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Abstract—A network with n nodes contains O(n2) possible links. Even for networks of modest size, it is often difficult to evaluate all
pairwise possibilities for links in a meaningful way. Further, even though link prediction is closely related to missing value estimation
problems, it is often difficult to use sophisticated models such as latent factor methods because of their computational complexity on
large networks. Hence, most known link prediction methods are designed for evaluating the link propensity on a specified subset of
links, rather than on the entire networks. In practice, however, it is essential to perform an exhaustive search over the entire networks.
In this article, we propose an ensemble enabled approach to scaling up link prediction, by decomposing traditional link prediction
problems into subproblems of smaller size. These subproblems are each solved with latent factor models, which can be effectively
implemented on networks of modest size. By incorporating with the characteristics of link prediction, the ensemble approach further
reduces the sizes of subproblems without sacrificing its prediction accuracy. The ensemble enabled approach has several advantages
in terms of performance, and our experimental results demonstrate the effectiveness and scalability of our approach.

Index Terms—Link prediction, NMF, ensembles, social networks, big data
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1 INTRODUCTION

The problem of link prediction or link inference is that of pre-
dicting the formation of future links in a dynamic and evolving
network (see [15], [17], [31] for surveys). The link prediction
problem has numerous applications, such as the recommendation
of friends in a social network [6], [8], [36], the recommendation
of images in a multimedia network [2], or the recommendation of
collaborators in a scientific network [19], [24], and, therefore, link
prediction methods have been extensively studied because of their
numerous applications in various network-centered domains.

Link prediction methods are often applied to very large net-
works, which are also sparse. The massive sizes of such networks
can create challenges for the prediction process in spite of their
sparsity. This is because the search space for the link prediction
problem is of the size O(n2), where n is the number of nodes.
Quadratic scalability can rapidly become untenable for larger
networks. In fact, an often overlooked fact is that most current
link prediction algorithms evaluate the link propensities only over
a subset of possibilities rather than exhaustively search for link
propensities over the entire network, e.g., [20], [38], [43], [46].

In order to understand why this is the case, consider a network
with 106 nodes. Note that a size such as 106 is not large at all by
modern standards, and even common bibliographic networks such
as DBLP now exceed this size. Even for this modest network,
the number of possibilities for links is of the order of 1012.
Therefore, a 1GHz processor would require at least 103 seconds
just to allocate one machine cycle to every pair of nodes. This
implies that in order to determine the top-ranked link predictions
over the entire network, the running time will be much larger
than 103 seconds. It is instructive, therefore, to examine how this
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Table 1
The O(n2) problem in link prediction: Time required to allocate a single

machine cycle to every node-pair possibility in networks.

Network Sizes 1 GHz 3 GHz 10 GHz
106 nodes 1000 sec. 333 sec. 100 sec.
107 nodes 27.8 hrs 9.3 hrs 2.78 hrs
108 nodes > 100 days > 35 days > 10 days
109 nodes > 10000 days > 3500 days > 1000 days

(lower bound on) running time scales with increasing network
size. Table 1 shows the time requirements for allocating a single
machine cycle to each pair-wise possibility. The running time in
this table represent very optimistic lower bounds on the required
time because link prediction algorithms are complex and require
far more than a single machine cycle for processing a node-pair.
Note that for larger networks, even the presented lower bounds on
the running time are impractical.

It is noteworthy that most link prediction algorithms in the
literature are not designed to search over the entire space ofO(n2)
possibilities. A closer examination of the relevant publications
shows that even for networks of modest size, these algorithms
perform benchmarking only by evaluating over a sample of the
possibilities for links. This is only to be expected in light of the
lower bounds shown in Table 1. In other words, the complete
ranking problem for link prediction in very large networks remains
largely unsolved at least from a computational point of view.
It is evident from the presented lower bounds in Table 1 that
any ranking-based link prediction algorithm must integrate search
space pruning within the prediction algorithm in order to even
have any hope of exploring theO(n2) search space in a reasonable
amount of time. The algorithmic design of most link prediction
algorithms largely overlooks this basic requirement [15], [25].

The link prediction algorithms are classified into unsupervised
and supervised methods. Unsupervised methods [24] typically
use neighborhood measures such as the Adamic-Adar [1] and
the Jaccard coefficient [24]. Supervised methods [25] treat the
link prediction problem as a classification problem in which each
node pair is treated as a test instance. Supervised methods are
the state-of-the-art and generally provide more accurate results
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than unsupervised methods [25]. It is also noteworthy that most
supervised methods evaluate link prediction algorithms by using
only a sample of test links because of computational consideration.
In real-world applications, it is often desirable to determine the
top-k most relevant links for prediction over all possibilities
for test links. This problem remains largely unsolved even for
networks of any reasonable size.

The link prediction problem is also closely related to the
missing value estimation problem, which is commonly used in
collaborative filtering [2]. Just as collaborative filtering attempts
to predict missing entries in a matrix of users and items, the
link prediction problem attempts to predict missing entries in a
node-node adjacency matrix. In fact, the missing value estimation
framework seems to be a more compact and relevant model for
the link prediction problem, as compared with the vanilla classi-
fication problem. Many of the modern methods for collaborative
filtering use latent factor models [3], [26] such as SVD and NMF
for predicting missing entries. These methods have been shown to
be wildly successful at least within the domain of collaborative
filtering [26]. In spite of the obvious similarity between link
prediction and collaborative filtering and the obvious effectiveness
of latent factor models, there are only a few methods [32] which
attempt to use these models.

One of the reasons that latent factor models are rarely used for
link prediction is simply due to their complexity. In collaborative
filtering applications, the item dimension is of the order of a few
hundred thousand, whereas even the smallest real-world networks
contain more than a million nodes. Furthermore, collaborative
filtering methods often perform the recommendation on a per-user
basis rather than try to determine the top-k user-item pairs. The
latter is particularly important in the context of link prediction. The
factorization of a matrix of sizeO(n2) is not only computationally
expensive, but also memory-intensive. As will be seen later in this
article, one advantage of latent-factor models is that they are able
to transform the adjacency matrix to a multidimensional space
which can be searched efficiently by pruning large portions of the
O(n2) search space in order to recommend the top-k possibilities.
This is essential in such a top-k setting.
Contributions. To this end, we explore an ensemble approach to
achieving the aforementioned goals.

We show how to make latent factor models practical for link
prediction by decomposing the search space into a set of smaller
matrices. As a result, large parts of the O(n2) search space can
be pruned without even having to evaluate the relevant node pairs.
An optimizing method is also provided for speeding up the search
process when a threshold is available. This provides an efficient
approach for the top-k problem in link prediction.

Our problem decomposition method is an ensemble approach
enabled with three structural bagging methods with performance
guarantees, which has obvious robustness advantages. Note that
the bagging methods combine the outputs of several predic-
tors may reduce the overall risk of making a particularly poor
prediction [9]. By incorporating with the characteristics of link
prediction, the bagging methods maintain high prediction accuracy
while reducing the network size via graph sampling techniques.

Using real-life datasets, we finally conduct an extensive ex-
perimental study, and show that our ensemble approach for link
prediction is both effective and efficient. Indeed, (1) on Friendster
with 15 million nodes and 1 billion edges, our approach could
finish in two hours, while existing methods direct NMF, AA [1],
RA [44] and BIGCLAM [40] could not finish in a day, and (2) our

approach in general improves the accuracy on (Digg, YouTube,
Wikipedia) compared with direct NMF, AA, RA and BIGCLAM.
Organization. This article is organized as follows. In the next
section, we provide the basic framework for the approach and de-
scribe the efficient use of latent factor models for link prediction.
Section 3 discusses how latent factor models can be augmented
with ensembles to provide more effective and efficient results.
Section 4 presents and discusses the experimental results, followed
by related work in Section 5 and conclusions in Section 6.

2 LATENT FACTOR MODEL FOR LINK PREDICTION

As pointed out in Section 1, it is typically time consuming and
memory intensive for latent factor models to search the top-k
possible links from the O(n2) search space. In this section, we
first provide an efficient latent factor model for link prediction
that generates non-negative and sparse factorizations, and then we
design an efficient method to search the top-k possible links.

We assume that G(N,A) is an undirected network (or graph)
containing node set N and edge set A. The node set N contains
n nodes and the edge set A contains m edges. Furthermore,
the n × n weight matrix W = [wij ]n×n contains the weights
of the edges in A. The weight matrix is useful in representing
the strengths of network connections in many real-world settings
such as the number of publications between a pair of co-authors
in a bibliographic network. The matrix is sparse, and many its
entries are 0, which could be interpreted either as absence of
links or as missing entries. While we assume that an undirected
network is available, the approach can also be generalized to
directed networks. The top-k ranking problem for link prediction
is formally stated as follows:

Definition 1. Given a network G(N,A) with node set N and
edge set A, the ranking problem for link prediction is to determine
the top-k node-pair recommendations such that these node pairs
are not included in A.

Note that this problem definition requires us to consider the
entire search space of O(n2) possibilities, rather than a sample of
the node pairs in the network.

Latent factor models work by associating a low dimensional
factor with each row and column of the network. However, since
link prediction is (predominantly) studied only for undirected
networks, which have symmetric weight matrices, it suffices to
associate an r-dimensional latent factor fi with the ith node in
the network. The value of r is the rank of the factorization. This
is an issue, which we will discuss slightly later. The weight of a
link between nodes i and j is defined by the use of the dot product
between the factors of nodes i and j. In other words, for the weight
matrix W = [wij ]n×n, we would like to achieve the following:

wij ≈ fi · fj , ∀i, j ∈ {1, . . . , n}. (1)

This condition can be directly written in the matrix form. Let F be
an n× r matrix, in which the ith row is the row vector fi. Then,
the above condition of Equation (1) can be written as follows:

W ≈ FFT . (2)

An important question arises as to whether entries in the matrix
W corresponding to the absence of links should be treated as
incomplete entries or whether they should be treated as zero, with
the possibility of being incorrect. When latent factor models are
used in collaborative filtering, such entries are typically treated
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as missing entries. However, unlike the absence of a rating, the
absence of a link is indeed useful information in the aggregate,
even though some node pairs have the propensity to form links in
the future. Therefore, we argue that, unlike collaborative filtering,
W should be treated as a completely specified matrix, but with
noisy entries. Therefore, in the link prediction problem, latent
factor models should be viewed as a way of correcting noisy
entries with zero values, rather than strictly as a missing value
estimation problem. Such assumptions also simplify the algorith-
mic development of latent factor models for link prediction. The
idea here is that when we approximately factorizeW into the form
FFT , the positive values of entries in FFT can be viewed as the
predictions of noisy 0-entries in W .

A second important question arises as to the choice of the la-
tent factor model that must be used for prediction. There are many
choices available for factorizing an adjacency matrix, especially
when it is symmetric. Even a straightforward diagonalization
of the matrix provides a reasonable factorization. We choose
non-negative matrix factorization (NMF) not only because of its
interpretability advantages but also because it facilitates theO(n2)
search phase of the prediction by providing a non-negative and
sparse representation for each node.

We would like to determine the matrix F such that the
Frobenius norm of (W − FFT ) is minimized. This problem
is referred to as symmetric NMF, and an efficient solution is
proposed in [28], where F can be determined by starting with
random nonnegative entries in (0, 1), and using the following
multiplicative update rule:

Fij ← Fij

(
1− β + β

(WF )ij
(FFTF )ij

)
, (3)

in which β is a constant in (0, 1] [12].
Discussions of computational complexity. Let us examine the
computational complexity of the update Equation (3). The matrix
FFTF can be fully materialized with O(r2 · n) matrix multi-
plications, and the matrix WF can be computed in O(m · r)
multiplications by observing that the sparse matrix W has only
2m non-zero entries corresponding to the number of edges.
Therefore, each update takes O(n · r2 +m · r) time.

This remains quite high for large networks, which motivates
us to develop fast searching techniques to speed up the process.

2.1 Efficient Top-K Prediction Searching

An advantage of the nonnegative factorization approach is that it
enables an efficient search phase, which is generally not possible
with most other link prediction methods. The value of fi · fj in
Equation (1) provides a prediction value for the links. The goal
of the search phase is to return the top-k links with the largest
prediction values. In real-world settings, the matrix F is often
nonnegative and sparse [21]. This non-negativity and sparsity are
particularly useful in enabling an efficient approach. In order to
speed up the search, we define the notion of ε-approximate top-k
predictions, denoted as top-(ε, k) predictions.

Definition 2 (top-(ε, k) predictions). A set L of predicted links in
a network G(N,A) is a top-(ε, k) prediction, if the cardinality of
L is k, and the k-th best value of fi · fj for a link (i, j) ∈ L is
at most ε less than the k-th best value of fh · fl for any link (h, l)
not included in A.

Intuitively, this definition allows a qualitative tolerance of ε in
the top-k returned links. Allowing such a tolerance significantly
helps in speeding up the search process by pruning large portions
of the search space, which is particularly important in an O(n2)
search space of link predictions.

The first step is to create a new n × r matrix S, obtained by
sorting the columns of F in a descending order. An inverted list is
associated with each of the r latent variables containing the node
identifiers of F arranged according to the sorted order of S. The r
inverted lists can also be represented as an n×r matrix R. Let the
number of rows in the p-th column of S (p ∈ [1, r]), for which the
value of Sip is greater than

√
ε/r be fp, and for which the value

of Sip is greater than 0 be f ′p, respectively. Then, the following
nested loop is executed for each (say p-th) column of S:

1. for each i = 1 to fp do
2. for each j = i+ 1 to f ′p do
3. if Sip · Sjp < ε/r then
4. break inner loop;
5. else increase the score of node-pair (Rip, Rjp) by

an amount of Sip · Sjp

6. endfor
7. endfor

This nested loop is designed to track the relevant subset of
node pairs from which one can determine the top-(ε, k) predic-
tions. The nested loop typically requires much less time than
O(n2) time because large portions of the search space are pruned.
First, depending on the value of ε, the value of fp is much less
than n. This is particularly true if many entries of the factorized
matrix F are close to 0. Furthermore, the inner loop is often
terminated early. The value of ε therefore provides the user a way
to set the tradeoff between accuracy and efficiency. A hash-table
is maintained which tracks all the pairs (Rip, Rjp) encountered
so far in the nested loop. Because of the pruning, the hash table
usually needs to track a miniscule set of the O(n2) node-pairs
in order to determine the ones that truly satisfy the top-(ε, k)
requirement. In the process, we exclude the links which have
already been represented with non-zero entries in W because such
links are always likely to have the largest prediction values, which
further reduces the searching space.

We next illustrate the above nested searching with an example.

Example 1: Given a 5× 3 matrix F , we sort the three columns
of F in a descending order to generate the matrix S and store the
corresponding inverted indices in the matrix R, shown as follows:

0.7 0.3 0.7
0.5 0.7 0.9
0.4 1.1 0.7
0.0 0.8 0.0
0.5 0.0 0.1


︸ ︷︷ ︸

F

=⇒


0.7 1.1 0.9
0.5 0.8 0.7
0.5 0.7 0.7
0.4 0.3 0.1
0.0 0.0 0.0


︸ ︷︷ ︸

S


1 3 2
2 4 1
5 2 3
3 1 5
4 5 4


︸ ︷︷ ︸

R

We assume w.l.o.g. that ε = 1, then
√
ε/r = 0.58 and ε/r =

0.33. For p = 1 (resp. p = 2 and p = 3), we have (f1 = 1, f ′1 =
4) (resp. (f2 = 3, f ′2 = 4) and (f3 = 3, f ′3 = 4)), and only need
to multiply 9 times: (S11·S21, S11·S31) (resp. (S12·S22, S12·S32,
S12 ·S42, S22 ·S32) and (S13 ·S23, S13 ·S33, S23 ·S33)), together
with 6 multiplications for inner loop checking, instead of 75 times
for calculating FFT directly, which reduces the search space. We
then save the above values into the corresponding node pairs, e.g.,
increasing the score of node pair (R11, R21) by S11 · S21, and
finally return all node pairs encountered. �
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It remains to show that this procedure does find a valid set of
top-(ε, k) link predictions. The reason that the procedure works
correctly and efficiently is because of nonnegativity and sparsity.

Proposition 1. The nested loop method finds a valid set of top-
(ε, k) predictions.

Proof: The main part of the proof is to show that any
dot product is underestimated by at most ε. The aforementioned
pseudo-code containing the nested loop is executed r times, once
for each latent component. Therefore, it suffices to show that the
contribution of each nested loop is underestimated by at most ε/r.
There are two sources of underestimation:
(1) The outer loop does not consider rows i for which Sip <√
ε/r. This effectively prunes the products between pairs (i, j)

for which both Sip and Sjp are less than
√
ε/r as the matrix S is

sorted and Sip ≥ Sjp. Therefore, the underestimation because of
the ignoring of this pair is at most

√
ε/r ×

√
ε/r = ε/r.

(2) The second case is when the inner loop is terminated early.
The termination condition here is that the product is at most ε/r.

Therefore, in both these mutually exclusive cases, the under-
estimation is at most ε/r. Therefore, over all latent components
the aggregate underestimation is at most (ε/r)× r = ε.

2.2 Speeding up Top-(ε, k) Predictions

In real-life applications, a common scenario is to find a set of top-
(ε, k) predictions with such that the prediction values are required
to be greater than a given threshold θ [7], [37]. In this case, the
top-(ε, k) prediction can be further speeded up by pruning the
node pairs whose prediction values are equal to or less than θ (see
details on the setting of parameter θ in Section 3.6).

The simple yet effective strategy is that the prediction value of
a node pair (i, j) satisfies:

fi · fj = ‖fi‖ · ‖fj‖ · cos(fi, fj) ≤ ‖fi‖ · ‖fj‖, (4)

in which ‖ · ‖ is the length of a vector.
By Equation (4), we obtain the following:

‖fi‖ · ‖fj‖ ≤ θ =⇒ fi · fj ≤ θ (5)

The prediction value is no larger than θ if the product of the vector
lengths is no larger than θ. As we are to find the node pairs whose
prediction values are greater than θ, we can ignore the node pairs
whose length products are no larger than θ in the search process.

After the matrixes S and R are obtained, an additional step is
required to calculate the length of each row vector fi and store
them in an array M . Then the following if-clause is inserted into
line 3 in the above nested loop to prune the node pairs whose
prediction values are equal to or less than θ.

if M [Rip] ·M [Rjp] ≤ θ then continue;

It is easy to verify that this procedure correctly finds a valid
set of top-(ε, k) predictions whose values are greater than θ.
Discussions. While the basic matrix factorization method is able
to allow us to provide efficiency and pruning to the search process,
it is still not quite as fast as one may need for large networks. The
main problem arises as a result of the factorization process itself,
which can require as much as O(r · (m + n · r)). Typically, the
number r of latent factors varies from the orders of a few ten to a
few hundred [21], [27]. For sparse networks, whose node degrees
are less than r, the O(nr2) term might be the bottleneck. The

required number of latent components r is often expected to in-
crease with the network size. In order to handle this computational
problem, we propose the method of ensemble decomposition that
provides both efficiency and effectiveness advantages.

3 STRUCTURAL BAGGING METHODS

Since the link prediction problem scales worse than linearly with
the network size (the previous mentioned latent factor model based
method in Section 2 requires O(nr2) time), it is generally more
efficient to solve smaller problems multiple times rather than solve
a single large problem. The structural bagging approach provides
an effective method to decompose the link prediction problem
into smaller pieces that are solved independently. Furthermore,
the aggregated results from multiple models often provide a
robustness to the decomposition process [9]. In the following, we
introduce three different ways for the bagging decomposition. We
consider a network G(N,A).

3.1 Random Node Bagging
Random node bagging is the simplest form of structural bagging,
and its basic idea is to iteratively apply the following three steps:

(1) Select a random set of nodes Nr in the network G
corresponding to a fraction f of the nodes in the network.
Determine the node set Ns ⊇ Nr, corresponding to all
nodes adjacent to Nr.

(2) Construct a reduced adjacency matrix Ws from the node
set Ns, by using the subgraph induced on Ns of G
(referred to as an ensemble component or simply an
ensemble) to select the relevant |Ns| rows and columns
of the matrix W .

(3) Apply the symmetric NMF method in Section 2 to the
reduced matrix Ws, and use the pruning search process
in Section 2.2 to determine the predictions of all pairs of
nodes of Ns.

The main efficiency advantage of this approach is because of
the smaller sizes of the matrices in the factorization. Furthermore,
because of the smaller size of the induced subgraph in each
ensemble component, the number of latent factors r, which is re-
quired, is also smaller. This will generally translate into efficiency
advantages. In many cases, when the number of nodes is very
large, it may be impractical to solve the entire problem in main
memory. In such cases, the use of ensemble approach decomposes
the problem into smaller memory-resident components.

The main problem with random node sampling is that it does
not attempt to sample more relevant regions of the network which
are more likely to contain possible links. Other forms of sampling
are likely to be more effective in this context.

3.2 Edge Bagging
Edge bagging is designed to sample more relevant regions of
the graph. After all, real-world networks are sparse and most of
the O(n2) possibilities for edges are usually not populated. By
sampling densely populated regions of the network, many node
pairs will not be considered at all, but these node pairs are often
not relevant to begin with.

The edge bagging approach proceeds as follows:

(1) LetNs be a node set containing a single randomly chosen
node. Nodes which are adjacent to Ns are randomly
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selected and added to Ns. In the event that no node is
adjacent to Ns, a randomly chosen node from a different
connected component is added to Ns. The procedure is
repeated until Ns contains at least a fraction f of the total
number of nodes.

(2) Construct a reduced adjacency matrix Ws from the node
setNs by using the subgraph induced onNs ofG, i.e., an
ensemble, to select the relevant |Ns| rows and columns
of the matrix W .

(3) Apply the symmetric NMF method in Section 2 to the
reduced matrix Ws, and use the pruning search process
in Section 2.2 to determine the predictions of all pairs of
nodes of Ns.

This method of growing the sampled node set with edge
sampling is likely to select dense components from the network.
Such dense components are more likely to contain random node
pairs. Unlike the previous case where each node pair is considered
with a high probability, many node pairs will not be considered at
all. However, such node pairs are typically not present in the same
dense component. Therefore, such node pairs are likely to be ir-
relevant, and in this way the approach already prunes unimportant
node pairs during the process of ensemble construction.

3.3 Biased Edge Bagging
While the edge bagging procedure is effective at discovering
dense components, it does have a drawback. Its main drawback
is that it selectively includes nodes with high degrees within the
resulting components. Therefore, the same high-degree nodes are
very likely to be included in all the ensemble components. As a
result, it often becomes more difficult to make robust predictions
between low-degree nodes.

In biased edge bagging, exactly the same procedure is used
as the case of edge bagging. The only difference is that when
the node set Ns is grown, a random adjacent node is not selected.
Rather, an adjacent node with the least number of selected times in
previous ensemble components, is used. Ties are broken randomly.

This approach ensures that each node is selected with an
approximately similar number of times across various ensemble
components, and it prevents the repeated selection of high-degree
nodes. Note that the bias in the edge bagging process makes that
the vast majority node pairs will not be considered. However,
such node pairs will usually be in components that are not as
well connected. Therefore, such nodes are far less likely to form
links. In most practical applications, one only needs to recommend
a small number of node pairs for prediction. Therefore, it is
reasonable to ignore such node pairs in the prediction process.

3.4 Incorporating Link Prediction Characteristics
Different from existing graph sampling methods [4], [23], we
employ the characteristics of link prediction, as our bagging
methods are designed in particular for link prediction. We develop
a novel graph sampling method accompanied with two strategies:
(1) node uptake, to choose those nodes with a high possibility
of forming links and (2) edge filter, to eliminate edges without
affecting the prediction accuracy.
Node uptake. Motivated by the observation that most of all new
links in social networks span within very short distances, typically
closing triangles, which has been justified in [22]. Inspired by this,
we develop a node uptake strategy such that a node is always

sampled together with all its neighbors, which guarantees the
possibility of forming triangles. To achieve this, we revise the
previous three bagging methods as follows.

(1) For random node bagging, when a node is selected uni-
formly at random from the network G, the node together
with all of its neighbors are put into the node set Ns.

(2) For edge and biased edge bagging, when a node adjacent
to Ns is selected and added to Ns, all of its neighbors are
put into the node set Ns together.

Edge filter. Inspired by graph sparsification [10], [33] which
has been successfully applied to clustering without sacrificing the
quality, we develop an edge filter strategy to choose a portion of
edges only, rather than all the edges of the subgraph induced onNs

of G, which significantly improves the efficiency of the bagging
methods. The challenge here is how to remove edges as many as
possible while maintaining the high prediction accuracy. To do
this, we make use of the following link prediction characteristic.

Preferential attachment (PA) [5], [22] is one of the well-known
link prediction characteristics, which says that the probability that
a new link is connected to a node i is proportional to its degree. In
other words, nodes with small degree tend to have fewer links in
the future. Therefore, we remove those edges that have at least one
endpoint with a smaller degree. Let di and dj be the degrees of the
endpoints i and j of edge (i, j), respectively. Given a sampling
ratio ρ, we sort edges in the induced subgraph by min(di, dj) in
a descending order and only select the top mρ edges, where m is
the total number of edges. To achieve this, we further revise the
previous three bagging methods as follows:

At the second step of the three bagging methods, con-
struct a reduced adjacency matrix Ws from the reduced
subgraph obtained by applying the edge filter on the
subgraph induced on the node set Ns of the network G.

3.5 Bound of Node Bagging Ensembles

Observe that even each ensemble component is much smaller,
multiple samples are required. To meaningfully rank the various
node pairs, each node pair needs to be included in the ensemble
components with performance guarantees. What is the required
number of samples to ensure that each node pair is included at least
µ times? Clearly, this number depends on the sampling fraction f .
We next present a probabilistic bound on the expected number of
times that a node pair is included as follows.

Proposition 2. The expected times of each node pair included in
µ/f2 ensemble components is at least µ.

Proof: Since each ensemble component includes a node
with probability at least f , it follows that each node pair is in-
cluded with probability f2. Furthermore, all ensemble component
are independent of each other. Let X be the times of each node
pair is included in all ensemble components, and the expected
value E(X) of X is equal to b × f2, where b is the number of
ensemble components. For E(X) ≥ µ, we have b ≥ µ/f2.

Note that while the above bound holds only for the original
random node bagging method, and it provides a theoretical guar-
antee. Indeed, we could do much better in practice. For instance,
the setting of µ = 0.1 and f = 0.1 already performs better than
NMF, as shown by our experimental study in Section 4.
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3.6 Ensemble Enabled Top-K Predictions
We now explain the complete framework for top-k predictions
enabled with ensembles, shown as follows.

1. given a network G(N,A) and parameters µ and f .
2. let Γ be empty;
3. repeat µ/f2 times do
4. let Ns be a sampled ensemble of G with at least f · n nodes;
5. Compute Ws ≈ Fs · FT

s using NMF;
6. let Γ′ be top-k largest value node pairs (i, j) in {fs,i · fs,j};
7. let Γ be top-k largest value node pairs (i, j) in Γ′ ∪ Γ;
8. return the top-k node pairs Γ not included in A.

To ensure that a node pair appears in the ensemble compo-
nents at least µ expected times, µ/f2 ensemble components are
considered in total. For each time, an ensemble component Ns is
sampled by one of the above node, edge and biased edge bagging
methods, the symmetric NMF method in Section 2 is used on
the matrix Ws obtained by filtering edges on the reduced matrix,
and the aforementioned pruning search process in Section 2.2 is
used to determine the predictions of all pairs of nodes. If a node
pair appears in multiple ensemble components and has multiple
prediction values, the maximum prediction value is considered,
which means that we can use the minimum value in the previous
predicted links to speed up the top-k predictions, i.e., the minimum
value is assigned to the parameter θ in Section 2.2. And, hence,
only the top-k predicted links are maintained for each ensemble
component. At the end of the process, the top-k predictions in all
µ/f2 ensemble components are returned.
Remarks. It is worth mentioning that our ensemble-enabled
approach is a general framework, not limited to NMF, and may be
applied to other link prediction methods, e.g., AA [1] and RA [44].

4 EXPERIMENTAL STUDY

In this section, we present an extensive experimental study of
our ensemble-enabled approach for link prediction. Using real-
life datasets, we conducted four sets of experiments to evaluate:
(1) the effectiveness and efficiency of our bagging methods with
the top-(ε, k) speeding up technique, node uptake and edge filter
techniques (referred to as bagging+ methods) vs. their counterparts
bagging methods with only node uptake technique developed in
[14], (2) the effectiveness and efficiency of our approach vs.
conventional methods AA [1], RA [44] and BIGCLAM [40], (3)
the impacts of various parameters of our approach, and (4) the
limitations of our approach.

4.1 Experimental settings
We first present our experimental settings.
Real-life datasets. We used the real-life network datasets from
the Koblenz Network Collection (http://konect.uni-koblenz.de/).

(1) Digg is a 5 year friendship graph of Digg users with
279, 630 nodes and 1, 731, 653 directed edges.

(2) YouTube is a 7 month friendship graph of YouTube users
with 3, 223, 589 nodes and 9, 375, 374 undirected edges.

(3) Wikipedia is a 6 year English Wikipedia hyperlink graph
with 1, 870, 709 nodes and 39, 953, 145 directed edges.

(4) Flickr is a 6 month friendship connections of Flickr users
with 2, 302, 925 nodes and 33, 140, 017 directed edges.

(5) Twitter is the follower network from Twitter with
41, 652, 230 nodes and 1, 468, 365, 182 directed edges.

Table 2
Training and ground truth data. The data in the first time slot is the

training data and the remaining is the ground truth data.

Datasets Date Nodes Edges
2005-08-06 — 2009-02-08 207,570 1,049,611

Digg 2009-02-09 — 2009-07-08 207,570 467,816
2006-12-09 — 2007-02-22 1,503,841 3,691,893

YouTube 2007-02-23 — 2007-07-22 1,503,841 806,213
2006-11-01 — 2006-11-30 1,580,291 13,341,698

Flickr 2006-12-01 — 2007-05-17 1,580,291 3,942,599
2001-02-19 — 2006-10-31 1,682,759 28,100,011

Wikipedia 2006-11-01 — 2007-04-05 1,682,759 5,856,596

Table 3
Parameters used in the experiments. Note that we set k = 105 for Digg

and YouTube and k = 106 for other datasets, respectively.

Parameters Descriptions Default
β Coefficient in NMF update rule 0.5
iter Number of iterations for NMF 50
r Number of latent factors 10 / 30
ε Tolerance of top-(ε, k) prediction 1

k
Number of links returned by
top-(ε, k) prediction 105 / 106

µ
Expected appearing times of each
node pair in ensemble components 0.1

f
Fraction of the number of nodes to be
selected for an ensemble component 0.1

ρ
Fraction of the number of edges to be
selected for an ensemble component 0.75

n Number of nodes see Table 2

(6) Friendster is the friendship graph of the Friendster with
68, 349, 466 nodes and 2, 586, 147, 869 directed edges.

Here (1) Digg, YouTube, Wikipedia and Flickr contain times-
tamps of edge arrivals. For each of these datasets, the latest five
month part is treated as its ground truth data for testing the
accuracy, and the remaining part is treated as its training data,
shown in Table 2. To test the scalability, we further generated
five subnetworks with increasing sizes for each dataset, using the
breadth first search started from the node with the largest degree.
(2) Twitter and Friendster do not have timestamps, and are only
used for the scalability test. (3) It does not make much sense to
predict links for users who appear in the ground truth data, but
not in the training data. Hence, we removed these users from the
ground truth data. Moreover, since our link prediction methods
focus on predicting links on undirected graphs, we ignored the
direction of edges in the directed graphs.
Algorithms for comparison. We have carefully chosen a couple
of algorithms to compare with our ensemble-enabled approach.
(1) Adamic/Adar (AA) [1]: Algorithm AA is a popular neighbor-
hood based method that produces a score for each link (u, v)

score(u, v) =
∑

z∈N(u)∩N(v)

1

log |N(z)|
,

where N(u) is the set of neighbors of node u. Lü et al. [31]
showed that AA performs well on a range of networks because it
only concerns 2-hop neighbors. We implemented a top-k version
of AA by searching the k largest AA scoring links. The complexity
of this method is O(nd2 log(k)), where d is the average degree
of networks. Indeed, there is also another popular link prediction
method Katz based on the ensemble of all paths [18]. However,
its complexity is O(n3), and does not work on large networks
with millions of nodes. Therefore, we did not choose Katz for
comparison in the experiments.
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Figure 1. Bagging+ vs. Bagging on accuracy and efficiency: with respect to the number k of predicted links.
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Figure 2. Bagging+ vs. Bagging on accuracy and efficiency: with respect to the network sizes.

(2) Resource Allocation (RA) [44]: Algorithm RA is another
neighborhood based method that assumes the node u can send
some resource to v with their common neighbors playing the role
of transmitters. The RA score for a link (u, v) is

score(u, v) =
∑

z∈N(u)∩N(v)

1

|N(z)|
.

We also implemented a top-k version of RA by searching its k
largest scoring links, which has the same time complexity as AA.
Note that RA is very similar to AA when |N(z)| is small, but
greatly different when |N(z)| is large. Zhou et al. [44] show that
RA performs better than AA on the networks with the high degree
heterogeneity since RA punishes high degree common neighbors
more. Hence we chose it for comparison in the experiments.
(3) Cluster Affiliation Model for Big Networks (BIGCLAM)
[40]: Yang and Leskovec developed this probabilistic generative
model for networks based on community affiliations. An ingre-
dient of BIGCLAM is based on the fact that, when people share
multiple community affiliations, the links between them stem for
one dominant reason. This means that the more communities a

node pair shares, the higher the probability of the node pair being
connected is. Let F be a nonnegative matrix where Fuc is the
degree of the node u belongs to the community c. Given F , the
BIGCLAM generates a network G(N,A) by creating edge (u, v)
between a pair of nodes u, v ∈ N with the probability

p(u, v) = 1− exp(−fu · fv),

where fu is a weight vector for node u. Viewing the probability
p(u, v) as a score for the link (u, v), it is reasonable to predict
links based on BIGCLAM. The complexity of BIGCLAM is
O(nd(r + d)), where d is the average degree of networks. In
addition, this model is not designed to search the entire space of
O(n2), and we revised it by our top-(ε, k) method to predict links.

Implementation. We implemented all algorithms including (a)
AA, RA, BIGCLAM, link prediction method in Section 2 (NMF),
(b) NMF with random node bagging (NMF(Node)), NMF with
edge bagging (NMF(Edge)), NMF with biased edge bagging
(NMF(Biased)), developed in [14], and (c) their counterparts
NMF(Node+), NMF(Edge+) and NMF(Biased+) with the top-
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(ε, k) speeding up technique in Section 2.2 and the edge filter
technique in Section 3.4, using C/C++ with no parallelization.

All experiments were conducted on a machine with 2 Intel
Xeon E5–2630 2.4GHz CPUs and 64 GB of Memory, running 64
bit Windows 7 professional system. Each experiment was repeated
5 times, and the average is reported here.

4.2 Experimental Results
We next present our findings. In all the experiments, we fixed r
to (50, 50, 50) (resp. (10, 40, 50)) for NMF (resp. BIGCLAM) on
Digg, YouTube, and Wikipedia, respectively, by default. For the
bagging+ and bagging methods, we also fixed r = 30 on Digg
and r = 10 on other datasets by default (See Exp-3.4 for more
details about the setting of r). Here Flickr is used to illustrate the
limitation of our bagging methods only. The other parameters with
their descriptions and default values are presented in Table 3.

4.2.1 Bagging+ vs. Bagging
In the first set of tests, we evaluated the effectiveness and effi-
ciency of our bagging+ methods compared with bagging methods.
Given one of top-k link prediction methods, denoted by x, its
prediction accuracy is evaluated with the following measure:

accuracy(x) =
# of correctly predicted links

the number k of predicted links
. (6)

We first evaluate the improvements of our bagging+ methods
and then evaluate the impacts of k and network sizes. Compared
with their counterparts bagging methods [14], the bagging+ meth-
ods have two modifications: the top-(ε, k) speeding up technique
(denoted as top-(ε, k)+) and the edge filter technique. These
techniques have no side effects on accuracy. Therefore, we focus
on the efficiency improvements of these techniques.
Exp-1.1: Performance improvements of bagging+ methods. To
evaluate the efficiency improvements of these techniques using in
our bagging+ methods, we generated different combinations of
these techniques and fixed the parameters to their default values.
The results of running time are reported in Table 4.

The results tell us that (a) Top-(ε, k)+ indeed improves the ef-
ficiency of Top-k on all datasets, (b) the edge filter technique also
speeds up the bagging methods, and (c) the maximum speedup
is obtained by taking the two techniques together. Therefore, we
adopt these two techniques in our bagging+ methods to achieve the
maximum speedup. Note that the running time of NMF(Biased+)
and NMF(Node+) on YouTube and Wikipedia is very close
because NMF(Biased+) spends more time on sampling the nodes
from the input graph than NMF(Node+) while NMF(Node+)
spends more time on processing its ensembles. Furthermore, the
improvement of Top-(ε, k)+ on Wikipedia is not distinct since the
ε = 1 is very suitable for this dataset.
Exp-1.2: Impacts of k. To evaluate the impacts of the number
k of predicted links, we varied k from 1 × 104 to 1 × 105 on
Digg and YouTube (resp. from 1×105 to 1×106 on Wikipedia)
and fixed other parameters to their default values. The results of
accuracy and running time are reported in Figures 1(a)–1(c) and
Figures 1(d)–1(f), respectively.

The accuracy results tell us that (a) NMF(Biased) and
NMF(Biased+) are the best methods on all datasets, (b) the
accuracy of the bagging+ methods is very close to that of their
counterparts bagging methods, and (c) the accuracy of all methods
decreases with the increase of k. It is means that the bagging+

Table 4
Running time (sec.) of different combinations of the modifications.

Node+ (resp. Edge+ and Biased+) is the Random Node Bagging (resp.
Edge Bagging and Biased Edge Bagging) with edge filter.

Bagging Top-k Prediction Digg YouTube Wikipedia
Node Top-(ε, k) 74.15 43.43 134.06
Node Top-(ε, k)+ 65.01 41.29 133.80
Node+ Top-(ε, k) 67.22 40.02 118.13
Node+ Top-(ε, k)+ 60.38 37.87 117.27
Edge Top-(ε, k) 77.33 47.23 137.72
Edge Top-(ε, k)+ 67.26 45.04 137.57
Edge+ Top-(ε, k) 70.29 43.69 121.42
Edge+ Top-(ε, k)+ 62.31 41.29 121.16
Biased Top-(ε, k) 63.93 42.39 135.59
Biased Top-(ε, k)+ 58.56 41.07 134.02
Biased+ Top-(ε, k) 58.97 39.61 119.44
Biased+ Top-(ε, k)+ 55.32 38.15 117.25

methods maintain the accuracy while some of the edges have been
removed compared with their counterparts bagging methods. This
verifies the effectiveness of the bagging+ methods.

The running time results tell us that (a) the NMF(Biased+)
outperforms other methods on all datasets, (b) the three bagging+
methods are faster than their counterparts bagging methods, and
(c) the running time of all methods increase slightly with the in-
crease of k. For instance, NMF(Biased+) is (1.2, 1.1, 1.2) times
faster than NMF(Biased) on Digg, YouTube and Wikipedia,
respectively. This verifies the efficiency of the bagging+ methods.
Exp-1.3: Impacts of network sizes. To evaluate the impacts of
network sizes, we varied the number of nodes n from 3× 104 to
1.5× 105 on Digg (resp. from 3× 105 to 1.5× 106 on YouTube
and Wikipedia, from 3 × 105 to 5 × 106 on Twitter and from
1×106 to 1.5×107 on Friendster). Since Twitter and Friendster
do not contain ground truth for choosing the value of r, we fixed r
on these datasets to the average value of its default values. Hence,
on these two datasets, we fixed r = 50 for NMF (resp. r = 33 for
BIGCLAM and r = 17 for the bagging methods). The results of
accuracy and running time are reported in Figures 2(a)–2(c) and
Figures 2(d)–2(h), respectively.

The accuracy results tell us that (a) NMF(Biased) has the
highest accuracy on all datasets among the three bagging methods,
(b) the three bagging+ methods perform as well as their counter-
parts bagging methods. This means that the bagging+ methods are
also accurate and robust with the increase of network sizes.

The running time results tell us that (a) NMF(Biased+) is
the fastest method on all datasets, (b) the bagging+ methods are
faster than their counterparts bagging methods, and (c) the running
time of all methods increase nearly linearly with the increase of n.
For instance, NMF(Biased+) speeds up NMF(Biased) for around
1.3 (resp. 1.4) times on Twitter (resp. Friendster) and is thus
essential for making our bagging+ methods scale better than their
counterparts to large networks.

4.2.2 Comparison with AA, RA and BIGCLAM
In the second set of tests, we evaluated the effectiveness and
efficiency of our methods compared with AA, RA and BIGCLAM.
From the previous tests, we find that the NMF(Biased+) and its
counterpart NMF(Biased) are the best bagging methods. There-
fore, we chose them for the comparison in this set of tests.
Exp-2.1: Impacts of k. Using the same setting as Exp-1.2, we
evaluated the impacts of the number k of predicted links. The
results of accuracy and running time are reported in Figures 3(a)–
3(c) and Figures 3(d)–3(f), respectively.
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Figure 3. Accuracy and efficiency comparison with AA, RA and BIGCLAM: with respect to the number k of predicted links.
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Figure 4. Accuracy and efficiency comparison with AA, RA and BIGCLAM: with respect to the network sizes.
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Figure 5. Accuracy and efficiency comparison: with respect to the expected appearing times µ.
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The accuracy results tell us that (a) NMF(Biased) out-
performs other methods on all datasets except Wikipedia,
(b) the accuracy of NMF(Biased+) is very close to that of
NMF(Biased), (c) both NMF(Biased) and NMF(Biased+) have
a higher accuracy than AA, RA and BIGCLAM, except RA
on Wikipedia, (d) NMF is more accurate than AA, RA and
BIGCLAM, except RA on Wikipedia, and (e) the accuracy of
all methods decreases with the increase of k. Indeed, when k
is the default value, NMF(Biased) improves the accuracy by
(2.5%, 41.4%, 113.4%, 34.1%), (7.5%, 45.2%, 38.2%, 46.2%)
and (12.7%, 7.9%,−25.2%, 26.9%) over (NMF, AA, RA, BIG-
CLAM) on Digg, YouTube and Wikipedia, respectively. Here,
minus (−) means a worse accuracy. Moreover, NMF(Biased)
performs consistently well on all networks (i.e., more robust),
unlike RA which works well on Wikipedia but poorly on other
datasets. This verifies the effectiveness of our bagging methods.

The running time results tell us that (a) NMF(Biased+) is
the fastest method on all datasets except that AA and RA are the
two fastest methods on Digg since its size is really small, (b)
the two bagging methods are much faster than NMF, AA, RA and
BIGCLAM, (c) the running time of all methods is insensitive to the
increase of k, except AA and RA whose time complexities are both
O(nd2 log(k)). Indeed, the bagging+ and bagging methods fin-
ished the prediction in 140 seconds on the three datasets. Further-
more, NMF(Biased+) is (7.3, 0.2, 0.1, 1.2), (90, 1.3, 1.0, 15.5)
and (37, 22, 17, 49) times faster than (NMF, AA, RA, BIGCLAM)
on Digg, YouTube and Wikipedia, respectively. This verifies the
efficiency of our bagging methods.

Note that the accuracy of all methods is not very high, even
the best accuracy (NMF(Biased+) on Digg when k = 1 × 104)
is less than 10%. The reason is that there are more than 1× 1010

possible links in the search space of each dataset, but less than
1 × 107 links in the ground truth. Since RA is suitable for
high degree heterogeneity networks [44], it performs the best
on Wikipedia which contains a number of extreme high degree
nodes. In addition, NMF is slower than AA and RA on three
datasets because r is fixed to 50, which is consistent to theO(nr2)
complexity of NMF. The running time of AA (resp. RA) is about
50 (resp. 37) seconds on YouTube, while more than 2,500 (resp.
1,900) seconds on Wikipedia. This is because that the average
degrees of these datasets are 5 and 33, and AA and RA take more
time with the increase of the network degree. The running time
of BIGCLAM is also sensitive to the degree of networks because
its complexity is O(nd(r + d)). As a result, it runs faster than
NMF on YouTube when the degree is 5, but takes more time on
Wikipedia when the degree is increased.
Exp-2.2: Impacts of network sizes. Using the same setting as
Exp-1.3, we evaluated the impacts of network sizes. The results of
accuracy and running time are reported in Figures 4(a)–4(c) and
Figures 4(d)–4(h), respectively. Note that there are some missing
plots for NMF, AA, RA and BIGCLAM in the Figures 4(d) and
4(h) as they could not finished in 24 hours.

The accuracy results tell us that (a) NMF(Biased) has
the highest accuracy on all datasets except Wikipedia,
(b) NMF(Biased+) performs as well as its counterpart
NMF(Biased), (c) the bagging+ and bagging methods perform
better than NMF, AA, RA and BIGCLAM, except RA on
Wikipedia, and (d) NMF has a higher accuracy than AA, RA
and BIGCLAM, except RA on Wikipedia. That is, our methods
are more accurate and robust with the increase of network sizes.

The running time results tell us that (a) our bagging+ and

bagging methods are much faster than the other methods, (b) the
running time of all methods increase with the increase of n. For
instance, NMF(Biased+) speeds up (NMF, AA, RA, BIGCLAM)
for around (12, 135, 66, 53) (resp. (15, 8, 8, 65)) times on Twitter
(resp. Friendster) and is thus essential for making our bagging
methods scalable to large networks. Note that NMF is slower than
BIGCLAM on Digg and YouTube, but faster on other datasets
because BIGCLAM needs more time with the increase of the
network degree, which is consistent with the complexity analysis.

4.2.3 Impacts of Parameters
In the third set of tests, we evaluated the impacts of parameters
on the accuracy and running time of bagging+, bagging, NMF and
BIGCLAM. We first tested the impacts of µ and f in bagging+
and bagging methods. We then tested the impacts of ρ in bagging+
methods. We finally tested the impacts of r and ε.
Exp-3.1: Impacts of µ. To evaluate the impacts of µ, we varied
µ from 0.01 to 0.25 and fixed other parameters to their default
values. The accuracy and running time results are reported in
Figures 5(a)–5(c) and Figures 5(d)–5(f), respectively. We also
plotted the accuracy and running time of NMF for comparison.

The results tell us that (a) bagging+ and bagging methods are
more accurate than NMF when µ is large enough, (b) the accuracy
of bagging+ and bagging methods increases with the increase of
µ and becomes stable when µ is greater than 0.1. This means that
the accuracy of bagging+ and bagging methods would increase
and become stable with the increase of the number of ensemble
components. Furthermore, (c) the running time of bagging+ and
bagging methods increases linearly with the increase of µ since
µ/f2 ensemble components had been generated in each bagging
method. Note that, when µ = 0.1, the accuracy of bagging+ and
bagging methods is becoming stable and the running time of them
is less than NMF. Therefore, we fixed µ = 0.1 by default.
Exp-3.2: Impacts of f . To evaluate the impacts of f , we varied f
from 0.02 to 0.5 and fixed other parameters to their default values.
The accuracy and running time results are reported in Figures 6(a),
6(i) and 6(q) and Figures 6(e), 6(m) and 6(u), respectively.

The results tell us that (a) bagging+ and bagging methods have
a higher accuracy than NMF when f = 0.1, (b) the accuracy
of bagging methods decreases with the increase of f when f is
greater than 0.1 on Digg and Wikipedia, and (c) the running time
of bagging methods increases nearly linearly with the decrease of
f . Note that the complexity of bagging methods is O((n1r

2 +
n1d1r) ∗ µ/f2), where n1 = nf and d1 is the average degree
of each ensemble component. Since bagging methods are likely
to select dense components, d1 may be greater than r and the
complexity is O(nd1rµ/f). Thus, the running time of bagging
methods increases with the decrease of f . We fixed f = 0.1 to
keep the accuracy of bagging+ and bagging methods better than
that of NMF, by default to achieve a better efficiency.
Exp-3.3: Impacts of ρ. To evaluate the impacts of ρ for the
bagging+ methods, we varied ρ from 0.55 to 0.95 and fixed other
parameters to their default values. The accuracy and running time
results are reported in Figures 6(b), 6(j) and 6(r) and Figures 6(f),
6(n) and 6(v), respectively. We also plotted the accuracy and run-
ning time of their counterparts bagging methods for comparison.

The results tell us that (a) the three bagging+ methods perform
as well as their counterparts bagging methods in accuracy when
ρ is greater than 0.75, (b) the accuracy of the bagging+ methods
increases with the increase of ρ, (c) the bagging+ methods are
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Figure 6. Accuracy and efficiency comparison: with respect to the fraction f , the fraction ρ, the number r of latent factors and the tolerant ε of
top-(ε, k) prediction.

faster than their counterparts bagging methods when ρ is less
than 0.95, and (d) the running time of the bagging+ methods
increases linearly with the increase of ρ, which is consistent with

the complexity that is proportional to the number of edges in
the ensemble component. Keeping the accuracy of the bagging+
methods close to that of the bagging methods, we fixed ρ = 0.75
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Figure 7. Accuracy comparison on Flickr: (a) with respect to the number
r of latent factors, (b) with respect to the number k of predicted links.

by default to achieve a better efficiency.
Exp-3.4: Impacts of r. To evaluate the impacts of r, we varied r
from 10 to 50 and fixed other parameters to their default values.
The accuracy and running time results are reported in Figures 6(c),
6(k) and 6(s) and Figures 6(g), 6(o) and 6(w), respectively.

The results tell us that (a) NMF(Biased+) and NMF(Biased)
obtain the best accuracy compared with other methods, (b)
bagging+ and bagging methods have a higher accuracy than
BIGCLAM, (c) the accuracy of NMF increases slightly with the
increase of r and is always greater than that of BIGCLAM, and
(d) the running time of NMF is increased quadratically with the
increase of r since its complexity is O(nr2). A similar trend of
running time is also found for bagging+ and bagging methods.
To obtain the highest accuracy, we fixed r to (50, 50, 50) (resp.
(10, 40, 50)) for NMF (resp. BIGCLAM) on Digg, YouTube and
Wikipedia, respectively. Note that, when r = 30 on Digg and
r = 10 on other datasets, the accuracy of bagging+ and bagging
methods is greater than the best accuracy of NMF. Hence, we
fixed r = 30 on Digg and r = 10 on other datasets by default for
bagging+ and bagging methods.
Exp-3.5: Impacts of ε. To evaluate the impacts of ε, we varied ε
from 0.5 to 1.0 and fixed other parameters to their default values.
The accuracy and running time results are reported in Figures 6(d),
6(l) and 6(t) and Figures 6(h), 6(p) and 6(x), respectively.

The results tell us that (a) the accuracy of all methods is stable
with the increase of ε, which means that the accuracy of our
methods is insensitive to ε, and (b) the running time of all methods
is decreased with the increase of ε because the larger ε reduces
more search space. Thus, our top-(ε, k) method is reasonable for
link prediction. Since the accuracy is insensitive to ε, we fixed
ε = 1 by default to achieve a better efficiency.

4.2.4 Analysis of Limitations
In the last set of tests, we discuss the limitations of our methods:
(1) the bagging methods might not as good as NMF in certain
situations, and (2) both the bagging and NMF methods cannot
predict valid links with large hop distances as well as those
with short hop distances. We first report the accuracy comparison
between our bagging methods and NMF on Flickr. We then report
the accuracy of the bagging methods and NMF with varied hop
distances. These could be useful when users are to apply our
bagging methods in practice.
(1) We first report the results on the impact of parameters r and
k shown in Figures 7(a) and 7(b). We varied r from 10 to 50
(resp. k from 105 to 106) and fixed other parameters to their
default values. The results tell us that the accuracy of our bagging
methods is slightly lower than that of NMF. Indeed, when k is
the default value, NMF(Biased) decreases the accuracy by 4% on
Flickr compared with NMF.

Table 5
Pairwise overlapping of predicted links and nodes of ensemble

components.

Overlap Methods Digg YouTube Wikipedia Flickr
Node 0.57 0.54 0.39 0.69
Edge 0.58 0.55 0.40 0.72Links
Biased 0.46 0.48 0.42 0.67
Node 0.31 0.22 0.29 0.33
Edge 0.35 0.27 0.30 0.41Ns

Biased 0.21 0.11 0.29 0.21

We next explain the reasons. It is well known that the principle
in ensemble methods is to make each ensemble as unique as
possible and this is also called as diversity [45]. Diversity can
be achieved by using different ensemble components or different
settings of parameters for the ensemble base algorithms. Since the
base algorithm and its parameters were fixed in our experiments,
we examined the diversity of ensembles generated by our bagging
methods. We adopted the pairwise overlapping of predicted links
and nodes (i.e.,Ns in each ensemble component) among ensemble
components to measure the diversity. The value of pairwise over-
lapping is between zero and one and the higher the value means
the lower the diversity. The results are shown in Table 5.

The results tell us that (a) the pairwise overlapping of predicted
links on Flickr is obviously higher than that on other datasets,
which means that the diversity on Flickr is the worst one, (b) the
pairwise overlapping of nodes for NMF(Node) and NMF(Edge)
methods on Flickr is also higher than that on other datasets, which
may be one of reasons decreasing the diversity of these methods.
These impair the performance of ensemble methods, which leads
to a lower accuracy for our bagging methods on Flickr than NMF.

Moreover, observe that NMF(Edge) has the highest pairwise
overlapping of predicted links and nodes since this method inclines
to select high-degree nodes repeatedly. Moreover, NMF(Biased)
overcomes the drawback of NMF(Edge) and obtains the lowest
pairwise overlapping, which guarantees its higher accuracy. That
is, to gain a high accuracy with the bagging methods, it is
necessary to make each ensemble as unique as possible.
(2) We also study the distribution of hod distances induced by the
links in the ground truth data, and then compared the accuracy of
BIGCLAM, NMF and NMF(Biased) with varied hop distances,
shown in Table 6. Although a large portion of ground truth links
are with 2 or 3 hops, there remain many true links with hops
greater than 3. However, BIGCLAM, NMF and NMF(Biased) are
more accurate for predicting links with 2 or 3 hop, but are not
good at predicting links with large hop distances. To improve the
prediction accuracy, a good predictor should successfully predict
links with high hop distances as well as with short hop distances.

To address these limitations of ensemble-enabled methods, it
deserves a full treatment in the future.
Summary. From these experimental results on real-life social
network datasets, we find the following.
(1) NMF is able to predict links and can be sped up by the top-
(ε, k) process to explore the O(n2) search space. NMF is more
effective and robust than AA, RA and BIGCLAM. Moreover, NMF
runs faster than BIGCLAM on dense networks, e.g., Wikipedia,
Twitter and Friendster, which is consistent with the complexity
analysis that BIGCLAM is sensitive to the degree of networks.
(2) The running time of NMF, however, is increased quadratically
with the increase of r. This might be a bottleneck for large net-
works. By decomposing the link prediction problem into smaller
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Table 6
The distribution of hops between ground truth links and the accuracy

comparison of BIGCLAM, NMF and NMF(Biased) in each hop distance.

The Distribution of Hop Distances Accuracy of BIGCLAM
Hop Digg YouTube Wikipedia Digg YouTube Wikipedia

2 32% 26% 63% 3.8% 1.7% 1.9%
3 39% 37% 32% 0.4% 0.1% 0
≥ 4 29% 37% 5% 0 0.2% 0

Accuracy of NMF Accuracy of NMF(Biased)
Hop Digg YouTube Wikipedia Digg YouTube Wikipedia

2 4.8% 2.1% 2.1% 4.9% 2.1% 2.4%
3 0.8% 0.3% 2.3% 0 1.1% 0.1%
≥ 4 0 0 0 0 0 0

pieces and solving them independently, our bagging methods
are more efficient and scale well with the size and density of
large networks, especially for the bagging+ methods with the top-
(ε, k) speeding up and edge filter techniques, e.g., NMF(Biased+)
finished in two hours on Friendster with 1.5 × 107 nodes and
1.0 × 109 edges, while NMF, AA, RA and BIGCLAM could not
finish in a day. Further, NMF(Biased+) speeds up (NMF(Biased),
NMF, AA, RA, BIGCLAM) for around (1.3, 12, 135, 66, 53)
(resp. (1.4, 15, 8, 8, 65)) times on Twitter (resp. Friendster).
(3) Incorporated into link prediction characteristics, our bag-
ging methods also provide the effectiveness advantages for
link prediction, e.g., NMF(Biased) improves the accuracy by
(2.5%, 41.4%, 113.4%, 34.1%), (7.5%, 45.2%, 38.2%, 46.2%)
and (12.7%, 7.9%,−25.2%, 26.9%) over (NMF, AA, RA, BIG-
CLAM) on Digg, YouTube and Wikipedia, respectively. Here,
minus (−) means a worse accuracy.

5 RELATED WORK

This study extends our earlier work [14] by adding (a) an optimiz-
ing method for speeding up top-k predictions w.r.t. a threshold
(Section 2.2), (b) an edge filter technique to reduce the sizes
of ensembles while keeping the high prediction accuracy (Sec-
tion 3.4), and (c) a more detailed experimental study, including
the limitation discussion of our approach (Section 4).

The link prediction problem has been studied extensively in
the data mining and machine learning community [24], [31], and
has various applications [2], [6], [8], [19], [24], [29], [36]. The link
prediction algorithms can be classified into unsupervised and su-
pervised methods [25]. Unsupervised methods often assign scores
to potential links based on the topology of the given graphs: (a)
Adamic/Adar [1] is a common neighbor based method; (b) Katz
[18] is a path based method which sums over all paths between
two nodes, and there are also other path based methods, such as
Local Path and Random Walk with Restart [31]; And (c) [19], [24]
investigate the low rank approximation methods by generating a
small rank matrix to approximate the initial adjacency matrix.
Supervised methods [10], [25] typically treat link prediction as
a classification problem, e.g., supervised matrix factorization and
random walk based approaches [6], [32]. Moreover, the link
predictability has also been studied in [30].

Recently, several models for link prediction have been pro-
posed, such as community affiliation models [40], stochastic topic
models [8], negative link prediction models [36] and statistical
relational models [16]. Moreover, link prediction has also been
studied for mining missing hyperlinks [39]. While some recent
work has focused on the heterogeneous [41], temporal [38] scenar-
ios, dynamic networks [46], coupled networks [13], graph streams

[43] and signed networks [34], some optimizing methods for link
recommendation have been proposed to improve the precision
at the top of the recommending list [35]. These methods are
not essentially designed to search the entire space of O(n2)
possibilities. Indeed, they are often not able to prune the search
space of possibilities, and are mostly designed to evaluate the link
prediction propensities of a subset of node pairs.

Our method is related to NMF proposed in [21], which has
been successfully used for collaborative filtering [26]. Since the
adjacency matrix in our approach is symmetric, we adopt the
symmetric NMF method [12]. Methods for retrieving large entries
in the product of two matrices have been studied in [7], [37],
which motivate us to speed up the top-(ε, k) prediction. Our work
is also related to bagging predictor [9] that generates an aggregated
predictor based on multiple bootstrap samples. Different from the
bootstrap sampling methods, we focus on sampling subgraphs
from large networks. To our knowledge, although a variety of
graph sampling techniques have been introduced in [4], [11],
our approach is the first work that combines link prediction
characteristics [22] with graph sampling methods to achieve the
high link prediction accuracy.

6 CONCLUSIONS AND FUTURE WORK

We have proposed an ensemble-enabled approach for top-k link
prediction, which scales up link prediction on very large social
networks. We have also developed an optimization to speed up the
top-k predictions when a threshold is available. By decomposing
a large network into smaller pieces, the bagging methods are more
scalable to large networks with over 15 million nodes and 1 billion
edges. We have then developed three bagging methods that are
designed in particular for link prediction, which also provide a
better accuracy and scalability. Furthermore, we have proposed
effective techniques to reduce the network sizes of ensembles in
the bagging without sacrificing the prediction accuracy. Finally,
we have experimentally verified that our ensemble-enabled ap-
proach is much more effective and scalable than existing methods,
e.g., direct NMF, AA [1], RA [44] and BIGCLAM [40].

Several topics need further investigation. First, we are to
develop distributed approaches scalable on networks with billions
of nodes, in a way similar to [27], [42]. Second, we are to develop
new principles and methods to address the limitations observed in
Section 4.2.4. Third, we are to study personalized recommenda-
tions using our ensemble-enabled link prediction approach.
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