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Over the past a few years, research and development has made significant progresses on big data

analytics. A fundamental issue for big data analytics is the efficiency. If the optimal solution is
unable to attain or unnecessary or has a price to high to pay, it is reasonable to sacrifice optimality

with a “good” feasible solution that can be computed efficiently. Existing approximation tech-

niques can be in general classified into approximation algorithms, approximate query processing
for aggregate SQL queries and approximation computing for multiple layers of the system stack.

In this article, we systematically introduce approximate computation, i.e., query approximation

and data approximation, for efficient and effective big data analytics. We explain the ideas and
rationales behind query and data approximation, and show efficiency can be obtained with high

effectiveness, and even without sacrificing for effectiveness, for certain data analytic tasks.

1. INTRODUCTION

Over the past a few years, research and development has made significant progresses on big
data analytics with the supports from both governments and industries all over the world,
such as Spark, IBM Watson and Google AlphaGo. A fundamental issue for big data analyt-
ics is the efficiency, and various advances towards attacking this issue have been achieved
recently, from theory to algorithms to systems [Fan et al. 2013; Jordan 2015; Zaharia et al.
2016]. However, if the optimal solution is unable to attain or not required or has a price to
high to pay, it is reasonable to sacrifice optimality with a “good” feasible solution that can
be computed efficiently. Hence, various approximation techniques have been developed,
and can in general be classified into three aspects: algorithms, SQL aggregate queries and
multiple layers of the system stack.

(1) Approximation algorithms were formally defined in the 1970s [Garey et al. 1972;
Johnson 1974]. An approximation algorithm is necessarily polynomial, and is evalu-
ated by the worst case possible relative error over all possible instances of the NP-hard
optimization problem, under the widely believed P 6= NP conjecture. This is rel-
atively mature research field algorithm community, many approximation algorithm
have been designed for optimization problems (see [Vazirani 2003]).

(2) Approximate query processing supports a slightly constrained set of SQL-style declar-
ative queries, and it specifically provides approximate results for standard SQL aggre-
gate queries, e.g., queries involving COUNT, AVG, SUM and PERCENTILE. Over the
past two decades, approximate query processing has been successfully studied, among
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which sampling technique are heavily employed [Chaudhuri et al. 2017; Mozafari
2017]. Not only traditional DBMS systems, such as Oracle, provide approximate
functions to support approximate results, but also emerging new systems specially
designed for approximate queries, such as BlinkDB, Verdict and Simba, have been de-
signed. Note that, as pointed out in [Chaudhuri et al. 2017], “ it seems impossible to
have an approximate query processing system that supports the richness of SQL with
significant saving of work while providing an accuracy guarantee that is acceptable to
a broad set of application workloads.”

(3) Approximation computing is a recent computation technique that returns a possibly in-
accurate result rather than a guaranteed accurate result from a system point of view. It
involves with multiple layers of the system stack from software to hardware to systems
(such as approximate circuits, approximate storage and loop perforation), and can be
used for applications where an approximate result is sufficient for its purpose [Agrawal
et al. 2016; Mittal 2016]. Recently, a workshop on approximate computing across the
stack has been usefully held for research on hardware, programming languages and
compiler support for approximate computing since 2014. Besides the various task ori-
ented quality metrics, the quality-energy trade-off is also concerned for approximate
computing. For instance, allowing only 5% loss of classification accuracy can provide
50 times energy saving for clustering algorithm k-means [Mittal 2016].

In this article, we present the idea of approximate computation for efficient and effective
big data analytics: query approximation and data approximation, based on our recent re-
search experiences [Ma et al. 2014; Ma et al. 2020; Ma et al. 2016; Ma et al. 2016; Duan
et al. 2017]. Approximation algorithms ask for feasible solutions that are theoretically
bounded with respect to optimal solutions from an algorithm design aspect. Approximate
query processing and approximation computing relax the need for accuracy guarantees for
aggregate SQL queries and for multiple layers of the system stack, respectively. Simi-
larly, our approximate computation is unnecessarily theoretically bounded with respect to
optimal solutions, but from an algorithm design point of view. That is, we focus on ap-
proximate computation for big data analytics for a situation where an approximate result
is sufficient for a purpose.

2. QUERY APPROXIMATION

Query approximation deals with complex queries involved with big data analytic tasks.
Given a class Q of data analytic queries with high a computational complexity, query
approximation is to transform into another class Q′ of queries with a low computational
complexity and satisfiable approximate answers. Query approximation needs to reach a
balance between the query efficiency and answer quality when approximating Q with Q′.

The rationale behind query approximation lies in that inexact or approximate answers are
sufficient or acceptable for many big data analytic tasks. On one hand, when the volume
of data is extremely large, it may be impossible or not necessary to compute the exact
answers. Observe that nobody would try each and every store to find a pair of shoes
with the best cost-performance ratio. That is, inexact (approximate) solutions are good
enough for certain cases. On the other hand, when taking noises (very common for big
data) into account, it may not always be a good idea to compute exact answers for those
data analytic tasks whose answers are rare or hard to identify, such as the detection of
SIGWEB Newsletter Autumn 2020



Approximate Computation for Big Data Analytics · 3

homegrown violent extremists (HVEs) who seek to commit acts of terrorism in the United
States and abroad [Hung and Jayasumana 2016], as finding exact solutions may have a
high chance to miss/ignore possible candidates.

We next explain query approximation in more detail using two data analytic tasks.

(1) Strong Simulation [Ma et al. 2014]. Given a pattern graph Q and a data graph G,
graph pattern matching is to find all subgraphs of G that match Q, and is being increasingly
used in various applications, e.g., biology and social networks.

Here matching is typically defined in terms of subgraph isomorphism [Gallagher 2006]: a
subgraph Gs of G matches Q if there exists a bijective function f from the nodes of Q to
the nodes in Gs such that (a) for each pattern node u in Q, u and f(u) have the same label,
and (b) there is an edge (u, u′) in Q if and only if there is an edge (f(u), f(u′)) in Gs.

The goodness of subgraph isomorphism is that all matched subgraphs are exactly the same
as the pattern graph, i.e., completely preserving the topology structure between the pattern
graph and data graph. However, subgraph isomorphism is NP-complete, and may return
exponentially many matched subgraphs. Further, subgraph isomorphism is too restrictive
to find sensible matches in certain scenarios, as observed in [Fan et al. 2010]. Even
worse, online data in many cases only represents a partial world (e.g., terrorist collaboration
networks and homosexual networks are often accompanied with a large amount of off-line
data). Exact computations on online data, whose off-line counterpart is extremely hard to
collect, typically decreases the chance of identifying candidate answers. These hinder the
usability of graph pattern matching in emerging applications.

To lower the high complexity of subgraph isomorphism, substitutes for subgraph isomor-
phism [Fan et al. 2010; Fan et al. 2011], which allow graph pattern matching to be
conducted in cubic-time, have been proposed by extending graph simulation [Henzinger
et al. 1995]. However, they fall short of capturing the topology of data graphs, i.e., graphs
may have a structure drastically different from pattern graphs that they match, and the
matches found are often too large to analyze. To rectify these problems, strong simula-
tion, an “approximate” substitute for subgraph isomorphism, is proposed for graph pattern
matching, which (a) theoretically preserves the key topology of pattern graphs and finds
a bounded number of matches, (b) retains the same complexity as earlier extensions of
graph simulation [Fan et al. 2010; Fan et al. 2011], by providing a cubic-time algorithm
for strong simulation, and (c) has the locality property that allows us to develop an effective
distributed algorithm to conduct graph pattern matching on distributed graphs.

Strong simulation is experimentally verified that it is able to identify sensible matches that
are not found by subgraph isomorphism, and it finds high quality matches that retain graph
topology. Indeed, 70%-80% of matches found by subgraph isomorphism are retrieved
by strong simulation. Further, strong simulation is over 100 times faster than subgraph
isomorphism, and has a bounded number of matches.

(2) Dense Temporal Subgraph Computation [Ma et al. 2020]. Dense subgraphs in
a special type of temporal networks are studied, whose nodes and edges are kept fixed,
but edge weights constantly and regularly vary with timestamps. Essentially, a temporal
network with T timestamps can be viewed as T snapshots of a static network such that
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the network nodes and edges are kept the same among these T snapshots, while the edge
weights vary with network snapshots. Road traffic networks typically fall into this category
of temporal networks, and dense subgraphs are used for road traffic analyses that are of
particular importance for transportation management of large cities.

Dense subgraphs are a general concept, and their concrete semantics highly depends on
the studied problems and applications. Though dense subgraphs have been widely studied
in static networks, how to properly define their semantics over temporal networks is still
in the early stage, not to mention effective and efficient algorithms. We adopt the form of
dense temporal subgraphs initially defined and studied in [Bogdanov et al. 2011], such that
a temporal subgraph is a connected subgraph measured by the sum of all its edge weights
in a time interval, i.e., a continuous sequence of timestamps. Intuitively, a dense subgraph
that we consider corresponds to a collection of connected highly slow or jam roads (i.e., a
jam area) in road networks, lasting for a continuous sequence of snapshots.

The problem of finding dense subgraphs in temporal networks is non-trivial, and it is al-
ready NP-complete even for a temporal network with a single snapshot and with +1 or −1
edge weights only, as observed in [Bogdanov et al. 2011]. Even worse, it remains hard
to approximate for temporal networks with single snapshots. Moreover, given a tempo-
ral network with T timestamps, there are a total number of T ∗ (T + 1)/2 time intervals
to consider, which further aggravates the difficulty. The state of the art solution MEDEN
[Bogdanov et al. 2011] adopts a Filter-And-Verification (FAV) framework that even if a
large portion of time intervals are filtered, there often remain a large number of time in-
tervals to verify. Hence, this method is not big data friendly, and is not scalable when
temporal networks have a large number of nodes/edges or timestamps.

We develop a data-driven approach (referred to as FIDES), instead of FAV, to identifying
the most possible k time intervals from T × (T + 1)/2 time intervals, in which T is the
number of snapshots and k is a small constant, e.g., 10. This is achieved by exploring the
characteristics of time intervals involved with dense subgraphs based on the observation of
evolving convergence phenomenon in traffic data, inspired by the convergent evolution in
nature1. That is, our method provides time intervals with probabilistic guarantees, instead
of exact ones as FAV. Using both real-life and synthetic data, we experimentally show that
our method FIDES is over 1000 times faster than MEDEN [Bogdanov et al. 2011], while
the quality of dense subgraphs found is comparable with MEDEN .

3. DATA APPROXIMATION

Big data has a large volume, and, hence, the space complexity [Cormen et al. 2001] of
big data analytic tasks starts raising more concerns. Given a class Q of queries on data D,
data approximation is to transform D into smaller D′ such that Q on D′ returns a sufficient
or satisfiable approximate answer in a more efficient way. Further, it is typically common
that query Q needs to be (slightly) modified to Q′ to accommodate the changes of D to
D′. Similar to query approximation, data approximation needs to reach a balance between
the query efficiency and answer quality.

1https://en.wikipedia.org/wiki/Convergent_evolution
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The rationale behind data approximation has roots in the Pareto principle2 that “states that,
for many events, roughly 80% of the effects come from 20% of the causes”. The critical
thing for data approximation is to determine which part of data is relevant to tasks (belong
to the 20%). By this principle, for many big analytic tasks, one may only need to keep a
small amount of the data to derive high quality answers. For example, when we are to build
a predictive model on the stock of razers for an online store based on the order history of
customers, orders from men are good enough. That is to say, it is not necessary to use the
entire data for certain data analytic tasks.

However, it should be pointed out that there are data analytic tasks such that data approxi-
mation could not work well. For example, an online store needs to count the total number
of goods in its catalog. Essentially entire goods should be considered for this task, and if a
(small) portion of goods are chosen, it is hard to have a satisfiable result.

We next explain data approximation in more detail using two data analytic tasks.

(1) Proxies for Shortest Paths and Distances [Ma et al. 2016]. Computing shortest
paths and distances is one of the fundamental problems on graphs. We study the node-
to-node shortest path (distance) problem on large graphs: given a weighted undirected
graph G(V,E) with non-negative edge weights, and two nodes of G, the source s and
the target t, find the shortest path (distance) from s to t in G. The Dijkstra’s algorithm
with Fibonacci heaps runs in O(n log n + m) due to Fredman & Tarjan [Cormen et al.
2001], where n and m denote the numbers of nodes and edges in a graph, respectively,
which remains asymptotically the fastest known solution on arbitrary undirected graphs
with non-negative edge weights. However, computing shortest paths and distances remains
a challenging problem, in terms of both time and space cost, on large-scale graphs. Hence,
various optimizations have been developed to speed-up the computation.

To speed-up shortest path and distance queries, we propose proxies that have the following
properties: (a) each proxy captures a set of nodes in a graph, referred to as DRA, (b) a small
number of proxies can represent a large number of nodes in a graph, (c) shortest paths and
distances involved within the set of nodes being represented by the same proxies can be
answered efficiently, and, (d) the proxies and the set of nodes being represented can be
computed efficiently in linear time.

The framework for speeding-up shortest path and distance queries with proxies consists
of two module, preprocessing and query answering, as follows. (a) Preprocessing: Given
graph G(V,E), it first computes all DRAs and their maximal proxies in linear time, then it
computes and stores all the shortest paths and distances between any node and its proxy.
It finally computes the reduced subgraph G′ by removing all DRAs from graph G, i.e.,
keeping the proxies only. (b) Query answering. Given two nodes s and t in graph G(V ,
E) and the pre-computed information, the query answering module essentially executes the
following. The shortest path path(s, t) = path(s, us)/ path(us, ut)/ path(ut, t), where
us and ut are the proxies of s and t, respectively. As path(s, us) and path(ut, t) are
pre-computed, and only path(us, ut) needs to be computed on the reduced subgraph G′

by invoking any existing algorithms (e.g.,AH [Zhu et al. 2013]). The shortest distance
dist(s, t) = dist(s, us) + dist(us, ut) + dist(ut, t) can be computed along the same line.

2https://en.wikipedia.org/wiki/Pareto_principle
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Essentially, we propose a light-weight data reduction technique for speeding-up (exact)
shortest path and distance queries on large weighted undirected graphs. We experimentally
show that about 1/3 nodes of real-life social and road networks are captured by proxies.

(2) Ensemble Enabled Link Prediction [Duan et al. 2017]. Link prediction is the task to
predict the formation of future links in dynamic and evolving networks, and has been ex-
tensively studied due to its various applications, such as the recommendation of friends in
a social network, images in a multimedia network, or collaborators in a scientific network.

Link prediction methods are often applied to very large and sparse networks, which have a
large search space O(n2), where n is the number of nodes. Hence, the scalability is a big
challenge. In fact, an often overlooked fact is that most exiting link prediction algorithms
evaluate the link propensities only over a subset of possibilities rather than all propensities
over the entire network. Consider a large network with 108 nodes. Its number of possi-
bilities for links is of the order of 1016. Therefore, a 3GHz processor would require at
least 35 days just to allocate one machine cycle to every pair of nodes. This implies that
in order to determine the top-ranked link predictions over the entire network, the running
time would be much more than 35 days. It is noteworthy that most existing link prediction
algorithms are not designed to search over the entire O(n2) possibilities. A closer exam-
ination of the relevant studies shows that even for networks of modest size, they perform
benchmark evaluations over a sample of the possibilities for links. That is, the complete
ranking problem for link prediction in very large networks remains challenging at least
from a computational point of view.

Latent factor models have proven a great success for collaborative filtering, but not link
prediction in spite of the obvious similarity and the obvious effectiveness of latent factor
models. One of the reasons why latent factor models are rarely used for link prediction is
due to their complexity. In collaborative filtering applications, items have a few hundred
thousand dimensions, whereas even the smallest real-world networks contain more than a
million nodes. Even worse, we also experientially verify that the quality of link prediction
for latent factor models decreases with the increase of data sparsity, and networks typically
become sparser when their sizes grow larger.

We explore an ensemble approach to making latent factor models practical for link predic-
tion by decomposing the search space into a set of smaller matrices with three structural
bagging methods with performance guarantees, which has obvious effectiveness advan-
tages. In this way, latent factor models only need to deal with networks with small sizes
(and denser), and retain their effectiveness and efficiency. By incorporating with the char-
acteristics of link prediction, the bagging methods maintain high prediction accuracy while
reducing the network size via graph sampling techniques. Further, the use of an ensemble
approach has obvious robustness advantages as well.

We experimentally show that our ensemble approach is over 50 times faster and over 20%
more accurate than BIGCLAM [Yang and Leskovec 2013] using real-life social networks.

4. CONCLUSIONS

In this article we have systematically introduced approximation computation techniques
for efficient and effective big data analytics. Furthermore, although approximate compu-
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tation does not put theoretical bounds with respect to optimal solutions, it does expect a
balance between efficiency and effectiveness. Indeed, (a) our query approximation tech-
niques show that efficiency can be obtained with high accuracy in practice, and (b) our
data approximation techniques show that efficiency and accuracy can be obtained simul-
taneously for certain data analytic tasks. That is, though approximate computation is for
a situation where an approximate result is sufficient for a purpose, its design policy is not
always to sacrifice effectiveness for efficiency.

For big data analytics, there are no one-size-fits-all techniques, and it is often necessary to
combine different techniques to obtain good solutions.

We have seen that sampling helps to achieve a balance between efficiency and effectiveness
for approximate query processing [Chaudhuri et al. 2017; Mozafari 2017] and link predic-
tion [Duan et al. 2017], and other techniques such as machine learning [Bengio et al. line],
incremental computation [Ramalingam and Reps 1996; Fan et al. 2010; Ma et al. 2018],
distributed computing [Ma et al. 2012], and system techniques (e.g., caching [Wang et al.
2018], hardware [Aberger et al. 2017]) can also be unitized when designing query and
data approximation techniques for big data analytics.

It is also worth pointing out that (a) for all kind of techniques big data analytics, various
computing resources should be seriously considered, e.g., using bounded resources for
approximation [Cao and Fan 2017] and for incremental computation [Ma et al. 2018],
and (b) theoretical analyses are also important for developing approximation techniques.
For instance, our query and data approximation techniques are based serious theoretical
results [Ma et al. 2014; Ma et al. 2016; Ma et al. 2020].
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