
Hunting Temporal Bumps in Graphs with
Dynamic Vertex Properties

Yahui Sun
1∗

Renmin University of China

Beijing, China

yahuisun@ruc.edu.cn

Shuai Ma

SKLSDE Lab, Beihang University

Beijing, China

mashuai@buaa.edu.cn

Bin Cui
2

Peking University

Beijing, China

bin.cui@pku.edu.cn

ABSTRACT
Given a time interval and a graph where vertices exhibit a property

of interest (PoI) dynamically, an interesting question is: where (i.e.,
which part of the graph) and when (i.e., which time sub-interval)

does the PoI occur frequently? To our knowledge, no work has been

done to answer this question to date. We address this issue in this

paper. Specifically, given (i) a time interval composed of multiple

time slots and (ii) a graph where each vertex either exhibits or does

not exhibit the PoI in each time slot, our objective is to find a pair of

a connected sub-graph and a time sub-interval (which we refer to as

a temporal bump), such that the discrepancy between the numbers

of times that vertices in this sub-graph exhibit and do not exhibit

the PoI during this time sub-interval is maximized. Due to the NP-

hardness of this problem, initially, we propose two approximation

algorithms. The first one achieves a tight approximation guarantee,

at the cost of a weak scalability to the number of time slots. The

second one achieves a strong scalability to the number of time slots,

at the price of a loose approximation guarantee. Then, we propose

two heuristic algorithms that have no non-trivial approximation

guarantee, but produce similar solutions with, and are considerably

faster than, the two approximation algorithms. Experiments on real

datasets show that, in comparison with baselines built using related

existing techniques, our algorithms hunt bumps with significantly

higher discrepancies, while scaling well to large graphs, and thus

are more suitable for answering the aforementioned question.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms.

KEYWORDS
Data mining; graph mining; bump hunting; Steiner trees

ACM Reference Format:
Yahui Sun

1∗
, Shuai Ma, and Bin Cui

2
. 2022. Hunting Temporal Bumps in

Graphs with Dynamic Vertex Properties. In Proceedings of the 2022 In-
ternational Conference on Management of Data (SIGMOD ’22), June 12–
17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3514221.3517859

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517859

1 School of Information & Key Laboratory of Data Engineering and Knowledge Engi-

neering of Ministry of Education

2 School of CS & National Engineering Laboratory for Big Data Analysis and Applica-

tions, Peking University; Institute of Computational Social Science, Peking University

(Qingdao)

* Yahui Sun is the corresponding author

1 INTRODUCTION
Graph mining (e.g., [20]), which is about discovering knowledge

from graph-structured datasets, plays an important role in the topic

of data management. In practice, we often have a graph where some

vertices exhibit a property of interest dynamically. For example, in

a Wikipedia graph where vertices and edges represent Wikipedia

pages and close relations between Wikipedia pages respectively,

some pages may be viewed a large number of times in some hours.

Given such a graph and a time interval composed of multiple time

slots, e.g., multiple hours, we consider a vertex as queried in a time

slot if this vertex exhibits a property of interest in this time slot. We

further consider the number of times that a vertex is queried or not

queried in a time interval as the number of time slots in this interval

in which this vertex is queried or not queried. Then, an intuitive

problem is to find a pair of a connected sub-graph and a time sub-

interval that contains as many queried states of vertices as possible,

and as few not queried states of vertices as possible, that is to say,

the discrepancy between the numbers of times that vertices in this

sub-graph are queried and not queried during this time sub-interval

is maximized. We refer to such a pair of a connected sub-graph and

a time sub-interval as a temporal bump, and refer to this problem

as the temporal bump hunting problem.

Solving this problem is to identify where and when the property

of interest occurs frequently. For instance, in the Wikipedia graph

where the property of interest is a large number of page views,

solving this problem is to identify a cluster of closely related pages

and a time sub-interval such that these pages are intensively viewed

during this time sub-interval. An example is as follows. Consider

the Wikipedia bump in Figure 1, where a Wikipedia page is queried

in an hour if this page is viewed a large number of times in this

hour; and the queried states of pages are highlighted in green. The

connection of sub-graph guarantees that the identified pages are

closely related. The discrepancy maximization objective guarantees

that these pages are frequently queried, i.e., intensively viewed,

during the identified time sub-interval. This bump shows that (i)

people are paying intensive attention to the US-Iran conflict in

January 2020, of which a major flash point occurred around 1 AM

on 3rd January 2020, when US President Donald Trump approved

the targeted killing of Iranian Major General Qasem Soleimani in

Baghdad [3]; and (ii) except the topic of “Qasem Soleimani” that

directly corresponds to the conflict, people are beginning to pay

attention to some related topics shortly after this conflict, like “Iran

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

874

https://doi.org/10.1145/3514221.3517859
https://doi.org/10.1145/3514221.3517859

Figure 1: A temporal bump, comprising a sub-graph and
a time sub-interval, in Wikipedia. The sub-graph contains
6 Wikipedia pages. The time sub-interval is between 04:00
3rd and 00:00 4th January 2020. These pages are intensively
viewed (highlighted in green) during this time sub-interval.

Iraq War”. Mining this knowledge could contribute to actionable

intelligence, e.g., to help medias make decisions on producing TV

shows on Iran Iraq War after talking about the US-Iran conflict.

The graph information is essential in the above case. For example,

if we simply identify Wikipedia pages that are viewed intensively

during the time sub-interval of the above bump, and do not consider

the relations between pages, we may get a list of dozens of pages,

with the six pages in Figure 1 scattered in the list, without knowing

that these six pages are closely related and collectively correspond

to our intensive attention to the US-Iran conflict, and thus could

not recommend medias to produce TV shows on Iran Iraq War

after talking about the conflict. The temporal information is also

essential in the above case, e.g., the fact that the bump in Figure 1

starts at 04:00, shortly after the killing of Qasem Soleimani, helps

analyze that this bump corresponds to the US-Iran conflict; and the

fact that this bump lasts to the end of the input time interval helps

analyze that our intensive attention to the conflict is ongoing, which

is a valuable information to medias. The existing work on event

detection does not suit the above case, since most such work focuses

on non-graph-structured datasets (e.g., [12, 28, 36, 53, 67]), while
the other work that focuses on graph-structured datasets either

does not consider the temporal information (e.g., [47, 56, 68]), or
only suits edge-evolving graphs where event-related activities are

associated with edges (e.g., [11, 49, 57]). Thus, solving the temporal

bump hunting problem is particularly useful in analyzing graphs

with dynamic vertex properties in the above case.

To our knowledge, no work has been done to solve the temporal

bump hunting problem to date. The existing work on temporal

graphs or dynamic networks performs different tasks, such as spot-

ting anomalous sub-graphs with large dynamic edge weights (e.g.,
[17, 19, 48, 49]), identifying temporal reach-abilities (e.g., [41, 66]) or
shortest paths (e.g., [65, 69]) between vertices, discovering evolving

communities and their life cycles (e.g., birth, growth, and death of

communities [23, 51, 55]), and temporal motif mining, i.e., detecting
sub-graphs with specific temporal patterns (e.g., with specific ap-

pearance orders of dynamic edges [37, 46, 52, 64], or with bursting

densities [21]). The above work does not identify where and when

the property of interest occurs frequently in cases where vertices

exhibit the property of interest dynamically, and thus does not rule

out the particular usefulness of hunting temporal bumps.

Meanwhile, the existing researches on static bump hunting (e.g.,
[10, 30, 32, 34, 35, 38, 62]) are closely related to our work. The

topic of static bump hunting originated in the field of high energy

physics half a century ago (e.g., [50, 58]), and is to find regions

of static datasets where a property of interest occurs frequently.

Most existing researches on static bump hunting target non-graph-

structured datasets (e.g., [10, 30, 34, 35, 38]). Only some recent

work aims graph-structured datasets (e.g., [32, 62]). In particular,

the problem studied by Gionis et al. [32] can be seen as a static

version of the temporal bump hunting problem. That is to say, they

consider a graph where each vertex is either queried or not queried,

regardless of the time, and their objective is to find a connected

sub-graph, i.e., a static bump, where the discrepancy between the

numbers of queried and not queried vertices is maximized. We refer

to their problem as the static bump hunting problem.

The existing algorithms [32] for solving the static bump hunting

problem do not suit hunting temporal bumps. We explain this as fol-

lows. Due to the neglect of dynamic query states of vertices, these

algorithms can only hunt static bumps in a single time slot. We can-

not use these algorithms to hunt temporal bumps by simply hunting

static bumps in a time slot by time slot way, since static bumps

in different time slots may not share vertices with each other, and

as a result we cannot combine static bumps in different time slots

together as a temporal bump. An intuitive idea of adapting these

algorithms to hunt a temporal bump is to (i) hunt a static bump,

i.e., a connected sub-graph, and (ii) find a time sub-interval such

that the pair of this sub-graph and this time sub-interval maximizes

the objective value of the temporal bump hunting problem. Then,

this pair of sub-graph and time sub-interval is the hunted temporal

bump. The baselines in the later experiments are such adaptations.

Theoretically, these adaptations cannot achieve non-trivial guaran-

tees of solution qualities for hunting temporal bumps. Practically,

the later experiments show that these adaptations cannot hunt

high-discrepancy temporal bumps. As a result, new algorithms are

required to meet the challenge of hunting temporal bumps.

Contributions. Specifically, since it is NP-hard to solve the tem-

poral bump hunting problem to optimality, we develop several

non-exact algorithms that find sub-optimal solutions as follows.

• We propose an approximation algorithm:MIRROR (Section 3.2).

It solves the temporal bump hunting problem by (i) compressing

dynamic query states of vertices during every time sub-interval

to static values; and (ii) solving a static Steiner tree problem

[42] for these values during every time sub-interval. Since it is

too slow to conduct this process, we develop new branch and

bound techniques that effectively accelerate this process, via

whichMIRROR achieves an approximation guarantee of 2 for

a minimization objective that is equivalent to the discrepancy

maximization objective of the temporal bump hunting problem.

• MIRROR does not scale well to the number of time slots, since it

computes all time sub-intervals, while the number of time sub-

intervals increases quadratically with the number of time slots.

To overcome this weakness, we propose another approximation

algorithm: S-MIRROR (Section 3.3), the idea of which is to

select and compute a nearly linear number of time sub-intervals.

By doing this, S-MIRROR achieves non-trivial approximation

guarantees looser than those of MIRROR.

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

875

• To further push the limit of algorithmic efficiency while main-

taining a practically high solution quality, we ignore non-trivial

approximation guarantees, and propose two fast heuristic algo-

rithms: H-MIRROR and H-S-MIRROR (Section 4). Motivated

by the observation that real bumps mostly contain queried ver-

tices (i.e., vertices that have been queried at once during the

given time interval), the idea of H-MIRROR and H-S-MIRROR
is simple and effective: instead of computing all vertices, only

compute queried vertices and their close neighbors.

We conduct experiments using real datasets (Section 5). In com-

parison with baselines built using state-of-the-art static bump hunt-

ing algorithms, all the proposed algorithms hunt bumps with sig-

nificantly (sometimes an order of magnitude) higher discrepancies.

Meanwhile, even though MIRROR and S-MIRROR are slower than

some baselines, H-MIRROR and H-S-MIRROR are generally faster

than the baselines. Some other observations are: (i)MIRROR scales

nearly quadratically to the number of time slots, and often hunts

bumps with at least one third of the maximum discrepancies; (ii)

S-MIRROR scales nearly linearly to the number of time slots, and

often hunts bumps with similar discrepancies withMIRROR; and
(iii) H-MIRROR and H-S-MIRROR hunt bumps with similar dis-

crepancies withMIRROR and S-MIRROR, while being considerably
faster than MIRROR and S-MIRROR in various cases.

2 PROBLEM FORMULATION
Given a time interval 𝑇 = [𝑡1, 𝑡𝑚] of𝑚 continuous time slots, we

consider an undirected graph 𝐺 (𝑉 , 𝐸, [), where 𝑉 is the set of ver-

tices, 𝐸 is the set of edges, and [is a function which maps each ver-

tex 𝑣 ∈ 𝑉 to a set of𝑚 Boolean values [(𝑣) = {[𝑡1 (𝑣), · · · , [𝑡𝑚 (𝑣)}
that correspond to𝑚 time slots in 𝑇 , and are referred to as query
states of 𝑣 . For time slot 𝑡𝑥 ∈ 𝑇 (𝑥 ∈ [1,𝑚]), if [𝑡𝑥 (𝑣) = 1, then 𝑣 is

queried in 𝑡𝑥 , which means that 𝑣 exhibits a property of interest in

𝑡𝑥 , otherwise 𝑣 is not queried in 𝑡𝑥 , i.e., [𝑡𝑥 (𝑣) = 0. These dynamic

query states of vertices reflect the fact that vertices often exhibit a

property of interest dynamically in real graphs.

We refer to a connected sub-graph of 𝐺 as a component of 𝐺 . In

the previous work [32], a static bump is defined as a component.

Here, due to the involvement of the temporal dimension, we extend

the above previous work, and define a temporal bump as the pair of

a component and a time sub-interval, e.g., the pair of a component

𝐶 (𝑉𝐶 , 𝐸𝐶) of 𝐺 and a time sub-interval 𝑇𝑆 ⊆ 𝑇 .

Definition 1 (Temporal Bump). Given a time interval 𝑇 =

[𝑡1, 𝑡𝑚] and a graph 𝐺 (𝑉 , 𝐸, [), a temporal bump is the pair of a
component 𝐶 (𝑉𝐶 , 𝐸𝐶) of 𝐺 and a time sub-interval 𝑇𝑆 ⊆ 𝑇 .

Given a temporal bump {𝐶,𝑇𝑆 }, we refer to 𝑝𝑇𝑆𝐶 as the number

of times that vertices in 𝐶 have been queried during 𝑇𝑆 , i.e.,

𝑝
𝑇𝑆
𝐶

=
∑

𝑣∈𝑉𝐶 ,𝑡𝑥 ∈𝑇𝑆
[𝑡𝑥 (𝑣) . (1)

Similarly, we refer to 𝑛
𝑇𝑆
𝐶

as the number of times that vertices in 𝐶

have not been queried during 𝑇𝑆 . Since each vertex has |𝑇𝑆 | query
states during time sub-interval 𝑇𝑆 , we have

𝑛
𝑇𝑆
𝐶

= |𝑇𝑆 | |𝑉𝐶 | − 𝑝
𝑇𝑆
𝐶
. (2)

We define the temporal discrepancy of 𝐶 during 𝑇𝑆 , i.e., the tem-

poral discrepancy of the temporal bump {𝐶,𝑇𝑆 }, as follows.

Definition 2 (Temporal Discrepancy). Given a time interval
𝑇 = [𝑡1, 𝑡𝑚] and a graph 𝐺 (𝑉 , 𝐸, [), the temporal discrepancy of a
component 𝐶 (𝑉𝐶 , 𝐸𝐶) of 𝐺 during a time sub-interval 𝑇𝑆 ⊆ 𝑇 is

𝐷
𝑇𝑆
𝐶

= 𝑝
𝑇𝑆
𝐶

− 𝑛
𝑇𝑆
𝐶
. (3)

This temporal discrepancy is a natural extension of the static
discrepancy of𝐶 in the previous work [32], which is the discrepancy

between the numbers of statically queried and not queried vertices

in 𝐶 . Like the previous work, we can also use a parameter 𝛼 > 0

to regulate 𝑝
𝑇𝑆
𝐶

and 𝑛
𝑇𝑆
𝐶

in 𝐷
𝑇𝑆
𝐶
, i.e., to define 𝐷

𝑇𝑆
𝐶

as 𝛼𝑝
𝑇𝑆
𝐶

− 𝑛
𝑇𝑆
𝐶
.

Since 𝑝
𝑇𝑆
𝐶

and 𝑛
𝑇𝑆
𝐶

have the same measurement unit, it is intuitively

preferable to set 𝛼 = 1 in practice [32]. As a result, to reduce the

complexity of the problem setting and achieve an easy use of our

work, we omit 𝛼 in this paper. Nevertheless, we show the feasibility

of using 𝛼 in Section S2 in the supplement [6].

A temporal bump with a high temporal discrepancy corresponds

to a region of 𝐺 and a time sub-interval such that the property

of interest occurs frequently in this region during this time sub-

interval. Like the previous work [32], we define the temporal bump

hunting problem as a discrepancy maximization problem as follows.

Problem 1 (Temporal Bump Hunting). Given a time interval
𝑇 = [𝑡1, 𝑡𝑚] and a graph 𝐺 (𝑉 , 𝐸, [), the temporal bump hunting
problem is to find the pair of a component 𝐶 (𝑉𝐶 , 𝐸𝐶) of 𝐺 and a
time sub-interval 𝑇𝑆 ⊆ 𝑇 , i.e., a temporal bump {𝐶,𝑇𝑆 }, such that its
temporal discrepancy 𝐷𝑇𝑆

𝐶
is the maximum.

Solving Problem 1 is to identify where and when the property of

interest occurs frequently. The discrepancy maximization objective

is to ensure that the hunted bump contains as many queried states

as possible, and as few not queried states as possible, i.e., the hunted
bump exhibits the property of interest intensively. The connection

of 𝐶 is to ensure that the entities represented by the vertices in

𝐶 are closely related, which is meaningful in various cases, e.g.,
the connection of sub-graph in Figure 1 ensures that the identified

Wikipedia pages are closely related and collectively correspond to

our intensive attention to a specific hot topic.

The static bump hunting problem [32] is about finding a com-

ponent 𝐶 such that the 𝛼-regulated static discrepancy of 𝐶 is maxi-

mized. Thus, the static bump hunting problem with the restriction

of 𝛼 = 1 is a special case of Problem 1 where𝑚 = 1. The previous

work [32] proves that the static problem is NP-hard when 𝛼 is not

restricted to 1. In the supplement [6], we prove that the static prob-

lem is NP-hard even when 𝛼 is restricted to 1. Since Problem 1 is a

generalization of this restricted static case, Problem 1 is NP-hard.

This NP-hardness indicates the preference of developing non-exact

algorithms in practice. We develop such algorithms as follows.

3 TWO APPROXIMATION ALGORITHMS
In this section, we develop two approximation algorithms, dubbed

MIRROR and S-MIRROR respectively, for hunting temporal bumps.

First, in Section 3.1, we transform Problem 1 to a temporal Steiner

tree problem. Then, in Sections 3.2 and 3.3, we proposeMIRROR
and S-MIRROR respectively to solve this Steiner tree problem.

3.1 A temporal Steiner tree problem
Here, we first formulate the temporal prize-collecting Steiner tree

problem, and then demonstrate the transformation from Problem

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

876

1 to this problem. In this problem, we consider a time interval

𝑇 = [𝑡1, 𝑡𝑚] and a graph 𝐺 ′(𝑉 , 𝐸, b, 𝑐), where b is a function which

maps each vertex 𝑣 ∈ 𝑉 to a set of𝑚 nonnegative values b (𝑣) =
{b𝑡1 (𝑣), · · · , b𝑡𝑚 (𝑣)} that correspond to𝑚 time slots in 𝑇 , and are

referred to as vertex prizes, and similarly, 𝑐 is a function which

maps each edge 𝑒 ∈ 𝐸 to a set of 𝑚 nonnegative values 𝑐 (𝑒) =

{𝑐𝑡1 (𝑒), · · · , 𝑐𝑡𝑚 (𝑒)} that are referred to as edge costs. We present

the temporal prize-collecting Steiner tree problem as follows.

Problem 2 (Temporal Prize-Collecting Steiner Tree). Given
a time interval 𝑇 = [𝑡1, 𝑡𝑚] and a graph 𝐺 ′(𝑉 , 𝐸, b, 𝑐), the temporal
prize-collecting Steiner tree problem is to find a tree Θ(𝑉Θ, 𝐸Θ) of 𝐺 ′

and a time sub-interval 𝑇𝑆 ⊆ 𝑇 , i.e., the combination of {Θ,𝑇𝑆 }, such
that the weight of this combination, namely,

𝑤𝑇𝑆 (Θ) =
∑

𝑣∈𝑉Θ,𝑡𝑥 ∈𝑇𝑆
b𝑡𝑥 (𝑣) −

∑
𝑒∈𝐸Θ,𝑡𝑥 ∈𝑇𝑆

𝑐𝑡𝑥 (𝑒) − |𝑇𝑆 | (4)

is maximized, or the cost of this combination, namely,

𝑐𝑇𝑆 (Θ) =
∑

𝑒∈𝐸Θ,𝑡𝑥 ∈𝑇𝑆
𝑐𝑡𝑥 (𝑒) +

∑
𝑣∈𝑉 \𝑉Θ,𝑡𝑥 ∈𝑇𝑆

b𝑡𝑥 (𝑣)

+
∑

𝑣∈𝑉 ,𝑡𝑥 ∈𝑇 \𝑇𝑆
b𝑡𝑥 (𝑣) + |𝑇𝑆 |

(5)

is minimized.
For a given time interval 𝑇 and a given graph 𝐺 ′(𝑉 , 𝐸, b, 𝑐), the

sum of vertex prizes, i.e.,
∑

𝑣∈𝑉 ,𝑡𝑥 ∈𝑇 b𝑡𝑥 (𝑣), is constant. We have

𝑤𝑇𝑆 (Θ) + 𝑐𝑇𝑆 (Θ) =
∑

𝑣∈𝑉 ,𝑡𝑥 ∈𝑇
b𝑡𝑥 (𝑣) .

(6)

Thus, the above two objectives, i.e., the maximization of 𝑤𝑇𝑆 (Θ)
and the minimization of 𝑐𝑇𝑆 (Θ), are equivalent. The static prize-
collecting Steiner tree problem [42] can be seen as a special case

of Problem 2 where𝑚 = 1. Like the static problem, Problem 2 is

NP-hard. We transform Problem 1 to Problem 2 as follows.

Theorem 1. Consider a time interval 𝑇 = [𝑡1, 𝑡𝑚]; a graph
𝐺 (𝑉 , 𝐸, [); and a graph 𝐺 ′(𝑉 , 𝐸, b, 𝑐). If

b𝑡𝑥 (𝑣) = 2[𝑡𝑥 (𝑣) | ∀𝑣 ∈ 𝑉 , 𝑡𝑥 ∈ 𝑇, (7)

𝑐𝑡𝑥 (𝑒) = 1 | ∀𝑒 ∈ 𝐸, 𝑡𝑥 ∈ 𝑇, (8)

then, for any time sub-interval 𝑇𝑆 ⊆ 𝑇 ; any component 𝐶 (𝑉𝐶 , 𝐸𝐶)
of 𝐺 ; and any tree Θ(𝑉Θ, 𝐸Θ) of 𝐺 ′ that has the same set of vertices
with 𝐶 , i.e., 𝑉Θ = 𝑉𝐶 , we have

𝐷
𝑇𝑆
𝐶

= 𝑤𝑇𝑆 (Θ), (9)

which means that any approximation guarantee (including the op-
timal guarantee) that holds for maximizing 𝑤𝑇𝑆 (Θ) also holds for
maximizing 𝐷𝑇𝑆

𝐶
, and vise versa.

We put the detailed proof in Section S1 in the supplement [6].

Based on this theorem, we can solve Problem 1 in 𝐺 by solving

Problem 2 in 𝐺 ′
. In the following sub-sections, we develop two

approximation algorithms to solve Problem 2 in 𝐺 ′
.

3.2 The MIRROR algorithm
In this sub-section, we develop MIRROR, i.e., the time sub-interval

enumerating algorithm, for solving Problem 2 in 𝐺 ′
.

First, given a time sub-interval 𝑇𝑆 and a graph 𝐺 ′(𝑉 , 𝐸, b, 𝑐),
we define the aggregated graph of 𝐺 ′

during 𝑇𝑆 as a static graph

𝐺 ′
𝑇𝑆

(𝑉 , 𝐸,𝑤𝑠 , 𝑐𝑠), where 𝑤𝑠 is a function which maps each vertex

𝑣 ∈ 𝑉 to a nonnegative value 𝑤𝑠 (𝑣), and 𝑐𝑠 is a function which

maps each edge 𝑒 ∈ 𝐸 to a nonnegative value 𝑐𝑠 (𝑒), and

𝑤𝑠 (𝑣) =
∑

𝑡𝑥 ∈𝑇𝑆
b𝑡𝑥 (𝑣) | ∀𝑣 ∈ 𝑉 , (10)

𝑐𝑠 (𝑒) =
∑

𝑡𝑥 ∈𝑇𝑆
𝑐𝑡𝑥 (𝑒) | ∀𝑒 ∈ 𝐸, (11)

i.e., the aggregated vertex prizes and edge costs during 𝑇𝑆 .

For a static graph 𝐺 ′
𝑇𝑆

(𝑉 , 𝐸,𝑤𝑠 , 𝑐𝑠), the static prize-collecting

Steiner tree problem [42] is to find a tree Θ(𝑉Θ, 𝐸Θ) in 𝐺 ′
𝑇𝑆

such

that the net-weight of this tree, namely,

𝑤𝐺′
𝑇𝑆

(Θ) =
∑
𝑣∈𝑉Θ

𝑤𝑠 (𝑣) −
∑
𝑒∈𝐸Θ

𝑐𝑠 (𝑒) (12)

is maximized. For any time sub-interval 𝑇𝑆 ⊆ 𝑇 , we observe that

𝑤𝑇𝑆 (Θ) = 𝑤𝐺′
𝑇𝑆

(Θ) − |𝑇𝑆 |. (13)

This means that any treeΘ that maximizes𝑤𝐺′
𝑇𝑆

(Θ) also maximizes

𝑤𝑇𝑆 (Θ). Thus, we can solve the temporal prize-collecting Steiner

tree problem in𝐺 ′
by (i) enumerating every time sub-interval𝑇𝑆 ⊆

𝑇 ; (ii) finding the solution treeΘ to the static prize-collecting Steiner

tree problem in 𝐺 ′
𝑇𝑆
; and (iii) returning {Θ,𝑇𝑆 } that maximizes

𝑤𝑇𝑆 (Θ) as the solution to the temporal prize-collecting Steiner tree

problem in𝐺 ′
during𝑇 . However, it is too slow to conduct the above

process in practice. To address this issue, MIRROR incorporates

newly developed techniques based on the classic branch and bound

idea [44] for accelerating the above process.

Description of MIRROR. Algorithm 1 demonstrates the pseudo

code of MIRROR. Given a time interval 𝑇 = [𝑡1, 𝑡𝑚] and a graph

𝐺 ′(𝑉 , 𝐸, b, 𝑐), the algorithm first sorts all time sub-intervals Φ =

{𝑇𝑖 | ∀𝑇𝑖 ⊆ 𝑇 } from large to small based on their ranges (Line 1). The

reason of sorting time sub-intervals in this order is that MIRROR
later dynamically prunes un-profitable small time sub-intervals

based on the computing results in large time sub-intervals.

Then, the algorithm initializes an empty tree Θ𝑀 , an empty time

sub-interval 𝑇𝑀 , and consider𝑤𝑇𝑀 (Θ𝑀) = −∞, and also initializes

an empty hash table 𝑃 for storing pruned time sub-intervals (Line

2). MIRROR uses {Θ𝑀 ,𝑇𝑀 } to store the best found solution.

Subsequently, it reduces𝐺 ′
using the Degree-0-1-2 test as follows

(Line 3). It associates each vertex 𝑣 ∈ 𝑉 with a Boolean value𝑤𝑟 (𝑣).
If b𝑡𝑥 (𝑣) = 0 for all 𝑡𝑥 ∈ 𝑇 , then 𝑤𝑟 (𝑣) = 0. Otherwise, 𝑤𝑟 (𝑣) = 1.

It associates each edge 𝑒 ∈ 𝐸 with a value 𝑐𝑟 (𝑒) = 1. If vertex 𝑣 has

a degree of 0 or 1 and𝑤𝑟 (𝑣) = 0, then it removes 𝑣 from 𝐺 ′
, since

𝑣 is not in an optimal solution. If vertex 𝑣 has a degree of 2 and

𝑤𝑟 (𝑣) = 0, then it removes 𝑣 from𝐺 ′
in the following way. Let 𝑗 and

𝑘 be the adjacent vertices of 𝑣 . If edge (𝑗, 𝑘) is not in𝐺 ′
, then it adds

(𝑗, 𝑘) into 𝐺 ′
, and sets 𝑐𝑟 (𝑗, 𝑘) = 𝑐𝑟 (𝑣, 𝑗) + 𝑐𝑟 (𝑣, 𝑘), and removes 𝑣

from 𝐺 ′
, and uses a hash to record that (𝑗, 𝑘) is a merge of (𝑣, 𝑗)

and (𝑣, 𝑘). If edge (𝑗, 𝑘) is in 𝐺 ′
and 𝑐𝑟 (𝑗, 𝑘) > 𝑐𝑟 (𝑣, 𝑗) + 𝑐𝑟 (𝑣, 𝑘),

then it updates 𝑐𝑟 (𝑗, 𝑘) = 𝑐𝑟 (𝑣, 𝑗) + 𝑐𝑟 (𝑣, 𝑘), and removes 𝑣 from

𝐺 ′
, and uses a hash to record that (𝑗, 𝑘) is a merge of (𝑣, 𝑗) and

(𝑣, 𝑘). If edge (𝑗, 𝑘) is in𝐺 ′
and 𝑐𝑟 (𝑗, 𝑘) ≤ 𝑐𝑟 (𝑣, 𝑗) + 𝑐𝑟 (𝑣, 𝑘), then it

simply removes 𝑣 from 𝐺 ′
. It conducts this reduction process until

no vertex can be removed any more.

After reducing 𝐺 ′
, MIRROR conducts a depth first search to

mark maximum connected components of 𝐺 ′
(Line 4). Then, it

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

877

Algorithm 1 The MIRROR algorithm

Input: a time interval 𝑇 = [𝑡1, 𝑡𝑚], a graph 𝐺 ′(𝑉 , 𝐸, b, 𝑐)
Output: a tree Θ𝑀 and a time sub-interval 𝑇𝑀

1: Sort Φ = {𝑇𝑖 | ∀𝑇𝑖 ⊆ 𝑇 } from large to small

2: Initialize Θ𝑀 = ∅, 𝑇𝑀 = ∅,𝑤𝑇𝑀 (Θ𝑀) = −∞, 𝑃 = ∅
3: Reduce 𝐺 ′

via Degree-0-1-2 test

4: Mark maximum connected components of 𝐺 ′

5: for each (sorted) 𝑇𝑖 ∈ Φ do
6: if 𝑇𝑖 ∉ 𝑃 then
7: Build 𝐺 ′

𝑇𝑖
(𝑉 , 𝐸,𝑤𝑠 , 𝑐𝑠)

8: if Z𝑇𝑖 − |𝑇𝑖 | ≤ 𝑤𝑇𝑀 (Θ𝑀) then
9: if Z𝑇𝑖 ≤ 𝑤𝑇𝑀 (Θ𝑀) then
10: 𝑃 = 𝑃 ∪ {𝑇𝑗 | ∀𝑇𝑗 ⊆ 𝑇𝑖 }
11: end if
12: Continue \\ Skip to Line 5

13: end if
14: if 𝑈𝐵𝑇𝑖 ≤ 𝑤𝑇𝑀 (Θ𝑀) then
15: Continue \\ Skip to Line 5

16: end if
17: Θ1𝑇𝑖 (𝑉1𝑇𝑖 , 𝐸1𝑇𝑖) = 𝐹𝑎𝑠𝑡𝐺𝑟𝑜𝑤𝑖𝑛𝑔𝑇𝑟𝑒𝑒 (𝐺 ′

𝑇𝑖
)

18: Θ2𝑇𝑖 (𝑉2𝑇𝑖 , 𝐸2𝑇𝑖) = 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔(Θ1𝑇𝑖)
19: if 𝑤𝑇𝑖 (Θ2𝑇𝑖) > 𝑤𝑇𝑀 (Θ𝑀) then
20: Θ𝑀 = Θ2𝑇𝑖 , 𝑇𝑀 = 𝑇𝑖
21: end if
22: end if
23: end for
24: Return Θ𝑀 and 𝑇𝑀

enumerates every time sub-interval 𝑇𝑖 ∈ Φ from large to small

(Line 5). If 𝑇𝑖 has not been pruned, i.e., 𝑇𝑖 ∉ 𝑃 (Line 6), it builds the

aggregated graph 𝐺 ′
𝑇𝑖
(𝑉 , 𝐸,𝑤𝑠 , 𝑐𝑠) (Line 7). Different from 𝑐𝑠 (𝑒) in

Equation (11), here, for every edge 𝑒 ∈ 𝐸,

𝑐𝑠 (𝑒) = 𝑐𝑟 (𝑒) · |𝑇𝑖 |, (14)

since 𝑐𝑟 (𝑒) edges in the original𝐺 ′
are merged together as 𝑒 during

the above Degree-0-1-2 test in Line 3, and by Theorem 1, 𝑐𝑡𝑥 (𝑒) = 1

for every 𝑒 ∈ 𝐸 and 𝑡𝑥 ∈ 𝑇 in the temporal bump hunting case.

To enhance the efficiency,MIRROR employs newly developed

techniques based on the classic branch and bound idea [44] as

follows (Lines 8-16). We refer to Z𝑇𝑖 as the maximum value of the

sum of aggregated vertex prizes (𝑤𝑠) in a maximum connected

component of𝐺 ′
𝑇𝑖
. The best solution we can find in𝐺 ′

𝑇𝑖
has a weight

not larger than Z𝑇𝑖 − |𝑇𝑖 | (see Equation (4)). If Z𝑇𝑖 − |𝑇𝑖 | ≤ 𝑤𝑇𝑀 (Θ𝑀)
(Line 8), thenMIRROR continues the loop without solving the static

prize-collecting Steiner tree problem in𝐺 ′
𝑇𝑖

(Line 12), since it cannot

find a combination of a tree and 𝑇𝑖 that has a larger weight than

the best found solution {Θ𝑀 ,𝑇𝑀 }. Before continuing the loop, if

Z𝑇𝑖 ≤ 𝑤𝑇𝑀 (Θ𝑀) (Line 9), then it prunes all time sub-intervals in

𝑇𝑖 , i.e., it pushes these time sub-intervals into 𝑃 (Line 10), since it

cannot find a combination of a tree and 𝑇𝑗 | ∀ 𝑇𝑗 ⊆ 𝑇𝑖 that has a

larger weight than {Θ𝑀 ,𝑇𝑀 }.
MIRROR further employs the fact that 𝑐𝑠 (𝑒) ≥ |𝑇𝑖 | for every

edge 𝑒 ∈ 𝐸 to compute a newly discovered upper bound of the best

solution weight that it can obtain in 𝐺 ′
𝑇𝑖

(Lines 14-16), for further

enhancing the efficiency. The details are as follows. For a maximum

connected component of 𝐺 ′
𝑇𝑖
: 𝐶𝑥 (𝑉𝐶𝑥

, 𝐸𝐶𝑥
), let 𝑆𝑈𝑀𝑇𝑖_𝐶𝑥

be the

sum of aggregated vertex prizes in 𝐶𝑥 that are larger than |𝑇𝑖 |, i.e.,

𝑆𝑈𝑀𝑇𝑖_𝐶𝑥
=

∑
𝑣∈𝑉𝐶𝑥 ,𝑤𝑠 (𝑣)> |𝑇𝑖 |

𝑤𝑠 (𝑣) . (15)

Moreover, let 𝑁𝑈𝑀𝐶𝑥
be the number of aggregated vertex prizes

in 𝐶𝑥 that are larger than |𝑇𝑖 |, i.e.,

𝑁𝑈𝑀𝑇𝑖_𝐶𝑥
=

∑
𝑣∈𝑉𝐶𝑥 ,𝑤𝑠 (𝑣)> |𝑇𝑖 |

1. (16)

We set

𝑈𝐵𝑇𝑖_𝐶𝑥
= 𝑆𝑈𝑀𝑇𝑖_𝐶𝑥

− 𝑁𝑈𝑀𝑇𝑖_𝐶𝑥
· |𝑇𝑖 |. (17)

Let 𝑈𝐵𝑇𝑖 be the maximum value of 𝑈𝐵𝑇𝑖_𝐶𝑥
for any 𝐶𝑥 , i.e., any

maximum connected component of 𝐺 ′
𝑇𝑖
. Since 𝑐𝑡𝑥 (𝑒) = 1 for every

𝑒 ∈ 𝐸 and 𝑡𝑥 ∈ 𝑇 in the bump hunting case, we have Theorem 2,

the proof of which is in Section S1 in the supplement [6].

Theorem 2. Given a time interval 𝑇 = [𝑡1, 𝑡𝑚] and a graph
𝐺 ′(𝑉 , 𝐸, b, 𝑐), for any tree Θ(𝑉Θ, 𝐸Θ) of𝐺 ′ and any time sub-interval
𝑇𝑖 ⊆ 𝑇 , we have

𝑈𝐵𝑇𝑖 ≥ 𝑤𝑇𝑖 (Θ) . (18)

Theorem 2 shows that𝑈𝐵𝑇𝑖 is an upper bound of the best solu-

tion weight thatMIRROR can obtain in 𝐺 ′
𝑇𝑖
. If𝑈𝐵𝑇𝑖 ≤ 𝑤𝑇𝑀 (Θ𝑀)

(Line 14), then MIRROR continues the loop without solving the

static prize-collecting Steiner tree problem in 𝐺 ′
𝑇𝑖

(Line 15), since it

cannot find a solution in 𝐺 ′
𝑇𝑖

that is better than {Θ𝑀 ,𝑇𝑀 }.
If the above process does not rule out the possibility of finding a

better solution than {Θ𝑀 ,𝑇𝑀 } in 𝐺 ′
𝑇𝑖
, thenMIRROR employs the

Goemans-Williamson approximation scheme [33] to solve the static

prize-collecting Steiner tree problem in 𝐺 ′
𝑇𝑖
. Specifically, it first

uses the fast implementation of the Goemans-Williamson growing

algorithm [39] to produce a raw solution tree Θ1𝑇𝑖 (Line 17), and

then uses the general pruning algorithm [61] to prune this raw

solution tree as Θ2𝑇𝑖 (Line 18). The pruned tree is an approximate

solution to the static prize-collecting Steiner tree problem in𝐺 ′
𝑇𝑖
. If

𝑤𝑇𝑖 (Θ2𝑇𝑖) > 𝑤𝑇𝑀 (Θ𝑀) (Line 19), then MIRROR updates Θ𝑀 and

𝑇𝑀 to be Θ2𝑇𝑖 and 𝑇𝑖 (Line 20). After the loop, MIRROR returns

Θ𝑀 and 𝑇𝑀 as the final solution (Line 24). Note that, due to the

reduction process (Line 3), Θ𝑀 may contain edges that are not in

the original 𝐺 ′
but are merged by edges in the original 𝐺 ′

. Thus, it

is required to use the recorded merging information to restore Θ𝑀 ,

for guaranteeing that Θ𝑀 is a tree in the original 𝐺 ′
.

Approximation guarantees of MIRROR. MIRROR employs the

Goemans-Williamson approximation scheme [33] to solve a static

prize-collecting Steiner tree instance for every time sub-interval.

Via this process,MIRROR extends the above scheme to temporal

scenarios, and achieves the following approximation guarantees.

Theorem 3. MIRROR has an approximation guarantee of 2 with
respect to minimizing 𝑐𝑇𝑆 (Θ) for solving the temporal prize-collecting
Steiner tree problem.

The proof of this theorem is in Section S1 in the supplement [6].

The above 2 ratio does not translate into a constant approximation

ratio for maximizing 𝐷
𝑇𝑆
𝐶
, since Theorem 1 shows that maximizing

𝐷
𝑇𝑆
𝐶

is translated into maximizing𝑤𝑇𝑆 (Θ), not minimizing 𝑐𝑇𝑆 (Θ).

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

878

The previous work [29] indicates that it is NP-hard to approxi-

mately maximize 𝑤𝑇𝑆 (Θ) within any constant ratio. With this in

mind, we present the following theorem to show the approximation

guarantee of MIRROR with respect to maximizing𝑤𝑇𝑆 (Θ).
Theorem 4. Given a time interval 𝑇 = [𝑡1, 𝑡𝑚] and a graph

𝐺 ′(𝑉 , 𝐸, b, 𝑐), let {Θ(𝑉Θ, 𝐸Θ),𝑇𝑆 } be an optimal solution to the tempo-
ral prize-collecting Steiner tree problem, and let {Θ𝑀 (𝑉𝑀 , 𝐸𝑀),𝑇𝑀 }
be the solution of MIRROR, then

2𝑤𝑇𝑀 (Θ𝑀) + 𝐿 ≥ 2𝑤𝑇𝑆 (Θ), (19)

where

𝐿 = max{
∑

𝑒∈𝐸2𝑇𝑖
,𝑡𝑥 ∈𝑇𝑖

𝑐𝑡𝑥 (𝑒) | ∀𝑇𝑖 ∈ Φ}, (20)

and 𝐸2𝑇𝑖 andΦ are in the process ofMIRROR (if Line 18 is not executed
for𝑇𝑖 due to the branch and bound process, then we consider 𝐸2𝑇𝑖 = ∅).

The proof of Theorem 4 is also in the supplement [6]. Theorem

4 implies an upper bound of the optimal solution weight𝑤𝑇𝑆 (Θ):

𝑤𝑇𝑀 (Θ𝑀) + 𝐿

2

.

The ratio of 𝑤𝑇𝑀 (Θ𝑀) to this upper bound can be seen as a non-

constant worst case approximation ratio of𝑤𝑇𝑀 (Θ𝑀).
Time complexity of MIRROR:

𝑂

(
𝑚2 |𝑉 | +𝑚2𝑑 |𝐸 | log |𝑉 | +𝑚2 | ∪ 𝑣𝑝𝑜𝑠 | +𝑚3

)
,

where 𝑑 is the precision of vertex prizes and edge costs (details in

[39]), and | ∪ 𝑣𝑝𝑜𝑠 | is the number of positive vertex prizes, which

is at most𝑚 |𝑉 |. Due to space limitation, we put the details of the

above time complexity in Section S4 in the supplement [6].

3.3 The S-MIRROR algorithm
The aboveMIRROR does not have a strong scalability to the number

of time slots:𝑚, since it computes all time sub-intervals, while the

total number of time sub-intervals with respect to𝑚 is quadratic.

To address this issue, here, we develop S-MIRROR, i.e., the selected
time sub-interval enumerating algorithm, for solving Problem 2

in 𝐺 ′
. Unlike MIRROR that computes all time sub-intervals, S-

MIRROR only computes some selected time sub-intervals.

Description of S-MIRROR. Algorithm 2 shows the pseudo code

of S-MIRROR. Like MIRROR, S-MIRROR inputs a time interval

𝑇 = [𝑡1, 𝑡𝑚] and a graph 𝐺 ′(𝑉 , 𝐸, b, 𝑐). When𝑚 = 1, it selects the

single time sub-interval. When𝑚 ≥ 2, it selects time sub-intervals

Ω = Ω1 ∪ Ω2 ∪ Ω3, where Ω1, Ω2 and Ω3 are defined as follows.

Ω1 = {[𝑡1, 𝑡2𝑖], [𝑡2𝑖 , 𝑡2𝑖+1−1], · · · , [𝑡𝜏 , 𝑡𝑚]
, [𝑡𝑚−(2𝑖−1) , 𝑡𝑚], [𝑡𝑚−2(2𝑖−1) , 𝑡𝑚−(2𝑖−1)], · · · , [𝑡1, 𝑡𝜑]

| ∀ 1 ≤ 𝑖 ≤ log
2
𝑚, 𝑖 ∈ N},

(21)

where 𝜏 and 𝜑 are such integers that𝑚 − 𝜏 ≤ 2
𝑖 − 1, 𝜑 − 1 ≤ 2

𝑖 − 1.

That is to say, for each integer 𝑖 ∈ [1, log
2
𝑚], Ω1 enumerates and

includes adjacent time sub-intervals with a length of 2
𝑖
both from

𝑡1 to 𝑡𝑚 (i.e., from [𝑡1, 𝑡2𝑖] to [𝑡𝜏 , 𝑡𝑚]) and from 𝑡𝑚 to 𝑡1 (i.e., from
[𝑡𝑚−(2𝑖−1) , 𝑡𝑚] to [𝑡1, 𝑡𝜑]). To fully cover 𝑇 in the above enumera-

tions, the lengths of [𝑡𝜏 , 𝑡𝑚] and [𝑡1, 𝑡𝜑] may be smaller than 2
𝑖
.

Ω2 = {[𝑡𝑥 , 𝑡𝑥], [𝑡𝑥 , 𝑡𝑥+1], · · · , [𝑡𝑥 , 𝑡𝑦]
, [𝑡𝑦, 𝑡𝑦], [𝑡𝑦−1, 𝑡𝑦], · · · , [𝑡𝑥+1, 𝑡𝑦] | ∀ [𝑡𝑥 , 𝑡𝑦] ∈ Ω1}.

(22)

Algorithm 2 The S-MIRROR algorithm

Input: a time interval 𝑇 = [𝑡1, 𝑡𝑚], a graph 𝐺 ′(𝑉 , 𝐸, b, 𝑐)
Output: a tree Θ𝑆𝑀 and a time sub-interval 𝑇𝑆𝑀

1: Select time sub-intervals Ω = Ω1 ∪ Ω2 ∪ Ω3

2: Sort Φ = Ω from large to small

3: {Θ𝑀 ,𝑇𝑀 } = Implement Lines 2-23 in MIRROR
4: Return Θ𝑆𝑀 = Θ𝑀 and 𝑇𝑆𝑀 = 𝑇𝑀

That is to say, for every time sub-interval [𝑡𝑥 , 𝑡𝑦] ∈ Ω1, Ω2 contains

every time sub-interval that (i) is a part of [𝑡𝑥 , 𝑡𝑦] and (ii) starts at

𝑡𝑥 or ends at 𝑡𝑦 . Let Υ be the set of time sub-intervals that are not

in Ω1 or Ω2. Subsequently, Ω3 contains min{𝑚 log
2
𝑚, |Υ|} time

sub-intervals that are selected from Υ uniformly at random, where

𝑚 log
2
𝑚 is the smallest integer larger than or equal to𝑚 log

2
𝑚.

The number of selected time sub-intervals is

𝑂

(
|Ω |

)
= 𝑂

(
𝑚 log𝑚

)
. (23)

The deduction details of Equation (23) are simple and omitted.

After selecting time sub-intervals in the above way (Line 1), S-
MIRROR sorts the selected time sub-intervals from large to small

based on their ranges (Line 2). It implements Lines 2-23 inMIRROR
to produce treeΘ𝑀 and time sub-interval𝑇𝑀 (Line 3). It returnsΘ𝑀

and𝑇𝑀 as the final solution (Line 4). It is possible to add a parameter

ℎ ∈ N into Ω3, i.e., to let Ω3 contain min{ℎ ·𝑚 log
2
𝑚, |Υ|} time

sub-intervals that are selected from Υ uniformly at random. The

experiment results in Section S5 in the the supplement [6] show

that setting ℎ = 1 gives S-MIRROR a high performance. As a result,

for the easy use of S-MIRROR, we omit ℎ in this paper.

Approximation guarantees of S-MIRROR. S-MIRROR select

time sub-intervals in such a way that, for any time sub-interval

𝑇𝑆 = [𝑡𝑎, 𝑡𝑐] ⊆ 𝑇 , there are two selected time sub-intervals [𝑡𝑎, 𝑡𝑏]
and [𝑡𝑏 , 𝑡𝑐] in Ω2 such that 𝑡𝑎 ≤ 𝑡𝑏 ≤ 𝑡𝑐 (see Lemma 1 in Section S1

in the supplement [6]). By computing both [𝑡𝑎, 𝑡𝑏] and [𝑡𝑏 , 𝑡𝑐] for
any 𝑇𝑆 = [𝑡𝑎, 𝑡𝑐] ⊆ 𝑇 , S-MIRROR achieves the following approxi-

mation guarantees.

Theorem 5. Given a time interval 𝑇 = [𝑡1, 𝑡𝑚] and a
graph 𝐺 ′(𝑉 , 𝐸, b, 𝑐), let {Θ(𝑉Θ, 𝐸Θ),𝑇𝑆 } be an optimal solution
to the temporal prize-collecting Steiner tree problem, and let
{Θ𝑆𝑀 (𝑉𝑆𝑀 , 𝐸𝑆𝑀),𝑇𝑆𝑀 } be the solution of S-MIRROR, then

2𝑤𝑇𝑆𝑀 (Θ𝑆𝑀) + 𝐻 + 1 ≥ 𝑤𝑇𝑆 (Θ), (24)

2𝑐𝑇𝑆𝑀 (Θ𝑆𝑀) − 𝐻 − 1 ≤
∑

𝑣∈𝑉 ,𝑡𝑥 ∈𝑇
b𝑡𝑥 (𝑣) + 𝑐𝑇𝑆 (Θ), (25)

where

𝐻 = max{
∑
𝑒∈𝐸Θ

𝑐𝑡𝑏 (𝑒) −
∑
𝑣∈𝑉Θ

b𝑡𝑏 (𝑣) | ∀𝑡𝑏 ∈ 𝑇 }

+max{^1, ^2},
(26)

where ^1 is the maximum value of
∑
𝑒∈𝐸2𝑇𝑖

,𝑡𝑥 ∈𝑇𝑖 𝑐
𝑡𝑥 (𝑒) for such 𝑇𝑖 ∈

Ω2 that Line 18 ofMIRROR is executed, and ^2 is the maximum value
of Z𝑇𝑖 for such 𝑇𝑖 ∈ Ω2 that Line 12 or 15 of MIRROR is executed.

We put the proof of Theorem 5 in Section S1 in the supplement

[6]. Based on Theorem 5, we can use the solution of S-MIRROR to

produce an upper bound of the optimal solution weight 𝑤𝑇𝑆 (Θ).

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

879

Before showing this upper bound, we propose a theorem as follows,

which is based on the fact that each transformed vertex prize is

either 0 or 2 in the temporal bump hunting case (see Equation (7)).

Theorem 6. Given a time interval 𝑇 = [𝑡1, 𝑡𝑚] and a graph
𝐺 ′(𝑉 , 𝐸, b, 𝑐) built via Theorem 1, let {Θ(𝑉Θ, 𝐸Θ),𝑇𝑆 } be an opti-
mal solution to the temporal prize-collecting Steiner tree problem. If
there is at least one positive vertex prize in 𝐺 ′ during 𝑇 , then

|𝐸Θ | ≤ min{|𝑉 | − 1, 2|𝑉𝑝𝑜𝑠 | − 1 − 1

|𝑇 | }, (27)

where 𝑉𝑝𝑜𝑠 is the set of vertices that have at least one positive prize
during 𝑇 , i.e., 𝑉𝑝𝑜𝑠 = {𝑣 | ∀𝑣 ∈ 𝑉 ,

∑
𝑡𝑥 ∈𝑇 b𝑡𝑥 (𝑣) > 0}.

We put the proof of this theorem in Section S1 in the supplement

[6]. Based on this theorem, when𝐺 ′
is built via Theorem 1, we have∑

𝑒∈𝐸Θ

𝑐𝑡𝑏 (𝑒) −
∑
𝑣∈𝑉Θ

b𝑡𝑏 (𝑣) ≤ min{|𝑉 | − 1, 2|𝑉𝑝𝑜𝑠 | − 1 − 1

|𝑇 | }. (28)

Then, by Equation (24), we can use the solution of S-MIRROR to

produce an upper bound of𝑤𝑇𝑆 (Θ):

2𝑤𝑇𝑆𝑀 (Θ𝑆𝑀) +max{^1, ^2} +min{|𝑉 |, 2|𝑉𝑝𝑜𝑠 | −
1

|𝑇 | }.

Notably, |𝑉 | in this upper bound can be the number of vertices in the

graph reduced by Degree-0-1-2 test (see Line 3 ofMIRROR). Like
MIRROR, the ratio of𝑤𝑇𝑆𝑀 (Θ𝑆𝑀) to the above bound can be seen

as a non-constant worst case approximation ratio of𝑤𝑇𝑆𝑀 (Θ𝑆𝑀).
Time complexity of S-MIRROR:

𝑂

(
𝑚 log𝑚 · |𝑉 | +𝑚 log𝑚 · 𝑑 |𝐸 | log |𝑉 | +𝑚 log𝑚 · | ∪ 𝑣𝑝𝑜𝑠 | +𝑚3

)
.

The details of this time complexity are similar to those ofMIRROR,
since the only difference between MIRROR and S-MIRROR is that

S-MIRROR selects and computes 𝑂 (𝑚 log𝑚) time sub-intervals.

4 TWO FAST HEURISTIC ALGORITHMS
To push the limit of algorithmic efficiency, here, we propose two

fast heuristic algorithms for solving the temporal prize-collecting

Steiner tree problem in 𝐺 ′
. These two algorithms are dubbed H-

MIRROR and H-S-MIRROR, respectively. H-MIRROR and H-S-
MIRROR are different from MIRROR and S-MIRROR in that H-
MIRROR and H-S-MIRROR only hunt bumps from sub-graphs

constructed by vertices that have been queried at least once during

𝑇 and close neighbors of these vertices, while ignoring the other

parts of the input graph. That is to say, different fromMIRROR and

S-MIRROR that compute all vertices,H-MIRROR andH-S-MIRROR
only compute queried vertices and their close neighbors.

This change is motivated by two observations: (i) most vertices

in real high-discrepancy bumps have been queried at least once

during the time interval 𝑇 , as otherwise the discrepancies of these

bumps would be low; and (ii) only a small part of vertices have

ever exhibited a property of interest and been queried in many real

scenarios (e.g., in the Wikipedia graph, pages that are being viewed

intensively are often pages that are related to hot topics, which

are a fraction of all Wikipedia pages). Based on these observations,

by only computing queried vertices and their close neighbors, we

could enhance the algorithmic efficiency, while not sacrificing the

practical solution quality. H-MIRROR and H-S-MIRROR are based

on this simple but effective idea.

Algorithm 3 The H-MIRROR algorithm

Input: a time interval 𝑇 = [𝑡1, 𝑡𝑚], a graph 𝐺 ′(𝑉 , 𝐸, b, 𝑐)
Output: a tree Θ𝐻𝑀 and a time sub-interval 𝑇𝐻𝑀

1: 𝐺 ′ = 𝐵𝑟𝑒𝑎𝑑𝑡ℎ𝐹𝑖𝑟𝑠𝑡𝑆𝑒𝑎𝑟𝑐ℎ(𝐺 ′)
2: {Θ𝑀 ,𝑇𝑀 } = MIRROR(𝑇,𝐺 ′)
3: Return Θ𝐻𝑀 = Θ𝑀 and 𝑇𝐻𝑀 = 𝑇𝑀

Algorithm 4 The H-S-MIRROR algorithm

Input: a time interval 𝑇 = [𝑡1, 𝑡𝑚], a graph 𝐺 ′(𝑉 , 𝐸, b, 𝑐)
Output: a tree Θ𝐻𝑆𝑀 and a time sub-interval 𝑇𝐻𝑆𝑀

1: 𝐺 ′ = 𝐵𝑟𝑒𝑎𝑑𝑡ℎ𝐹𝑖𝑟𝑠𝑡𝑆𝑒𝑎𝑟𝑐ℎ(𝐺 ′)
2: {Θ𝑆𝑀 ,𝑇𝑆𝑀 } = S −MIRROR(𝑇,𝐺 ′)
3: Return Θ𝐻𝑆𝑀 = Θ𝑆𝑀 and 𝑇𝐻𝑆𝑀 = 𝑇𝑆𝑀

Description ofH-MIRROR andH-S-MIRROR.Algorithm 3 shows

the pseudo code of H-MIRROR. The algorithm first updates 𝐺 ′
as

follows (Line 1). For each vertex 𝑣 ∈ 𝑉 such that

∑
𝑡𝑥 ∈𝑇 b𝑡𝑥 (𝑣) > 0,

H-MIRROR conducts a breadth first search starting from 𝑣 , with a

maximum searching depth of 𝑏 (the depth of 𝑣 is 0, and the depth

of adjacent vertices of 𝑣 is 1, etc.), where 𝑏 is the minimum possible

number of vertices between two queried vertices. After conducting

the above breadth first searches, H-MIRROR updates 𝐺 ′
to be the

sub-graph that is constructed by all the searched vertices and all the

edges between these vertices (Line 1). That is to say, the updated𝐺 ′

is constructed by queried vertices and their close neighbors. Then,

the algorithm employs MIRROR to produce a feasible solution

{Θ𝑀 ,𝑇𝑀 } (Line 2), and returns this solution (Line 3).

Algorithm 4 shows the pseudo code of H-S-MIRROR, which is

different from H-MIRROR in that it employs S-MIRROR to produce

a feasible solution {Θ𝑆𝑀 ,𝑇𝑆𝑀 } in the updated 𝐺 ′
(Line 2).

Solution qualities and time complexities of H-MIRROR and
H-S-MIRROR. Let {Θ(𝑉Θ, 𝐸Θ),𝑇𝑆 } be an optimal solution. Let

𝑉 ′
Θ ∈ 𝑉Θ be the set of vertices in 𝑉Θ such that, for each vertex

𝑣 ∈ 𝑉 ′
Θ,

∑
𝑡𝑥 ∈𝑇 b𝑡𝑥 (𝑣) > 0. For any path in Θ that contains no ver-

tex in 𝑉 ′
Θ, if there are at most 2𝑏 vertices in this path, then Θ is

in the updated 𝐺 ′
in H-MIRROR and H-S-MIRROR. In this case,

H-MIRROR and H-S-MIRROR provide the same approximation

guarantees with MIRROR and S-MIRROR, respectively. Otherwise,
H-MIRROR and H-S-MIRROR do not provide non-trivial approx-

imation guarantees. Notably, when 𝐺 ′
is built via Theorem 1, H-

MIRROR and H-S-MIRROR, as well asMIRROR and S-MIRROR,
have a trivial approximation guarantee of

1

𝑚 |𝑉 | for maximizing

𝑤𝑇𝑆 (Θ) (see Theorem 7 in Section S1 in the supplement [6]).

The updated𝐺 ′
inH-MIRROR andH-S-MIRRORmay contain all

vertices. As a result, the time complexities of H-MIRROR and H-S-
MIRROR are the same with MIRROR and S-MIRROR, respectively.

5 EXPERIMENTS
In this section, we conduct experiments on a server with 64 ARM-

architecture computing cores and 191 GB RAM
1
.

5.1 Datasets
We use three real datasets as follows.

1Our codes and datasets: https://github.com/rucdatascience/temporal_bh

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

880

https://github.com/rucdatascience/temporal_bh

New York.We collect this dataset from the NYC OpenData website

[1] and the New York City Taxi and Limousine Commission website

[7]. We use it to build theNew York graph, where vertices and edges
represent road junctions and road segments, respectively. There

are 77,580 vertices and 119,228 edges in total.

Each road junction is associated with nearby taxi requests in

January 2015. We consider each natural hour as a time slot. For

vertex 𝑣 and time slot 𝑡𝑥 , we query 𝑣 in 𝑡𝑥 if 𝑣 is associated with

a top 𝑝% largest number of taxi requests among all vertices in 𝑡𝑥 ,

where 𝑝 is a parameter. In this scenario, a temporal bump in the

New York graph represents a pair of a geographical region and

a time sub-interval such that large numbers of taxi requests are

frequently detected in this region during this time sub-interval.

Reddit. We collect this dataset from the Reddit dump [2], which

contains comments at the Reddit website [4]. These comments are

written in various Reddit communities, e.g., the financial commu-

nity: r/wallstreetbets [5]. We build the Reddit graph, where each
vertex represents one of three types of entities: (i) communities,

(ii) keywords in comments, and (iii) pairs of communities and key-

words (if there is a comment that is written in community 𝑎 and

contains keyword 𝑏, then there is a vertex representing the pair of

𝑎 and 𝑏). For each vertex representing a pair of a community and

a keyword, there are two edges that link this vertex to the corre-

sponding community and keyword. There are 1,763,279 vertices

and 2,046,668 edges in total.

Each vertex representing a pair of a community and a keyword is

associated with corresponding comment activities (e.g., the vertex
representing the pair of community 𝑎 and keyword 𝑏 is associated

with comments that are written in community 𝑎 and contain key-

word 𝑏) in September 2019. We consider each natural hour as a time

slot. Like New York, for time slot 𝑡𝑥 and vertex 𝑣 that represents

a pair of a community and a keyword, we query 𝑣 in 𝑡𝑥 if 𝑣 is as-

sociated with a top 𝑝% largest number of comments in 𝑡𝑥 . Then,

a temporal bump in the Reddit graph corresponds to a time sub-

interval and a sub-graph such that the vertices representing pairs of

communities and keywords in this sub-graph are frequently queried

during this time sub-interval, which means that large numbers of

comments with the corresponding keywords are frequently written

in the corresponding communities during this time sub-interval.

Wikipedia.We collect this dataset from the Wikipedia dump [9].

We use it to build theWikipedia graph, where vertices represent
Wikipedia pages. There is an edge between two vertices if the two

corresponding pages are linked to each other, which indicates that

these two pages are closely related. There are 1,176,192 vertices

and 11,124,449 edges in total.

Each page is associated with page views in January 2020. We

consider each natural hour during this period as a time slot. Like

New York, for vertex 𝑣 and time slot 𝑡𝑥 , we query 𝑣 in 𝑡𝑥 if 𝑣 is

associated with a top 𝑝% largest number of page views in 𝑡𝑥 . In this

case, a temporal bump in the Wikipedia graph corresponds to a

time sub-interval and a cluster of closely related pages such that

these pages are intensively viewed during this time sub-interval.

5.2 Experiment settings
Baseline algorithms.We adapt four state-of-the-art static bump

hunting algorithms [32, 62] to hunt temporal bumps as follows.

• BF-ST [32]: The main idea of BF-ST is to perform breadth first

searches from queried vertices to obtain spanning trees of the

graph, and then find the sub-tree that maximizes the static

discrepancy as the hunted static bump. We apply BF-ST to hunt

a temporal bump by first hunting a static bump, i.e., a tree, in
the above way, and then finding the pair of a sub-tree and a time

sub-interval that maximizes the temporal discrepancy as the

hunted temporal bump. We find multiple breadth first search

trees to produce different solutions in the above way, and return

the best solution. Specifically, we perform breadth first searches

from randomly selected queried vertices 𝑠 times to obtain 𝑠

spanning trees of each maximum connected component of the

graph that contains queried vertices, where 𝑠 is a parameter.

• Random-ST [32]: The main idea of Random-ST is to find mul-

tiple random spanning trees of the graph, and then find the

sub-tree that maximizes the static discrepancy as the hunted

static bump. We apply Random-ST to hunt a temporal bump by

first hunting a static bump in the above way, and then finding

the pair of a sub-tree and a time sub-interval that maximizes

the temporal discrepancy as the hunted temporal bump. Like

BF-ST, we employ the parameter 𝑠 , and find 𝑠 random spanning

trees of each maximum connected component of the graph.

• Smart-ST [32]: The main idea of Smart-ST is to find a mini-

mum spanning tree of the graph for updated edge costs (the

updated edge cost between two queried vertices is 0, between

one queried and one not queried vertex is 1, and between two

not queried vertices is 2), and then find the sub-tree that max-

imizes the static discrepancy as the hunted static bump. We

apply Smart-ST to hunt a temporal bump by first hunting a

static bump in the above way, and then finding the pair of a

sub-tree and a time sub-interval that maximizes the temporal

discrepancy as the hunted temporal bump.

• PCST [32, 62]: The main idea of PCST in [32] is to hunt a static

bump by solving the static prize-collecting Steiner tree problem.

We apply it to hunt a temporal bump by first hunting a static

bump in the above way, and then finding the pair of a sub-tree

and a time sub-interval that maximizes the temporal discrep-

ancy as the hunted temporal bump. The algorithm in [62] hunts

𝑘 static bumps by solving a Steiner forest problem [40] that

becomes the static prize-collecting Steiner tree problem when

𝑘 = 1. Hence, we also consider PCST as the adaptation of the

algorithm in [62] for hunting temporal bumps.

Parameters. We vary three parameters as follows.

• 𝑚: the number of time slots. We randomly extract𝑚 continuous

hours in the dataset as the time interval 𝑇 .

• 𝑝: the percentage of queried vertices (details in Section 5.1).

• 𝑠: the parameter in BF-ST and Random-ST.
We set the default values of parameters as: for New York,𝑚 = 72,

𝑝 = 1, 𝑠 = 10; for Reddit,𝑚 = 40, 𝑝 = 1, 𝑠 = 4; forWikipedia,𝑚 = 40,

𝑝 = 1, 𝑠 = 7. We vary these parameters in Figure 3. When we vary

one parameter, we set the other parameters to default values.

Notably, H-MIRROR and H-S-MIRROR employ a value 𝑏 that is

defined as the minimum possible number of vertices between two

queried vertices. For New York andWikipedia, since two queried

vertices may be adjacent, 𝑏 = 0. For Reddit, since vertices repre-
senting pairs of communities and keywords are queried, there is at

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

881

Figure 2: Comparison of solution quality and speed.

least one vertex between two queried vertices, and 𝑏 = 1. In Section

S6 in the supplement [6], we vary 𝑏, and show that defining 𝑏 in the

above way givesH-MIRROR andH-S-MIRROR a high performance.

As a result, for the easy use of these two algorithms, we define 𝑏 in

the above way, and do not treat 𝑏 as a parameter in this paper.

Metrics. We evaluate two metrics as follows.

• 𝐷
𝑇𝑆
𝐶
: the temporal discrepancy (see Equation (3)), which equals

𝑤𝑇𝑆 (Θ) (see Theorem 1). A larger value of 𝐷
𝑇𝑆
𝐶

is better.

• 𝑡 : the running time of algorithms (unit: second).

5.3 Quantitative experiment results
Here, for each set of parameters, we randomly generate 50 instances,

and then visualize and compare the average metric values.

Comparison of solution quality and speed. We compare the

solution quality and speed of algorithms in Figure 2. First, we ob-

serve that, in Figures 2 (1-3), 𝐷
𝑇𝑆
𝐶

values of the proposed algorithms

are considerably larger than those of the baseline algorithms. Par-

ticularly, in Figure 2 (2), 𝐷
𝑇𝑆
𝐶

values of the proposed algorithms are

an order of magnitude larger than those of the baseline algorithms.

This shows that the baseline algorithms are not as effective as the

proposed ones for hunting high-discrepancy temporal bumps, as

discussed in Section 1. Nevertheless, in Figure 2 (3), the 𝐷
𝑇𝑆
𝐶

value

of BF-ST almost matches those of the proposed algorithms, and is

higher than those of the other baseline algorithms. This indicates

that, when BF-ST performs breadth first searches from queried

vertices to obtain spanning trees of theWikipedia graph, queried
vertices are often close to each other in these trees, which makes it

possible to hunt high-discrepancy bumps from these trees.

For speed, we observe that, in Figures 2 (4-6), MIRROR and S-
MIRROR are often slower than the baseline algorithms (especially,

slower than Smart-ST and PCST). We consider this as the price

of achieving non-trivial approximation guarantees by these two

algorithms. In comparison, H-MIRROR and H-S-MIRROR are gen-

erally faster than the baseline algorithms. In particular, in Figure 2

(6), H-MIRROR and H-S-MIRROR are an order of magnitude faster

than MIRROR and S-MIRROR, and also significantly faster than

the baseline algorithms. Thus, H-MIRROR and H-S-MIRROR have

a high efficiency for hunting temporal bumps.

Moreover, in Figures 2 (1-3), we observe that the proposed algo-

rithms hunt bumps with similar discrepancies with each other, even

though MIRROR and S-MIRROR provide different approximation

(a) Experiment results of varying𝑚

(b) Experiment results of varying 𝑝

(c) Experiment results of varying 𝑠
Figure 3: Experiment results of varying𝑚, 𝑝, and 𝑠.

guarantees, and H-MIRROR and H-S-MIRROR do not provide any

non-trivial approximation guarantee. This shows the usefulness

of H-MIRROR and H-S-MIRROR in practice, considering the high

efficiency of these two algorithms as discussed above.

Variation of the length of the input time interval:𝑚.We vary

𝑚 in Figure 3a. In Figures 3a (1) and (3), 𝐷
𝑇𝑆
𝐶

increases with𝑚 for

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

882

Figure 4: Nearly quadratic and linear scalabilities to𝑚.

New York and Wikipedia. The reason is that bumps with higher

discrepancies often exist in larger time intervals. However, in Figure

3a (2), 𝐷
𝑇𝑆
𝐶

values of the proposed algorithms do not change much

with𝑚 for Reddit. The reason is that queried vertices in the Reddit
graph in different time slots are often different and far away from

each other, which means that bumps with higher discrepancies may

not exist in larger time intervals. Notably, the baseline algorithms

may not be able to hunt high-discrepancy temporal bumps as𝑚

varies. For example, in Figure 3a (2), 𝐷
𝑇𝑆
𝐶

values of BF-ST and PCST

decrease with 𝑚 for Reddit, and in Figure 3a (3), 𝐷
𝑇𝑆
𝐶

values of

Random-ST are always negligible when comparing to the other

algorithms. On the other hand, the superior solution qualities of

the proposed algorithms hold well as𝑚 varies.

In Figures 3a (4-6), S-MIRROR and H-S-MIRROR scale better

to𝑚 thanMIRROR and H-MIRROR, respectively, i.e., 𝑡 values of
S-MIRROR and H-S-MIRROR increase with𝑚 at a lower rate than

MIRROR and H-MIRROR. The reason is that S-MIRROR and H-S-
MIRROR compute a nearly linear number of time sub-intervals with

respect to𝑚, while MIRROR and H-MIRROR compute a quadratic

number of time sub-intervals with respect to𝑚. In Figures 3a (4-6),

we show 𝑡 values using logarithmic scales, for visualizing 𝑡 values

of different algorithms clearly. In Figure 4, we present 𝑡 values of

the proposed algorithms using non-logarithmic scales, for clearly

showing that MIRROR and H-MIRROR scale nearly quadratically,

and S-MIRROR and H-S-MIRROR scale nearly linearly, to𝑚.

In Figures 3a (4-6), the baseline algorithms often scale well to𝑚.

The reason is as follows. Each baseline algorithm first hunts a static

bump, i.e., a tree, and then finds the pair of a sub-tree and a time

sub-interval that maximizes the temporal discrepancy as a temporal

bump. Since the hunted static bump is often small, it is often fast to

hunt the above temporal bump. As a result, the baseline algorithms

may be faster than the proposed ones when𝑚 is large, e.g., in Figure
3a (5), Smart-ST and PC-ST are faster than the proposed algorithms

when𝑚 = 100. Nonetheless, as discussed above, since the baseline

algorithms often cannot hunt high-discrepancy temporal bumps

in large time intervals, it may not be recommended to use the

baseline algorithms when 𝑚 is large, e.g., in Figure 3a (2), 𝐷
𝑇𝑆
𝐶

values of Smart-ST and PC-ST are more than an order of magnitude

smaller than those of the proposed algorithmswhen𝑚 = 100, which

indicates that it is not recommended to use these two algorithms

when𝑚 = 100, even after considering their high speed here.

Figure 5: Upper bound ratios of MIRROR and S-MIRROR.

Notably, as shown in Figures 3a (4-6), MIRROR has a low effi-

ciency when𝑚 is large, e.g.,MIRROR consumes nearly 10
4
seconds

to produce a solution when𝑚 = 100 in Figure 3a (6). This low effi-

ciency shows the need of worrying about the scalability of hunting

bumps in temporal cases, and justifies the value of the other faster

proposed algorithms, especially H-S-MIRROR, which is the fastest

proposed one. An example is as follows. In Figures 3a (3) and (6),

BF-ST hunts bumps with similar discrepancies with MIRROR, and
are slightly faster than MIRROR, when𝑚 = 100, i.e., BF-ST is as

good as MIRROR here. In comparison, the other faster proposed

algorithms still performs better than BF-ST here, e.g., in Figures 3a

(3) and (6), H-S-MIRROR hunts bumps with slightly higher discrep-

ancies than BF-ST, and is much faster than BF-ST, when𝑚 = 100.

Note that, as shown in Figures 3a (4-6), forNew York andWikipedia,
H-S-MIRROR is more than an order of magnitude faster than MIR-
ROR, while for Reddit, H-S-MIRROR is not so significantly faster

thanMIRROR when𝑚 is large (see a clear comparison in Figures

4 (2) and (5)). The major reason is that, different from New York
and Wikipedia, a large percentage of vertices have been queried

at least once during the input time interval when 𝑚 is large for

Reddit, and as a result, the acceleration strategy of only computing

queried vertices and their close neighbors does not work well for

Reddit. Nevertheless, since this strategy works well for New York
and Wikipedia, we consider this strategy as useful in practice.

Variation of the percentage of queried vertices: 𝑝.We vary 𝑝

in Figure 3b.We observe that, in Figures 3b (1) and (3),𝐷
𝑇𝑆
𝐶

increases

with 𝑝 for New York and Wikipedia. The reason is that vertices

that are associated with large amounts of activities in the New York
and Wikipedia graphs are often close to each other. As 𝑝 increases,

more vertices are queried and included in solutions. For this reason,

in Figures 3b (4) and (6), 𝑡 values ofMIRROR and S-MIRROR de-

crease with 𝑝 , since these two algorithms use higher-discrepancy

solutions to prune more time sub-intervals in the branch and bound

process, i.e., Lines 8-16 in MIRROR. In comparison, in Figure 3b

(6), 𝑡 values of H-MIRROR and H-S-MIRROR increase with 𝑝 , since

these two algorithms compute more breadth first searched vertices

as 𝑝 increases. In Figure 3b (2), 𝐷
𝑇𝑆
𝐶

does not change much with 𝑝

for Reddit. The reason is that vertices that are associated with large

amounts of activities in the Reddit graph are often not close to

each other. As a result, solutions that include more queried vertices

may not be found as 𝑝 increases. For this reason, in Figure 3b (5), 𝑡

values of the proposed algorithms do not change much with 𝑝 .

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

883

Figure 6: The effectiveness of acceleration techniques.

Variation of the parameter 𝑠 in BF-ST and Random-ST.We vary

𝑠 in Figure 3c. Each of BF-ST and Random-ST computes 𝑠 feasible

solutions, and returns the one with the highest discrepancy (details

in Section 5.2). As a result, 𝑡 values of these two algorithms increase

with 𝑠 in Figures 3c (4-6). Nevertheless, in Figures 3c (1-3), 𝐷
𝑇𝑆
𝐶

values of these two algorithms do not increase much with 𝑠 . In

particular, by setting 𝑠 to such large values that these two algorithms

are slower thanMIRROR and S-MIRROR, the solutions of these two
algorithms are still worse than those ofMIRROR and S-MIRROR.
Thus, these two algorithms are not as effective as the proposed

algorithms for hunting temporal bumps.

Upper bound ratios ofMIRROR and S-MIRROR.MIRROR and S-
MIRROR have theoretical guarantees on solution qualities, and can

compute upper bounds of the maximum solution weight:𝑤𝑇𝑆 (Θ),
which equals 𝐷

𝑇𝑆
𝐶
. We refer to the ratio of the solution weight of

MIRROR to the upper bound computed by MIRROR as the up-

per bound ratio of MIRROR for maximizing the solution weight

(similarly, the upper bound ratio of S-MIRROR). Recall that, it is
NP-hard to approximately maximize the solution weight within any

constant ratio. We illustrate the upper bound ratios ofMIRROR and

S-MIRROR for varying𝑚 and 𝑝 in Figure 5 (notably, since these two

algorithms do not contain the parameter 𝑠 , we do not vary 𝑠 here).

Note that, the upper bound ratios of MIRROR are often above
1

3
,

which means that the solution weight ofMIRROR is often at least a

third of the maximum solution weight. In particular, for New York
andWikipedia, the upper bound ratios ofMIRROR are often around

1

2
. In comparison, the upper bound ratios of S-MIRROR are often

around
1

6
forNew York andWikipedia, and are negligible for Reddit.

The reason why S-MIRROR has smaller upper bound ratios than

MIRROR is that S-MIRROR has looser approximation guarantees

than MIRROR. We consider this as the price of achieving a nearly

linear scalability with respect to𝑚. The previous experiment results

show that S-MIRROR produces similar solutions with MIRROR in

practice. This does not mean that the approximation guarantees

of S-MIRROR could be improved to those of MIRROR, since these
guarantees are for theoretically worst cases, not practical cases.

Acceleration techniques in MIRROR and S-MIRROR. We use

reduction and branch and bound techniques to accelerateMIRROR
and S-MIRROR. Specifically, the Degree-0-1-2 test in Line 3 ofMIR-
ROR is a reduction technique adapted from the existing work on

classical Steiner tree problems (e.g., [25, 26, 54]), while Theorem 2

and Lines 8-16 of MIRROR are newly developed techniques based

on the classic branch and bound idea [44]. We evaluate the ef-

fectiveness of these techniques in Figure 6, whereMIRROR-B&B
isMIRROR with branch and bound, but not reduction;MIRROR-
Reduc is MIRROR with reduction, but not branch and bound; and

MIRROR-Basic is MIRROR with neither reduction nor branch and

(a) Top 1% intensive taxi requests (b) 500% increased taxi requests
Figure 7: Case studies using the New York dataset.

bound (similar are S-MIRROR-B&B etc.). We observe that MIR-
ROR and S-MIRROR are at least an order of magnitude faster than

MIRROR-Basic and S-MIRROR-Basic, respectively. This shows
the effectiveness of the above techniques for accelerating MIR-
ROR and S-MIRROR. For New York and Wikipedia, MIRROR-B&B
and S-MIRROR-B&B are much faster than MIRROR-Reduc and
S-MIRROR-Reduc, respectively. This indicates that the branch and

bound technique is more effective than the reduction technique for

New York andWikipedia. In comparison, for Reddit,MIRROR-B&B
and S-MIRROR-B&B are much slower thanMIRROR-Reduc and
S-MIRROR-Reduc, respectively. This means that the reduction tech-

nique is more effective than the branch and bound technique for

Reddit. The reason is that the Degree-2 test in Line 3 ofMIRROR
removes a large number of not queried vertices that represent pairs

of communities and keywords in the Reddit graph.

5.4 Case studies
Here, we conduct New York, Reddit and Wikipedia case studies.
New York case studies.We load the New York graph in Section

5.1, where each vertex, i.e., road junction, is associated with nearby

taxi requests in January 2015. We consider each natural hour as

a time slot. Given the time interval 𝑇 from 00:00 1st to 00:00 4th

January 2015, for each pair of vertex 𝑣 and time slot 𝑡𝑥 ∈ 𝑇 , we

query 𝑣 in 𝑡𝑥 if 𝑣 is associated with a top 1% largest number of taxi

requests among all vertices in 𝑡𝑥 . We use H-MIRROR to hunt a

temporal bump, and visualize this bump in Figure 7a. This bump

is located at the central region of the Manhattan island, and spans

𝑇 , which means that taxis are intensively requested in Manhattan

during 𝑇 . This bump verifies the fact that Manhattan is the urban

core of the New York metropolitan area. Notably, this bump spans

the whole input time interval 𝑇 . This shows that queried vertices,

i.e., road junctions with intensive taxi requests, often do not change

from time slots to time slots. This stability does not happen when

we query vertices differently as follows.

We query vertices associated with abnormally large numbers of

taxi requests as follows. Given𝑇 from 01:00 2nd to 01:00 3rd January

2015, for each pair of vertex 𝑣 and time slot 𝑡𝑥 ∈ 𝑇 , we query 𝑣 in 𝑡𝑥
if the number of taxi requests associated with 𝑣 in 𝑡𝑥 has increased

more than 500% from the corresponding number in the last day. We

use H-MIRROR to hunt a temporal bump, and visualize it in Figure

7b. This bump is located at the front of the Metropolitan Museum

of Art, and lasts from 16:00 to 21:00 2nd January 2015. Intuitively,

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

884

Figure 8: A case study using the Reddit dataset.

abnormally large numbers of taxi requests are induced by events,

e.g., special exhibitions. This bump indicates that an event may be

hold in the above museum during the above period. The connection

of sub-graph in the temporal bump hunting problem helps discover

this knowledge. We explain this as follows. Let the three locations

in the bump in Figure 7b be 𝐿1, 𝐿2 and 𝐿3, respectively. Assume

that there are two other locations 𝐿4 and 𝐿5 that are also queried

during the time of this bump. If we just find which location has

a peak of the number of taxi requests, we could return the list

of "𝐿1, 𝐿4, 𝐿2, 𝐿5 and 𝐿3" without knowing that 𝐿1, 𝐿2 and 𝐿3

may collectively correspond to an event. Thus, connecting 𝐿1, 𝐿2

and 𝐿3 together helps discover the above event. The discrepancy

maximization objective also helps discover the location and time

of this event, as this objective ensures that peaked numbers of taxi

requests are frequently detected in the above sub-graph during

the above time. After discovering this event, taxi companies could

contact the museum to ask if there will be more events during the

same time in the next few days. If there are more events, then they

could allocate taxis to prepare for these events.

AReddit case study. Initially, we load the Reddit graph in Section

5.1, where each vertex representing a pair of a community and a

keyword is associated with corresponding comment activities in

September 2019. We consider each natural hour as a time slot. Given

the time interval 𝑇 from 00:00 1st to 00:00 2nd September 2019, for

each pair of time slot 𝑡𝑥 ∈ 𝑇 and vertex 𝑣 representing a pair of a

community and a keyword, we query 𝑣 in 𝑡𝑥 if 𝑣 is associated with

a top 0.006% largest number of comment activities. The reason why

we use a small percentage here is that a large percentage induces a

bump that is too large to be visualized. We use H-MIRROR to hunt

a temporal bump, and visualize this bump in Figure 8, where each

green vertex represents a pair of a community and a keyword, e.g.,
"r/worldnews: chinese_imports" represents the pair of community

"r/worldnews" and keyword "chinese_imports". The single orange

vertex represents the community "r/worldnews". This bumps exists

from 08:00 to 21:00 1st September 2019, and shows the great interest

of people in commenting on some topics on world news during this

time, particularly the topic that US President Donald Trump’s 15%

tariffs on $112 billion in Chinese goods took effect on 1st September

2019, just after the G7 summit [8]. Knowing this could help medias

make attractive contents, such as making a world-news-focused

TV show on how G7 reacts to the $112 billion tariffs, and allowing

common viewers to send interactive comments during the show.

A Wikipedia case study. First, we load the Wikipedia graph in

Section 5.1, where each vertex, i.e.,Wikipedia page, is associated

with page views in January 2020. We consider each natural hour

as a time slot. Given the time interval 𝑇 from 00:00 3rd to 00:00

4th January 2020, for each pair of vertex 𝑣 and time slot 𝑡𝑥 ∈ 𝑇 , we

query 𝑣 in 𝑡𝑥 if 𝑣 is associated with a top 0.002% largest number of

page views among all vertices in 𝑡𝑥 . We use H-MIRROR to hunt a

temporal bump, and visualize it in Figure 1. This bump spans the

time sub-interval between 04:00 3rd and 00:00 4th January 2020, con-

tains 6 Wikipedia pages, and has a discrepancy of 88. As discussed

in Section 1, this bump shows that, except the topic of “Qasem

Soleimani” that directly corresponds to the US-Iran conflict, people

are beginning to pay attention to the related topic of “Iran Iraq

War” shortly after this conflict, and mining this knowledge could

help medias make decisions on producing TV shows on Iran Iraq

War after talking about the US-Iran conflict. Except H-MIRROR,
we also apply PCST to hunt a bump under the same settings. Dif-

ferent from the bump hunted by H-MIRROR, the bump hunted by

PCST only contains three Wikipedia pages: "Qasem_Soleimani",

"Ali_Khamenei" and "Ruhollah_Khomeini" (i.e., the three above

pages in Figure 1), and has a smaller discrepancy of 52. Thus, PCST
cannot discover the knowledge that people are beginning to pay

attention to “Iran Iraq War”. This shows that, in comparison with

the adaptation of the existing static bump hunting techniques, the

proposed techniques could mine additional useful knowledge by

hunting temporal bumps with higher discrepancies. Moreover, as

discussed in Section 1, the existing work on event detection cannot

play the same role with the proposed techniques, e.g., in Section

S7 in the supplement [6], we show that an existing event detection

technique [56] cannot detect a cluster of closely related Wikipedia

pages and a time sub-interval that correspond to our intensive at-

tention during a certain period of time, and thus does not rule out

the particular usefulness of the proposed techniques in this case.

5.5 Key observations in experiments
To help analyze the above experiment results, we summarize the

key observations as follows.

• The proposed algorithms hunt bumps with significantly (some-

times an order of magnitude) higher discrepancies than the

baseline algorithms (e.g., Figure 2 (2)). Meanwhile, MIRROR
and S-MIRROR are often slower than, while H-MIRROR and

H-S-MIRROR are generally faster than, the baseline algorithms

(e.g., Figures 2 (4-6)).
• MIRROR and H-MIRROR scale nearly quadratically, while S-
MIRROR and H-S-MIRROR scale nearly linearly, to the length

of the input time interval:𝑚 (see Figure 4).

• AlthoughMIRROR and S-MIRROR generally produce similar

solutions in practice (e.g., Figures 2 (1-3)), MIRROR achieves

tighter guarantees than S-MIRROR (see Figure 5). Specifically,

the solution weight ofMIRROR is often projected to be at least

one third of the maximum solution weight (see Figure 5).

• H-MIRROR and H-S-MIRROR generally produce similar so-

lutions with MIRROR and S-MIRROR (e.g., Figures 2 (1-3)),

while being considerably faster than MIRROR and S-MIRROR
in various cases (e.g., Figure 2 (6)).

• Hunting temporal bumps can retrieve information from differ-

ent types of graphs with dynamic vertex properties, and helps

throw light upon the dynamics of a city (e.g., Figure 7), as well
as analyze our attention on the Internet (e.g., Figures 1 and 8).

6 RELATEDWORK
Bump hunting. Originated as the activity of detecting real bumps

in mass spectra in the field of high energy physics (e.g., [50, 58, 63]),

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

885

bump hunting has been continuously studied and become an in-

creasingly important data analysis approach (e.g., [10, 30, 32, 34,
35, 38, 62]). Traditional bump hunting techniques apply geometric

knowledge to find regions of Euclidean datasets where a property

of interest occurs frequently (e.g., [10, 30, 34, 35, 38]). Recently,
Gionis et al. [32] advance these techniques by applying graph the-

ory knowledge to find such regions of graph datasets. They de-

velop several heuristic algorithms to hunt a static bump, i.e., a
connected sub-graph, with the maximum discrepancy between the

numbers of queried and not queried vertices. The more recent work

in [62] employs this discrepancy maximization idea, and finds 𝑘

non-overlapping static bumps such that the sum of discrepancies

of these bumps is maximized. They prove that this multiple bump

hunting problem is NP-hard even when the graph is a set of non-

overlapping trees. The above work is different from community

search with queried vertices (e.g., [14, 15, 27, 31, 43, 45, 60]). Specifi-
cally, bump hunting finds a sub-graph that contains asmany queried

vertices as possible, and as few not queried vertices as possible. In

comparison, community search finds a sub-graph with particular

structural properties (e.g., a high density) to connect queried ver-

tices, and does not minimize the number of not queried vertices in

the sub-graph. Thus, the above work on bump hunting is useful

in finding regions of graphs where the property of interest occurs

frequently. However, the above work assumes that vertices exhibit

the property of interest statically. As discussed in Section 1, due to

the neglect of dynamic vertex properties, the above work [32] can-

not hunt temporal bumps directly, and the adaptation of the above

work cannot achieve non-trivial guarantees of solution qualities

for hunting temporal bumps, or hunt high-discrepancy temporal

bumps in practice. Moreover, as discussed in Section 1, the existing

work on temporal graphs or dynamic networks performs different

tasks from bump hunting, and does not address the above issue. The

proposed approach in this paper is different from the above previ-

ous work in that (i) it computes dynamic vertex properties in such a

way that non-trivial approximation guarantees of hunting temporal

bumps are achieved; and (ii) it uses newly developed techniques to

accelerate the computing process to a practically satisfiable degree.

Prize-collecting Steiner trees. The static prize-collecting Steiner
tree problem was first studied by Segev [59], while the term “prize-

collecting Steiner tree” was first used by Bienstock et al. [16], who
develop the first approximation algorithm for solving this problem,

which is NP-hard. Their algorithm has an approximation guarantee

of 3 for minimizing the solution cost. Goemans andWilliamson [33]

develop another algorithm (which we refer to as the GW algorithm)

using the linear programming relaxation model of Bienstock et al.,
and achieve an improved guarantee of 2 − 1/(|𝑉 | − 1). Recently,
Archer et al. [13] achieve a guarantee below 1.9672 (for minimizing

the solution cost) by combining the GW algorithm with a Mixed

Integer Programming (MIP) algorithm [18] for solving the classical

Steiner tree problem in graphs [24]. To our knowledge, this is the

tightest approximation guarantee for the static prize-collecting

Steiner tree problem to date. However, it is too slow to achieve this

guarantee, since doing this requires running the GW algorithm

twice and the MIP algorithm once for every possible root of the

optimal solution tree. Thus, most work about approximating prize-

collecting Steiner trees focuses on accelerating the GW algorithm

(e.g., [22, 39, 42, 61]). There are two phases in the GW algorithm:

growing and pruning. The fastest implementation of the growing

phase has a time complexity of𝑂 (𝑑 |𝐸 | log |𝑉 |) [39], while the fastest
implementation of the pruning phase has a time complexity of

𝑂 (|𝑉 |) in both rooted and unrooted scenarios [61]. We incorporate

these fast implementations into the process of solving the temporal

prize-collecting Steiner tree problem (see Lines 17-18 in MIRROR).

7 CONCLUSIONS AND FUTUREWORK
Given a time interval and a graph where vertices exhibit a property

of interest dynamically, an interesting question is: where and when

does the property of interest occur frequently? We answer this

question by solving the temporal bump hunting problem. Initially,

we propose two approximation algorithms, dubbedMIRROR and

S-MIRROR respectively. MIRROR achieves a tight approximation

guarantee, at the cost of a weak scalability to the number of time

slots. In comparison, S-MIRROR achieves a strong scalability to

the number of time slots, at the price of a loose approximation

guarantee. We further propose two heuristic algorithms, dubbed

H-MIRROR and H-S-MIRROR, respectively. These two algorithms

do not provide non-trivial approximation guarantees, but produce

similar solutions with, and are much faster than the two approx-

imation algorithms. Experiments on real datasets show that our

algorithms considerably outperform the state of the art for hunting

temporal bumps in graphs with dynamic vertex properties.

Some future work can be done based on the work in this paper.

Recall that S-MIRROR samples and computes time sub-intervals

in such a way that both non-trivial approximation guarantees and

a nearly linear scalability to𝑚 are achieved. It is recommended to

explore new sampling methods in the future, so that tighter guar-

antees or stronger scalabilities than S-MIRROR may be achieved.

Moreover, we can modify the proposed algorithms to hunt tem-

poral bumps under some different problem settings. First, for the

problem of finding a component𝐶𝑚𝑎𝑥 for a given time sub-interval

𝑇𝑆 such that the pair of {𝐶𝑚𝑎𝑥 ,𝑇𝑆 } has the maximum discrepancy,

we can modify the proposed algorithms to solve this problem by

only computing 𝑇𝑆 in Line 5 of MIRROR (in comparison, the prob-

lem of finding a time sub-interval 𝑇𝑚𝑎𝑥 for a given component 𝐶

such that {𝐶,𝑇𝑚𝑎𝑥 } has the maximum discrepancy can be solved

to optimality in polynomial time by enumerating every time sub-

interval 𝑇𝑖 and computing the discrepancy of {𝐶,𝑇𝑖 }). Second, con-
sider two temporal bumps {𝐶1,𝑇1} and {𝐶2,𝑇2} as non-overlapping
if 𝐶1 ∩ 𝐶2 = ∅ or 𝑇1 ∩ 𝑇2 = ∅, or both, then, we can modify the

proposed algorithms to heuristically hunt top-𝑘 non-overlapping

temporal bumps in the following iterative way: when enumerating

a time sub-interval 𝑇𝑖 in Line 5 of MIRROR for hunting a bump

that spans𝑇𝑖 , only compute vertices such that a bump that spans𝑇𝑖
and contains these vertices do not overlap with previously hunted

bumps. Nevertheless, applying such modifications to hunt multiple

bumps is slow. Some future work can be done to address this issue.

ACKNOWLEDGMENTS
This work is funded by (i) NSFC 61925203; (ii) PKU-Baidu Fund

2019BD006; and (iii) two start up grants from Renmin University

of China and National University of Singapore, respectively.

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

886

REFERENCES
[1] 2021. NYC OpenData. https://opendata.cityofnewyork.us.

[2] 2021. pushshift.io. https://pushshift.io.

[3] 2021. Qasem Soleimani: US kills top Iranian general in Baghdad air strike.

https://www.bbc.com/news/world-middle-east-50979463.

[4] 2021. reddit: the front page of the internet. https://www.reddit.com.

[5] 2021. r/wallstreetbets. https://www.reddit.com/r/wallstreetbets.

[6] 2021. Supplement. https://github.com/rucdatascience/temporal_bh/blob/main/

Supplement.pdf.

[7] 2021. The New York City Taxi and Limousine Commission. https://www1.nyc.

gov/site/tlc/about/about-tlc.page.

[8] 2021. Trump’s 15% tariffs on $112 billion in Chinese goods take ef-

fect. https://www.cnbc.com/2019/09/01/trumps-15percent-tariffs-on-112-

billion-in-chinese-goods-take-effect.html.

[9] 2021. Wikimedia Dump. https://dumps.wikimedia.org.

[10] Deepak Agarwal, Jeff M Phillips, and Suresh Venkatasubramanian. 2006. The

hunting of the bump: on maximizing statistical discrepancy. In Proceedings of
the seventeenth annual ACM-SIAM Symposium on Discrete Algorithm. Society for

Industrial and Applied Mathematics, 1137–1146.

[11] Charu C Aggarwal and Karthik Subbian. 2012. Event detection in social streams.

In Proceedings of the 2012 SIAM international conference on data mining. SIAM,

624–635.

[12] Xiang Ao, Haoran Shi, Jin Wang, Luo Zuo, Hongwei Li, and Qing He. 2019. Large-

scale frequent episode mining from complex event sequences with hierarchies.

ACM Transactions on Intelligent Systems and Technology 10, 4 (2019), 1–26.

[13] Aaron Archer, Mohammad Hossein Bateni, Mohammad Taghi Hajiaghayi, and

Howard Karloff. 2011. Improved approximation algorithms for prize-collecting

Steiner tree and TSP. SIAM Journal on Computing 40, 2 (2011), 309–332.

[14] Nicola Barbieri, Francesco Bonchi, Edoardo Galimberti, and Francesco Gullo.

2015. Efficient and effective community search. Data mining and knowledge
discovery 29, 5 (2015), 1406–1433.

[15] Fei Bi, Lijun Chang, Xuemin Lin, and Wenjie Zhang. 2018. An Optimal and

Progressive Approach to Online Search of Top-K Influential Communities. Pro-
ceedings of the VLDB Endowment 11, 9 (2018).

[16] Daniel Bienstock, Michel X Goemans, David Simchi-Levi, and David Williamson.

1993. A note on the prize collecting traveling salesman problem. Mathematical
programming 59, 1-3 (1993), 413–420.

[17] Petko Bogdanov, Misael Mongiovì, and Ambuj K Singh. 2011. Mining heavy

subgraphs in time-evolving networks. In International Conference on Data Mining.
IEEE, 81–90.

[18] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. 2010.

An improved LP-based approximation for Steiner tree. In Proceedings of the
forty-second ACM symposium on Theory of computing. 583–592.

[19] Jose Cadena and Anil Vullikanti. 2018. Mining heavy temporal subgraphs: Fast

algorithms and applications. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32.

[20] Deepayan Chakrabarti and Christos Faloutsos. 2006. Graph mining: Laws, gener-

ators, and algorithms. ACM computing surveys 38, 1 (2006).
[21] Lingyang Chu, Yanyan Zhang, Yu Yang, Lanjun Wang, and Jian Pei. 2019. Online

density bursting subgraph detection from temporal graphs. Proceedings of the
VLDB Endowment 12, 13 (2019), 2353–2365.

[22] Richard Cole, Ramesh Hariharan, Moshe Lewenstein, and Ely Porat. 2001. A faster

implementation of the Goemans-Williamson clustering algorithm. In Proceedings
of the twelfth annual ACM-SIAM Symposium on Discrete Algorithms. 17–25.

[23] Mário Cordeiro, Rui Portocarrero Sarmento, and Joao Gama. 2016. Dynamic com-

munity detection in evolving networks using locality modularity optimization.

Social Network Analysis and Mining 6, 1 (2016), 15.

[24] Stuart E Dreyfus and Robert A Wagner. 1971. The Steiner problem in graphs.

Networks 1, 3 (1971), 195–207.
[25] Cees Duin. 2000. Preprocessing the Steiner problem in graphs. In Advances in

Steiner Trees. Springer, 175–233.
[26] Cees W Duin and Anton Volgenant. 1989. Reduction tests for the Steiner problem

in graphs. Networks 19, 5 (1989), 549–567.
[27] Yixiang Fang, Reynold Cheng, Yankai Chen, Siqiang Luo, and Jiafeng Hu. 2017.

Effective and efficient attributed community search. The VLDB Journal 26, 6
(2017), 803–828.

[28] Mateusz Fedoryszak, Brent Frederick, Vijay Rajaram, and Changtao Zhong. 2019.

Real-time event detection on social data streams. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery and data mining. 2774–
2782.

[29] Joan Feigenbaum, Christos H Papadimitriou, and Scott Shenker. 2001. Sharing

the cost of multicast transmissions. Journal of Computer and System Sciences 63,
1 (2001), 21–41.

[30] Jerome H Friedman and Nicholas I Fisher. 1999. Bump hunting in high-

dimensional data. Statistics and Computing 9, 2 (1999), 123–143.

[31] Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro

Cattuto, and Francesco Gullo. 2020. Span-core Decomposition for Temporal Net-

works: Algorithms and Applications. ACM Transactions on Knowledge Discovery

from Data 15, 1 (2020), 1–44.
[32] Aristides Gionis, Michael Mathioudakis, and Antti Ukkonen. 2017. Bump hunting

in the dark: Local discrepancy maximization on graphs. IEEE Transactions on
Knowledge and Data Engineering 29, 3 (2017), 529–542.

[33] Michel X Goemans and David P Williamson. 1995. A general approximation

technique for constrained forest problems. SIAM Journal on Computing 24, 2

(1995), 296–317.

[34] IJ Good and ML Deaton. 1981. Recent advances in bump hunting. In Computer
Science and Statistics: Proceedings of the 13th Symposium on the Interface. Springer,
92–104.

[35] IJ Good and RA Gaskins. 1980. Density estimation and bump-hunting by the

penalized likelihoodmethod exemplified by scattering andmeteorite data. Journal
of the American Statistical Association 75, 369 (1980), 42–56.

[36] Valery Guralnik and Jaideep Srivastava. 1999. Event detection from time se-

ries data. In Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining. 33–42.

[37] Saket Gurukar, Sayan Ranu, and Balaraman Ravindran. 2015. Commit: A scalable

approach to mining communication motifs from dynamic networks. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data.
475–489.

[38] Nancy E Heckman. 1992. Bump hunting in regression analysis. Statistics &
probability letters 14, 2 (1992), 141–152.

[39] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. 2014. A fast, adaptive variant

of the Goemans-Williamson scheme for the prize-collecting Steiner tree problem.

In Workshop of the 11th DIMACS Implementation Challenge.
[40] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. 2015. A nearly-linear time

framework for graph-structured sparsity. In International Conference on Machine
Learning. 928–937.

[41] Silu Huang, AdaWai-Chee Fu, and Ruifeng Liu. 2015. Minimum spanning trees in

temporal graphs. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. 419–430.

[42] David S Johnson, Maria Minkoff, and Steven Phillips. 2000. The prize collect-

ing Steiner tree problem: theory and practice. In Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms. 760–769.

[43] Isabel M Kloumann and Jon M Kleinberg. 2014. Community membership identifi-

cation from small seed sets. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 1366–1375.

[44] Eugene L Lawler and David EWood. 1966. Branch-and-bound methods: A survey.

Operations research 14, 4 (1966), 699–719.

[45] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2015. Influential community

search in large networks. Proceedings of the VLDB Endowment 8, 5 (2015), 509–
520.

[46] Paul Liu, Austin R Benson, and Moses Charikar. 2019. Sampling methods for

counting temporal motifs. In Proceedings of the Twelfth ACM International Con-
ference on Web Search and Data Mining. 294–302.

[47] Yu Liu, Baojian Zhou, Feng Chen, and David W Cheung. 2016. Graph topic scan

statistic for spatial event detection. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. 489–498.

[48] Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, and Jin-Peng Huai. 2020. An

efficient approach to finding dense temporal subgraphs. IEEE Transactions on
Knowledge and Data Engineering 32, 4 (2020), 645–658.

[49] Misael Mongiovi, Petko Bogdanov, Razvan Ranca, Evangelos E Papalexakis, Chris-

tos Faloutsos, and Ambuj K Singh. 2013. Netspot: Spotting significant anomalous

regions on dynamic networks. In Proceedings of the 2013 SIAM international
conference on data mining. SIAM, 28–36.

[50] J Orear and D Cassel. 1971. Applications of statistical inference to physics.

Foundations of Statistical inference (1971), 280–288.
[51] Gergely Palla, Albert-László Barabási, and Tamás Vicsek. 2007. Quantifying

social group evolution. Nature 446, 7136 (2007), 664–667.
[52] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. 2017. Motifs in temporal

networks. In Proceedings of the tenth ACM international conference on web search
and data mining. 601–610.

[53] Adam Perer and Fei Wang. 2014. Frequence: Interactive mining and visualization

of temporal frequent event sequences. In Proceedings of the 19th international
conference on Intelligent User Interfaces. 153–162.

[54] Daniel Rehfeldt, Thorsten Koch, and Stephen J Maher. 2019. Reduction techniques

for the prize collecting Steiner tree problem and the maximum-weight connected

subgraph problem. Networks 73, 2 (2019), 206–233.
[55] Giulio Rossetti and Rémy Cazabet. 2018. Community discovery in dynamic

networks: a survey. Comput. Surveys 51, 2 (2018), 1–37.
[56] Polina Rozenshtein, Aris Anagnostopoulos, Aristides Gionis, and Nikolaj Tatti.

2014. Event detection in activity networks. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 1176–1185.

[57] Polina Rozenshtein, Francesco Bonchi, Aristides Gionis, Mauro Sozio, and Nikolaj

Tatti. 2018. Finding events in temporal networks: Segmentation meets densest-

subgraph discovery. In 2018 IEEE International Conference on Data Mining.
[58] NP Samios. 1972. Current problems in experimental boson spectroscopy. In AIP

Conference Proceedings, Vol. 8. AIP, 432–459.

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

887

https://opendata.cityofnewyork.us
https://pushshift.io
https://www.bbc.com/news/world-middle-east-50979463
https://www.reddit.com
https://www.reddit.com/r/wallstreetbets
https://github.com/rucdatascience/temporal_bh/blob/main/Supplement.pdf
https://github.com/rucdatascience/temporal_bh/blob/main/Supplement.pdf
https://www1.nyc.gov/site/tlc/about/about-tlc.page
https://www1.nyc.gov/site/tlc/about/about-tlc.page
https://www.cnbc.com/2019/09/01/trumps-15percent-tariffs-on-112-billion-in-chinese-goods-take-effect.html
https://www.cnbc.com/2019/09/01/trumps-15percent-tariffs-on-112-billion-in-chinese-goods-take-effect.html
https://dumps.wikimedia.org

[59] Arie Segev. 1987. The node-weighted Steiner tree problem. Networks 17, 1 (1987),
1–17.

[60] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD
international conference on knowledge discovery and data mining. 939–948.

[61] Yahui Sun, Marcus Brazil, Doreen Thomas, and Saman Halgamuge. 2019. The fast

heuristic algorithms and post-processing techniques to design large and low-cost

communication networks. IEEE/ACM Transactions on Networking 27, 1 (2019),

375–388.

[62] Yahui Sun, Jun Luo, Theodoros Lappas, Xiaokui Xiao, and Bin Cui. 2020. Hunting

multiple bumps in graphs. Proceedings of the VLDB Endowment 13, 5 (2020),

656–669.

[63] George L Trigg. 1970. Rules for "Bump Hunting". Physical Review Letters 25, 12
(1970), 783.

[64] Jingjing Wang, Yanhao Wang, Wenjun Jiang, Yuchen Li, and Kian-Lee Tan. 2020.

Efficient sampling algorithms for approximate temporal motif counting. In Pro-
ceedings of the 29th ACM International Conference on Information & Knowledge

Management. 1505–1514.
[65] Yong Wang, Guoliang Li, and Nan Tang. 2019. Querying shortest paths on time

dependent road networks. Proceedings of the VLDB Endowment 12, 11 (2019),

1249–1261.

[66] Dong Wen, Yilun Huang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin.

2020. Efficiently Answering Span-Reachability Queries in Large Temporal Graphs.

In 2020 IEEE 36th International Conference on Data Engineering. IEEE, 1153–1164.
[67] Jianshu Weng and Bu-Sung Lee. 2011. Event detection in twitter. In Proceedings

of the International AAAI Conference on Web and Social Media, Vol. 5.
[68] Nannan Wu, Feng Chen, Jianxin Li, Jinpeng Huai, Baojian Zhou, Naren Ramakr-

ishnan, et al. 2018. A nonparametric approach to uncovering connected anomalies

by tree shaped priors. IEEE Transactions on Knowledge and Data Engineering 31,

10 (2018), 1849–1862.

[69] Ye Yuan, Xiang Lian, Guoren Wang, Yuliang Ma, and Yishu Wang. 2019. Con-

strained shortest path query in a large time-dependent graph. Proceedings of the
VLDB Endowment 12, 10 (2019), 1058–1070.

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

888

	Abstract
	1 Introduction
	2 Problem formulation
	3 Two approximation algorithms
	3.1 A temporal Steiner tree problem
	3.2 The MIRROR algorithm
	3.3 The S-MIRROR algorithm

	4 Two fast heuristic algorithms
	5 Experiments
	5.1 Datasets
	5.2 Experiment settings
	5.3 Quantitative experiment results
	5.4 Case studies
	5.5 Key observations in experiments

	6 Related work
	7 Conclusions and future work
	Acknowledgments
	References

