈ πY (ρY≍tp[Y]D) with entropy
H(φ|Y = ȳ) ̸= 0, we create a node v = HTab(ȳ) in T , a
pointer to the node u for ∆(ȳ) in HTab. For each node v in
T , its left child vl.ϵ ≤ v.ϵ and its right child vr.ϵ ≥ v.ϵ.

Note that both the number |HTab| of entries in the hash
table HTab and the number |T | of nodes in the AVL tree T
are bounded by the number |D| of tuples in D.

Example 6.3: Consider the relation in Fig. 6 and the vari-

Figure 7: Example data structure for variable CFDs

able CFD ϕ given in Example 6.2. The hash table HTab and
the AVL tree T for ϕ are shown in Fig. 7. 2

We next show how to use and maintain the structures.

(1) Lookup cost. For the CFD φ, it takes (a) O(log |T |) time

to identify the set ∆(ȳ) of tuples with minimum entropy
H(φ|Y = ȳ) in the AVL tree T , and (b) O(1) time to check
whether two tuples in D satisfy φ via the hash table HTab.

(2) Update cost. The initialization of both the hash table
HTab and the AVL tree T can be done by scanning the
database D once, and it takes O(|D| log |D||ΣV |) time.
After resolving some conflicts, the structures need to be

maintained accordingly. Consider a set ∆(ȳ) of dirty tuples.
When a reliable fix is found for ∆(ȳ) based on H(φ|Y = ȳ),
we do the following: (a) remove a node from tree T , which
takes O(log |T |) time, where |T | ≤ |D|; and (b) update
the hash tables and trees for all other CFDs, which takes
O(|∆(ȳ)||ΣV |+ |∆(ȳ)| log |D|) time in total.

(3) Space cost. The structures take O(|D|size(ΣV) space for
all CFDs in ΣV in total, where size(ΣV) is the size of ΣV .
Putting these together, the structures are efficient in both

time and space, and are easy to maintain.

7. Experimental Study
We next present an experimental study of UniClean, which

unifies matching and repairing. Using real-life data, we eval-
uated (1) the effectiveness of our data cleaning algorithms,
(2) the accuracy of deterministic fixes and reliable fixes, and
(3) the scalability of our algorithms with the size of data.

Experimental Setting. We used two real-life data sets.

(1) hosp data was taken from US Department of Health &
Human Services1. It has 100K records with 19 attributes.
We designed 23 CFDs and 3 MDs for hosp, 26 in total.

(2) dblp data was extracted from dblp Bibliography2. It
consists of 400K tuples, each with 12 attributes. We de-
signed 7 CFDs and 3 MDs for dblp, 10 in total.

(3) Master data for both datasets was carefully selected from
the same data sources so that they were guaranteed to be
correct and consistent w.r.t. the designed rules.

(4) Dirty datasets were produced by introducing noises to
data from the two sources, controlled by four parameters:
(a) |D|: the data size; (b) noi%: the noise rate, which is
the ratio of the number of erroneous attributes to the total
number of attributes in D; (c) dup%: the duplicate rate,
i.e.,, the percentage of tuples in D that can find a match in
the master data; and (d) asr%: the asserted rate. For each

1http://www.hospitalcompare.hhs.gov/
2http://www.informatik.uni-trier.de/∼ley/db/

attribute A, we randomly picked asr% of tuples t from the
data and set t[A].cf = 1, while letting t′[A].cf = 0 for the
other tuples t′. The default value for asr% is 40%.

Algorithms. We implemented the following algorithms, all
in Python: (a) algorithms cRepair, eRepair and hRepair (an
extension of algorithm in [9]) in UniClean; (b) the sorted
neighborhood method of [24], denoted by SortN, for record
matching based on MDs only; and (c) the heuristic repairing
algorithm of [9], denoted by quaid, based on CFDs only. We
use Uni to denote cleaning based on both CFDs and MDs

(matching and repairing), and Uni(CFD) to denote cleaning
using CFDs (repairing) only.

We used edit distance for similarity test, defined as the
minimum number of single-character insertions, deletions
and substitutions needed to convert a value from v to v′.

Quality measuring. We adopted precision, recall and F -
measure, which are commonly used in information retrieval,
where F-measure = 2 · (precision · recall)/(precision+ recall).

For record matching, (a) precision is the ratio of true
matches (true positives) correctly found by an algorithm to
all the duplicates found, and (b) recall is the ratio of true
matches correctly found to all the matches between a dataset
and master data. For data repairing, (a) precision is the ra-
tio of attributes correctly updated to the number of all the
attributes updated, and (b) recall is the ratio of attributes
corrected to the number of all erroneous attributes.

All experiments were conducted on a Linux machine with
a 3.0GHz Intel CPU and 4GB of Memory. Each experiment
was run more than 5 times, and the average is reported here.

Experimental Results. We conducted five sets of experi-
ments: (a) in the first two sets of experiments, we compared
the effectiveness of our cleaning methods with both match-
ing and repairing against its counterpart with only matching
or only repairing; (b) we evaluated the accuracy of determin-
istic fixes, reliable fixes and possible fixes in the third set of
experiments; (c) we evaluated the impact of the duplicate
rate and asserted rate on the percentage of deterministic
fixes found by our algorithm cRepair in the fourth set of
experiments; and (d) the last set of experiments tested the
scalability of Uni with both the size of dirty data and the size
of master data. In all the experiments, we set the threshold
for entropy and confidence to be 0.8 and 1.0, respectively.
We used dirty datasets and master data consisting of 60K
tuples each. We now report our findings.

Exp-1: Matching helps repairing. In the first set of
experiments we show that matching indeed helps repairing.
We compare the quality (F-measure) of fixes generated by
Uni, Uni(CFD) and quaid. Fixing the duplicate rate dup% =
40%, we varied the noise rate noi% from 2% to 10%. Observe
that dup% is only related to matching via MDs. To favor
Uni(CFD) and quaid, which use CFDs only, we focused on
the impact of various noise rates.

The results on hosp data and dblp data are reported in
Figures 8(a) and 8(b), respectively, which tell us the follow-
ing. (1) Uni clearly outperforms Uni(CFD) and quaid by up
to 15% and 30%, respectively. This verifies that matching
indeed helps repairing. (2) The F-measure decreases when
noi% increases for all three approaches. However, Uni with
matching is less sensitive to noi%, which is another bene-
fit of unifying repairing with matching. (3) Even only with
CFDs, our system Uni(CFD) still outperforms quaid, as ex-
pected. This is because quaid only generates possible fixes

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

2 4 6 8 10

F
-m

ea
su

re

Noise rate (%)

Uni
Uni(CFD)

Quaid

(a) hosp repairing

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10

F
-m

ea
su

re

Noise rate (%)

Uni
Uni(CFD)

Quaid

(b) dblp repairing

 70
 75
 80
 85
 90
 95

 100

2 4 6 8 10

M
at

ch
ed

 a
tt

ri
bu

te
s

(%
)

Noise rate (%)

SortN(MD)
Uni

(c) hosp matching

 40

 50

 60

 70

 80

 90

2 4 6 8 10

M
at

ch
ed

 a
tt

ri
bu

te
s

(%
)

Noise rate (%)

SortN(MD)
Uni

(d) dblp matching

 0.9

 0.92

 0.94

 0.96

 0.98

 1

2 4 6 8 10

P
re

ci
si

on

Noise rate (%)

cRepair
cRepair+eRepair

Uni

(e) hosp precision

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

2 4 6 8 10

R
ec

al
l

Noise rate (%)

cRepair
cRepair+eRepair

Uni

(f) hosp recall

 0.9

 0.92

 0.94

 0.96

 0.98

 1

2 4 6 8 10

P
re

ci
si

on

Noise rate (%)

cRepair
cRepair+eRpair

Uni

(g) dblp precision

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2 4 6 8 10

R
ec

al
l

Noise rate (%)

cRepair
cRepair+eRepair

Uni

(h) dblp recall

 20
 30
 40
 50
 60
 70
 80

20 40 60 80 100

D
et

er
m

in
is

ti
c

fi
xe

s
(%

)

Duplicate rate (%)

HOSP
DBLP

(i) Deterministic fixes on dup%

 0

 20

 40

 60

 80

 100

0 20 40 60 80

D
et

er
m

in
is

ti
c

fi
xe

s
(%

)

Asserted attributes by users (%)

HOSP
DBLP

(j) Deterministic fixes on asr%

 300

 500

 700

 900

 1100

20 40 60 80 100
T

im
e

(s
ec

on
d)

of tuples x 1000

|D|
|Dm|

(k) hosp scalability

 400

 550

 700

 850

 1000

 1150

80 160 240 320 400

T
im

e
(s

ec
on

d)

of tuples x 1000

|D|
|Dm|

(l) dblp scalability

Figure 8: Experimental results

with heuristic, while Uni(CFD) finds both deterministic fixes
and reliable fixes. This also verifies that deterministic and
reliable fixes are more accurate than possible fixes.

Exp-2: Repairing helps matching. In the second set of
experiment, we show that repairing indeed helps matching.
We evaluate the quality (F-measure) of matches found by
(a) Uni and (b) SortN using MDs, denoted by SortN(MD).
We used the same setting as in Exp-1. We also conducted
experiments by varying the duplicate rate, but found that
its impact is very small; hence we do not report it here.
The results are reported in Figures 8(c) and 8(d) for hosp

data and dblp data, respectively. We find the following. (a)
Uni outperforms SortN(MD) by up to 15%, verifying that re-
pairing indeed helps matching. (b) The F-measure decreases
when the noise rate increases for both approaches. How-
ever, Uni with repairing is less sensitive to noi%, which is
consistent with our observation in the last experiments.

Exp-3: Accuracy of deterministic and reliable fixes.
In this set of experiments we evaluate the accuracy (preci-
sion and recall) of (a) deterministic fixes generated in the
first phase of UniClean, denoted by cRepair, (b) determinis-
tic fixes and reliable fixes generated in the first two phases
of UniClean, denoted by cRepair + eRepair, and (c) all fixes
generated by Uni. Fixing dup% = 40%, we varied noi% from
2% to 10%. The results are reported in Figures 8(e)–8(h).
The results tell us the following: (a) Deterministic fixes

have the highest precision, and are insensitive to the noise
rate. However, their recall is low, since cRepair is “picky”:
it only generates fixes with asserted attributes. (b) Fixes
generated by Uni have the lowest precision, but the highest
recall, as expected. Further, their precision is quite sensi-
tive to noi%. This is because the last step of UniClean is
by heuristics, which generates possible fixes. (c) The pre-

cision and recall of deterministic fixes and reliable fixes by
cRepair + eRepair are in the between, as expected. Further,
their precision is also sensitive to noi%. From these we can
see that the precision of reliable fixes and possible fixes is
sensitive to noi%, but not their recall. Moreover, when noi%
is less than 4%, their precision is rather indifferent to noi%.

Exp-4: Impact of dup% and asr% on deterministic
fixes. In this set of experiments we evaluated the percentage
of deterministic fixes found by algorithm cRepair.

Fixing the asserted rate asr% = 40%, we varied the du-
plicate rate dup% from 20% to 100%. Figure 8(i) shows the
results. We find that the larger dup% is, the more determin-
istic fixes are found, as expected.

Fixing dup% = 40%, we varied asr% from 0% to 80%. The
results are shown in Fig. 8(j), which tell us that the number
of deterministic fixes found by cRepair highly depends on
asr%. This is because to find deterministic fixes, cleaning
rules are only applied to asserted attributes.

Exp-5: Scalability. The last experiments evaluated the
scalability of Uni with the size |D| of dirty data and the
size |Dm| of master data. We fixed noi% = 6% and dup%
= 40% in these experiments. The results are reported in
Figures 8(k) and 8(l) for hosp and dblp data, respectively.

Figure 8(k) shows two curves for hosp data: one by fixing
|Dm| = 60K and varying |D| from 20K to 100K, and the
other by fixing |D| = 60K and varying |Dm| from 20K to
100K. The results show that Uni scales reasonably well with
both |D| and |Dm|. In fact Uni scales much better than
quaid [9]: quaid took more than 10 hours when |D| is 80K,
while it took Uni about 11 minutes. These results verify
the effectiveness of our indexing structures and optimization
techniques developed for Uni. The results are consistent for
dblp data, as shown in Fig. 8(l).

Summary. From the experimental results on real-life da-
ta, we find the following. (a) Data cleaning by unifying
matching and repairing substantially improves the quality
of fixes: it outperforms matching and repairing taken as in-
dependent processes by up to 30% and 15%, respectively.
(b) Deterministic fixes and reliable fixes are highly accu-
rate. For example, when the noise rate is no more than 4%,
their precision is close to 100%. The precision decreases s-
lowly when increasing noise rate. These tell us that it is
feasible to find accurate fixes for real-life applications. (c)
Candidate repairs generated by system UniClean are of high-
quality: their precision is about 96%. (d) Our data cleaning
methods scale reasonably well with the size of data and the
size of master data. It is more than 50 times faster than
quaid a data repairing tool using CFDs only.

8. Conclusion
We have taken a first step toward unifying record match-

ing and data repairing, an important issue that has been
overlooked by and large. We have proposed a uniform frame-
work for interleaving matching and repairing operations,
based on cleaning rules derived from CFDs and MDs. We
have established the complexity bounds of several funda-
mental problems for data cleaning with both matching and
repairing. We have also proposed deterministic fixes and re-
liable fixes, and effective methods to find these fixes based on
confidence and entropy. Our experimental results have veri-
fied that our techniques substantially improve the quality of
fixes generated by repairing and matching taken separately.
We are currently experimenting with larger datasets and

exploring optimization techniques to improve the efficiency
of our algorithms. We are also studying cleaning of multiple
relations of which the consistency is specified by constraints
across relations, e.g., (conditional) inclusion dependencies.

Acknowledgments. Fan is supported in part by the RSE-
NSFC Joint Project Scheme and an IBM scalable data ana-
lytics for a smarter planet innovation award. Li is supported
in part by NGFR 973 grant 2006CB303000 and NSFC grant
60533110. Shuai is supported in part by NGFR 973 grant
2011CB302602 and NSFC grants 90818028 and 60903149.

9. References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] A. Aiken, D. Kozen, M. Y. Vardi, and E. L. Wimmers. The

complexity of set constraints. In CSL, 1993.
[3] A. Arasu, C. Re, and D. Suciu. Large-scale deduplication

with constraints using Dedupalog. In ICDE, 2009.
[4] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query

answers in inconsistent databases. TPLP, 3(4-5), 2003.
[5] G. Beskales, M. A. Soliman, I. F. Ilyas, and S. Ben-David.

Modeling and querying possible repairs in duplicate detec-
tion. In VLDB, 2009.

[6] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-
based model and effective heuristic for repairing constraints
by value modification. In SIGMOD, 2005.

[7] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Ro-
bust and efficient fuzzy match for online data cleaning. In
SIGMOD, 2003.

[8] F. Chiang and R. Miller. Discovering data quality rules. In
VLDB, 2008.

[9] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving
data quality: Consistency and accuracy. In VLDB, 2007.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2001.

[11] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley-Interscience, 1991.

[12] T. de Vries, H. Ke, S. Chawla, and P. Christen. Robust
record linkage blocking using suffix arrays. In CIKM, 2009.

[13] X. Dong, A. Y. Halevy, and J. Madhavan. Reference recon-
ciliation in complex information spaces. In SIGMOD Con-
ference, 2005.

[14] X. L. Dong, L. Berti-Equille, Y. Hu, and D. Srivastava.
Global detection of complex copying relationships between
sources. In VLDB, 2010.

[15] W. W. Eckerson. Data Quality and the Bottom Line:
Achieving Business Success through a Commitment to High
Quality Data. In The Data Warehousing Institute, 2002.

[16] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Du-
plicate record detection: A survey. TKDE, 19(1):1–16, 2007.

[17] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Condi-
tional functional dependencies for capturing data inconsis-
tencies. TODS, 33(1), 2008.

[18] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record
matching rules. In VLDB, 2009.

[19] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain
fixes with editing rules and master data. In VLDB, 2010.

[20] I. Fellegi and D. Holt. A systematic approach to automatic
edit and imputation. J. American Statistical Association,
71(353):17–35, 1976.

[21] Gartner. Forecast: Data quality tools, worldwide, 2006-2011.
Technical report, Gartner, 2007.

[22] S. Guo, X. Dong, D. Srivastava, and R. Zajac. Record linkage
with uniqueness constraints and erroneous values. PVLDB,
3(1), 2010.

[23] R. W. Hamming. Error detecting and error correcting codes.
Bell System Technical Journal, 29(2):147–160, 1950.

[24] M. A. Hernandez and S. Stolfo. Real-World Data is Dirty:
Data Cleansing and the Merge/Purge Problem. Data Mining
and Knowledge Discovery, 2(1):9–37, 1998.

[25] T. N. Herzog, F. J. Scheuren, and W. E. Winkler. Data Qual-
ity and Record Linkage Techniques. Springer, 2009.

[26] G. J. Klir and T. A. Folger. Fuzzy sets, uncertainty, and
information. Englewood Cliffs, N.J: Prentice Hall, 1988.

[27] D. Loshin. Master Data Management. Knowledge Integrity,
Inc., 2009.

[28] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: a
database approach for statistical inference and data clean-
ing. In SIGMOD, 2010.

[29] F. Naumann, A. Bilke, J. Bleiholder, and M. Weis. Data
fusion in three steps: Resolving schema, tuple, and value
inconsistencies. IEEE Data Eng. Bull., 29(2), 2006.

[30] B. Otto and K. Weber. From health checks to the seven
sisters: The data quality journey at BT, Sept. 2009. BT
TR-BE HSG/CC CDQ/8.

[31] T. Redman. The impact of poor data quality on the typical
enterprise. Commun. ACM, 2:79–82, 1998.

[32] S. Song and L. Chen. Discovering matching dependencies. In
CIKM, 2009.

[33] D. Srivastava and S. Venkatasubramanian. Information the-
ory for data management. In SIGMOD, 2010.

[34] I. Wegener and R. Pruim. Complexity Theory: Exploring the
Limits of Efficient Algorithms. Springer, 2005.

[35] M. Weis and F. Naumann. Dogmatix tracks down duplicates
in XML. In SIGMOD, 2005.

[36] S. E. Whang, O. Benjelloun, and H. Garcia-Molina. Generic
entity resolution with negative rules. VLDB J., 18(6), 2009.

[37] J. Wijsen. Database repairing using updates. TODS,
30(3):722–768, 2005.

[38] M. Yakout, A. K. Elmagarmid, J. Neville, and M. Ouzzani.
GDR: a system for guided data repair. In SIGMOD, 2010.

[39] J. Ziv and A. Lempel. Compression of individual sequences
via variable-rate coding. IEEE TIT, 24(5), 1978.

