
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, NOVEMBER 2015 1

Proxies for Shortest Path and Distance Queries
Shuai Ma, Kaiyu Feng, Jianxin Li, Haixun Wang, Gao Cong, and Jinpeng Huai

Abstract—Computing shortest paths and distances is one of the fundamental problems on graphs, and it remains a challenging task
today. This article investigates a light-weight data reduction technique for speeding-up shortest path and distance queries on large
graphs. To do this, we propose a notion of routing proxies (or simply proxies), each of which represents a small subgraph, referred to
as deterministic routing areas (DRAs). We first show that routing proxies hold good properties for speeding-up shortest path and
distance queries. Then we design a linear-time algorithm to compute routing proxies and their corresponding DRAs. Finally, we
experimentally verify that our solution is a general technique for reducing graph sizes and speeding-up shortest path and distance
queries, using real-life large graphs.

Index Terms—Shortest paths, shortest distances, data reduction, speeding-up techniques

F

1 INTRODUCTION

We study the node-to-node shortest path (distance) problem on
large graphs: given a weighted undirected graph G(V,E)
with non-negative edge weights, and two nodes of G, the
source s and the target t, find the shortest path (distance)
from s to t in G. We allow the usage of auxiliary structures
generated by preprocessing, but restrict them to have a
moderate size (compared with the input graph). In this
work, we are only interested in shortest paths and exact
shortest distances on large graphs.

Finding shortest paths and distances is one of the fun-
damental problems on graphs, and has found its usage as
a building block in various applications, e.g., measuring the
closeness of nodes in social networks and Web graphs [21],
[29], [33], finding the distances between physical locations
in road networks [38], and drivers’ routing services [23].

Algorithms for computing shortest paths and distances
have been studied since 1950’s and still remain an active
area of research. The classical one is Dijkstra’s algorithm [6]
due to Edsger Dijkstra. Dijkstra’s original algorithm runs
in O(n2) [10], and the enhanced implementation with Fi-
bonacci heaps runs in O(n log n + m) due to Fredman &
Tarjan [13], where n and m denote the numbers of nodes and
edges in a graph, respectively. The latter remains asymp-
totically the fastest known solution on arbitrary undirected
graphs with non-negative edge weights [35].

However, computing shortest paths and distances re-
mains a challenging problem, in terms of both time and
space cost, for large-scale graphs such as Web graphs, social
networks and road networks. The Dijkstra’s algorithm [13]
is not acceptable on large graphs (e.g., with tens of millions
of nodes and edges) for online applications [29]. Therefore,

• S. Ma, J. Li and J. Huai are with the SKLSDE lab, School of Computer
Science and Engineering, Beihang University, China.
E-mail: {mashuai, lijx, huaijp}@buaa.edu.cn.

• K. Feng and G. Cong are with the School of Computer Engineering,
Nanyang Technological University, Singapore.
E-mail: kfeng002@e.ntu.edu.sg, gaocong@ntu.edu.sg.

• H. Wang is with Facebook Inc., USA.
E-mail: haixun@gmail.com.

Manuscript received XXX, 2015; revised XXX, 2015.

a lot of optimization techniques have been recently devel-
oped to speed up the computation [5], [14], [24], [29], [30],
[32], [33], [37], [38].

To speed-up shortest path and distance queries, our
approach is to use representatives, each of which captures
a set of nodes in a graph. The task of finding a proper
form of representatives is, however, nontrivial. Intuitively,
we expect representatives to have the following properties.
(1) A small number of representatives can represent a large
number of nodes in a graph; (2) Shortest paths and distances
involved within the set of nodes being represented by the
same representative can be answered efficiently; And, (3)
the representatives and the set of nodes being represented
can be computed efficiently.

Contributions & Roadmap. We develop a light-weight
data reduction technique for speeding-up shortest path and
distance queries on large weighted undirected graphs.

(1) We first propose a notion of routing proxies (or simply
proxies), each of which represents a small subgraph, re-
ferred to as deterministic routing areas (DRAs) (Section 3).
We also give an analysis of routing proxies and DRAs,
which shows that they hold good properties for speeding-
up shortest path and distance queries.

(2) We then develop a linear-time algorithm for computing
deterministic routing areas along with their maximal rout-
ing proxies (Section 4). This makes our solution a light-
weight technique that is scalable to large graphs.

(3) Using real-life large road and co-authorship (sparse)
graphs, we finally conduct an extensive experimental study
(Section 6). We find that (a) on average 1/3 nodes in these
graphs are captured by routing proxies, leaving the reduced
graph about 2/3 of the original input graph for both road
and co-authorship graphs, (b) proxies can be found effi-
ciently, e.g., they can be found in at most 6 seconds for co-
authorship graphs and less than half an hour for the largest
road graph, and (c) the reduced graph incurs only about
70% space overhead of the original input graph on average.
Moreover, (d) using proxies benefits existing shortest path
and distance algorithms in terms of time cost, e.g., it reduces

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, NOVEMBER 2015

around 30%, 20% and 1% time for bidirectional Dijkstra [24],
ARCFLAG [27] and AH [41] on road graphs, respectively,
and 49%, 4% and 49% time for bidirectional Dijkstra, AR-
CFLAG and TNR [2] on co-authorship graphs, respectively,
and (e) existing shortest path and distance algorithms also
benefit from using proxies in terms of space overhead, e.g.,
it reduces about 62%, 28% and 18% space overhead for
ARCFLAG, TNR and AH on road graphs, respectively, and
about 86% and 2% space overhead for ARCFLAG and TNR
on co-authorship graphs, respectively. (f) Using synthetic
data, we further find that proxies and DRAs are sensitive to
the density and degree distribution of graphs and perform
well on graphs that follow the power law distribution, and,
moreover, for a given degree distribution, less nodes are
captured when the average degree is higher.

2 GRAPH NOTIONS

In this section, we introduce some basic graph concepts.

Graphs. A weighted undirected graph (or simply a graph) is
defined as G(V , E, w), where (1) V is a finite set of nodes;
(2) E ⊆ V × V is a finite set of edges, in which (u, v) or
(v, u) ∈ E denotes an undirected edge between nodes u
and v; and (3) w is a total weight function that maps each
edge in E to a positive rational number.

We simply denote G(V , E, w) as G(V,E) when it is clear
from the context.

Subgraphs. Graph H(Vs, Es, ws) is a subgraph of graph
G(V , E,w) if (1) Vs ⊆ V , (2) Es ⊆ E, and (3) ws(e) = w(e)
for each edge e ∈ Es. That is, subgraph H simply contains
a subset of nodes and a subset of edges of graph G.

We also denote a subgraph H as G[Vs] if Es is exactly
the set of edges appearing in G over the set of nodes Vs.

Neighbors. We say that node v is a neighbor of node u if
there exists an edge (v, u) or (u, v) in graph G.

Paths and cycles. A simple path (or simply a path) ρ is a
sequence of nodes v1/ . . . /vn with no repeated nodes, and,
moreover, for each i ∈ [1, n− 1], (vi, vi+1) is an edge in G.

A simple cycle (or simply a cycle) ρ is a sequence of nodes
v1/ . . . /vn with v1 = vn and no other repeated nodes, and,
moreover, for each i ∈ [1, n− 1], (vi, vi+1) is an edge in G.

The length of a path or cycle ρ is the sum of the weights
of its constituent edges, i.e.,

∑n−1
i=1 w(vi, vi+1).

We also say that a node is reachable to another one if there
exists a path between these two nodes.

Shortest paths and distances. A shortest path from one node
u to another node v, denoted as path(u, v), is a path whose
length is minimum among all the paths from u to v.

The shortest distance between nodes u and v, denoted as
dist(u, v), is the shortest length of all paths from u to v, i.e.,
the length of a shortest path from u to v.

Connected components. A connected component (or simply
a CC) of a graph is a subgraph in which any two nodes
are connected by a path, and is connected to no additional
nodes. A graph is connected if it has exactly one connected
component, consisting of the entire graph.

Figure 1. Cut-nodes and bi-connected components

Cut-nodes and bi-connected components. A cut-node of a
graph is a node whose removal increases the number of
connected components in the graph.

A bi-connected component (or simply a BCC) of a graph is
a subgraph consisting of a maximal set of edges such that
any two edges in the set must lie on a common simple cycle.

We next illustrate cut-nodes and bi-connected compo-
nents with an example.

Example 1: Consider graph G1 in Fig. 1(1), in which labeled
nodes u, v, w, x, y are the cut-nodes of G1, and the corre-
sponding BCCs of G1 are BC1, BC2, BC3, BC4, BC5, and
BC6, and are shown in Fig. 1(2). 2

3 ROUTING PROXIES

In this section, we first propose routing proxies and determin-
istic routing areas (DRAs) to capture the idea of representa-
tives and the set of nodes being represented, respectively.
We then give an analysis of the properties of DRAs and their
routing proxies, and show that they indeed hold the desired
properties of representatives discussed in Section 1. For
clarity, the detailed proofs in this article are in the appendix.

3.1 Routing Proxies and Deterministic Routing Areas

We first present the notions of routing proxies and their
deterministic routing areas.

Proxies. Given a node u in graph G(V,E), we say that u is
a routing proxy (or simply proxy) of a set of nodes, denoted
by Au, if and only if:
(1) node u ∈ Au is reachable to any node of Au in G,
(2) all neighbors of any node v ∈ Au \ {u} are in Au, and
(3) the size |Au| of Au is equal to or less than c · ⌊

√
|V |⌋,

where c is a small constant number, such as 2 or 3.
Here condition (1) guarantees the connectivity of sub-

graph G[Au], condition (2) implies that not all neighbors of
proxy u are necessarily in Au; and condition (3), referred to
as size restriction, limits the size of Au of proxy u. Intuitively,
one simply checks the graph by removing u from G and its
newly created CCs, and a proxy of u is a union of such CCs
whose total number of nodes is at most c · ⌊

√
|V |⌋ − 1.

Deterministic routing areas. A node u may be a proxy of
multiple sets of nodes A1

u, . . . , A
k
u. We denote as A+

u the
union of all the sets of nodes whose proxy is u , i.e., A+

u =
A1

u∪ . . .∪ Ak
u, and Ai

u (i ∈ [1, k]) is said a component of A+
u .

MA ET AL.: PROXIES FOR SHORTEST PATH AND DISTANCE QUERIES 3

Figure 2. Example proxies and DRAs

We refer to the subgraph G[A+
u] as a deterministic routing

area (DRA) of proxy u.
Intuitively, DRA G[A+

u] is a maximal connected subgraph,
union of a set of CCs, that connects to the rest of graph G
through proxy u only. That is, for any node v in G[A+

u] and
any node v in the rest of graph G, u must appear on the
shortest path path(v, v′).

Maximal proxies. We say that a proxy u is maximal if there
exist no other proxies u′ such that u′ ̸= u and A+

u ⊂ A+
u′ .

Trivial proxies. We say that a maximal proxy u is trivial if
A+

u contains itself only, i.e., A+
u = {u}.

Equivalent proxies. We say that two proxies u and u′ are
equivalent, denoted by u ≡ u′, if A+

u = A+
u′ .

We next illustrate these notions with an example below.

Example 2: First consider graph G2(V2, E2) in Fig. 2, and
let c · ⌊

√
|V2|⌋ = 2 · ⌊

√
16⌋ = 8, where c = 2 and |V2| = 16.

(1) Node u is a proxy, and its DRA is the subgraph in the
left hand side of the vertical line across u; (2) Node v is a
proxy, and its DRA is the subgraph in the left hand side of
the vertical line across v; (3) Node w is not a proxy since it
can not find a DRA with size less or equal than 8; (4) Node
v is a maximal proxy, while node u is not a maximal proxy
since A+

u ⊂ A+
v .

We then consider graph G3(V3, E3) in Fig. 2, and let c ·
⌊
√
|V3|⌋ = 2 · ⌊

√
5⌋ = 4, where c = 2 and |V3| = 5. (1) Nodes

u, v and w are three maximal proxies, whose DRAs are all
the entire graph G3, and, hence, (2) u, v and w are three
equivalent proxies. 2

Remark. As illustrated by the above examples, a DRA of
graph G(V,E) may have a size larger than c · ⌊

√
|V |⌋, and

multiple equivalent proxies.
We next first justify the necessity of introducing the size

restriction for proxies. Otherwise, DRAs are simply CCs, and
are mostly useless.

Proposition 1: Without the size restriction, any node u in a
graph G is a maximal proxy, and its DRA G[A+

u] is exactly the
connected component (CC) to which u belongs. 2

We then show that proxies and their represented sub-
graphs (DRAs) have a strong relationship, which justifies
that proxies and DRAs are well defined.

Proposition 2: Any proxy in a graph has a unique DRA. 2

Proposition 3: Given any two distinct proxies u and u′,
(1) if u ∈ A+

u′ , then A+
u ⊆ A+

u′ ,
(2) if u′ ∈ A+

u , then A+
u′ ⊆ A+

u , and
(3) A+

u ∩A+
u′ = ∅, otherwise. 2

By Proposition 3, it is easy to have the following, which
says when maximal proxies are concerned, there exists a
unique set of non-overlapping DRAs.

Corollary 4: Given any two maximal proxies u and u′, then
either A+

u = A+
u′ or A+

u ∩A+
u′ = ∅ holds. 2

Remark. Trivial proxies only represent themselves, and,
hence, we are only interested in non-trivial maximal proxies
(or simply called proxies) in the sequel.

3.2 Properties of Proxies and DRAs
We next give an analysis of proxies and DRAs, and show that
they indeed hold good properties for answering shortest
path and distance queries.

Indeed, the size restriction guarantees that the shortest
distance computation within a DRA can be evaluated effi-
ciently, as shown below.

Proposition 5: Given any two nodes v, v′ in the DRA G[A+
u] of

proxy u in graph G,
(1) the shortest path in G[A+

u] is exactly the one in the entire
graph G, and
(2) it can be computed in linear time in the size of G. 2

By Proposition 5, it is easy to derive the following.

Corollary 6: Given any two nodes v, v′ in the DRA G[A+
u] of

proxy u in graph G,
(1) the shortest distance dist(v, v′) in G[A+

u] is exactly the one
in the entire graph G, and
(2) it can be computed in linear time in the size of G. 2

Proposition 7: Given two nodes v and u with two distinct
proxies x and y, respectively, in graph G, the shortest path from
v to u is path(v, x)/path(x, y)/path(y, u). 2

Here path(v, x)/path(x, y)/path(y, u) is a path by con-
catenating paths path(v, x), path(x, y) and path(y, u). By
Proposition 7, it is easy to derive the following result.

Corollary 8: Given two nodes v and u with two distinct proxies
x and y, respectively, in graph G, the shortest distance dist(v, u)
= dist(v, x) + dist(x, y) + dist(y, u). 2

Propositions 5, 7 and Corollaries 6, 8 guarantee that the
shortest paths and distances between the nodes in the DRAs
of two distinct proxies can be answered in a correct and
efficient way.

4 COMPUTING ROUTING PROXIES AND DRAS

From Section 3.2, it is easy to see that the remaining chal-
lenge is to discover DRAs and their maximal proxies on
large graphs. In this section, we first present a notion of BC-
SKETCH graphs, based on which we then propose a linear-
time algorithm for computing DRAs and their maximal
proxies. This makes our solution a light weight approach to
reducing graph sizes and to speeding-up shortest path and

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, NOVEMBER 2015

Figure 3. BC-SKETCH graph G1 of graph G1

distance queries on large graphs. Without loss of generality,
we consider connected graphs only.

The main result here is stated as follows.

Theorem 9: Finding all DRAs, each associated with one maximal
proxy, in a graph can be done in linear time. 2

We shall prove this by providing a linear time algorithm
that computes DRAs and maximal proxies.

4.1 Connections with cut-nodes and BCCs

We first show that there are close connections between
proxies and cut-nodes and BCCs.

Proposition 10: Any proxy in a CC H(Vs, Es) of graph G(V ,
E) with |Vs| > c · ⌊

√
|V |⌋ must be a cut-node of graph G. 2

Proposition 11: Any node in a BCC with size larger than c ·
⌊
√
|V |⌋ of graph G(V , E) is a trivial proxy. 2

This motivates us to identify (non-trivial maximal) prox-
ies by utilizing the cut-nodes and BCCs, which will be seen
immediately. Further, as we are interested in non-trivial
proxies only, those large BCCs could be simply ignored
without any side effects.

We then present the notion of BC-SKETCH graphs, which
are defined in terms of cut-nodes and BCCs, and are a key
data structure employed by our algorithm.

A BC-SKETCH graph G(V,E, ω) of a graph G(V,E) is a
bipartite graph, in which (1) V = Vc∪Vbc such that Vc is the
set of cut-nodes in G, and Vbc is the set of BCCs in G; (2) for
each cut-node v ∈ Vc and each BCC yb ∈ Vbc, there exists an
edge (v, yb) ∈ E iff v is a cut-node of BCC yb; and (3) ω is a
weight function such that for each node yb ∈ Vbc, ω(yb) is
the number of nodes of G in BCC yb.

Example 3: Consider graph G1 in Fig. 1(1), and the corre-
sponding BCCs of G1 in Fig. 1(2).

The BC-SKETCH graph G1(V,E, ω) of graph G1 is shown
in Fig. 3, in which ω(BC1) = 4, ω(BC2) = ω(BC3) = ω(BC4)
= ω(BC6) = 2, and ω(BC5) = 5. 2

Note that BC-SKETCH graphs are an extension of block
graphs [9], by further providing the weight function ω for
the BCCs nodes. One may already notice that there are no
cycles in the BC-SKETCH graph G3 in Fig. 3. This is not a
coincidence, as shown below.

Proposition 12: BC-SKETCH graphs have no cycles, which
implies that they are simply trees. 2

Proposition 12 indicates that the good properties of trees
can be employed for computing DRAs and maximal proxies.

Algorithm computeDRAs
Input: Graph G(V,E) and constant c.
Output: The DRAs with their maximal proxies.
1. Find all cut-nodes Vc and BCC nodes Vbc of G;
2. Build the BC-SKETCH graph G(V,E, ω) with V = Vc ∪ Vbc;
3. Identify and return DRAs with their maximal proxies of G.
Procedure extractDRAs
Input: BC-SKETCH graph G(V,E, ω) of graph G and constant c.
Output: The DRAs and their maximal proxies of G.
1. let F be the set of cut-nodes with single non-leaf

neighbors in G; /* a leaf node must be a BCC node */
2. while F is not empty do
3. pick a cut-node v in F ;

let X be the neighbors of v;
/* note that there is one non-leaf node in X*/

4. let α :=
∑

y′∈X ω(y′) - |X| + 1;
5. if α ≤ c · ⌊

√
|V |⌋ then

6. merge all BCC nodes in X and v into one BCC node yn;
7. let ω(yn) := α;
8. Replace the non-leaf node in X with yn;
9. Add to F the cut node neighbors of yn with

single non-leaf neighbors;
10. F := F \ {v};
11. let F ′ be the set of cut-nodes in the updated G

with leaf neighbors;
12. for each cut-node v in F ′ do
13. let X ′ be a set of leaf neighbors of v′ such that
14. for each y′ ∈ X ′, ω(y′) ≤ c · ⌊

√
|V |⌋;

15. let the A+
v′ of proxy v′ := X ′;

/* note that BCCs are separately maintained in A+
v′*/

16. return all DRAs with their maximal proxies.

Figure 4. Computing DRAs and maximal proxies

4.2 Algorithms

We now present algorithm computeDRAs shown in Fig. 4,
which takes as input graph G and constant c, and outputs
the DRAs of G and their maximal proxies.

(1) Finding cut-nodes and BCCs. The algorithm starts with
computing all cut-nodes and bi-connected components (line
1), by using the linear-time algorithm developed by John
Hopcroft and Robert Tarjan [6], [17].

(2) Constructing BC-SKETCH graphs. After all the cut-nodes
and BCCs are identified, the BC-SKETCH graph G(V,E, ω)
can be easily built (line 2). To see this can be done in linear
time, the key observation is that the number |E| of edges in
G is exactly |V| − 1 since G is a tree by Proposition 12.

(3) Identifying DRAs and their maximal proxies. Finally, the
algorithm identifies and returns the DRAs and their maximal
proxies (line 3), using procedure extractDRAs in Fig. 4.

Procedure extractDRAs takes as input the BC-SKETCH
graph G of graph G and constant c, and outputs the
DRAs and their maximal proxies, by repeatedly merging
BCCs with size less than c · ⌊

√
|V |⌋. More specifically, the

procedure starts with the set F of cut-nodes with single
non-leaf neighbors (line 1). It then recursively merges the
neighboring BCC nodes of cut-nodes to generate new BCC
nodes (lines 2-9). For a node v ∈ F with neighbors X , if∑

y′∈X ω(y′) - |X| + 1 ≤ c · ⌊
√
|V |⌋, they can be merged

into a new BCC node (lines 3-8). Intuitively, this says cut-
node v is not a maximal proxy, and it is combined into

MA ET AL.: PROXIES FOR SHORTEST PATH AND DISTANCE QUERIES 5

the DRAs of maximal proxies. Then the non-leaf neighbor
is replaced by the new BCC node yn (line 8), by which
the merging processing is made possible. The cut nodes
connected to yn are further considered, and those with
single non-leaf neighbors are added to F (line 9). Once a
cut-node is considered, it is never considered again (line 10).
After no merging can be made, we have found all maximal
proxies, i.e., all the cut-nodes in the updated BC-SKETCH
graph. We then identify DRAs for these maximal proxies
(lines 11-15). For any leaf neighbor y′ of a cut-node v′, if
ω(y′) ≤ c · ⌊

√
|V |⌋, then y′ is an Av′ of proxy v′. All these

together are the A+
v′ of proxy v′ (lines 13-15). Finally, all

DRAs with their maximal proxies are returned (line 16).
For checking whether a cut node has a single non-leaf

neighbor, we maintain an array list D for each cut node such
D[v] indicates the number of non-leaf neighbors of node v.
At line 10 of procedure extractDRAs, if yu is a leaf node, for
each cut node v connected to yu, we decrease D[v] by 1, and
if the updated D[v] is 1, we simply add v to F .

We now explain the algorithm with an example.

Example 4: Consider graph G1 in Fig. 1(1) again. Here we
let c = 2, and then c · ⌊

√
|V |⌋ = 6.

Firstly, cut-nodes and BCCs are computed as shown
in Fig. 1(2). Secondly, the BC-SKETCH graph G1 of G1 is
constructed as shown in Fig. 3. Then in the merging step,
we merge BCC nodes BC1, BC2, BC3 and cut-nodes u and
v together; Similarly, we merge BCC nodes BC5 and BC6

and cut-node y together because they also satisfy the size
constraint α ≤ c · ⌊

√
|V |⌋. After the merging step stops, the

updated BC-SKETCH graph consists of three BCC nodes: BC ′
1

= {u, v,BC1, BC2, BC3}, BC4, BC ′
2 = {y,BC5, BC6} and

two cut-nodes: w and x. Finally, the DRAs and their maximal
proxies are identified: proxy w with dra1 = BC ′

1 ∪ {w, v, u}
and proxy x with dra2 = BC ′

2 ∪ {x, y}, shown in Fig. 5. 2

Correctness & Complexity. The correctness of algorithm
computeDRAs can be readily verified as follows: (1) We only
consider non-trivial maximal proxies; (2) Proposition 10 tells
us that in order to find all proxies, we only need to consider
cut-nodes. Due to the size constraint and Proposition 11, we
can ignore the BCCs with size larger than c·⌊

√
|V |⌋ and only

consider the other BCCs (Line 5). Note that it is trivial for the
case when a CC has a size equal or less than c · ⌊

√
|V |⌋,

and we simply omit it; (3) In the BC-SKETCH graph, we
can merge the neighbors of a cut-node together if their
combination does not exceed the size restriction, and any
shortest paths from a node inside the combination must pass
through the cut-node connected to the new combination.
And (4) observe that the set of nodes X ′ at line 15 is indeed
maximal. By the analyses in Sections 3.1 and 4.1, we know
that the X ′ at line 15 is the unique set of nodes (so is the
unique DRA) with its non-trivial maximal v′.

The linear-time complexity of algorithm computeDRAs
roots from Proposition 12. To show this, it suffices to show
that procedure extractDRAs can be done in linear time. It is
easy to see that each node in BC-SKETCH graph G(V,E, ω)
is visited at most twice in procedure extractDRAs without
the checking of cut nodes with single non-leaf neighbors
at line 10, whose running time is bounded by the total
number of edges in G. From these, we know that procedure

Figure 5. Example query answering

extractDRAs runs in linear time O(|V| + |E|). This also
completes the proof of Theorem 9.

5 QUERY ANSWERING WITH ROUTING PROXIES

In this section, we show how to answer shortest path and
distance queries using routing proxies.

Based on the previous analyses, we present a framework
for speeding-up shortest path and distance query answer-
ing, which consists of two modules: preprocessing and query
answering. We next introduce the details of the framework.

1. Preprocessing. Given graph G(V,E), the preprocessing
module executes the following.
(1) It first computes all DRAs and their maximal proxies with
algorithm computeDRAs (as discussed in Section 4).
(2) It then pre-computes and stores all the shortest paths and
distances between any node in a DRA and its proxy.

To support shortest distance queries, for each node in
a DRA, we store its proxy u, its distance to u and the
component of A+

u to which it belongs, and, moreover, to
support shortest path queries, we further keep the shortest
paths from proxy u to all nodes in the DRA.
(3) It finally computes the reduced subgraph G′ by remov-
ing all DRAs, but keeping their proxies, from graph G.

2. Query answering. Given two nodes s and t in graph
G(V,E) and the pre-computed information, the query an-
swering module executes the following.
(1) When nodes s and t belong to the same DRA G[A+

u] with
proxy u such that A+

u = A1
u ∪ . . . Ah

u.
If s and t further fall into the same component Ai

u (i ∈
[1, h]), it invokes the Dijkstra’s algorithm on the subgraph
G[Ai

u] to compute the shortest path and distance between s
and t. Otherwise, it simply returns path(s, u)/path(u, t) or
dist(s, u) + dist(u, t) in constant time.
(2) When s and t belong to two DRAs G[A+

us
] and G[A+

ut
]

with proxies us and ut, respectively.
By the analyses in Section 3.2, we know that path(s, t)

= path(s, us)/path(us, ut)/ path(ut, t), in which path(s, us)
and path(ut, t) are already known. Hence, it simply invokes
an algorithm (e.g., bidirectional Dijkstra [24], ARCFLAG [27],
CH [14], TNR [3], AH [41]) on the reduced graph G′ for
computing path(us, ut).

Similarly, the shortest distance dist(s, t) = dist(s, us) +
dist(us, ut) + dist(ut, t) can be computed.

We next illustrate how shortest path and distance queries
are processed with an example below.

Example 5: Consider graph G1 and its BCCs in Fig. 1(1), in
which the DRAs and their maximal proxies are computed by
algorithm computeDRAs, i.e., dra1 = {u, v,BC1, BC2, BC3}

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, NOVEMBER 2015

Table 1
Real-life Datasets

Graphs G Regions # of Nodes # of Edges
DBLP14 Subgraph of DBLP 141,359 246,462
DBLP DBLP 317,080 1,049,866

CO Colorado 435,666 521,200
FL Florida 1,070,376 1,343,951
CA California & Nevada 1,890,815 2,315,222

E-US Eastern US 3,598,623 4,354,029
W-US Western US 6,262,104 7,559,642
C-US Central US 14,081,816 16,933,413

US Entire US 23,947,347 28,854,312

with its proxy w and dra2 = {y,BC5, BC6} with its proxy
x, as shown in Fig. 5. Note that here both A+

w and A+
x have

single components. Moreover, the reduced graph G′
1 of G1

is the subgraph with nodes w and x only.
(1) Consider nodes s in dra1 and t in dra2, we first
compute dist(w, x) or path(w, x) on G′

1, and then let
dist(s, t) = dist(s, w) + dist(w, x) + dist(x, t) or path(s, t) =
path(s, w)/path(w, x)/path(x, t). Note that here dist(s, w),
dist(x, t), path(s, w) and path(x, t) have all been computed
in the precessing stage.
(2) If nodes s and t are both in dra1 or dra2, we directly
compute their shortest path or distance on dra1 or dra2, as
they have single components. 2

Remarks. (1) As shown above, we need O(d) extra space to
store the routing information to compute shortest paths and
distances, where d is the total number of nodes in all DRAs.
(2) It is easy to see that the main computation cost is reduced
from graph G to its reduced graph G′. As shown in the
experimental study (Section 6), on average about 1/3 nodes
of sparse graphs are captured by non-trivial proxies and
their DRAs, i.e., d is about |V |/3. That is, the reduced graph
G′ is about 2/3 size of the original graph G, and hence
our data reduction technique could reduce graph sizes and
speed up shortest path and distance computations.

6 EXPERIMENTAL STUDY

Using real-life road networks and social graphs, we next
conduct an extensive experimental study to evaluate: (1)
the performance of computing routing proxies, and (2) how
routing proxies speed up shortest path and distance queries,
by comparing the efficiency and/or space overhead of
(bidirectional) Dijkstra [24], ARCFLAG [27], TNR [2] and AH
[41] with their counterparts using proxies (Proxy+Dijkstra,
Proxy+ARCFLAG, Proxy+TNR and Proxy+AH) with respect
to graph queries and graph sizes.

6.1 Experimental Settings

We first introduce the settings of our experimental study.

Real-life graphs. We use two types of datasets, and the
details of all datasets are reported in Table 1.
(1) The first type of datasets is co-authorship networks. We ex-
tracted a co-authorship graph from DBLP [22], where each
node in the graph represents an author and two authors
are connected if they have co-published papers. The edge
weight is computed by a revised Adamic/Adar similarity
function: w(u, v) = 1∑

z∈Γ(u)∩Γ(v)∪{u,v}
1

log |Γ(z)|
, where Γ(u)

and Γ(v) are the sets of neighbors of nodes u and v, respec-
tively. The weight of the edge (u, v) represents the closeness
between u and v and a smaller weight means the two au-
thors are closer. TNR is designed for road networks and it is
very inefficient for TNR to preprocess dense graphs such as
DBLP (it took more than 1 week to finish the preprocessing).
To guarantee that we can evaluate the improvement of TNR
with proxies on general graphs, we remove all nodes whose
degrees are higher than 14, and choose the largest connected
component in the remaining graph, referred to as DBLP14.
(2) The second type of datasets is road networks. We chose
seven standard road network datasets of various sizes from
the Ninth DIMACS Implementation Challenge [11] (avail-
able at http://www.dis.uniroma1.it/challenge9/download.
shtml). Each road network is released as an undirected
graph representing a part of the road network in the United
States, where each edge weight is the distance (an integer)
required to travel between the two endpoints of the edge.

Shortest path and distance queries. Our queries were
generated as follows. (1) On each road or co-authorship
network, we first randomly choose a node u, and run
Dijikstra’s algorithm from u to find the node s that is farthest
from u. Then we run Dijkstra’s algorithm again from s
to find the node t that is farthest from s. Let ℓ be the
distance dist(s, t) from s to t. (2) We then randomly chose
ten thousand node pairs from the road network to compose
Qi(i ∈ [1, 7]), such that the distances of all node pairs in Qi

are in [2i−9 · ℓ, 2i−8 · ℓ). For each query set Qi (i ∈ [1, 7]), we
report the average running time of 10,000 queries in the set.

Algorithms. We implemented algorithms bidirectional-
Dijkstra [24], ARCFLAG [27], TNR [2] and AH [41].

For ARCFLAG, it first needs to partition graphs to pre-
compute information on whether an edge is useful for a
shortest path search. Any possible partition methods [8],
[18], [19], [39] can be used here. Since we have both road
networks and co-authorship networks, we adopted the lat-
est version 5.0.2 of METIS [26], implemented with ANSI C,
because it is open source and performs quite well in practice.

For TNR, since we do not have coordinates information in
the co-authorship network, we implemented the CH-based
TNR [2] that does not require the geometry information.

We obtained the C++ implementation of AH from [41]
and adopted its default settings.

Implementations. All algorithms were implemented with
C++, and all experiments were run on a PC with an Intel
Xeon(R) X5650 CPU@2.67GHz and 24GB of memory.

6.2 Performance of Computing Routing Proxies

Using the datasets in Table 1, we first conduct experi-
ments to evaluate the performance of computing proxies,
i.e., how many nodes can be represented by proxies, how
much extra space we need to store the routing information
for the proxies, and how much time we need to find all
proxies. More specifically, we evaluate (1) the number of
non-trivial proxies, (2) the number and percentage of the
nodes represented by the proxies (excluding the proxies
themselves from DRAs), (3) the extra space cost of using
proxies, (4) the space overhead of storing the original graph

MA ET AL.: PROXIES FOR SHORTEST PATH AND DISTANCE QUERIES 7

Table 2
Effectiveness of proxies and DRAs

Proxies Nodes in DRAs Extra space G Space G′ Space TimeGraphs G
(# : %) (# : %) (MB) (MB) (MB) (Sec.)

DBLP14 (14, 090 : 9.8) (102,085 : 72.2) 1.56 4.30 1.36 1.5
DBLP (31,475 : 9.9) (105,671 : 33.3) 1.61 17.22 14.29 5.7

CO (56,277 : 12.9) (156,329 : 35.9) 2.38 9.61 6.64 3.5
FL (140,382 : 13.1) (378,804 : 35.4) 5.78 24.59 17.12 9.9
CA (273,191 : 14.4) (623,811 : 33.0) 9.52 42.55 30.66 21.1

E-US (546,481 : 15.2) (1,228,876 : 34.1) 18.75 80.17 56.48 52.5
W-US (869,907 : 13.9) (2,116,382 : 33.8) 32.29 139.23 98.68 111.9
C-US (2,034,358 : 14.4) (4,583,413 : 32.5) 69.94 312.09 225.28 435.8

US (3,452,222 : 14.4) (7,927,453 : 33.1) 120.96 531.63 380.59 1,925.4

Table 3
Effectiveness w.r.t. average degrees

Average degreesDistribution Properties
2 3 4 5 6

Uniform Proxies (#: %) (88,649: 14.7) (97,202: 16.2) (75,822: 12.6) (60,937: 10.1) (50,829: 8.5)
Nodes in DRAs (#: %) (267,015: 44.5) (129,301: 21.5) (89,253: 14.9) (68,232: 11.4) (55,314: 9.2)

Power Law Proxies (#: %) (90,245: 9.0) (124,247: 12.4) (128,126: 12.8) (128,020: 12.8) (126,836: 12.7)
Nodes in DRAs (#: %) (504,401: 50.4) (575,202: 57.5) (580,392: 58.0) (576,610: 57.7) (569,697: 57.0)

Average degreesDistribution Properties
20 30 40 50 60

Power Law Proxies (#: %) (102,019: 10.2) (96,300: 9.6) (95,823: 9.6) (95,283: 9.5) (95,735: 9.6)
Nodes in DRAs (#: %) (480,356: 48.0) (436,919: 43.7) (415,272: 41.5) (391,605: 39.2) (375,196: 37.5)

G, (5) the space overhead of storing the reduced graph
G′, and (6) the efficiency of algorithm computeDRAs for
computing proxies and their DRAs. We fixed the constant
c = 2 for computing proxies on all graphs. When computing
the space overhead for the original graphs and the reduced
graphs, we assume that all graphs are stored as adjacency
lists. The experimental results are reported in Table 2.

1. Effectiveness evaluation. For the DBLP graph, about
1/10 nodes are non-trivial proxies, and about 1/3 nodes are
captured by proxies in the graph, which means basically the
reduced graph is only about 2/3 of the original input graph.
For the DBLP14 graph, about 1/10 nodes are non-trivial
proxies, and about 2/3 nodes are captured by the DRAs of
proxies in the graph, which means basically the reduced
graph is only about 1/3 of the original input graph.

For all the road graphs, about 1/7 nodes are non-trivial
proxies, and about 1/3 nodes are captured by the DRAs of
these proxies, which means basically the reduced graph is
only about 2/3 of the original input graph.

Moreover, although the sizes of DRAs are restricted
within 2 · ⌊

√
|V |⌋, DRAs are typically small such that each

proxy represents 2 or 3 other nodes on average.

2. Efficiency evaluation. In the DBLP graph, proxies can
be found in about 6 seconds. In the DBLP14 graph, it only
takes 1.5 seconds to find all DRAs with their proxies.

In all road networks, proxies can be found efficiently.
Algorithm computeDRAs also scales well, and it can be done
in less than half an hour for the largest graph US with 2.4 ×
107 nodes and 5.7 × 107 edges.

3. Space evaluation. To support shortest distance queries,
for each node in a DRA, we store its proxy u, its distance
to u and the component of A+

u to which it belongs, and,
moreover, to support shortest path queries, we further keep
the shortest paths from proxy u to all nodes in the DRA.
Assume that distances are stored as a 4-byte integer. Each
node is represented as a 4-byte integer. Then the extra space

that we need for shortest path and distance queries is 16 ·
|Vdra|, where Vdra is the set of nodes in all DRAs.

In the DBLP and DBLP14 graphs, it only takes about
1.6 MB extra space to store the routing information for all
proxies, since there are similar number of nodes in the DRAs
of both datasets. Observe that by using proxies to represent
all nodes in DRAs, the reduced graph has a smaller size than
the original graph, especially for the DBLP14 graph. In the
DBLP14 graph, 72.2% of its nodes are captured by proxies,
which leads to a much smaller reduced graph.

In all road networks, it incurs small extra space overhead
to store the routing information for proxies. Only about 100
MB extra space is taken for the largest graph US. The use of
proxies also results in a smaller reduced graph. As shown
in Table 2, the size of the reduced graph is about 70% of the
original graph on average.

4. Effectiveness w.r.t. average degrees. In this set of experi-
ments, we further study the impact of density, measured by
average degrees, on the effectiveness of proxies and DRAs.

We adopted the graph-tool library [1] to produce random
graphs. It is controlled by two parameters: the number n
of nodes, and a sample function that decides the degree
distribution of graphs. Here we fixed n = 106, and adopted
two degree distributions: (1) uniform distribution and (2)
power law distribution of scale-free networks (the fraction
P (k) of nodes having degree k in the network goes for large
values of k, i.e., P (k) ∼ kδ , where δ is a parameter). When
we generate a random graph with average degree d using
the uniform distribution, we randomly choose an integer
from range [1, 2 · d − 1] as the degree of a node. When we
use the power law distribution, we set the maximum degree
of graphs as 5, 000, which is also the limit of the number
of friends for Facebook users (www.facebook.com), and we
vary δ to generate a graph with the expected average degree
d. The results are shown in Table 3.

We can find the following. (1) Our algorithm performs
well on sparse graphs (with average degree no larger than 3)

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, NOVEMBER 2015

generated with the uniform distribution. Specifically, about
30% of the nodes in these graphs are captured by DRAs.
(2) Our algorithm performs much better on graphs having
the power law distribution. We can see that more than
30% of the nodes are captured by DRAs even when the
average degree is 60. (3) The performance of our algorithm
is sensitive to the density and degree distribution of graphs.
(4) Given a degree distribution, DRAs tend to capture less
nodes when the average degree is higher. This is because (1)
there are less cut-nodes in graphs with a higher density, and
thus less proxies can be found, and (2) for a proxy u, the set
of nodes Ai

u represented by u is more likely to exceed the
size restriction. Therefore, there are less nodes in its DRA.

From these tests, we can find that using proxies is a light-
weight optimization technique, which scales well to large
networks, and incurs appropriate space overhead.

6.3 Benefits of Using Routing Proxies
Our proxies can be used as a preprocessing step before
we apply other existing approaches. We next conduct ex-
periments to show the comparison results of an existing
approach (i.e., Dijkstra, ARCFLAG, TNR and AH) with its
counterpart using proxies, using the datasets in Table 1.

We fixed the constant c = 2 for computing proxies on all
graphs. Note that AH requires the coordinate information
to answer shortest path or distance queries, not available in
both DBLP and DBLP14. Thus, we only report results on
road graphs for AH and its counterpart with proxies.

1. Effectiveness w.r.t. graph queries. In this set of exper-
iments, we evaluated the efficiency of shortest path and
distance queries with respect to the graph queries.

For the ARCFLAG and Proxy+ARCFLAG methods, the
graph and the reduced graph are partitioned into fragments
such that each fragment has at most 2 · ⌊

√
|V |⌋ nodes in

order to add labels to edges. We used METIS to partition
graphs with the balance factor fixed to 1.003.

For the TNR and Proxy+TNR methods, we always select
10,000 transit nodes, as suggested in [2]. Note that the
space cost of the CH-based TNR is very high. Consequently,
we could not run TNR on C-US as it ran out of memory.
However, we can successfully run Proxy+TNR on C-US. We
report this to show that proxies serve as a data reduction
technique and benefit existing methods in terms of space
cost as well. TNR invokes Contract Hierarchies (CH) [14] to
preprocess the graph and CH runs very slowly on DBLP (it
took more than 7 days to run CH on DBLP). Thus we report
the results on DBLP14 and all the road networks.

The results of distance queries and path queries are
reported in Tables 4 and 8 (comparison between Dijkstra
and Proxy+Dijkstra), Tables 5 and 9 (comparison between
ARCFLAG and Proxy+ARCFLAG), Tables 6 and 10 (compar-
ison between TNR and Proxy+TNR), and Tables 7 and 11
(comparison between AH and Proxy+AH), respectively.

In the co-authorship network DBLP14, the results
show that with the help of proxies, Proxy+Dijkstra,
Proxy+ARCFLAG and Proxy+TNR all achieve a better per-
formance than their counterparts without proxies, respec-
tively. On average, the time cost of Proxy+ARCFLAG,
Proxy+Dijkstra and Proxy+TNR is about 96%, 51% and 51%
of their counterparts without proxies for distance queries,

and 98%, 49% and 76% of their counterparts without proxies
for shortest path queries, respectively. More specifically, we
can see that (1) proxies have a better speed-up effect on
bidirectional Dijkstra and TNR than ARCFLAG, and (2) for
ARCFLAG, proxies have a better speed-up effect when the
two query nodes are far from each other, which is different
from the observation on road networks. To explain the
second observation, we need to notice that about 2/3 nodes
are captured by proxies in DBLP14. Thus two close nodes
are more likely to fall into the same DRAs. Since there are
no speed-up techniques used inside single DRAs, the search
space saved by proxies is less than using ARCFLAG alone.

In the road networks, the results show that with the help
of proxies, Proxy+Dijkstra, Proxy+ARCFLAG and Proxy+AH
can achieve a better performance than their counterparts
without proxies, respectively. On average, the time cost of
Proxy+ARCFLAG, Proxy+Dijkstra and Proxy+AH is about
80%, 68% and 99% of their counterparts without proxies for
distance queries, and 82%, 67% and 99% of their counter-
parts without proxies for shortest path queries, respectively.
More specifically, we can see that (1) proxies have a better
speed-up effect on bidirectional Dijkstra than ARCFLAG, (2)
for ARCFLAG, proxies have a better speed-up effect when
the two query nodes are close to each other, (3) different
from ARCFLAG, Proxy+Dijkstra has a better performance
when the query nodes are far from each other, and (4)
though AH is one of the state-of-art methods for shortest
path and distance queries, proxies still improve its efficiency
about 1%. To explain these observations, we need to think
how much search space is saved by proxies. Since ARCFLAG
has already used flags on edges to reduce the search space,
the proportion of search space saved by proxies is smaller
than bidirectional Dijkstra. That explains why proxies have
a better speed-up effect on bidirectional Dijkstra. For AR-
CFLAG, two close nodes are more likely to fall into the
same partition. In this case, the effect of flags on edges is
less useful and the search space saved by proxies takes a
large proportion, which explains the second observation.
For bidirectional Dijkstra, proxies can save more search
space when the query nodes are far from each other. As a
state-of-art approach for shortest path and distance queries,
the search space of AH is much smaller than Dijkstra and
ARCFLAG. However, the search space of AH is still reduced,
and AH still benefits from proxies in terms of efficiency. This
explains the fourth observation.

Proxy+TNR achieves a comparable performance to its
counterpart without proxies. This is because for TNR, a
heuristic method is used to select transit nodes, based on
the structure of the graph. And selection of transit nodes
has a significant effect on the performance of TNR. Since we
reduce the input graph by using proxies, the reduced graph
has a different topology structure. Thus a different set of
transit nodes will be selected. So it is hard to guarantee that
Proxy+TNR outperforms TNR. We should also notice that
TNR cannot run on C-US while Proxy+TNR can. To explain
this, we first recall that for TNR, we have to store the access
nodes and distances for each node. For the original input of
C-US, there are too many nodes and it runs out of memory.
By using proxies, about 1/3 nodes are captured by proxies
and we only need to run TNR on 2/3 of the input graph,
which is more practical. We will evaluate the space overhead

MA ET AL.: PROXIES FOR SHORTEST PATH AND DISTANCE QUERIES 9

Table 4
Varying graph queries for shortest distances: Dijkstra vs. Proxy+Dijkstra

Query time (×10−6 sec.)Graphs # of nodes Methods
Q1 Q2 Q3 Q4 Q5 Q6 Q7

DBLP14 141,359 Dijkstra 2 3 5 11 34 287 13,935
Proxy+Dijkstra 2 3 4 6 12 84 3,332

CO 435,666 Dijkstra 113 395 1,427 4,669 10,963 26,289 62,194
Proxy+Dijkstra 105 368 1,296 4,240 10,274 24,962 59,816

FL 1,070,376 Dijkstra 444 1,648 5,701 16,684 45,184 137,532 360,603
Proxy+Dijkstra 323 1,173 3,800 10,719 28,915 86,020 226,303

CA 1,890,815 Dijkstra 873 3,066 10,422 32,365 89,983 237,625 543,870
Proxy+Dijkstra 640 2,226 7,439 22,699 61,405 159,870 359,532

E-US 3,598,623 Dijkstra 869 3,283 12,080 44,275 155,196 519,541 1,681,470
Proxy+Dijkstra 672 2,503 9,051 31,749 107,962 354,352 956,205

W-US 6,262,104 Dijkstra 2,219 9,255 20,829 57,122 163,115 473,679 1,514,990
Proxy+Dijkstra 1,587 5,059 14,104 37,537 105,377 305,627 961,300

C-US 14,081,816 Dijkstra 2,419 8,119 28,468 102,945 408,656 1,639,260 5,868,220
Proxy+Dijkstra 1,508 4,876 16,649 59,777 244,552 978,000 3,553,810

Table 5
Varying graph queries for shortest distances: ARCFLAG vs. Proxy+ARCFLAG

Query time (×10−6 sec.)Graphs # of nodes Methods
Q1 Q2 Q3 Q4 Q5 Q6 Q7

DBLP14 141,359 ARCFLAG 70 72 73 75 80 89 134
Proxy+ARCFLAG 70 74 75 73 75 80 123

CO 317,080 ARCFLAG 120 246 437 772 1,158 1,600 2,274
Proxy+ARCFLAG 84 168 317 582 943 1,475 2,008

FL 435,666 ARCFLAG 339 692 1,170 1,739 2,431 3,132 4,028
Proxy+ARCFLAG 233 491 890 1,413 2,076 2,599 3,360

CA 1,070,376 ARCFLAG 540 960 1,566 2,394 3,400 4,840 6,391
Proxy+ARCFLAG 386 737 1,268 1,955 2,855 4,332 5,566

E-US 1,890,815 ARCFLAG 613 1,258 2,212 3,485 5,383 7,970 11,007
Proxy+ARCFLAG 429 923 1,699 2,796 4,468 6,968 10,090

W-US 6,262,104 ARCFLAG 1,036 1,906 3,089 4,435 6,478 8,722 11,602
Proxy+ARCFLAG 737 1,380 2,373 3,612 5,539 7,663 10,651

C-US 14,081,816 ARCFLAG 1,474 2,943 5,006 7,905 12,439 19,316 28,959
Proxy+ARCFLAG 983 2,065 3,740 6,283 10,402 16,495 26,074

Table 6
Varying graph queries for shortest distances: TNR vs. Proxy+TNR

Query time (×10−6 sec.)Graphs # of nodes Methods
Q1 Q2 Q3 Q4 Q5 Q6 Q7

DBLP14 141,359 TNR 2.1 2.4 3.5 4.0 3.6 2.2 0.7
Proxy+TNR 1.3 1.4 1.3 1.3 1.1 0.6 0.4

CO 435,666 TNR 4.5 3.7 2.9 2.0 1.4 1.3 1.2
Proxy+TNR 4.2 3.8 3.4 2.7 1.9 1.5 1.5

FL 1,070,376 TNR 23.8 38.7 58.2 88.9 124.8 167.0 235.0
Proxy+TNR 22.9 36.3 57.0 91.2 150.8 195.3 251.5

CA 1,890,815 TNR 38.0 66.4 116.1 172.1 227.0 340.7 421.6
Proxy+TNR 39.5 67.5 107.4 159.7 221.0 286.2 828.8

E-US 3,598,623 TNR 36.1 50.1 70.1 75.3 42.6 27.5 25.5
Proxy+TNR 35.7 52.4 72.8 80.3 57.8 32.2 29.8

W-US 6,262,104 TNR 49.5 63.5 77.3 86.1 63.0 28.9 25.2
Proxy+TNR 47.7 57.7 74.0 89.5 77.2 30.6 26.5

C-US 14,081,816 TNR NA NA NA NA NA NA NA
Proxy+TNR 67.0 137.5 300.0 600.0 667.0 280.0 135.0

Table 7
Varying graph queries for shortest distances: AH vs. Proxy+AH

Query time (×10−6 sec.)Graphs # of nodes Methods
Q1 Q2 Q3 Q4 Q5 Q6 Q7

CO 435,666 AH 7.8 9.3 17.2 26.5 37.4 51.5 67.1
Proxy+AH 7.8 10.9 17.2 28.1 37.5 53.0 59.3

FL 1,070,376 AH 10.9 15.6 23.4 29.7 40.5 56.2 59.3
Proxy+AH 12.4 17.2 23.5 29.7 40.5 54.6 57.7

CA 1,890,815 AH 18.7 28.0 42.1 56.2 68.6 88.9 101.4
Proxy+AH 18.7 28.1 42.1 54.6 67.1 85.8 99.8

E-US 3,598,623 AH 20.3 34.3 57.7 96.7 159.1 235.5 257.4
Proxy+AH 21.9 34.3 56.2 93.6 152.8 232.4 258.9

W-US 6,262,104 AH 24.9 39.0 56.2 74.9 107.6 149.8 188.7
Proxy+AH 26.6 37.5 53.0 73.3 104.5 146.6 185.6

C-US 14,081,816 AH 39.0 70.2 135.7 244.9 402.5 603.7 762.0
Proxy+AH 37.3 70.2 129.5 235.5 385.3 580.3 769.1

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, NOVEMBER 2015

Table 8
Varying graph queries for shortest paths: Dijkstra vs. Proxy+Dijkstra

Query time (×10−6 sec.)Graphs # of nodes Methods
Q1 Q2 Q3 Q4 Q5 Q6 Q7

DBLP14 141,359 Dijkstra 2 3 5 52 34 287 13,935
Proxy+Dijkstra 2 3 4 6 13 94 3,732

CO 435,666 Dijkstra 153 545 1,963 6,557 16,138 40,279 99,073
Proxy+Dijkstra 122 424 1,553 5,040 11,918 28,084 65,802

FL 1,070,376 Dijkstra 473 1,748 6,094 17,436 46,977 140,428 368,370
Proxy+Dijkstra 332 1,185 3,832 10,837 29,155 87,459 228,535

CA 1,890,815 Dijkstra 886 3,141 10,657 33,377 92,742 257,752 550,480
Proxy+Dijkstra 654 2,244 7,478 22,764 62,670 163,236 365,321

E-US 3,598,623 Dijkstra 912 3,455 13,033 47,028 163,397 542,802 1,681,470
Proxy+Dijkstra 706 2,647 9,507 33,229 113,114 379,599 956,205

W-US 6,262,104 Dijkstra 886 3,141 10,657 33,377 92,742 257,752 550,480
Proxy+Dijkstra 654 2,244 7,748 22,764 62,670 163,236 365,321

C-US 14,081,816 Dijkstra 2,419 8,014 28,083 101,077 402,928 1,580,830 5,868,220
Proxy+Dijkstra 1,508 5,004 17,039 61,512 247,490 988,994 3,553,810

Table 9
Varying graph queries for shortest paths: ARCFLAG vs. Proxy+ARCFLAG

Query time (×10−6 sec.)Graphs # of nodes Methods
Q1 Q2 Q3 Q4 Q5 Q6 Q7

DBLP14 141,359 ARCFLAG 64 64 75 75 80 87 134
Proxy+ARCFLAG 70 72 71 74 75 80 123

CO 435,666 ARCFLAG 120 245 438 775 1,148 1,597 4,031
Proxy+ARCFLAG 90 177 330 604 976 1,535 3,534

FL 1,070,376 ARCFLAG 336 689 1,166 1,738 2,425 3,146 4,028
Proxy+ARCFLAG 241 502 908 1,444 2,138 2,751 3,360

CA 1,890,815 ARCFLAG 539 965 1,566 2,387 3,400 4,833 6,391
Proxy+ARCFLAG 393 742 1,268 1,985 2,855 4,420 5,566

E-US 3,598,623 ARCFLAG 619 1,266 2,212 3,487 5,383 7,959 11,007
Proxy+ARCFLAG 442 946 1,742 2,873 4,468 7,173 10,090

W-US 6,262,104 ARCFLAG 1,043 1,903 3,086 4,441 6,457 8,718 11,634
Proxy+ARCFLAG 757 1,411 2,423 3,708 5,699 7,932 11,169

C-US 14,081,816 ARCFLAG 1,486 2,958 5,006 7,992 12,439 19,517 28,670
Proxy+ARCFLAG 1,006 2,098 3,740 6,463 10,402 16,974 25,104

Table 10
Varying graph queries for shortest paths: TNR vs. Proxy+TNR

Query time (×10−6 sec.)Graphs # of nodes Methods
Q1 Q2 Q3 Q4 Q5 Q6 Q7

DBLP14 141,359 TNR 7.9 13.1 19.8 34.7 61.4 143.6 683.9
Proxy+TNR 5.2 10.7 14.1 21.8 43.4 111.7 660.2

CO 435,666 TNR 23.3 35.3 57.4 91.8 139.7 202.6 276.0
Proxy+TNR 21.0 33.0 52.4 84.0 124.0 184.2 379.2

FL 1,070,376 TNR 33.7 54.4 85.6 132.9 194.1 277.2 412.1
Proxy+TNR 31.4 53.6 84.1 135.4 220.1 309.3 440.5

CA 1,890,815 TNR 50.9 86.7 147.4 227.4 315.8 495.8 667.7
Proxy+TNR 51.5 89.5 142.3 219.3 317.4 452.8 1,091.6

E-US 3,598,623 TNR 53.4 88.5 154.0 252.5 394.7 654.1 1,024.2
Proxy+TNR 54.5 89.4 154.8 253.6 423.7 2,569.1 4,640.1

W-US 6,262,104 TNR 68.9 106.3 168.9 267.0 470.0 766.4 1,492
Proxy+TNR 73.5 110.7 171.3 269.9 698.7 1,110.0 1,924.8

C-US 14,081,816 TNR NA NA NA NA NA NA NA
Proxy+TNR 90.5 175.0 378.0 775.0 1,230.0 1,760.0 2,645.0

Table 11
Varying graph queries for shortest paths: AH vs. Proxy+AH

Query time (×10−6 sec.)Graphs # of nodes Methods
Q1 Q2 Q3 Q4 Q5 Q6 Q7

CO 435,666 AH 7.8 14.0 20.3 34.4 48.4 68.6 87.4
Proxy+AH 7.8 14.1 21.8 32.7 48.4 68.6 84.3

FL 1,070,376 AH 15.6 23.4 34.3 48.4 65.5 90.5 110.8
Proxy+AH 15.6 21.8 32.8 53.0 71.7 87.4 107.6

CA 1,890,815 AH 23.4 39.0 59.3 81.1 104.5 145.0 181.0
Proxy+AH 23.4 37.4 57.7 78.0 99.8 140.4 176.3

E-US 3,598,623 AH 28.1 48.4 82.7 142.0 229.3 357.2 443.1
Proxy+AH 28.1 46.8 79.6 134.2 221.5 347.8 433.6

W-US 6,262,104 AH 35.8 56.3 82.7 124.8 187.2 276.1 394.7
Proxy+AH 35.9 54.6 81.1 121.7 182.5 269.9 386.9

C-US 14,081,816 AH 56.1 99.8 188.8 347.9 591.2 926.7 1,324.4
Proxy+AH 53.0 95.2 179.4 333.9 567.9 892.3 1,310.4

MA ET AL.: PROXIES FOR SHORTEST PATH AND DISTANCE QUERIES 11

Table 12
Comparison w.r.t. space overhead

ARCFLAG (MB) TNR (MB) AH (MB)Graphs
with proxies no proxies with proxies no proxies with proxies no proxies

DBLP14 4.9 4.3 386.5 389.2 NA NA
DBLP 16.1 35.2 NA NA NA NA

CO 9.3 13.6 417.1 430.2 58.1 72.2
FL 29.7 52.8 491.9 530.5 150.9 187.3
CA 55.1 108.8 701.9 806.4 277.9 338.1

E-US 134.9 287.8 1,842.9 2,382.7 525.5 642.0
W-US 277.3 643.9 2,996.4 4,154.1 889.6 1092.3
C-US 838.8 2,153.1 13,894.5 NA 2082.3 2512.3

US NA NA NA NA 3512.7 4266.9

saved by proxies in detail, to be seen shortly.

2. Effectiveness w.r.t. graph sizes. Since DBLP14 is a single
dataset, we only compare the efficiency of shortest path and
distance queries on road graphs using the same settings. We
vary the number of nodes from 435,666 to 14,081,816. We
observe the results in Tables 4 and 8 (comparison between
Dijkstra and Proxy+Dijkstra), Tables 5 and 9 (comparison
between ARCFLAG and Proxy+ARCFLAG), Tables 6 and 10
(comparison between TNR and Proxy+TNR), and Tables 7
and 11 (comparison between AH and Proxy+AH) for shortest
distance and shortest path queries, respectively. For a given
query, we can observe its corresponding row to see how the
efficiency is affected by graph sizes.

The results tell us that (1) all algorithms scale well with
respect to graph sizes, (2) for Proxy+Dijkstra, its time cost is
68% and 67% of its counterpart without proxies for shortest
path and distance queries on average, respectively, (3) for
Proxy+ARCFLAG, its time cost is 80% and 82% of its counter-
part without proxies for shortest path and distance queries
on average, respectively, (4) for Proxy+TNR, its time cost is
comparable to TNR for shortest path and distance queries
on average, respectively, (5) for Proxy+TNR, it is applicable
to handle the larger dataset C-US while TNR cannot, and
(6) for Proxy+AH, its time cost is 98% and 99% of AH for
shortest path and distance queries on average, respectively.
Further, (7) as the size of graphs increases, the running time
of Dijkstra, ARCFLAG and AH increases in the same way
as their counterparts with proxies. Finally, (8) for TNR, the
selection of transit nodes is based on the graph structure and
has a significant effect on the efficiency. By using proxies,
the reduced graph has a different set of transit nodes and
it is hard to guarantee that which set of transit nodes can
get a better query efficiency. Thus, Proxy+TNR does not
outperform TNR constantly as the other 3 approaches do.

3. Space overhead. In the last set of experiments, we
evaluate the space overhead of ARCFLAG, TNR and AH
compared with their counterparts with proxies, since all
of them require preprocessing for query answering. We
report (1) the size of the index generated by ARCFLAG,
TNR and AH on the original input graphs, and (2) the
sum of the size of the index generated by each of those
methods on the reduced graph and the extra space it takes
to store routing information for proxies. Note that for TNR
and Proxy+TNR, no compression techniques are used. The
results are reported in Table 12.

In the co-authorship network DBLP14, different from
our expectation, ARCFLAG requires less space overhead than
Proxy+ARCFLAG. This is because that the graph is relatively

small and has small number of partitions. Thus, for each
edge we only need to maintain an 8-byte flag in ARCFLAG.
However, when using proxies, we need to maintain 12-
byte routing information for each node. As we have shown
before, about 70% of the nodes in DBLP14 fall into the
DRAs, thus, ARCFLAG requires less space overhead than
Proxy+ARCFLAG. However, in DBLP, since the graph is
larger (we need to maintain a 17-byte flag for each edge),
Proxy+ARCFLAG requires only about 14% of the space
overhead of ARCFLAG. We can also observe that the space
overhead of Proxy+TNR is about 98% of TNR.

In the road networks, we can make the following ob-
servations: (1) Proxy+ARCFLAG incurs less space overhead
than ARCFLAG (from 38% to 68%), especially for large
graphs (about 38% for CUS). (2) Proxy+TNR incurs less
space overhead than TNR (from 72% to 92%). Recall that
for TNR, we need to maintain a list of access nodes and
a list of filter nodes for each node in the graph. A larger
graph usually incurs a larger size of filter nodes. Thus, by
using proxies to represent nodes in DRAs, we can save more
space for larger graphs. (3) Proxy+AH is about 82% of its
counterpart without proxies.

From the experimental results above, we can find that
the existing solutions also benefit from using proxies in
terms of space overhead.

Summary. From these experimental results, we find the
following. (1) Proxies are a light-weight preprocessing tech-
nique, which can be computed efficiently and takes linear
space to support shortest path and distance queries. (2) Ac-
cording to our experiments, in sparse graphs whose average
degree is less than 4, about 1/3 nodes in the graph are
captured by proxies, leaving the reduced graph about 2/3 of
the input graph. In some special cases (like DBLP14), about
2/3 nodes in the graph are captured by proxies, leaving the
reduced graph about only 1/3 of the input graph. (3) The
performance of proxies and DRAs is sensitive to the density
and degree distribution of graphs, and they perform well on
graphs following the power law distribution. Meanwhile,
for a given degree distribution, DRAs tend to capture less
nodes when the average degree is higher. (4) Proxies and
their DRAs benefit existing shortest path and distance al-
gorithms in terms of time cost. They reduce 20%, 30% and
1% time for ARCFLAG, bidirectional Dijkstra and AH on road
networks, respectively. They also have comparable time cost
for TNR on road networks; They reduce 49%, 4% and 49%
time for bidirectional Dijkstra, ARCFLAG, and TNR on the
co-authorship network DBLP14, respectively. (5) Existing
shortest path and distance algorithms also benefit from

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, NOVEMBER 2015

using proxies in terms of space overhead. Since the original
input graph is reduced by proxies, larger datasets may be
handled when existing methods are combined with proxies.
Proxy+TNR can handle the road network C-US while TNR
cannot. Moreover, Proxy+ARCFLAG incurs less space over-
head than ARCFLAG (from 38% to 68%), Proxy+TNR is about
from 72% to 92% of its counterpart without proxies, and
Proxy+AH is about 82% of its counterpart without proxies.

7 RELATED WORK

Algorithms for shortest paths and distances have been ex-
tensively studied since 1950’s, and fall into different cate-
gories in terms of different criteria:

• exact distances [2], [3], [4], [5], [7], [10], [12], [13], [14],
[15], [16], [20], [24], [28], [28], [30], [32], [34], [36], [38],
[41] and approximate distances [29], [31], [33], [35],

• memory-based [2], [3], [7], [10], [13], [14], [16], [20],
[24], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38], [41] and disk-based algorithms [4], [5],

• for unweighted [2], [3], [7], [29], [33], [37] and
weighted graphs [2], [3], [4], [5], [7], [10], [12], [13],
[14], [15], [16], [20], [24], [28], [28], [30], [31], [32], [34],
[35], [36], [38], [41], and

• for directed [2], [3], [7], [12], [15], [20], [28], [34], [41]
and undirected graphs [2], [3], [4], [5], [7], [10], [13],
[14], [16], [24], [28], [29], [30], [31], [32], [33], [35], [36],
[37], [38].

In this work, we study the memory-based (exact) short-
est path and shortest distance problem on weighted undi-
rected large graphs. We next introduce those methods that
fall into this category from two aspects: on general graphs
and on road networks.

Approaches for general graphs. The classic solution for
shortest path and distance queries is Dijkstra’s algorithm
[10]. It visits nodes in an ascending order of their distances
from the source node, and all the nodes that are closer to the
source node than the target node are visited. Thus, many
techniques are proposed to reduce the search space. Among
these, (1) bidirectional Dijkstra search [24] was proposed to
search from both source and target nodes; (2) ALT [15] selects
a set of nodes (reffered to as landmarks), and pre-computes
the distances from each node to landmarks, which are used
to prune unnecessary nodes during the search process; (3)
An edge labeling method named ARCFLAG [27] cuts graphs
into partitions to reduce the search space; (4) An indexing
and query processing scheme named TEDI [37] decomposes
a graph into a tree, and uses the tree index to process
shortest path queries; And (5) a 2-hop labeling based exact
algorithm was proposed in [7] to deal with large networks.

Approaches for road networks. A lot of work focuses
on processing shortest path and distance queries on road
networks. (1) Different from general graphs, the shortest
paths on road networks are often spatially coherent. Path
oracles have been proposed for spatial networks [32]. Transit
Node Routing (TNR) [2] is a fast and exact distance oracle
for road networks. Both of them utilize the property of
spatial coherence, i.e., spatial positions of both source and
destination nodes and the shortest paths between them that

facilitate the aggregation of source and destination nodes
into groups sharing common nodes or edges on the short-
est paths between them. (2) Road networks are also often
assumed to be planar graphs with non-negetive weights,
and the properties of planar graphs are further utilized to
simplify the search process [12], [16], [20], [28]. Moreover,
(3) a (spatial) hierarchical index structure is used by several
techniques [14], [30], [41]. For example, Sanders et al. [30]
proposed a route planning method named Highway Hierar-
chies (HH) such that only high level edges were considered
to compute the path and distance from a source to a far
target. Inspired by HH, Geisberger et al. [14] proposed a
road network index named Contraction Hierarchies (CH),
which is indeed an extreme case of HH. Further, Zhu et al.
[41] proposed Arterial Hierarchy (AH) that narrowed the
gap between theory and practice in answering shortest path
and distance queries.

To achieve high efficiency, except for (bidirectional) Dijk-
stra, all aforementioned approaches require a preprocessing
stage to answer a shortest path or distance query. The query
answering stage is highly dependent on the preprocessing
stage. Thus, the techniques for preprocessing and for query
answering are tightly coupled with each other.

These techniques are different from ours in two aspects.
(1) These techniques make use of different methodologies.
As a result, applying one technique precludes applying an-
other one. However, our routing proxies are a general tech-
nique that can be easily combined with other techniques.
That is, routing proxies can be used as a pre-processing step
before any other technique is applied. Then, any of these
technique can be adopted on the reduce graphs, which are
typically much smaller than the original graphs, as we have
discussed in Section 5. (2) To achieve high efficiency, these
techniques usually incur high preprocessing time and space
overhead. In contrast, routing proxies are a light-weight
technique that scales well to large networks.

Most close to our work is the study of 1-dominator sets
in [34]. Different from the aforementioned techniques, it is
proposed for shortest path queries on nearly acyclic directed
graphs rather than undirected graphs. When an undirected
graph is converted to an equivalent directed graph, each
undirected edge is replaced by a pair of inverse directed
edges. Hence, 1-dominator sets [34] are not applicable for
undirected graphs. However, routing proxies and determin-
istic routing areas proposed in this study are for undirected
graphs, and significantly different from 1-dominator sets
(from definitions to analyses to algorithms).

8 CONCLUSION

We have studied how to speed-up (exact) shortest path and
distance queries on large weighted undirected graphs. To do
this, we propose a light-weight data reduction technique, a
notion of proxies such that each proxy represents a small
subgraph, referred to as DRAs. We have shown that proxies
and DRAs can be computed efficiently in linear time, and
incur only a very small amount of extra space. We have also
verified, both analytically and experimentally, that proxies
significantly reduce graph sizes and improve efficiency of
existing methods, such as bidirectional Dijkstra, ARCFLAG,
TNR and AH for shortest path and distance queries.

MA ET AL.: PROXIES FOR SHORTEST PATH AND DISTANCE QUERIES 13

A couple of topics are targeted for future work. We are
to extend our techniques for dynamic graphs, as real-life
networks are often dynamic [25], [40]. We are also to ex-
plore the possibility of revising routing proxies for directed
graphs and other classes of graph queries, e.g., reachability.

APPENDIX: PROOFS

Proof of Proposition 1: Without loss of generality, we only
consider those CCs with at least two nodes. Given any node
u in a graph G, by conditions (2) and (3) in the definition of
proxy, there exists at least one neighbor v of u in A+

u , and
A+

u is not maximal, otherwise. By condition (2), all nodes
reachable to v are in A+

u . It is known that all nodes in a CC
is reachable to any node in the CC. Hence, all nodes in a CC
belong to A+

u . By these, we have the conclusion. 2

Proof of Proposition 2: We show this by contradiction.
Assume first that there exists a proxy u such that it has two
distinct DRAs: G[A+

u,1] and G[A+
u,2]. Then by the definition

of DRA, it is trivial to verify the following: (1) A+
u,1 ̸⊂ A+

u,2,
(2) A+

u,2 ̸⊂ A+
u,1, and (3) A+

u,1∩A+
u,2 has at least 2 nodes, and

one must be u. By the definition of proxy, u is a proxy of all
the set of nodes in A+

u,1 ∪ A+
u,2, and the DRA of u should be

G[A+
u,1 ∪ A+

u,2]. That is, neither A+
u,1 nor A+

u,2 is maximal.
Hence, both G[A+

u,1] and G[A+
u,2] are not DRAs of node u.

This contradicts the assumption. 2

Proof of Proposition 3: Consider two distinct proxies u and
u′ in graph G.
(1) We first show that if u ∈ A+

u′ , then A+
u ⊆ A+

u′ .
We show this by contradiction. Assume first that A+

u ̸⊆
A+

u′ and u ∈ A+
u′ . Then there must exist a node w ∈ A+

u , but
w ̸∈ A+

u′ . Since w ∈ A+
u , by the definition of proxies, w is

reachable to u. Moreover, since u ∈ A+
u′ , by the definition

of proxies, all nodes reachable to u belong to A+
u′ Hence,

w ∈ A+
u′ , which contradicts our previous assumption.

(2) Similarly to (1), we can show that A+
u′ ⊆ A+

u if u′ ∈ A+
u .

(3) For the case when u ̸∈ A+
u′ and u′ ̸∈ A+

u , it is easy based
on the analyses of (1) and (2). 2

Proof of Proposition 5: Consider a proxy u in a graph,
and two nodes v and v′ in the DRA G[A+

u]. Let Gs be the
subgraph by removing u from G[A+

u], and let cc1, . . ., cch
be the CCs of Gs. Observe that (a) G[A+

u] is simply the union
of all CCs cc1, . . ., cch and node u, and (b) all CCs have a size
equal to or less than c · ⌊

√
|V |⌋ - 1.

There are two cases to consider.
(1) Both nodes v and v′ are in a single CC ccj (1 ≤ j ≤ h).
Since CC ccj has no more than c ·⌊

√
|V |⌋−1 nodes, it takes a

standard Dijkstra algorithm at most O(|V |) time to compute
the shortest path between v and v′.
(2) Nodes v and v′ are in two distinct CCs cci and ccj (1 ≤
i ̸= j ≤ h). As u is the only node that cci and ccj have in
common, path(v, v′) between v and v′ is exactly path(v, u)
+ path(u, v′), which can be computed in O(|V |) time.

Putting these together, we have the conclusion. 2

Proof of Proposition 7: We consider non-trivial maximal
proxies. By its definition, (1) v ̸= x and u ̸= y, (2) v and
u are not neighboring nodes, (3) for any node w not in the
DRA G[A+

x] of proxy x, if w is reachable to v, then x must

be a node in any shortest path from w to v, and, similarly,
(4) for any node z not in the DRA G[A+

y] of proxy y, if z
is reachable to u, then y must be a node in any shortest
path from z to y. This shows that the shortest path from
v to u is exactly path(v, x)/path(x, y)/path(y, u), i.e., the
concatenation of the three paths. 2

Proof of Proposition 10: We show this by contradiction. We
first assume that a proxy u in a CC H(Vs, Es) of graph G(V ,
E) is not a cut-node. Then we show that u is not a proxy, a
contradiction to the assumption.

Let G \ {u} be the subgraph of G by removing node
u from G. Note that G \ {u} remains connected since u is
not a cut node of graph G. By the definition of (non-trivial
maximal) proxies, at least one neighbor v of u must belong
to Au. As all nodes in H \ {u} are reachable to v, it is easy
to know that Au contains all the nodes Vs. Since |Vs| > c ·
⌊
√
|V |⌋, which violates the size condition of proxies. Hence,

u is not a proxy of G, which contradicts the assumption. 2

Proof of Proposition 11: We show this by contradiction.
Assume first that there exists a non-trivial proxy u in

a bi-connected component with size larger than c · ⌊
√
|V |⌋

of graph G(V,E). Then we show that u is not a proxy. Let
Gs be the subgraph of the bi-connected component with
the removal of u. Since the removal of any node in a BCC
doesn’t increase the number of CCs, Gs remains a CC. By
the definition of proxies, Au contains all the the set of
nodes in Gs together with node u. That is, Au has more
than c · ⌊

√
|V |⌋ nodes, and, therefore, u is not a proxy. This

contradicts the assumption. 2

Proof of Proposition 12: We show this by contradiction.
Assume first there is a cycle B1, v1, B2, v2, . . ., Bk, vk, B1

in a sketch graph G of graph G, where B1, . . . , Bk are BCCs
and v1, . . . , vk are cut-nodes of G. Then, it follows that the
removal of any cut-node vi (i ∈ [1, k]) increases the number
of CCs in G, by the definition of cut-nodes. However, the
removal of any vi (i ∈ [1, k]) from G does not increase
the number of CCs in graph G because of the cycle. This
contradicts the assumption.

Note that a similar proposition without a detailed proof
is also provided for block graphs in [9]. 2

ACKNOWLEDGMENTS

This work is supported in part by 973 Program (No. 2014CB
340300), NSFC (No. 61322207&61421003), Special Funds of
Beijing Municipal Science & Technology Commission, and
MSRA Collaborative Research Program. We also thank the
anonymous reviewers for their valuable comments and sug-
gestions that help improve the quality of this manuscript.

REFERENCES

[1] Graph-tool. http://projects.skewed.de/graph-tool/.
[2] J. Arz, D. Luxen, and P. Sanders. Transit node routing reconsid-

ered. In SEA, 2013.
[3] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor,

P. Sanders, D. Wagner, and R. Werneck. Route planning in trans-
portation networks. In Technical Report MSR-TR-2014-4. Microsoft
Research, 2014.

[4] E. P. F. Chan and H. Lim. Optimization and evaluation of shortest
path queries. VLDB J., 16(3):343–369, 2007.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, NOVEMBER 2015

[5] J. Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing of
distance queries in large graphs: a vertex cover approach. In
SIGMOD, 2012.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduc-
tion to Algorithms. The MIT Press, 2001.

[7] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Robust
distance queries on massive networks. In ESA, 2014.

[8] D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck.
Graph partitioning with natural cuts. In IPDPS, 2011.

[9] R. Diestel. Graph Theory. Springer, 2005.
[10] E. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1:269–271, 1959.
[11] DIMACS. http://www.dis.uniroma1.it/challenge9.
[12] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight

edges, shortest paths, and near linear time. JCSS, 72(5):868–889,
2006.

[13] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. In FOCS, 1984.

[14] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contrac-
tion hierarchies: Faster and simpler hierarchical routing in road
networks. In WEA, 2008.

[15] A. V. Goldberg and C. Harrelson. Computing the shortest path:
A* search meets graph theory. In SODA, 2005.

[16] S. Gupta, S. Kopparty, and C. Ravishankar. Roads, codes, and
spatiotemporal queries. In PODS, 2004.

[17] J. E. Hopcroft and R. E. Tarjan. Efficient algorithms for graph
manipulation [h] (algorithm 447). Commun. ACM, 16(6):372–378,
1973.

[18] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SISC, 20(1):359–392,
1998.

[19] B. W. Kernighan and S. Lin. An efficientheuristic procedure for
partitioning graphs. Bell System Technical Journal, 49(1):13–21, 1970.

[20] P. N. Klein, S. Mozes, and O. Weimann. Shortest paths in directed
planar graphs with negative lengths: A linear-space o (n log 2 n)-
time algorithm. TALG, 6(2):30, 2010.

[21] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social
networks. In KDD, 2009.

[22] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[23] S. Liu, Y. Yue, and R. Krishnan. Adaptive collective routing using
gaussian process dynamic congestion models. In KDD, 2013.

[24] M. Luby and P. Ragde. A bidirectional shortest-path algorithm
with good average-case behavior. Algorithmica, 4(4):551–567, 1989.

[25] S. Ma, J. Li, C. Hu, X. Lin, and J. Huai. Big graph search: challenges
and techniques. FCS, 2016.

[26] Metis. http://glaros.dtc.umn.edu/gkhome/views/metis.
[27] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm.

Partitioning graphs to speedup Dijkstra’s algorithm. ACM Journal
of EA, 11:1–29, 2006.

[28] S. Mozes and C. Sommer. Exact distance oracles for planar graphs.
In SODA, 2012.

[29] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast shortest
path distance estimation in large networks. In CIKM, 2009.

[30] P. Sanders and D. Schultes. Highway hierarchies hasten exact
shortest path queries. In ESA, 2005.

[31] J. Sankaranarayanan and H. Samet. Query processing using
distance oracles for spatial networks. TKDE, 22(8):1158–1175, 2010.

[32] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for
spatial networks. PVLDB, 2(1):1210–1221, 2009.

[33] A. D. Sarma, S. Gollapudi, M. Najork, and R. Panigrahy. A sketch-
based distance oracle for web-scale graphs. In WSDM, 2010.

[34] S. Saunders and T. Takaoka. Solving shortest paths efficiently on
nearly acyclic directed graphs. TCS, 370(1-3):94–109, 2007.

[35] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM,
52(1):1–24, 2005.

[36] D. Wagner and T. Willhalm. Speed-up techniques for shortest-path
computations. In STACS, 2007.

[37] F. Wei. Tedi: efficient shortest path query answering on graphs. In
SIGMOD, 2010.

[38] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest
path and distance queries on road networks: An experimental
evaluation. PVLDB, 5(5):406–417, 2012.

[39] S. Yang, X. Yan, B. Zong, and A. Khan. Towards effective partition
management for large graphs. In SIGMOD, 2012.

[40] W. Yu, C. C. Aggarwal, S. Ma, and H. Wang. On anomalous
hotspot discovery in graph streams. In ICDM, 2013.

[41] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest
path and distance queries on road networks: towards bridging
theory and practice. In SIGMOD, 2013.

Shuai Ma is a professor at the School of Com-
puter Science and Engineering, Beihang Univer-
sity, China. He obtained his PhD degrees from
University of Edinburgh in 2010, and from Peking
University in 2004, respectively. He was a post-
doctoral research fellow in the database group,
University of Edinburgh, a summer intern at Bell
labs, Murray Hill, USA and a visiting researcher
of MRSA. He is a recipient of the best paper
award for VLDB 2010 and the best challenge pa-
per award for WISE 2013. His current research

interests include database theory and systems, social data and graph
analysis, and data intensive computing.

Kaiyu Feng is a PhD student at the School of
Computer Engineering, Nanyang Technological
University, Singapore, supervised by Prof. Gao
Cong. He received his BS degree in computer
science and technology from Beihang University
in 2012. His current research interests include
databases and social data analysis.

Jianxin Li is an associate professor at the
School of Computer Science and Engineering,
Beihang University. He received his PhD degree
from Beihang University in 2008. He was a vis-
iting scholar in machine learning department of
CMU in 2015, and a visiting researcher of MSRA
in 2011. His current research interests include
data analysis and processing, distributed sys-
tems and system virtualization.

Haixun Wang is a research scientist at Face-
book. He received the Ph.D. degree in computer
science from the University of California, Los An-
geles in 2000. He had been a research scientist
at Google Research from 2013 - 2015, a senior
research at Microsoft Research Asia from 2009
- 2013, a research staff member at IBM T. J.
Watson Research Center from 2000 - 2009. He
is a recipient of the best paper award for ER
2009, the best paper award for ICDE 2015 and
the ten year best paper award in ICDM 2013.

His current research interests include text analytics, natural language
processing and knowledge base.

Gao Cong is an associate professor at the
School of Computer Engineering, Nanyang
Technological University, Singapore. He re-
ceived his Ph.D. degree in 2004 from the Na-
tional University of Singapore. He previously
worked at Aalborg University, Microsoft Re-
search Asia, and the University of Edinburgh. His
current research interests include geo-textual
and mobility data management, data mining, so-
cial media mining, and POI recommendation.

Jinpeng Huai is a professor at the School of
Computer Science and Engineering, Beihang
University, China. He received his Ph.D. degree
in computer science from Beihang University,
China, in 1993. Prof. Huai is an academician of
Chinese Academy of Sciences and the vice hon-
orary chairman of China Computer Federation
(CCF). His research interests include big data
computing, distributed systems, virtual comput-
ing, service-oriented computing, trustworthiness
and security.

