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Abstract—The ubiquitous needs for extracting insights from data are driving the emergence of service providers to offer predictions
given the inputs from customers. During this process, it is important and highly nontrivial for the service providers to generate proofs of
honest predictions without leaking the key parameters of their trained models. In addition, the customers are usually unwilling to reveal
their sensitive inputs. In this paper, we proposed MVP, which enables Machine learning prediction in a Verifiable and Privacy
preserving fashion. MVP features the properties of polynomial decomposition and prime-order bilinear groups to simultaneously
facilitate oblivious evaluation and batch outcome verification while maintaining function privacy and input privacy. We further
instantiated MVP with Support Vector Machines (SVMs) and extensively evaluated its performance for the spam detection task on
three practical Short Message Service (SMS) datasets. Our analysis and evaluation results reveal that MVP achieves the desired
properties while incurring low computation and communication overhead.

Index Terms—Machine Learning Prediction, Verifiability, Function Privacy, Input Privacy

F

1 INTRODUCTION

W ITH the proliferation of artificial intelligence (AI),
many companies, institutions, and cloud platforms

(e.g., Amazon Web Services, Google Cloud, Microsoft
Azure, and Alibaba Cloud) have offered common machine
learning (ML) prediction services to customers on a pay-per-
prediction basis, such as natural language understanding,
image classification, video annotation, and anomaly detec-
tion. In addition, the cloud platforms have also rolled out
Machine Learning as a Service (MLaaS), enabling expert
or even non-expert users to build customized models over
their private data and further to provide a wider range of
prediction services. However, there exists a critical security
problem in the ecosystem, i.e., it is difficult to verify the cor-
rectness of predictions without compromising function pri-
vacy and input privacy. Let’s examine a classification service
as follows. Simultaneously ensuring outcome verifiability
and privacy preservation requires the service provider not
only to perform classifications without knowing the sensi-
tive test data from customers but also to generate proofs of
correct computations while keeping the key parameters of
the classifier in secret.

Ensuring verifiability and preserving privacy are both
important to the long term healthy development of AI
services. On the one hand, a service provider undertakes
the end-to-end cycle of ML development: collecting and
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preprocessing data, training model, and supporting con-
current prediction queries. Thus, the service provider has a
heavy workload and might return incorrect answers in face
of software/hardware failures, human errors, and external
malicious attacks [1]. In addition, to reduce operation cost,
a strategic service provider may have strong incentives to
return incorrect results, if such results consume less work
and are unlikely to be detected by the customers [2]–[4].
In the case of the classification example raised above, an
opportunistic way is to return random class labels without
processing the test data. However, if such speculative and
illegal behaviors cannot be identified and prohibited, it may
cause heavy losses to customers, especially in integrity-
sensitive applications, such as risk assessments and in-
vestment suggestions in financial markets [5], disease di-
agnosis and drug dosing control in medical services [6],
face and object recognition in home monitoring [7], etc.
Therefore, the property of outcome verifiability is necessary
for accountable, transparent, and robust prediction services.
On the other hand, securing confidential information and
protecting the personal data from customers are impor-
tant objectives for every enterprise. First, building a high-
quality trained model relies not only on large volumes
of high-quality training data but also on a well-balanced
exploration and exploitation of ML algorithms. Thus, the
fine-tuned trained model incurs significant data collection
and data processing overhead and has a great commercial
value to the service provider [7]–[10]. This indicates that
the key model parameters (e.g., support vectors in Sup-
port Vector Machines (SVMs) and weights and biases in
neural networks) should be hidden from greedy customers
and external attackers, i.e., function privacy1. Second, when

1. Function privacy denotes protecting the parameters of a function
in general computation. In the special context of ML prediction, it refers
to “model privacy” for protecting the parameters of a trained model.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 27,2020 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3035591, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXXX 2020 2

handling private inputs (e.g., personal communications,
user profiles, commercial transactions, and health records)
from customers, it is the bottom line of every business to
respect their privacy. According to the survey report of
2016 TRUSTe/NCSA Consumer Privacy Infographic - US
Edition, 89% of audiences say they avoid companies that do
not protect their privacy [11]. Furthermore, the successive
Facebook data scandals highlight that the sensitive test
data from customers should not be disclosed to the service
provider to guarantee input privacy.

To integrate outcome verifiability, function privacy, and
input privacy in practical ML prediction services, there are
three major challenges. The first and the thorniest challenge
is that verifying the correctness of returned predictions and
preserving the function privacy seem to be contradictory
objectives. Ensuring outcome verifiability allows customers
to know the key parameters of the trained model, whereas
protecting function privacy tends to prevent them from
learning these confidential contents. In particular, verifiable
computation in outsourced scenarios enables the service
provider to generate a proof vouching for the correctness
of the returned result [12], [13]. However, the customer as a
verifier, who outsources the computation, should know the
concrete function before doing verification.

The second challenge comes from input privacy, which
makes guaranteeing outcome verifiability even harder. To
get a tradeoff between privacy and functionality, homo-
morphic encryption can be exploited to enable practical
computation over encrypted test data [7], [9], [10], [14]–
[16]. However, a hidden problem is that the proof of cor-
rect computation normally involves the test data, while
the service provider, only knowing ciphertexts, may fail to
generate such a proof. In addition, it is highly nontrivial
to design an efficient verification scheme on top of existing
homomorphic encryption protocols, let alone incorporating
the function privacy. Moreover, there still exist some work
parallel to this work (e.g., differentially private ML training
[17]–[22]), which targets on protecting the sensitive training
set in the training phase, rather than the test set from the
customer in the prediction phase.

The ultimate challenge is verifying the integrity of mas-
sive underlying operations on the test data. For example,
SVMs with the polynomial kernel (resp., the RBF kernel)
require to compute dot product (resp., squared Euclidean
distance) between the test data and each support vector.
In addition, according to our statistics over practical SMS
datasets, the maximum percentage of the support vectors,
accounting for the training set, could reach 20.98%. If the
customer simply performs outcome verification in sequence,
it would be prohibitively slow, especially when feeding in
a large-scale test set. Meanwhile, transmitting a mass of
proofs also incurs serious communication overhead. Under
such circumstances, verifying outcomes sequentially cer-
tainly becomes the processing bottleneck at the customer.

We summarize the key contributions of this work:
• To the best of our knowledge, the proposed secure scheme

MVP is, for the first time, to achieve outcome verifiability,
function privacy, and input privacy simultaneously in ML
prediction services. The design of MVP uses some cryp-
tographic primitives that will be reviewed in Section 2.2,
but does not rely on any trusted hardware.

TABLE 1
Frequently Used Notations.

Notation Remark

f A general function or a hypothesis in ML prediction
K,ψ The kernel function, its underlying polynomial function
i, j, k The indices of feature, support vector, test data
n The default dimension of a vector
x,xj The coefficient vector of f , a support vector in SVMs
SV The indices of the support vectors in the training set
z, zk, φ An input of f (i.e., a data vector) in general computation,

a test point in ML prediction, the size of test set
ê : G1 × G2 → GT A bilinear map over three multiplicative cyclic groups
q The prime group order of G1,G2,GT

g, h A generator of G1, a generator of G2

Z∗
q = {1, . . . , q − 1} The multiplicative group of integers modulo q
G = G2

1 The product group over G1

(g1, g2) ∈ G An element randomly chosen from G
s ∈ Z∗

q The private key of the adapted BGN scheme
G1 ⊂ G A linear subgroup of G
(g, gs) The generator of G1

C ∈ G A BGN-type ciphertext
π The projection function for BGN decryption
PK, SK A pair of system public and secret keys
t A commitment point
FK(f) A function public key of f
σ A signature of correct computation
wi(t) The decomposed polynomial used to generate σ
V, v The encrypted result, the (decrypted) result
D,A,S, C A distinguisher, an adversary, a simulator, a challenger
xi, zi, ti, x

(j)
i , z

(k)
i The i-th elements of x, z, t,xj , zk

• MVP first features the properties of polynomial decompo-
sition and prime-order bilinear groups to allow outcome
verification while keeping the function parameters secret.
MVP then integrates privacy preservation with polyno-
mial evaluation and outcome verification via an adapted
BGN homomorphic cryptosystem over the prime-order
bilinear groups. On the one hand, the homomorphic
properties enable the service provider to obliviously and
efficiently compute two multivariate polynomials (i.e.,
dot product and squared Euclidean distance) underlying
common ML algorithms. On the other hand, the BGN-
type ciphertext also can be conveniently embedded into
or stripped from the signature of correct computation, rec-
onciling the contradiction between outcome verifiability
and input privacy. To further support a large scale of test
data, MVP incorporates batch verification and signature
aggregation through the bilinearity of asymmetric pairing,
dramatically reducing computation and communication
overhead. Please refer to Section 4 for the design overview
and design principles of MVP in detail.

• We instructively instantiate MVP with SVMs and evaluate
on three SMS datasets. When MVP supports 1000 test data
with 1000 features, the major evaluation results are: (1)
the maximum total overhead of oblivious evaluation per
test data is 0.95 s under the sparse encryption strategy;
and (2) the total outcome verification overhead of MVP is
9.86% and 1.23% (particularly, 9.47 ms and 11.66 ms per
test data) of that of the naı̈ve method in the polynomial
kernel and the RBF kernel, respectively, under the sparse
encryption strategy. These two ratios decrease to 0.83%
and 0.23% under the dense encryption strategy; and (3)
the communication overhead of the customer is 0.241
MB and 0.483 MB in the polynomial kernel and the RBF
kernel, respectively.
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2 PRELIMINARIES

In this section, we introduce technical preliminaries. We first
introduce a classical supervised learning algorithm, called
support vector machines (SVMs) [23]. We then introduce
some cryptographic primitives. For clarify, we list the fre-
quently used notations in Table 1

2.1 Support Vector Machines

Given a training set of m data points {xl, yl}ml=1 with n-
dimensional feature vector xl = (x

(l)
1 , . . . , x

(l)
n )T ∈ Rn and

two-class label yl ∈ {−1, 1}, SVMs search for hyperplanes
that separate the training data by a maximum margin. The
training instances that lie closest to the hyperplanes are
called support vectors. In the case when the original training
data are not linearly separable, SVMs allow to implicitly
project them to a higher dimensional feature space via a
Mercer kernel operator K(·, ·). We thus express the optimal
margin classifier in the general form:

f (zk) =
m∑
l=1

ylαlK (xl, zk) + b =
∑
j∈SV

yjαjK (xj , zk) + b,

where zk is a new test data from the test set {zk}φk=1,
αl’s are the Lagrange multipliers, b is the intercept term,
and SV denotes the index set of the support vectors. In
addition, αl’s are nonzero only for the support vectors, i.e.,
∀j ∈ SV, αj > 0. Moreover, we predict zk as 1 if f(zk) ≥ 0
and −1 otherwise.

2.2 Cryptographic Primitives

We introduce the cryptographic primitives underlying our
design. We first show the definition of prime-order bilinear
groups, then review some relevant hardness assumptions,
and finally present an adapted Boneh-Goh-Nissim (BGN)
homomorphic cryptosystem.

Definition 1 (Prime-Order Bilinear Groups). The three mul-
tiplicative cyclic groups G1,G2, and GT are of the same
prime order q. Let g be a generator of G1 and h be a
generator of G2. An asymmetric bilinear pairing/map is a
map ê : G1 ×G2 → GT with the following three properties:
• Bilinearity: ∀X,Y ∈ G1,∀Z ∈ G2,∀a, b ∈ Z∗q ,

ê
(
Xa, Zb

)
= ê (X,Z)

ab
,

ê (X,Z) ê (Y, Z) = ê (XY,Z) .

• Non-degeneracy: ê (g, h) 6= 1GT .
• Computability: Given X ∈ G1, Z ∈ G2, there exists an

efficient algorithm to compute ê (X,Z).
We call G1,G2 bilinear groups if there exists such a group
GT and an asymmetric pairing ê as above.

Definition 2 (Discrete Logarithm Problem (DLP) [24]).
Given X,Y ∈ G1, it is computationally intractable to find
an integer a such that Y = Xa.

Definition 3 (Symmetric External Diffie-Hellman (SXDH)
Assumption [25]). Given g, ga, gb, gc ∈ G1 for unknown
a, b, c ∈ Z∗q , it is computationally hard to determine whether
c ≡ ab mod q. Equivalently, it is computationally infeasible

to determine whether (gb, gc) is in the cyclic subgroup of G2
1

generated by (g, ga).

Definition 4 (`-Strong Diffie-Hellman (`-SDH) Assump-
tion [26]). Given a (`+ 3)-tuple(

g, gλ, . . . , gλ
`

, h, hλ
)
∈ G`+1

1 ×G2
2

for λ ∈ RZ∗q , there is no probabilistic polynomial-time
(PPT) algorithm that can output the pair (c, ê(g, h)1/(λ+c)) ∈
Z∗q\{−λ} ×GT , except with negligible probability.

Based on the prime-order bilinear groups and the SXDH
assumption, Freeman [25] designed a stripped-down ver-
sion of the somewhat homomorphic encryption scheme
initially proposed by Boneh, Goh, and Nissim [27]. Without
a limit as in the original BGN scheme that the compos-
ite group order must be infeasible to factor, the bilinear
groups in this adapted version have a much smaller prime
order. Thus, at the same security level, it allows faster
group/pairing operations and shorter ciphertext length.
Furthermore, efficiency improvement is more remarkable at
higher security levels. We describe three major algorithms
of the adapted BGN scheme as follows.

KeyGen (τ) : Given a security parameter τ ∈ Z+, gen-
erate bilinear groups G1 and G2 of prime order q > 2τ

as well as an asymmetric pairing ê : G1 × G2 → GT . In
addition, g is a generator of G1, and h is a generator
of G2. Then, define the product group G = G2

1 and
its random linear subgroup G1 ⊂ G generated by
(g, gs) for some random s ∈ Z∗q . Moreover, randomly
choose an element (g1, g2) from G. The public key is
PK = {q,G1,G2,GT , h, (g, gs) , (g1, g2)}. The private
key is SK = s.
Encrypt (PK,m) : To encrypt a message z with the

public key PK, pick a random integer r ∈ Z∗q and then
compute the ciphertext as

C = (g1, g2)
z

(g, gs)
r

= (g1
zgr, g2

zgsr) ∈ G.

Note that the message has been encoded by the element
(g1, g2) from G and further blinded with a random
element from G1, namely (gr, gsr).
Decrypt (C,SK) : Decryption in G is essentially

achieved by “projecting” the ciphertext away from the
blinding term and taking a logarithm to recover z. Here
the projection function π on (g1, g2) ∈ G is defined as

π ((g1, g2)) = (g1)
s

(g2)
−1

= g1
sg2
−1,

where s is the private key. Now, do projection on the
ciphertext C and derive

π (C) = π ((g1
zgr, g2

zgsr)) = (g1
zgr)

s
(g2

zgsr)
−1

=
(
g1
sg2
−1
)z

= π ((g1, g2))
z
.

To recover z, it suffices to take the logarithm of π (C) to
the base π ((g1, g2)). In addition, to make decryption oc-
cur in constant time, we can precompute a polynomial-
size table of powers of π (g1, g2). Moreover, without
knowing the private key s, it is infeasible for any ad-
versary to construct the projection function, thus per-
forming decryption.
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We further present some useful and efficient homomor-
phic properties of the adapted BGN cryptosystem, including
multiplication by a constant, homomorphic addition, and
addition by a constant. In particular, given two encryptions

C1 = (g1
z1gr1 , g2

z1gsr1) ∈ G,
C2 = (g1

z2gr2 , g2
z2gsr2) ∈ G,

of messages z1, z2 as well as a constant integer d, we have
• Multiplication by a constant:

(C1)
d

= (g1
z1gr1 , g2

z1gsr1)
d

=
(
g1
dz1gdr1 , g2

dz1gsdr1
)
,

which is an encryption of dz1;
• Homomorphic addition:

C1 · C2 = (g1
z1gr1 , g2

z1gsr1) (g1
z2gr2 , g2

z2gsr2)

= (g1
z1gr1g1

z2gr2 , g2
z1gsr1g2

z2gsr2)

=
(
g1
z1+z2gr1+r2 , g2

z1+z2gs(r1+r2)
)
,

which an encryption of z1 + z2;
• Addition by a constant:

C1 · (g1, g2)
d

= (g1
z1gr1 , g2

z1gsr1)
(
g1
d, g2

d
)

=
(
g1
z1+dgr1 , g2

z1+dgsr1
)
,

which is an encryption of z1 + d.

3 PROBLEM FORMULATION

In this section, we present system and security models.

3.1 System Model
We first introduce a general system model for ML pre-
diction services. A service provider first collects a large
amount of raw data from diverse sources as a training
set. Then, it applies a certain ML algorithm (e.g., linear
regression, SVMs, k-means clustering, or neural networks)
to the training set, thereby learning a trained model. Based
on the trained model, the service provider takes new inputs
from a customer as a test set and derive prediction results,
which are finally returned to the customer. For tracking
and authentication purposes, the service provider needs to
register its trained models to a model manager. The model
manager book-keeps historic and current versions of the
trained models from different service providers. Also, the
model manager needs to initialize some system parameters
and publish on a certificated bulletin board2 if necessary.
To avoid being a single point of failure or bottleneck, re-
dundant model managers with identical functionalities and
databases should be installed.

We next introduce the syntax (intuitively, the workflow)
of the building block of our secure scheme, which is specific
to the polynomial function underlying ML algorithms.

Definition 5. A verifiable and privacy preserving scheme,
for a polynomial function f with the coefficient vector x

2. A bulletin board is essentially a public broadcast channel with
memory and is widely used in previous work/systems [28]–[30].
Park et al. from MIT also presented a blockchain-based design of a
decentralized bulletin board in Section 3 of [31].

from a service provider and a data vector z from a customer,
consists of 6 PPT algorithms defined as follows:
• (PK,SK) ← KeyGen(τ, f): The algorithm KeyGen takes

a security parameter τ and the function f as inputs and
outputs a pair of system public and secret keys (PK, SK).
This algorithm is run only once at system initialization by
the model manager.

• FK(f) ← Setup(PK, f): The algorithm Setup, run by the
model manager, takes the public key PK and the function
f as inputs and generates a function public key FK(f).

• C ← Encrypt(PK, z): The algorithm Encrypt, run by the
customer, takes the public key PK and the data vector z
as inputs and outputs a ciphertext set C.

• (V, σ) ← Compute(PK, f,C): The algorithm Compute,
run by the service provider, takes the public key PK, the
function f , and the ciphertext set C, as inputs. It outputs
the encrypted result V (which should be an encryption
of f(z) if computed correctly) and a proof of correct
computation σ.

• v ← Decrypt(SK, V ): The algorithm Decrypt, run by the
model manager, takes the secret key SK and the encrypted
result V as inputs and returns the decrypted result v to the
customer.

• {0, 1} ← Verify(PK,FK(f), z, v, σ): The algorithm Verify,
run by the customer, takes the public key PK, the function
public key FK(f), the data vector z, the claimed result v,
and the proof of correct computation σ, as inputs. If the
result is accepted, the algorithm outputs 1; otherwise, it
outputs 0.

3.2 Security Model

We identify attacks in ML prediction services and define
corresponding security requirements. We further define the
adversary model using the simulation-based technique.

3.2.1 Security Requirements
First, a service provider needs to support large-scale data
contributions and perform data preprocessing. In addition,
it is required to carefully train model and concurrently han-
dle multiple queries from customers. Thus, the heavy-laden
service provider might return incorrect answers. However,
this case would cause heavy losses to the customer, espe-
cially in integrity-sensitive scenarios (e.g., financial, medi-
cal, and safeguarding applications). Moreover, the service
provider may have strong motivations to return incorrect
answers, if such answers require less work and are unlikely
to be detected by the customer. Hence, the customer should
have the capability to verify the integrity of returned an-
swers, i.e., outcome verifiability. By following the principles of
conventional verifiable computation, we state the outcome
verifiability in our new context.

Definition 6 (Outcome Verifiability (Informal)). A secure
outcome verification scheme in ML prediction services
should satisfy:
• Correctness: Whenever the service provider has executed

the prediction algorithm honestly, the customer, as a veri-
fier, never rejects a correct proof.

• Unforgeability: The service provider, as an adversary, can-
not forge valid proofs to convince the customer to accept
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a wrong answer on an input of the customer’s choice,
except with negligible probability.

Second, a fine-tuned trained model has great commercial
value to the service provider and should be paid for usage.
However, some greedy customers and external attackers
(e.g., business competitors) may try to obtain the trained
model so that they can use it for free or to make profits.
Therefore, the key parameters of the trained model (e.g.,
support vectors in SVMs and weight matrix and bias vector
in neural networks) should be kept secret from the customer
and external attackers, i.e., function privacy.

Third, we consider that the service provider attempts to
glean sensitive information from the customer’s private test
data, such as personal communications, face images, daily
activities, and health records. We here use the term input
privacy to represent the security requirement of hiding the
customer’s test data from the service provider.

Last, just as [32], [33], we initially assume that the model
manager can be trusted. For example, the role is played
by the commercial companies with high reputations or the
organizations that are strictly supervised with great trans-
parency. In particular, Microsoft Azure [34], Google AI Plat-
form [35], and Amazon Machine Learning [36] have already
launched the model management service. Nevertheless, our
design should support distributing the trust on the model
manager. We will revisit the trust assumption in Remark 1.

3.2.2 Adversary Model
Guided by the practical security requirements above, we
formally define the adversary model for our secure build-
ing block under Definition 5. Before that, we introduce
a common concept in simulation-based definitions/proofs
from [37], called computational indistinguishability.

Definition 7 (Computational Indistinguishability). Two
probability ensemblesX and Y are two infinite sequences of
random variables. If for every nonuniform polynomial-time
algorithmD (intuitively, distinguisher), and for any element
x uniformly sampled either from X or from Y , there exists
a negligible probability such that D can ascertain x from
X or x from Y , then X and Y are said to computationally
indistinguishable, denoted as X

c≡ Y .

We now formally define outcome verifiability, input pri-
vacy, and function privacy as follows.

Definition 8 (Outcome Verifiability). The property of cor-
rectness states that ∀z, if (V, σ) ← Compute(PK, f,C) and
V ← Encrypt(PK, f(z)), then 1← Verify(PK,FK(f), z, v, σ).

The property of unforgeability states that no PPT adver-
sary A has more than negligible probability in winning the
following game between A and an simulator S as follows.
(1) Initialization: A commits to a random data vector z. S
runs the algorithm KeyGen, gives PK to A, and maintains
SK secret; (2) Setup: A makes an oracle query the the
algorithm Setup, specifying the function f . S answers the
query by returning FK(f); and (3) Forgery: A outputs a
forgery for the committed point z, including a claimed
outcome v′ of f at z and a signature of correct computation
σ′. If the forgery passes the algorithm Verify but v′ 6= f(z),
namely, if 1 ← Verify(PK,FK(f), z, v′, σ′) and v′ 6= f(z),
then A wins the game.
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Fig. 1. An Illustration of MVP Supporting SVMs with the RBF Kernel.

Definition 9 (Function Privacy). Let VC denote the view of
a customer in the execution of the scheme in Definition 5.
VC mainly covers the customer’s input data vector z and
all the outputs of the scheme returned to the customer,
including the result v and the signature of correctness σ.
The guarantee of function privacy requires that there exists
a polynomial-time simulator SC such that SC(z, v)

c≡ VC .
In other words, the coefficient vector x is hidden from VC .

Definition 10 (Input Privacy). Let VS denotes the view of
the service provider in the execution of the scheme in Defini-
tion 5. The guarantee of input privacy requires the existence
of a polynomial-time simulator SS such that SS(x)

c≡ VS .
In other words, the data vector z is hidden from VS .

We interpret the intuitions behind the definitions of
function privacy and input privacy. After the execution of
the secure scheme, the customer learns only its data vector
z and the returned result v, while the coefficient vector x
of the function f is hidden. Similarly, the service provider
holds only its coefficient vector x, but does not learn any
information about the customer’s data vector z, not even
the result v returned to the customer.

4 DESIGN PRINCIPLES OF MVP
We give an overview of our proposed scheme MVP and
illustrate its key design principles.

We adopt a bottom-up design holistically. In Section 5,
we first consider two basic multivariate polynomials un-
derlying common ML algorithms, namely dot product and
squared Euclidean distance, and thus develop two building
blocks of MVP, satisfying the desired security requirements.
In Section 6, we then apply and further upgrade the building
blocks to support practical ML predictions. With the help of
Fig. 1, we illustrate the design principles as follows.

A naı̈ve method, enabling the customer to verify the
correctness of polynomial evaluation while maintaining
function privacy, is that the service provider can employ
homomorphic encryption to encrypt the coefficient vector
x of the polynomial f and let the customer obliviously
reevaluate its input z. However, it defeats the requirement
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of computation efficiency at the verifier. Therefore, we turn
to the following lemma for verification.

Lemma 1 (Polynomial Decomposition). Let f(u) be an n-
variate polynomial in Z, where u = (u1, u2, . . . , un) ∈ Zn. For
any z ∈ Zn, there exist polynomials wi(u)’s such that

f (u)− f (z) =
n∑
i=1

(ui − zi)wi (u) . (1)

In addition, there exists an efficient algorithm to findwi(u)’s [38].

Based on Lemma 1, we let the model manager first
choose a random point t (i.e., the variable u now takes
the value of t) and then create the function public key
involving f(t). Later in the computation stage, given the
data vector z from the customer, when the service provider
wants to prove that v is indeed the result of f(z), it needs to
compute the polynomials wi(t)’s such that Lemma 1 holds.
In addition, wi(t)’s will be used to construct the signatures
vouching for the correctness of computation. If the claimed
outcome v is correct, then f(t) − v =

∑n
i=1(ti − zi)wi(t)

must hold, since it is equivalent to both sides of Equation (1)
evaluated at the commitment point t. We note that in real
construction, considering the secrecy of f and t, the terms
in the above equation are all encoded in the exponents of
bilinear group elements. In particular, the pairing operation
over the bilinear groups allows to express one multipli-
cation in the exponent. Additionally, to assist the service
provider in raising wi(t)’s to the exponents, the public key
should contain appropriate helper terms. Moreover, wi(t)’s
normally contain the coefficients xi’s, and directly encoding
wi(t)’s in the exponents can still leak function privacy. Thus,
the service provider needs to perform some extra maskings.
For example, it can bring in random integers for shifting and
scaling, whose securities can reduce to the hardness of the
discrete logarithm problem.

However, the input privacy causes significant obstacles
to implementing the above verification program. Specifi-
cally, the terms wi(t)’s may also involve the data vector
z (e.g., in the case of squared Euclidean distance shown in
Fig. 1). In other words, the service provider needs to encode
z as exponents of group elements, without knowing its
contents. Additionally, it also needs to compute dot product
and squared Euclidean distance over the ciphertexts of z. To
jointly handle these two problems, we employ the stripped-
down BGN cryptosystem introduced above. On the one
hand, the BGN-type ciphertext is essentially an encoding
of the plaintext in the exponent and thus can be exploited
in the proof generation. On the other hand, homomorphic
properties facilitate evaluating two designated types of mul-
tivariate polynomials on ciphertexts efficiently.

Last, to further reduce latency when handling numerous
test data in practice, we incorporate the bilinear property
of the pairing operation to support batch verification. Ac-
cordingly, we generate the proofs of correct computations
in an aggregate mode. Hence, the communication overhead
can be substantially reduced. The main insight behind our
optimization is that when performing verifications for single
test data and multiple test data, the data vector (i.e., test
data) and the coefficient vectors (e.g., support vectors in
SVMs) remain unchanged, respectively. Therefore, by apply-
ing bilinearity, we can aggregate the verification formulas

involving the coefficient vectors (e.g., support vectors) and
the data vectors (i.e., test set), respectively. We note that
our batch verification scheme and the amortized efficiency
are general, because the parameters of all ML models (e.g.,
the weights and biases in neural networks) are fixed in the
prediction phase, and the bilinearity can always be applied.

5 BUILDING BLOCKS OF MVP
In this section, we present the building blocks of MVP:
verifiable and privacy preserving dot product and squared
Euclidean distance computations. In particular, dot product
can be regarded as an elementary mathematical operation
of most ML algorithms, ranging from linear models for
regression/classification to neural networks. Yet, Euclidean
distance, also known as L2 norm in regularization theory,
is an important distance measure widely used in clustering
and classification, such as k-means clustering, learning vec-
tor quantization, SVMs with RBF kernels, etc.

5.1 Secure Dot Product Computation

We first consider the dot product between a coefficient
vector x and a data vector z, i.e., f(z) = xT z =

∑n
i=1 xizi.

Algorithm (PK,SK) ← KeyGen(τ, f): The model man-
ager sets up the parameters for the adapted BGN cryptosys-
tem as shown in Section 2.2. In addition, it selects a random
point t = (t1, t2, . . . , tn) where ti ∈ Z∗q and computes the
signature generation set as

W =
{{
g1
ti , hti |i ∈ [n]

}
, g1

∑n
i=1 ti

2
}
. (2)

The public key PK = {q,G1,G2,GT , h, (g, gs) , (g1, g2) ,W}
is posted on the certificated bulletin board. The secret key
SK, containing the private key s for decryption and the
commitment point t, is maintained by the model manager.
For consistency with the adapted BGN cryptosystem, g1 is
used as the major base throughout this work.

Algorithm FK(f) ← Setup(PK, f): By using the signa-
ture generation set W contained in PK, the model manager
computes the function public key FK(f), where

FK(f) =
n∏
i=1

(
g1
ti
)xi = g1

∑n
i=1 xiti = g1

xT t = g1
f(t). (3)

Algorithm C ← Encrypt(PK, z): To guarantee input
privacy against the service provider, the customer picks a
set of n random numbers

{
ri ∈ Z∗q |i ∈ [n]

}
and employs the

adapted BGN scheme to encrypt its data vector z as

C = {(g1
zigri , g2

zigsri) ∈ G|i ∈ [n]} . (4)

Algorithm (V, σ) ← Compute(PK, f,C): The service
provider can obliviously evaluate f(z) over the ciphertext
set C. It first applies multiplication by a constant and then
homomorphic addition, and it gets the encrypted result:

V =
n∏
i=1

(g1
zigri , g2

zigsri)
xi =

n∏
i=1

(g1
xizigxiri , g2

xizigsxiri)

=
(
g1

∑n
i=1 xizig

∑n
i=1 xiri , g2

∑n
i=1 xizigs

∑n
i=1 xiri

)
=
(
g1
f(z)g

∑n
i=1 xiri , g2

f(z)gs
∑n
i=1 xiri

)
∈ G. (5)
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We note that if correctly computed, V should be an encryp-
tion of f(z) under the random number

∑n
i=1 xiri.

To facilitate outcome verification, using Lemma 1, the
service provider is able to find an appropriate set of poly-
nomials w1(t), w2(t), . . . , wn(t) to express f(t) − f(z) as∑n
i=1(ti−zi)wi(t). Here in the dot product, we can observe

that wi(t) = xi for all i ∈ [n]. Additionally, to preserve func-
tion privacy, namely to hide the coefficients xi’s, the service
provider needs to do some maskings on the exponents of
these coefficients. It first chooses a random integer d ∈ Z∗q
and computes σ0 = hd ∈ G2. It then generates a signature
of correctness σ = (σ1, σ2, . . . , σn) such that

σi = g1
dxi
(
g1
ti
)d

=
(
g1
xi+ti

)d
=
(
g1
wi(t)+ti

)d
. (6)

Here, g1
ti from the signature generation set W is added for

shifting, while the random number d is added for further
scaling. In addition, the witness σ0 is to balance d intro-
duced in the signature of correctness σ for later verification.
Moreover, σ0 is kept secret by the service provider and
remains unchanged in the following designs.

The service provider finally sends the encrypted result
V to the model manager for decryption and forwards the
signature of correctness σ to the customer for verification.

Algorithm v ← Decrypt(SK, V ): The model manager
first uses the private key s to project the ciphertext V :

π (V ) =
(
g1
f(z)g

∑n
i=1 xiri

)s (
g2
f(z)gs

∑n
i=1 xiri

)−1

=
(
g1
sg2
−1
)f(z)

= π ((g1, g2))
f(z)

. (7)

Then, given a limited domain of f , the model manager can
recover the result v by computing the logarithm of π(V ) to
the base π((g1, g2)). After decryption, the model manager
returns v to the customer.

Algorithm {0, 1} ← Verify(PK,FK(f), z, v, σ): To verify
that v is indeed the correct outcome of f evaluated for
the data vector z, the customer first uses the signature
generation set W to generate a helper value:

H(f) = g1

∑n
i=1 ti

2

(
n∏
i=1

(
g1
ti
)zi)−1

= g1

∑n
i=1 ti(ti−zi), (8)

and then checks whether the following equation holds:

ê
(
FK(f)g1

−vH(f), σ0

) ?
=

n∏
i=1

ê
(
σi, h

ti−zi) . (9)

Here, since the witness σ0 on the left hand side (LHS) is
maintained by the service provider, it needs to assist the
customer in performing the pairing operation, i.e., ê(·, σ0).
In addition, FK(f) equals g1

f(t), and hti is contained in W .
Moreover, by using the bilinearity of asymmetric pairing,
the helper value H(f) on the LHS is able to balance each
shifting term g1

ti added in the signature σi on the right
hand side (RHS). The customer accepts v if the above
equation holds; otherwise, it rejects.

5.2 Secure Squared Euclidean Distance Computation
We next consider the squared Euclidean distance between a
coefficient vector x and a data vector z, i.e., f(z) = ‖x −
z‖22 =

∑n
i=1(xi − zi)2.

Algorithm (PK,SK)← KeyGen(τ, f): The key initializa-
tion phase is the same as that in the dot product protocol.
The difference lies in the signature generation set W , where

W =
{
gti , g1

ti , g1
ti

2

, hti |i ∈ [n]
}
. (10)

Here, gti is to support the helper value generation, and g1
ti

2

is to facilitate the function public key generation.
Algorithm FK(f) ← Setup(PK, f): The model manager

uses the signature generation set W to compute

FK(f) =
n∏
i=1

(
g1
xi

2 (
g1
ti
)−2xi g1

ti
2
)

= g1

∑n
i=1(xi−ti)2 = g1

‖x−t‖22 = g1
f(t) (11)

as the function public key.
Algorithm C ← Encrypt(PK, z): To facilitate com-

puting squared Euclidean distance while preserving in-
put privacy, the customer first picks a set of 2n ran-
dom integers

{
r1
i , r

2
i ∈ Z∗q |i ∈ [n]

}
. Then, it computes C ={

C1
i , C

2
i |i ∈ [n]

}
as the ciphertext set, where

C1
i =

(
g1
zigr

1
i , g2

zigsr
1
i

)
∈ G, (12)

C2
i =

(
g1
zi

2

gr
2
i , g2

zi
2

gsr
2
i

)
∈ G, (13)

are BGN encryptions of zi, zi2 under r1
i , r

2
i , respectively.

In general, compared with the time-consuming compu-
tation on ciphertexts, the evaluation of plaintexts is quite
more efficient. Therefore, in addition to original data, we
also let the customer encrypt its square, which can avoid
homomorphic multiplications at the service provider while
incurring a small encryption overhead at the customer.

Algorithm (V, σ) ← Compute(PK, f,C): The service
provider can obliviously evaluate f(z) via homomorphic
properties. It first computes

Vi = (g1, g2)
xi

2
(
g1
zigr

1
i , g2

zigsr
1
i

)−2xi (
g1
zi

2

gr
2
i , g2

zi
2

gsr
2
i

)
=
(
g1

(xi−zi)2g−2xir
1
i+r2i , g2

(xi−zi)2gs(−2xir
1
i+r2i )

)
for all i ∈ [n]. It then applies homomorphic additions to all
Vi’s and obtains

V =
n∏
i=1

Vi =
n∏
i=1

(
g1

(xi−zi)2gr̄i , g2
(xi−zi)2gsr̄i

)
=
(
g1

∑n
i=1(xi−zi)2g

∑n
i=1 r̄i , g2

∑n
i=1(xi−zi)2gs

∑n
i=1 r̄i

)
=
(
g1
f(z)g

∑n
i=1 r̄i , g2

f(z)gs
∑n
i=1 r̄i

)
∈ G, (14)

where r̄i denotes −2xir
1
i + r2

i for the sake of brevity. If
evaluated correctly, V is actually an encryption of f(z)
under the random number

∑n
i=1 r̄i =

∑n
i=1

(
−2xir

1
i + r2

i

)
.

To help verify the correctness of evaluation, the service
provider computes w1(t), w2(t), . . . , wn(t) such that the re-
lation of Lemma 1 holds. In the squared Euclidean distance
considered here, wi(t) = ti − 2xi + zi. We note that wi(t)
in the dot product only contains xi, which is known to the
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service provider. In contrast, wi(t) in the squared Euclidean
distance also comprises ti and zi, which are both kept secret
from the service provider. This condition makes the task of
encoding wi(t) in the exponent extremely hard, although
g1
ti can be fetched from the signature generation set W .

To deal with zi, the service provider can first embed the
first part of its BGN-type ciphertext, i.e., g1

zigr
1
i , into the

signature. Later, with the help of gti in W , the customer,
knowing its input zi and corresponding random number
r1
i , can eliminate the part involving gr

1
i in the verification

formula. Furthermore, to guarantee function privacy, just
as in the dot product, the service provider first chooses a
random integer d ∈ Z∗q and computes σ0 = hd. It then
generates the signature of correctness σ = (σ1, . . . , σn),
where

σi =
(
g1
tig1
−2xi

(
g1
zigr

1
i

))d
=
(
g1
wi(t)gr

1
i

)d
. (15)

Algorithm v ← Decrypt(SK, V ): The same as that in the
dot product protocol.

Algorithm {0, 1} ← Verify(PK,FK(f), z, v, σ0, σ): To
verify the correctness of v, the customer first uses g and
{gti |i ∈ [n]} in the public key PK to compute a helper value:

H(f) =
(
g(
∑n
i=1 r

1
i zi)

)−1 n∏
i=1

(
gti
)r1i

= g
∑n
i=1 r

1
i (ti−zi), (16)

and then checks whether the following equation holds:

ê
(
FK(f)g1

−vH(f), σ0

) ?
=

n∏
i=1

ê
(
σi, h

ti−zi) . (17)

We note that the helper term H(f) on the LHS is to balance
the term gr

1
i introduced in the signature σi on the RHS.

5.3 Performance Analysis

We analyze the time and communication complexities of
the proposed secure dot product and squared Euclidean
distance computation protocols. For the time complexity
analysis, we focus only on the expensive group operations,
including pairing and exponentiation, while ignoring other
operations with quite low overhead (e.g., the operations
over plaintexts). We let Tpair and Texp denote one-time
overhead of pairing and exponentiation, respectively, where
Tpair � Texp. For both protocols, the time complexities of
the customer, the service provider, and the model manager
are nTpair + O(n)Texp, 1Tpair + O(n)Texp, and O(n)Texp,
respectively. Their communication complexities are O(n),
O(n), and O(1), respectively.

5.4 Security Analysis

We give the following three propositions to analyze outcome
verifiability, function privacy, and input privacy in two
building blocks of MVP. We also revisit and distribute the
trust on the model manager.

Proposition 1. Outcome verifiability is guaranteed in terms of
correctness and unforgeability under Definition 8.

Proof. We give a proof sketch here and defer the detailed
proof to Appendix A. First, we prove correctness by show-
ing the validnesses of the verification formulas, i.e., Equa-
tion (9) and Equation (17) in the dot product and the
squared Euclidean distance protocols, respectively. These
two equations follow from Lemma 1 and the bilinearity
of asymmetric pairing. Second, we prove unforgeability by
reducing to the `-SDH assumption in Definition 4. The key
idea is to build a simulator S , which obtains an instance of
the `-SDH assumption from a challenger C, where ` = 1
and ` = 2 for the dot product and the squared Euclidean
distance protocols, respectively. S then embeds this `-SDH
instance into an instance of the algorithm Verify such that
if an adversary A can break the security of Verify with
more than negligible probability, S can leverage A to break
the `-SDH instance also with non-negligible probability,
contradicting the `-SDH assumption.

Proposition 2. Function privacy is preserved from the customer
and external attackers under Definition 9.

Proof. Guaranteeing function privacy is to hide the coef-
ficient vector x. In addition, the information involving x,
available to the adversaries (e.g., the customer), contains the
signature of correctness σ and the outcome v. We prove no
information leakage in terms of these two parts.

First, the adversaries cannot derive x from σ. We prove
this point in two building blocks separately. For the dot
product, the coefficient xi in the signature σi = (g1

xi+ti)
d

has been shifted by a random integer ti and further scaled
by another d. We give the formal proof through the rela-
tion of computational indistinguishability. We consider the
following two computationally indistinguishable pairs:

∀i ∈ [n], σi =
(
g1
xi+ti

)d c≡ X ∈ RG1, (18)

∀i 6= i′ ∈ [n], σi =
(
g1
d
)xi+ti c≡ σi′ =

(
g1
d
)xi′+ti′

, (19)

where the first pair says that each signature is a uniform
element of the cyclic group G1, and the second pair indicates
that any two distinct signatures have no correlation. In
addition, the first and the second pairs follow from the
randomnesses of d and ti, by regarding g1

xi+ti and g1
d as

generators of G1, respectively. Moreover, the confidentiali-
ties of d and ti can be reduced to the intractabilities of the
DLP in GT and G1, i.e.,

ê (·, h) , ê (·, σ0) = ê (·, h)
d ∈ GT ⇒ d, (20)

g1, g1
ti ∈ G1 ⇒ ti, (21)

are both hard for the PPT adversaries. Therefore, each coef-
ficient xi cannot be leaked from its corresponding signature
σi and the other signatures, namely the signature of correct-
ness σ. For the squared Euclidean distance, we first rewrite
g as g1

s1 with some implicit s1 ∈ Z∗q . We then consider two
computationally indistinguishable pairs:

∀i ∈ [n], σi = (g1
ti−2xi+zigr

1
i )d

c≡ X ∈ RG1, (22)

∀i 6= i′ ∈ [n], σi =
(
g1
d
)ti−2xi+zi+s1r

1
i

c≡ σi′ =
(
g1
d
)ti′−2xi′+zi′+s1r

1
i′
. (23)
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Here, the first and the second pairs follow from the random-
nesses of d and ti (or r1

i ), by viewing g1
ti−2xi+zigr

1
i and g1

d

as generators of G1, respectively. In addition, just as in the
dot product, the securities of d and ti can be reduced to the
hardnesses of the DLP in GT and G1, respectively. Thus, σ
reveals no information about each coefficient xi.

Second, although the customer knows the outcome v =
f(z) and its data vector z, it cannot restore the coefficient
vector x yet. The reason is that f(z)’s in the dot product and
the squared Euclidean distance protocols are essentially two
diophantine equations with n variables, i.e., {xi|i ∈ [n]}.
However, the customer just has one equation. Thus, when
n > 1, it is computationally infeasible for the customer to
learn xi’s. Furthermore, in Section 6.1.4, we will show how
MVP thwarts such an equation solving attack, when the
customer queries multiple test data.

Proposition 3. Input privacy is preserved from the service
provider under Definition 10.

Proof. The elements of the data vector z have been en-
crypted with the adapted BGN cryptosystem, which pro-
vides semantic security under the SXDH assumption [25].
By definition, the service provider, as a PPT adversary,
cannot reveal the contents of the data vector z. Furthermore,
the input privacy cannot be breached from the outcome v,
since it is returned/known to the customer rather than the
service provider after the algorithm Decrypt.

Remark 1 (Trust Assumption on Model Manager Revisited).
We illustrate how to distribute the trust on the model
manager from its functionalities.

First regards outcome verification. The model manager
performs two related tasks to facilitate outcome verification:
one is to select a random point t in the algorithm KeyGen;
the other is to compute the function public key FK(f) in the
algorithm Setup. Accordingly, the trust assumption on the
model manager includes two aspects: first, it should keep t
secret and cannot leak it to irrelevant system participants;
second, it maintains the registration database of trained
models and should correctly set up the function public key
FK(f). We note that Setup in two building blocks executes
with the signature generation set W in the public key PK
rather than the random point t in the secret key SK. Such
an insightful design enables us to distribute the trust on the
model manager by introducing two non-colluding entities
to perform KeyGen and Setup independently, which is a
common distributed setting used by previous works [39],
[40]. We further show that the major roles of the model
manager can be substituted in feasible ways. First, the
random point t can be cooperatively selected by a group
of customers. For example, each of n customers selects one
distinct dimension of t and then computes its corresponding
elements in W , i.e., the i-th customer selects ti and needs to
compute {g1

ti , g1
ti

2

, hti} (resp., {gti , g1
ti , g1

ti
2

, hti}) for the
dot product protocol (resp., the squared Euclidean distance
protocol). In particular, keeping t secret is to ensure outcome
verifiability at the customers. Hence, we let themselves
cooperatively select t, and they have no proper incentives
to leak it to others. Second, the function public key FK(f)
can be set up by the service provider. In this situation, a
natural analogue of the trust assumption on the service

provider is that it should correctly execute Setup without
knowing the random point t. An alternative assumption
turns into defining the correctness of outcome verifiability
as the consistency between the function public key FK(f)
and the outcome f(z), where the former is computed at
the random point t in Setup, and the latter is evaluated at
the data vector z in Compute. Specifically, both t and z are
unknown to the service provider.

Second regards decryption. We can adopt a threshold
version of the adapted BGN scheme and introduce multiple
model managers to jointly perform decryption. In particular,
by using the standard Pedersen’s technique [41], the private
key s can be split across these model managers such that
only if a minimum (no less than the threshold) number of
models manager participate, they can decrypt a ciphertext.

6 DESIGN OF MVP
In this section, we use the building blocks to support practi-
cal ML algorithms and thus propose MVP. We first elaborate
on SVMs and then illustrate how to support others.

6.1 Supporting SVMs

We first present two key parts of MVP, namely, oblivious
evaluation and outcome verification. We then analyze per-
formance and security. In what follows, we focus mainly
on two types of kernels widely used in SVMs, including the
polynomial kernelK(xj , zk) = (γxj

T zk+c)p and the radial
basis function (RBF) kernelK(xj , zk) = exp(−γ‖xj−zk‖22),
where γ, c, and p are parameters for kernel functions. We
also set the degree of the polynomial kernel p ≥ 2 by de-
fault. In fact, when p = 1, the polynomial kernel degenerates
into linear kernel, which can be handled by applying the dot
product protocol only once. Detailed design for the linear
kernel is deferred to Appendix B.

6.1.1 Oblivious Evaluation
We introduce the first part of MVP, i.e., how the service
provider can obliviously evaluate each test data zk. We
assume that without affecting the final classification re-
sults, the service provider and the customer agree on a
common scaling and rounding formula, which transforms
float-type parameters or data into integers if necessary [14].
In addition, for simplicity in notations, we use ψj(zk)
to represent the basic function inside the kernel operator
K(xj , zk) (i.e., ψj(zk) = xj

T zk for the polynomial kernel,
and ψj(zk) = ‖xj − zk‖22 for the RBF kernel). Thus, SVMs
with the polynomial kernel and the RBF kernel should
invoke the algorithms in the dot product and the squared
Euclidean distance protocols, respectively. We introduce the
details of oblivious evaluation as follows.

When the customer intends to query an SVM prediction
service, it first encrypts zk using the algorithm Encrypt.
Then, it sends the ciphertext set to the service provider. Con-
sidering high-degree polynomial or exponential function in
f(zk), the service provider computes step by step.

The service provider first obliviously evaluates the basic
function inside the kernel for all the support vectors (i.e.,
{ψj(zk)| j ∈ SV}) with the algorithm Compute. After-
wards, it sends the encrypted intermediate results, denoted
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by {V (k)
j |j ∈ SV}, to the model manager. To facilitate

further computation, the model manager executes the algo-
rithm Decrypt for {V (k)

j |j ∈ SV} and returns the plaintexts
{v(k)
j |j ∈ SV} to the customer. With these intermediate

results, the customer can compute the complete kernel func-
tions, i.e., {v̄(k)

j = (γv
(k)
j + c)p|j ∈ SV} in the polynomial

kernel and {v̄(k)
j = exp(−γv(k)

j )|j ∈ SV} in the RBF kernel.
Now, the SVM classifier becomes

f(zk) =
∑
j∈SV

yjαj v̄
(k)
j + b. (24)

Here, the service provider may also need to provide the dual
coefficients {αjyj |j ∈ SV} and the intercept term b, given
which the customer can finally derive f(zk).

In addition to support vectors, if the service provider
intends to hide the dual coefficients and the intercept
term, the dot product protocol can be applied. Specifically,
(yjαj |j ∈ SV, b) and (v̄

(k)
j |j ∈ SV, 1) in Equation (24) serve

as the coefficient vector and the data vector, respectively.
The detailed design is similar to the design for linear kernel,
and the analogy is deferred to Remark 2 in Appendix B.

6.1.2 Outcome Verification

We next introduce the other part of MVP, i.e., how the
customer can verify the computations done by the service
provider. In particular, the customer needs to check whether
each intermediate result v(k)

j is correctly computed from
the support vector xj and the test data zk, i.e., whether
∀k ∈ [φ],∀j ∈ SV, v(k)

j = ψj(zk). We show the detailed in-
dividual and batch verification schemes for the polynomial
kernel and the RBF kernel separately. For the sake of brevity,
if the term is independent of the test data zk, we will omit
the superscript “(k)” from its top right corner; otherwise,
we will reserve this superscript.

Design for Polynomial Kernel: We first consider the
case of single test data zk. To verify the correctness of
{v(k)
j |j ∈ SV}, an explicit way for the customer is to

perform the algorithm Verify in the dot product protocol
for |SV| times, where zk functions as the data vector, and
{xj |j ∈ SV} serves as |SV| distinct coefficient vectors.
Specifically, the individual verification formulas are

∀j ∈ SV, ê
(

FK(ψj)g1
−v(k)j H(ψ

(k)
j ), σ0

)
?
=

n∏
i=1

ê
(
σ

(j)
i , hti−z

(k)
i

)
, (25)

where the expressions of the function public key FK(ψj), the
signature σ(j)

i , and the helper value H(ψ
(k)
j ) can be obtained

by assigning values x(j)
i , z

(k)
i to the variables xi, zi, respec-

tively, in Equations (3), Equations (6), and Equations (8).
However, we note that σ0 on the LHS and hti−z

(k)
i on the

RHS are both independent of j. Therefore, by using the
bilinearity of asymmetric pairing, we can aggregate both

sides of Equation (25) for all j ∈ SV and deduce the batch
verification formula at the support vector level:

ê

 ∏
j∈SV

FK (ψj) g1
−
∑
j∈SV v

(k)
j H

(
ψ

(k)
j

)|SV|
, σ0


?
=

n∏
i=1

ê

 ∏
j∈SV

σ
(j)
i , hti−z

(k)
i

 . (26)

Here, the aggregation of the function public keys, denoted
as FK(ψ), can be optimally computed through

FK (ψ) =
n∏
i=1

(
g1
ti
)∑

j∈SV x
(j)
i =

∏
j∈SV

n∏
i=1

(
g1
ti
)x(j)
i

=
∏
j∈SV

g1

∑n
i=1 x

(j)
i ti =

∏
j∈SV

FK (ψj) . (27)

Additionally, the signatures can also be aggregated into σi:

σi = g1
d
∑
j∈SV x

(j)
i
(
g1
ti
)d|SV|

=
∏
j∈SV

(
g1
x
(j)
i +ti

)d
=
∏
j∈SV

σ
(j)
i . (28)

Furthermore, the helper value H(ψ
(k)
j ) in the individual

verification is independent of the support vector and thus
can be aggregated by taking exponent to the power |SV|.

We continue to consider how to efficiently conduct out-
come verification for φ test data. From Equation (26), we
can observe that σ0 on the LHS and σi on the RHS are
both independent of the test data zk. Hence, we can apply
bilinearity again to Equation (26) for all k ∈ [φ] and derive

ê

(
(FK (ψ))

φ
g1
−
∑φ
k=1

∑
j∈SV v

(k)
j

φ∏
k=1

H
(
ψ

(k)
j

)|SV|
, σ0

)
?
=

n∏
i=1

ê
(
σi,
(
hti
)φ
h−

∑φ
k=1 z

(k)
i

)
(29)

as the batch verification formula at the test data level. Here,
the aggregate function public key FK(ψ) is independent of
test data, so we can raise φ to the exponent. In addition, we
can aggregate the helper values more efficiently through

φ∏
k=1

H
(
ψ

(k)
j

)|SV|
=

g1
φ
∑n
i=1 ti

2

(
n∏
i=1

(
g1
ti
)∑φ

k=1 z
(k)
i

)−1
|SV|

=

φ∏
k=1

(
g1

∑n
i=1 ti

(
ti−z(k)i

))|SV|
. (30)

Design for RBF Kernel: We also start from single test
data zk. Intuitively, the customer can perform |SV| instances
of the algorithm Verify in the squared Euclidean distance
protocol. In particular, we can assign values x(j)

i , z
(k)
i , r

1(k)
i

to the variables xi, zi, r1
i in Equation (11), Equation (15),

and Equation (16), thus obtaining the function public key
FK(ψj), the signature σ(j)(k)

i , and the helper value H(ψ
(k)
j ),

respectively. In addition, we can similarly elicit the batch
verification formula at the support vector level for the RBF
kernel, which is the same as Equation (26) for the polyno-
mial kernel. The differences lie in the concrete expressions
of the aggregate function public key FK(ψ), the aggregate
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signature σ
(k)
i , and the helper value H(ψ

(k)
j ). Specifically,

the aggregate function public key FK(ψ) here is given as

FK(ψ) =
n∏
i=1

(
g1

∑
j∈SV x

(j)
i

2 (
g1
ti
)−2

∑
j∈SV x

(j)
i

(
g1
ti

2
)|SV|)

=
∏
j∈SV

g1

∑n
i=1

(
x
(j)
i −ti

)2
=
∏
j∈SV

FK(ψj), (31)

and the aggregate signature σ(k)
i is computed through

σ
(k)
i =

(
g1
ti
(
g1
z
(k)
i gr

1
i

))d|SV|
g1
−2d

∑
j∈SV x

(j)
i

=
∏
j∈SV

(
g1
tig1

−2x
(j)
i

(
g1
z
(k)
i gr

1
i

))d
=
∏
j∈SV

σ
(j)(k)
i . (32)

For the RBF kernel, its batch verification scheme at the
test data level is much more complicated. The reason is that
both two terms on the RHS of the batch verification formula
at the support vector level, namely σ

(k)
i and hti−z

(k)
i , are

related with the test data zk. We thus cannot directly apply
bilinearity. Nevertheless, we can strip the part involving
the test data (i.e., the ciphertext of z(k)

i ) from σ
(k)
i and

then perform aggregation. In the later verification phase,
the customer, knowing its test data, can make up for this
part. The aggregate signature σ(k)

i is now changed into

σi =
(
g1
ti
)d|SV|

g1
−2d

∑
j∈SV x

(j)
i =

∏
j∈SV

(
g1
ti−2x

(j)
i

)d
(33)

and is independent of the test data zk. Moreover, the batch
verification formula at the test data level is given as

ê
(

(FK (ψ))
φ
g1
−
∑φ
k=1

∑
j∈SV v

(k)
j , σ0

)
?
=

φ∏
k=1

n∏
i=1

ê
(
σi, h

ti−z(k)i

)
︸ ︷︷ ︸

RHS1

φ∏
k=1

n∏
i=1

ê
(
g1
d|SV|z(k)i , hti−z

(k)
i

)
︸ ︷︷ ︸

RHS2

,

where RHS1 and RHS2 can be more efficiently computed
from the public parameters and the test data through

n∏
i=1

ê
(
σi,
(
hti
)φ
h−

∑φ
k=1 z

(k)
i

)
, (34)

ê

(
g1
−
∑n
i=1

∑φ
k=1 z

(k)
i

2
n∏
i=1

(
g1
ti
)∑φ

k=1 z
(k)
i , σ0

|SV|

)
, (35)

respectively. Here, RHS2 is added to make up for the part
split from the original signature involving z(k)

i . This design
is another feasible way to handle the problem of encoding
wi(t) in the exponent without knowing its element z(k)

i .

6.1.3 Performance Analysis
We analyze the time and communication complexities of
oblivious evaluation and outcome verification in MVP.

For the oblivious evaluation of φ test data under both
polynomial and RBF kernels, the time complexities of the
customer, the service provider, and the model manager
are O(φn)Texp, O(φ|SV|n)Texp, and O(φ|SV|)Texp, respec-
tively, where |SV| denotes the number of support vec-
tors. Their communication complexities are O(φn+ φ|SV|),
O(φn+ φ|SV|), and O(φ|SV|), respectively.

For the batch outcome verification of φ test data, we
start with the polynomial kernel. The time complexities of
the customer, the service provider, and the model manager
are nTpair + O(n)Texp, 1Tpair + O(n)Texp, and O(n)Texp,
respectively. Their communication complexities are O(n),
O(n), and O(1), respectively. We next analyze the RBF
kernel. The time complexities of the customer, the service
provider, and the model manager are nTpair + O(n)Texp,
2Tpair + O(n)Texp, and O(n)Texp. Their communication
complexities are O(n), O(n), and O(1), respectively. From
the above analysis, we can find that the batch outcome
verification scheme in MVP can sharply reduce the veri-
fication latency, especially when supporting a large-scale
test set. The reason is that (n + 1) and (n + 2) pairing
operations dominate the overall verification overhead in
the polynomial kernel and the RBF kernel, respectively.
Also, the verification latency is related with the number of
features n, but almost independent of the number of support
vectors |SV| and the number of test data φ, which implies
that our batch verification scheme is quite scalable.

6.1.4 Security Analysis
We can base the security of MVP on the security of two
building blocks. First, because we have proven the signa-
ture’s unforgeability in Proposition 1, our batch outcome
verification scheme can be analogous to the classical batch
verification of signatures [42]. Second, MVP can guarantee
function privacy by thwarting the equation-solving attack
against the support vectors through the intermediate results.
In particular, the service provider can randomly permute the
support vectors and thus shuffle the intermediate results.
Such a construction prevents the PPT customer from recov-
ering the support vectors by querying any number of test
data, since it needs to try for solving (

∏|SV|
j=1 j)

n−1 systems
of equations, where each system contains n equations and
n variables. Most importantly, this approach does not affect
batch outcome verification. We defer the detailed analysis
and proof to Appendix C. Third, all the test data of the
customer are encrypted using the adapted BGN cryptosys-
tem during the whole prediction process, and thus the input
privacy is guaranteed, as formalized in Proposition 3.

6.2 Supporting Other ML Algorithms
We demonstrate the generality of MVP in terms of its
application scope and extensibility.

Besides SVMs, MVP can support many other ML algo-
rithms, only if their hypotheses can be decomposed into
or approximated by two basic operations, i.e., dot product
and Euclidean distance. Typical examples are linear models
for regression and classification, Euclidean distance based
prototype methods and nearest neighbors, and neural net-
works. In particular, the former two kinds of ML models
can be handled by the dot product protocol and the squared
Euclidean distance protocol, respectively. We take one ML
primitive, called logistic regression, for example. The hy-
pothesis of logistic regression is f (zk) = ϕ

(
wT zk + b

)
,

where ϕ(v) = 1
1+exp(−v) is the logistic function, w is the

weight vector, and b is the bias vector. Since ϕ(·) is public
and can be computed by the customer herself, the service
provider, holding the confidential model parameters w and
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b, just needs to return v = wT zk + b. Therefore, logistic
regression can be handled by our dot product protocol. In
addition, given the fact that w and b remain unchanged for
each test data zk, the batch outcome verification scheme can
also be constructed.

We next expand on neural networks from computational
feasibility and efficiency. We first consider computational
feasibility. As illustrated in [7], [9], [10], [15], [40], neural
networks in the prediction phase just use one iteration of
the feedforward component, which consists of the following
common functions: weighted sum (fully connected layers
and convolution layers), max pooling, mean pooling, sig-
moid, and rectified linear. First, the weighted sum function
can be handled using the dot product protocol. Second,
max pooling cannot be computed directly, since the max-
function is non-polynomial. However, powers of it can be
approximated due to the relation: max (z1, z2, . . . , zn) =

limp→∞ (
∑n
i=1 zi

p)
1
p . When p = 1, max pooling degener-

ates to scaled mean pooling, whose feasibility has been val-
idated by [15]. In addition, the scaled mean pooling can be
handled with our dot product protocol. Moreover, MVP also
supports another case of p = 2 with the squared Euclidean
distance protocol. Third, the mathematical formula of mean
pooling is sum dividing by a constant and can be processed
with the dot product protocol. Fourth, as suggested by [2],
[7], [15], [43], we can replace the non-polynomial sigmoid
and rectified linear activation functions with square activa-
tion function. Meanwhile, the square activation function can
be handled by our squared Euclidean distance protocol. We
then consider computational efficiency. First, for the service
provider, since it knows the weight matrix and bias vector, it
can still use the efficient homomorphic properties for obliv-
ious evaluation, including multiplication by a constant and
homomorphic addition. Additionally, analogous to SVMs
with the liner kernel, consecutive layers in neural networks
that use only linear transformations (e.g., weighted sum and
mean pooling) can be collapsed. Hence, the network depth
together with the evaluation overhead should be reduced.
Second, for the customer, it can still perform batch outcome
verification by applying the bilinearity of asymmetric pair-
ing, since the parameters of the trained neural networks
keep the same for each test data.

In a nutshell, MVP is not just limited to SVMs and can
apply to many other ML algorithms. In addition, due to the
generality of Lemma 1, we can extend the building blocks
of MVP to multivariate polynomials with higher degrees,
which should support a wider range of ML algorithms.

7 EVALUATION RESULTS

In this section, we apply MVP to Short Message Service
(SMS) spam detection and present its evaluation results in
terms of computation and communication overhead. We
also demonstrate the feasibility of the model manager.

Datasets: We use three real-world SMS datasets: SMS
Spam Collection v.1 [44], DIT SMS Spam Dataset [45], and
NUS SMS Corpus [46]. In particular, SMS Spam Collection
v.1 is the first benchmark SMS dataset and contains 747
spam messages and 4,825 ham (legitimate) messages. The
DIT dataset is composed of 1,353 unique spam messages ex-
tracted from two UK public consumer complaints websites,

TABLE 2
Characteristics of SMS Datasets.

n Θ(TS)
|SV| Θ(SVs) Θ(IRs)

Poly RBF Poly RBF Poly RBF

200 1.60% 561 570 1.73% 1.75% 8.83% 99.75%
400 1.04% 643 576 1.10% 1.10% 8.86% 99.95%
600 0.80% 745 611 0.88% 0.85% 9.03% 99.96%
800 0.65% 852 652 0.74% 0.69% 9.05% 99.97%

1000 0.55% 935 694 0.65% 0.60% 9.11% 99.98%

called GrumbleText and WhoCallsMe, and was gathered
over the period from late 2003 to the middle of 2010. The
NUS dataset is a corpus of 55,835 legitimate messages in
Singapore English, and its most recent release was on March
9, 2015. In this evaluation, we randomly select 80% of
SMS Spam Collection v.1 as the training set and regard the
complement 20% as the default test set. We can enlarge the
size of test set by adding part of the other datasets.

Preprocessing: We use some common text processing
techniques. We first remove punctuation and stop words,
then convert the text to lowercase, and finally build Term
Frequency-Inverse Document Frequency (TF-IDF) based
feature vectors. We feed the feature vectors into SVMs
and thus learn optimal classifiers. Our implementation em-
ploys a popular ML library in Python, called scikit-learn
v0.19.0 [47]. Specifically, we set the parameter max features
in the function TfidfVectorizer to control the size of vocabu-
lary/features n and employ the function GridSearchCV to
tune the hyper-parameters of two kernels. The best test
accuracies reach 98.39% and 98.21% in the polynomial
kernel with the degree of 3 and the RBF kernel, respectively.

Data Characteristics: Table 2 presents the numbers of
features n and corresponding support vectors |SV|, along
with the densities of test set Θ(TS), support vectors Θ(SVs),
and intermediate results Θ(IRs). Here, Θ(·) denotes the den-
sity of a matrix, which is defined as the number of nonzero
elements divided by the size of the matrix. Thus, n×Θ(TS)
and n×Θ(SVs) can generally capture the average numbers
of nonzero values in one short message’s feature vector for
the test set and the support vectors, respectively. Similarly,
|SV| × Θ(IRs) can indicate the average number of nonzero
elements within each test data’s intermediate results (i.e.,
{v(k)
j = ψj(zk)|j ∈ SV}). Therefore, the test set, the support

vectors, and the polynomial kernel’s intermediate results are
quite sparse, whereas the RBF kernel’s intermediate results
are relatively dense. These characteristics of SMS datasets
should be considered in our implementation and analysis.

Configurations: We implemented MVP using the latest
Pairing-Based Cryptography (PBC) library [48]. The elliptic
curve in our implementation is a MNT curve with a base
field size of 172 bits and an embedding degree of 6. In addi-
tion, the group order q is 163-bit long, and the fundamental
discriminant is 3,447,443. Our curve choice is sufficient to
defeat both generic discrete logarithm attacks and finite field
discrete logarithm attacks [48]. The running environment is
a standard 64-bit Ubuntu 14.04 Linux operation system on a
desktop with Intel(R) Core(TM) i5 3.10GHz.
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Fig. 2. Computation Overhead of Oblivious Evaluation in MVP Per Test Data.

 0

 1

 2

 3

 4

 5

 6

 7

200 400 600 800 1000

R
un

 T
im

e 
(m

s)

Number of Features

Polynomial Kernel

RBF Kernel

(a) Signature Generation Set

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

200 400 600 800 1000

R
un

 T
im

e 
(m

s)

Number of Features

Polynomial Kernel

RBF Kernel

(b) Function Public Key

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

200 400 600 800 1000

R
un

 T
im

e 
(m

s)

Number of Features

Polynomial Kernel

RBF Kernel

(c) Signature of Correctness

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

200 400 600 800 1000

R
un

 T
im

e 
(m

s)

Number of Features

Polynomial Kernel

RBF Kernel

(d) Verification

Fig. 3. Computation Overhead of Outcome Verification in MVP Per Test Data.

7.1 Computation Overhead
We show the computation overhead of oblivious evaluation
and outcome verification in MVP.

7.1.1 Oblivious Evaluation
The oblivious evaluation can be further divided into three
phases, including encryption, evaluation, and decryption.
Fig. 2 plots the time overhead of three phases per test data,
when the number of features n increases from 200 to 1000
with a step of 200.

Encryption: Considering the sparsity of test data, we
let the customer encrypt all the nonzero values and just
randomly encrypt a small number of those zero elements.
Here, the padded zero encryptions are to perturb the vo-
cabulary of each short message, thereby strengthening the
input privacy against the service provider. In this set of
simulations, we set the number of padded zero encryptions
for each test data to be 10, which is larger than both
n × Θ(TS) and n × Θ(SVs) in Table 2. Fig. 2a plots the
encryption overhead per test data. We can see from Fig. 2a
that the encryption costs in two kernels both increase with n.
We explain the reason through n × Θ(TS), which indicates
the average number of nonzero values per test data. This
value increases with n and thus the total number of BGN
encryptions. We can also observe from Fig. 2a that the
encryption overhead in the RBF kernel is roughly twice as
much as that in the polynomial kernel. This is because the
RBF kernel requires an extra encryption of each test data’s
square. When n reaches 1000, the encryption overhead at
the customer is only 5.98 ms and 11.98 ms per test data in
the polynomial kernel and the RBF kernel, respectively.

Evaluation: We next investigate the evaluation overhead
under two different encryption strategies: one is to pad 10
zero encryptions, and the other is to encrypt all the zero
elements. The former strategy can embody the efficiency of
MVP when dealing with sparse data, whereas the latter is

able to validate its feasibility over dense data. We show the
evaluation results in Fig. 2b and Fig. 2c, respectively.

The first key observation from Fig. 2b and Fig. 2c is
that the evaluation overhead in the RBF kernel is much
higher than that in the polynomial kernel. In terms of their
corresponding building blocks, two major reasons account
for this result. One reason is that when dealing with two
vectors, the basic oblivious operation in the squared Eu-
clidean distance is much more time-consuming than that
in the dot product. The other reason lies in data sparsity
and padded zero encryptions. For dot product, the service
provider omits a pair, if either of its elements is zero. In
contrast, for squared Euclidean distance, only when both of
the elements are zero, the pair can be elided. Furthermore,
the padded zero encryptions make this situation worse. For
example, we assume that a support vector is xj = (1, 0, 1, 0)
and an encrypted test data is z̃k = (0, 1̃, 0, 0). The service
provider performs 0 and 3 basic operations for the dot
product and the squared Euclidean distance, respectively.
If the customer inserts a zero encryption in the first place
of z̃k, i.e., z̃k = (0̃, 1̃, 0, 0), it has no effect on the dot
product but incurs one extra operation for the squared
Euclidean distance. The second key observation is derived
by comparing Fig. 2b with Fig. 2c. When the test data are
encrypted in a denser way, the evaluation overhead in two
kernels both increases. However, the growth trend is much
smaller than that of density, which can be computed roughly
through n/(n×Θ(TS) + 10). In particular, when n = 1000,
the density increases 64.50×, while the evaluation overhead
just grows 28.50× and 10.33×, reaching 0.27 s and 3.90 s in
the polynomial kernel and the RBF kernel, respectively.

From the above results and analysis, we can find that
MVP performs well over both sparse and dense data. A
lower growth factor of the evaluation overhead shows
MVP’s extensibility at the service provider.

Decryption: In Fig. 2d, we plot the decryption overhead
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Fig. 4. MVP vs. Naı̈ve Method (Total Outcome Verification Overhead)

under the sparse encryption strategy. From Fig. 2d, we
can see that the trend of decryption overhead is generally
consistent with that of |SV| × Θ(IRs) in Table 2. Here,
we implement the algorithm Decrypt by pre-computing a
polynomial-size table of the powers of the base π(g1, g2),
and the latency of taking logarithm once is in microsecond.
The dominant operation in Decrypt now is to compute the
projection on ciphertext, whose one-time overhead is 0.63
ms and 0.81 ms in the polynomial kernel and the RBF kernel,
respectively. Furthermore, the decryption overhead scales
up far less than the evaluation overhead under the dense
encryption strategy, e.g., when n = 1000, the RBF kernel
incurs additional 1.32% of the decryption overhead.

Overall Oblivious Evaluation: Due to the sparsity of
feature vectors in SMS spam detection, the ratio of support
vectors is very large, e.g., when n = 1000, the support
vectors in the polynomial kernel occupy 20.98% of the
training set. This is the worst case of MVP’s decryption
phase. Nevertheless, the maximum total overhead of obliv-
ious evaluation occurs in the RBF kernel and consumes 0.95
s per test data with 1000 features, which can embody the
practical efficiency of MVP’s oblivious evaluation.

7.1.2 Outcome Verification
The batch outcome verification in MVP contains four major
components: the aggregate generations of signature genera-
tion set, function public key, and signature of correctness in
the preparation phase, as well as the final verification phase.
Fig. 3 plots the evaluation results per test data when the
number of features n varies from 200 to 1000. In addition,
the size of test set φ is fixed at 1000.

As depicted in Fig. 3, the computation overhead of these
four components all grows linearly with n. We explain
reasons one by one. First, the cardinalities of the signature
generation sets are (2n+1) and 4n in the polynomial kernel
and the RBF kernel, respectively. Second, the formulas of
function public keys (i.e., Equation (27) and Equation (31))
imply that their generation overhead increases linearly with
n. Third, the signatures of correctness (i.e., Equation (28)
and Equation (33)) are with the size of n. Fourth, the
verification phases are dominated by (n + 1) and (n + 2)
pairing operations in the polynomial kernel and the RBF
kernel, respectively. Last, when n = 1000, the total outcome
verification overhead per test data is 9.47 ms and 11.66 ms
in the polynomial kernel and the RBF kernel, respectively.

We note that the outcome verification scheme in MVP
just depends on the parameters of a trained model and
is independent of data sparsity/density. This implies that
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Fig. 5. Communication Overhead.

with a larger size of test set φ, the amortized verification
overhead can be further reduced. To validate this point and
to get a full view of MVP’s verification performance, we
compare with the naı̈ve method claimed in Section 4. Fig. 4
details the comparisons when the size of test set φ increases
from 1 to 10,000 by exponential growth. Here, we fix the
number of features n at 1000. In addition, the sparse and
dense encryption strategies applied to the support vectors
in the naı̈ve method are analogous to those applied to the
test data. From Fig. 4, we can observe that under the sparse
encryption strategy, MVP outperforms the naı̈ve method
when φ ≥ 100 in the polynomial kernel and when φ ≥ 10 in
the RBF kernel. As φ becomes larger, MVP’s advantage over
the naı̈ve method is more remarkable, e.g., when φ = 1000,
the total outcome verification overhead of MVP is 9.86%
and 1.23% of that of the naı̈ve method in the polynomial
kernel and the RBF kernel, respectively. Regarding under
the dense encryption strategy, MVP is far better than the
naı̈ve method in all sizes of test set. Even when φ = 1, the
total outcome verification overhead of MVP is 2.54% and
2.11% of that of the naı̈ve method in the polynomial kernel
and the RBF kernel, respectively.

In conclusion, MVP can indeed reduce the outcome
verification overhead when supporting a large-scale test set.

7.2 Communication Overhead
Fig. 5 plots the communication overhead of the customer,
the service provider, and the model manager, where the
number of features n is fixed at 1000. In addition, the
customer just transmits the ciphertexts of those nonzero
elements. Moreover, the communication overhead here only
counts in the amount of sending content.

We can see from Fig. 5 that the communication overhead
of three entities grows linearly with the size of test set φ.
The reason is that the customer mainly needs to submit
the encryptions of φ test data for classification. In addition,
the service provider primarily requires to send an average
number of φ×|SV|×Θ(IRs) encrypted intermediate results
for decryption and to deliver the signature of correctness for
batch outcome verification. Regarding the model manager,
its communication overhead mainly comes from returning
the decrypted intermediate results. We note that the x, y
axes in Fig. 5 are log-scaled, and thus the communication
overhead of the service provider, containing a constant
transmission overhead of the signature of correctness, seems
non-linear. Specifically, when φ < 10, the signature of cor-
rectness transmission overhead dominates, and this interval
looks a little flat. Last, when φ = 10000, the bandwidth
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overhead of the customer is 2.41 MB and 4.83 MB in the
polynomial kernel and the RBF kernel, respectively.

In summary, MVP can dramatically reduce the commu-
nication overhead, by generating the signature of correct-
ness in an aggregate mode and by using the bilinear groups
with a much smaller prime order.

7.3 Overhead of Model Manager
We finally report the computation, communication, and
storage overhead of the model manager. We take SVMs with
the most accurate polynomial kernel. We let the customer
just encrypt those nonzero elements. We fix the number of
features n at 1000 and set the size of test set φ to be 10000.
First, the primary duty of the model manager is to set up the
parameters for the adapted BGN cryptosystem and the out-
come verification scheme. Also, it needs to perform roughly
φ × |SV| × Θ(IRs) decryptions in total. The computation
overhead of these two parts is 57.50 s. Further, the one-time
initialization overhead can be amortized over a larger size of
test set. Second, the communication overhead of the model
manager is 1.42 MB. Third, the storage overhead mostly
comes from maintaining the table of powers of π(g1, g2),
which takes up 0.22 MB storage space. In a nutshell, the
model manager has a light load.

8 RELATED WORK

In this section, we briefly review related work.

8.1 Verifiable Polynomial Computation
Cloud computing contributes to the emergence of verifiable
computation, where a server computes an outsourced func-
tion on behalf of a client over its input and then generates
a proof of correct computation. Most of theoretical work
focuses on specific functionalities (e.g., multivariate polyno-
mials in this work) rather than generic constructions. Kate et
al. [49] proposed a publicly verifiable commitment scheme
for univariate polynomials. When extended to the multivari-
ate case, Papamanthou et al. [38] designed a signature of cor-
rect computation scheme that supports incremental updates
of polynomial coefficients3. For the same polynomial with
different inputs, Catalano et al. [50] improved verification
efficiency in an amortized sense. Fiore et al. [51] further
considered verifiable computation of multivariate quadratic
polynomials on encrypted data.

8.2 Secure ML Prediction
An explosive demand of ML prediction services attracts
increasing attention to their security. One line of research
focuses on privacy preservation, namely, protecting the
customer’s sensitive test data and/or the service provider’s
proprietary trained model while maintaining the function-
ality of prediction. Existing work mainly used secure two-
party or multi-party computation (MPC) techniques, such
as homomorphic encryption, garbled circuit, secret sharing,
and oblivious transfer. Bost et al. [14] considered multiple

3. From Fig. 3b, the maximum overhead of function public key
generation is 0.11 ms per test data. Thus, it is reasonable to compute
the function public key from scratch under a new trained model.

classifiers, including linear classifiers, naı̈ve Bayes, and de-
cision trees. They further presented a library of reusable
building blocks underlying common classifiers (e.g., dot
product and argmax). In [15], Gilad-Bachrach et al. proposed
CryptoNets, which can apply neural networks to encrypted
test data with high throughput and accuracy. The following-
up work [7], [9], [10], [16], [52] further reduced response
latency and message size mainly by introducing offline pre-
computation/planning and optimizing online operations.
Kumar et al. [53] developed CryptFlow, converting Tensor-
flow inference code to MPC protocols.

In addition to privacy preservation, ML prediction ser-
vices also need verifiability. Using the terminologies of
verifiable computation, the customer works as a client, the
service provider works as a server, and the trained model
works as a function. The key difference from the outsourced
scenario is that because of function privacy, the customer
as a verifier cannot learn the detailed model parameters,
kept by the service provider as a prover, throughout the
whole verification process. Meanwhile, because of input
privacy, the service provider also cannot know the test data
of the customer. The joint requirement of verifiablility and
privacy preservation in the ML prediction context makes
conventional verification computation schemes inapplicable
and calls for new practical designs.

Ghodsi et al. [2] designed an interactive proof protocol,
called SafetyNets, for verifiable execution of neural net-
works prediction. Lee et al. [54] proposed vCNN using a
pairing-based zero-knowledge succinct non-interactive ar-
gument of knowledge (SNARK) to guarantee verifiability
for convolutional neural networks prediction. Both Safe-
tyNets and vCNN ignore input privacy and function pri-
vacy. Zhao et al. [55] considered a different setting from
ours, where the customer outsources ML training and pre-
diction tasks (including the training data and the test data)
to the service provider. They proposed VeriML, which is
based on SNARK and blockchain. VeriML ensures the in-
tegrity of a trained model and prediction results as well
as the fair payments before returning the model and the
results. However, VeriML does not guarantee the customer’s
input privacy. Xu et al. [56] investigated an emerging feder-
ated learning framework, where a server aggregates (basi-
cally, sums up) the model updates from multiple clients,
and proposed VerifyNet. VerifyNet not only guarantees the
privacy of the model updates with the celebrated secure
aggregation protocol in [57] but also ensures the correctness
of the aggregated result with homomorphic hash function.
In essence, VerifyNet is a block of verifiable and privacy
preserving summation, namely, a special case of verifiable
and privacy preserving dot product by setting the weight
vector to a public all-ones vector.

Parallel to the above cryptographic schemes, Tramèr
and Boneh [4] assumed the existence of a hardware-based
Trusted Execution Environment (TEE, e.g., Intel SGX, ARM
TrustZone, and Sanctum) on the service provider and
viewed the TEE as a trusted authority in security analysis.
The TEE not only isolates and protects the program of
neural networks prediction in an enclave from all the other
programs/adversaries outside the enclave, including OS,
but also allows the customer’s remote attestation to correct
program execution by establishing a secure channel with the
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TEE. Nevertheless, the memory of the TEE is fully encrypted
and authenticated and is very limited in size (e.g., 128 MB
for SGX), while the operations within the TEE are expensive
and are difficult to be parallelized. Tramèr and Boneh thus
proposed a framework, called Slalom, to outsource the
execution of all linear layers in neural networks (i.e., the
operations of dot product) from the TEE to an untrusted,
faster, and co-located processor. On the one hand, Slalom
guarantees input privacy with additive stream cipher but
requires the TEE to offline precompute blinding terms, the
overhead of which is the same as that of directly evaluating
the linear layers in the TEE. On the other hand, Slalom
achieves verifiability with Freivalds’ algorithm. However,
Slalom does not guarantee model privacy. In addition, the
outsourcing process incurs extremely high communication
overhead between the TEE and the untrusted processor
(e.g., over 50 MB per inference for VGG16).

8.3 Adversarial ML and Defenses
In the field of adversarial ML, many research work explores
practical attacks against ML models and/or underlying
training data, the defenses for which are complementary
to the aforementioned security mechanisms. Typical attacks
launched via the prediction APIs (i.e., with a black-box
access) include model extraction [8], [58], [59], which aims
to duplicate the functionality of the trained model, and
model evasion [60]–[63], which seeks to develop strategies
for avoiding detection (e.g., in spam identification, face
recognition, malware classification, and network anomaly
detection). In general, the model extraction attack is in-
evitable, while the root of the model evasion attack lies in
the lack of interpretability and transparency in ML training.
Effective mitigation methods for the model extraction attack
include limiting the number and the output information of
predictions [7], as well as detecting adversarial customers by
analyzing query patterns [64]. Major countermeasures for
the model evasion attack include designing robust training
algorithms [65] and detecting adversarial samples [66].

There still exist some other common attacks with a
white-box access or in the training phase. One is model
inversion [67]–[69], which is launched to infer the contents
or memberships of training data from the passively ex-
tracted or actively released model parameters. A potential
countermeasure for the model inversion attack is perturbing
the model parameters with random noise to achieve a strict
differential privacy guarantee, such as [17]–[22]. Another is
data poisoning [70]–[72] (including the dominant backdoor),
which is launched in the ML training phase and shares a
similar goal to the model evasion attack in the prediction
phase. Specifically, the data poisoning attack intends to ma-
nipulate the trained model by injecting poisoning samples
to the training set. Existing defenses for the data poisoning
attack include training with a trimmed loss function for
regression models [72], as well as analyzing inner neural
behaviors through stimulation [73] and applying outlier
detection [74] for neural networks. Please refer to the survey
[75] for more defenses.

8.4 Key Differences of MVP from Existing Work
From the review about related work above, we can derive
that the proposed MVP differs from existing work mainly in

that: (1) from application scenario, MVP focuses on the ML
prediction phase, where a customer queries the prediction
API held by a service provider. In contrast, some existing
work considered other different (e.g., outsourced) ML pre-
diction scenarios, the ML training phase, or collaborative
ML, which is parallel to MVP; (2) from security guaran-
tees, MVP focuses on how to achieve outcome verifiability,
function privacy, and input privacy simultaneously, whereas
existing work just considered part of these three proper-
ties; and (3) from technical novelty, MVP relies on poly-
nomial decomposition, prime-order bilinear groups, and an
adapted BGN homomorphic encryption. MVP further sup-
ports batch outcome verification and signature aggregation
by applying the bilinear properties, dramatically improving
efficiency. To the best of our knowledge, MVP, is the first to
leverage these cryptographic and non-cryptographic primi-
tives to achieve verifiability and privacy preservation. Also,
MVP does not rely on any trusted hardware, which instead
was used in some previous work.

9 CONCLUSION AND FUTURE WORK

In this paper, we have proposed the first secure scheme MVP
for ML prediction services, simultaneously guaranteeing
outcome verifiability, function privacy, and input privacy.
In MVP, the service provider has to honestly process the
test data, and the customer can verify the integrity of
returned outcomes in batch mode. In addition, both the
confidential model parameters and the sensitive test data
are well protected. Furthermore, we have instantiated MVP
with SVMs, and evaluated its performance on three practical
SMS datasets. Evaluation results have demonstrated the
effectiveness and efficiency of MVP.

Regarding future work, one interesting direction is to
consider the ML training phase and further to explore the
issues of verifiability and privacy preservation. For example,
a data owner intends to train a ML model with the help
of a service provider. The data owner wants to protect its
training data and/or model. Meanwhile, the data owner
also wants to efficiently verify the integrity of the whole
training process. How the service provider can generate a
proof without breaching privacy is an important problem.
Another interesting direction is to further explore the de-
centralized setting of the model managers without the non-
colluding requirement in Section 5.4. Potential techniques
include secure multi-party computation and blockchain.

REFERENCES

[1] “Summary of the Amazon EC2 and Amazon RDS Service Dis-
ruption in the US East Region,” https://aws.amazon.com/cn/
message/65648/, 2011.

[2] Z. Ghodsi, T. Gu, and S. Garg, “Safetynets: Verifiable execution of
deep neural networks on an untrusted cloud,” in Proc. of NeurIPS,
2017, pp. 4672–4681.

[3] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok:
Security and privacy in machine learning,” in Proc. of EuroS&P,
2018, pp. 399–414.

[4] F. Tramèr and D. Boneh, “Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware,” in Proc. of
ICLR, 2019.

[5] E. Angelini, G. di Tollo, and A. Roli, “A neural network approach
for credit risk evaluation,” The quarterly review of economics and
finance, vol. 48, no. 4, pp. 733–755, 2008.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 27,2020 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3035591, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXXX 2020 17

[6] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer
with deep neural networks,” Nature, vol. 542, pp. 115–118, 2017.

[7] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,”
in Proc. of USENIX Security, 2020.
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