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Abstract—With the proliferation of mobile devices and location-based services, continuous generation of massive volume of streaming

spatial objects (i.e., geo-tagged data) opens up new opportunities to address real-world problems by analyzing them. In this paper, we

present a novel continuous bursty region detection (SURGE) problem that aims to continuously detect a bursty region of a given size in a

specified geographical area from a stream of spatial objects. Specifically, a bursty region showsmaximum spike in the number of spatial

objects in a given timewindow. The SURGE problem is useful in addressing several real-world challenges such as surge pricing problem in

online transportation and disease outbreak detection. To solve the problem, we propose an exact solution and two approximate solutions,

and the approximation ratio is 1�a
4 in terms of the burst score, where a is a parameter to control the burst score.We further extend these

solutions to support detection of top-k bursty regions. Extensive experiments with real-world data are conducted to demonstrate the

efficiency and effectiveness of our solutions.

Index Terms—Spatial data, data stream, burst detection, region detection
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1 INTRODUCTION

PEOPLE often share geo-tagged messages through many
social services like Twitter and Facebook. Each geo-tagged

data is associated with a timestamp, a geo-location, and a set
of attributes (e.g., tweet content). In this paper, we refer to
them as spatial objects. With the proliferation of GPS-enabled
mobile devices and location-based services, the amount of
such spatial objects (e.g., geo-tagged tweets and trip requests
from Uber) is growing at an explosive rate. Their real-time
nature coupled with multi-faceted information and rapid
arrival rate in a streaming manner open up new opportuni-
ties to address real-world problems. For example, consider
the following problems.

Example 1. The world regularly faces the challenge of
tackling a variety of virus epidemics such as SARS, MERS,
Dengue, and Ebola. For example, the outbreak of mos-
quito-borne Zika virus started in Brazil in 2015. It is of
interest to continuously monitor different areas for pos-
sible Zika outbreak and issue alerts to people who
are traveling to or living in regions affected by Zika.
Since early detection of such outbreak is paramount,
how can we identify potential Zika-affected region(s) in
real time?

One strategy to address this issue is to continuously
monitor geo-tagged tweets (i.e., spatial objects) coming out
of a specific area (e.g., Florida) and detect regions where
there are sudden bursts in tweets related to Zika (e.g., con-
taining Zika-related keywords) in real time. Observe that
these “bursty regions” are dynamic in nature. However, it
is computationally challenging to continuously monitor
massive streams of spatial objects and detect bursty
regions in real time.

Example 2. Online transportation network companies such
as Uber, Lyft, and Didi Dache have disrupted the tradi-
tional transportation model and have gained tremendous
popularity among customers.1 Customer can submit a
trip request through their mobile apps. If a nearby driver
accepts the request, he will pickup the customer.

Although this disruptive model has benefited many
drivers and customers, the latter may have to wait for a
long time for a carwhen the number of car requests signifi-
cantly surpasses the supply of nearby drivers. Clearly, it is
beneficial to both passengers and drivers if we can notify
idle drivers in real time whenever there is a sudden burst
of consumer demand in areas of interest to them. An addi-
tional benefit to the drivers is that the trip fare may be
increased due to the “surge pricing” policy2 where the
companies may increase a trip price significantly when
demand is high. For instance, consider Fig. 1, which shows
the trip requests in two time windows ½t1; t2� and ½t2; t3�.
Suppose a driver is only interested in the area shown by
dashed rectangle to pick uppassengers. Observe that there
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1. In 2017, Uber is available in over 81 countries and 570 cities
worldwide.

2. For example, the price increased 10X on new year’s eve in 2016 in
the United States (www.geekwire.com/2016/customers-complain-
uber-prices-surge-near-10x-new-years-eve/)
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is a burst of trip requests in regions r1 and r2 (both
increased by 3). If the app can notify the driver in real time
about these two regions, then he can move in there to
pickup potential passengers. Note that such soaring
demand is not always predictable as it may not only occur
during holidays or periodic events (e.g., new year’s eve)
but also due to unpredictable events such as subway dis-
ruption, concerts, road accident, inclement weather, and
terrorist attack.

There are two common themes in the two examples. First,
we need to continuously monitor a large volume of spatial
objects (e.g., trip requests and geo-tagged tweets) to detect in
real time one ormore regions that show relatively large spike
in the number of spatial objects (i.e., bursty region) in a given
time window. Second, a user needs to specify as input the
size a� b of rectangular-shaped bursty region that one
wishes to detect. For instance, in Example 2 different drivers
may prefer bursty regions of different sizes according to their
convenience.

In this paper, we refer to the problem embodied in the
aforementioned motivating examples as continuous bursty
region detection (SURGE) problem. Specifically, given a region
size a� b and an area A, the aim of the SURGE problem is to
continuously detect a region of the specified size in A that
demonstrates themaximum burstiness from a stream of spatial
objects. To model the burstiness of a region, we propose a
general function based on the sliding window model. We
also extend our SURGE problem to detect top-k bursty regions
as in certain applications one may be interested in a list of
such regions.

The SURGE problem and its top-k variant are challenging as
we need to handle rapidly arriving spatial objects in high
volume to efficiently detect and maintain bursty regions.
For example, 10 million geo-tagged tweets are generated
each day in Twitter.3 As we shall see later, it is prohibitively
expensive to recompute bursty regions frequently.

In this paper, we first propose an exact solution called cell-
CSPOT to keep track of the bursty region over sliding win-
dows. Specifically, we first reduce the SURGE problem to
continuous bursty point detection (CSPOT) problem. Then we
propose a cell-based algorithm to continuously detect the
bursty point. It takesOðjcmaxj2 þ lognÞ time to process a new
arriving spatial object on average, where jcmaxj is the maxi-
mum number of objects that we search inside a cell, and n is
the number of indexed rectangle objects.

Although cell-CSPOT can address the SURGE problem effi-
ciently in several scenarios, it becomes inefficient as jcmaxj
increases (e.g., the sliding windows get larger, the region

size gets larger, or the arrival rate of the spatial objects
increases). To address this we further propose two approxi-
mate solutions, namely GAP-SURGE and MGAP-SURGE, with a
complexity of OðlognÞ to process a spatial object. The
approximation ratio is bounded by 1�a

4 , where a 2 ½0; 1Þ is a
parameter used in the burst score function. Last, we show
that our proposed solutions can be elegantly extended to
continuously detect top-k bursty regions. Our experiments
reveal that our proposed solutions can handle streams with
up to 10 millions spatial objects arrived per day.

In summary, this papermakes the following contributions:

1) We propose a novel continuous bursty region detection
problem for continuously detecting bursty regions in
a specified area from a stream of spatial objects.
(Section 3)

2) We present an exact solution (cell-CSPOT) and two
approximate solutions (GAP-SURGE and MGAP-SURGE) to
address the SURGE problem (Sections 4 and 5). We fur-
ther extend these solutions to keep track of top-k
bursty regions efficiently (Section 6).

3) We conduct experiments with real-world datasets to
show the efficiency of our proposed solutions. All sol-
utions are efficient in real time. Moreover, GAP-SURGE

and MGAP-SURGE scale well w.r.t. high arrival rate
while the returned regions have competitive burst
scores. The extended versions can also detect top-k
bursty regions efficiently in real time. (Section 7).

The proofs of lemmas and theorems are given inAppendix.

2 RELATED WORK

Burst Detection. Our SURGE problem is related to the problem
of detecting bursty patterns and topics. A host of work has
been done to detect temporal bursts [2], [9], [13], [21], [26].
A collection of proposals focus on detecting bursty features
(represented by probability distribution of words) [9], [13],
[21]. The other work focuses on detecting a timespan over
the stream such that its aggregate is larger than a threshold
[2], [26]. All these burst detection problems are different
from our SURGE problem as they disregard the spatial infor-
mation when detecting the temporal bursts.

Most germane to our work are efforts on exploring spatial-
temporal bursts [14], [17], [25] albeit from different aspects.
Mathioudakis et al. [17] study the problem of identifying
notable spatial burst out of a collection of user generated
information. They divide the space into cells, and recognize
two states for each cell, namely “bursty” and “non-bursty”.
Our SURGE problem differs from it in two key aspects. First,
the spatial burst is identified as a cell in the grid whereas the
bursty region in SURGE can be located at any position. Second,
the solution developed in [17] is designed for data stored in a
data warehouse, and it cannot be deployed or adapted to
solve the SURGE problem. Given a set of geo-tagged text
streams, Lappas et al. [14] study the problem of identifying a
combination of a temporal interval and a geographical region
with unusual high frequency for a term. Though it adopts a
similar score function to model the burstiness, it is a different
problem from SURGE: They aim to detect regions that maxi-
mize the burstiness without any size constraint. They would
expand the bursty region to include a geo-tagged text stream

Fig. 1. Motivating example.

3. https://www.mapbox.com/blog/twitter-map-every-tweet/
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as long as it is bursty, i.e., the term in this stream in a recent
time period is more frequent than expected. Therefore, users
cannot specify the size of the detected bursty region a priori.
In contrast, SURGE allows users to specify the size of the
bursty region that they want to detect for applications like
Example 2. Hence, we cannot adopt the proposed tech-
nique [14] to solve the SURGE problem. Given a geo-tagged
tweet stream, Zhang et al. [25] aim to continuously detect
real-time local event. Specifically, a local event is defined as a
cluster of tweets that are semantically coherent and geo-
graphically close. Our problemdiffers from it in the following
aspects. First, the bursty event is identified as a cluster of geo-
tagged tweets, while our SURGE problem aims to detect a spa-
tial region. Second, the proposed framework is built over
geo-textual stream. The textual content serves as an impor-
tant feature in their system. Our SURGE is applicable to any
kind of spatial stream.

Dense Region Search. Our problem is also related to dense
region search over moving objects [12], [19]. Given a set of
moving objects, whose positions are modeled as linear func-
tions in euclidean space, the dense region search problem
aims to find all dense regions at query time t. Jensen et al.
[12] constraint dense regions to be non-overlapping square-
shaped regions of given size, whose density is larger than a
user-specified threshold. Ni et al. [19] propose a new defini-
tion of dense regions, which may have arbitrary shape and
size. In the dense region search problem, the positions of the
moving objects are modeled as linear functions. Thus the
position of each moving object can be computed at any time.
In contrast, in the SURGE problem, the number of the newly-
arriving spatial objects and their positions are unknown a
priori. Moreover, the density function is different from our
burst score function, requiring different techniques to com-
pute the burst score of a given region.

Region Search. Our problem is also related to the region
search problem. A class of studies aims to find a region of a
given size such that the aggregation score of the region ismaxi-
mized [6], [7], [18], [20]. Given a set of spatial objects, themax-
enclosing rectangle (MER) problem [18] aims to find the position
of a rectangle of a given size a� b such that the rectangle enc-
loses the maximum number of spatial objects. This problem
is systematically investigated as the maximizing range sum
(MaxRS) problem [6], [20]. Feng et al. [7] further study a gen-
eralized problem of theMaxRS problem, in which the aggre-
gate score function is defined by submodular monotone
functions, which include sum. Liu et al. [16] study the prob-
lem of finding subject oriented top-k hot regions, which can
be considered as a top-k version of the MaxRS problem. Cao
et al. [3] study the problem of finding a subgraph of a given
size with the maximum aggregation score from a road net-
work. All these aforementioned region search problems
focus on static data. Moreover, the idea of invoking the
approach designed for the region search problem whenever
a object enters or leaves the sliding windows is prohibitively
expensive (Wewill elaborate on this in Section 4.3).

Our work is closely related to the recent efforts on contin-
uousMaxRS problem [1], [11]. Amagata et al. [1] propose the
problem of monitoring the MaxRS region over spatial data
streams. Specifically, given a stream of weighted spatial
objects, the continuous MaxRS problem aims to monitor the
location of a rectangle of a size a� b such that the sum of the

weights of the objects covered by the rectangle is maximized.
In the proposed algorithm, a grid is imposed over the space,
whose granularity is independent from the size of the query
rectangle. For each spatial object in the stream, they generate
a rectangle of a size a� b whose center is located at the spa-
tial object. The generated rectangle is mapped to the cells
with which it overlaps. For each cell, they maintain a graph
where each node in the graph is a rectangle mapped to this
cell, and two nodes are connected by a directed edge if they
overlap with each other. The graph is used to handle the
updates of the stream. For each rectangle in the cell, they
maintain an upper bound to determine when to invoke the
sweep-line algorithm [18] to find themost overlapped region
inside the rectangle. With the maintained upper bounds,
they use a branch-and-bound algorithm to reduce the search
space. The difference of the SURGE problem from the continu-
ousMaxRS problem is that the burst score of the SURGE prob-
lem is defined over two consecutive sliding windows, and
spatial objects in different windows contribute differently to
the burst score. Though their solution cannot be directly
applied to solve the SURGE problem, we can adapt their solu-
tion with some modifications for the SURGE problem. One
issue of this solution is that they need tomaintain a graph for
each cell with a space cost ofOðn2Þ, where n is the number of
rectangle objects that are mapped to the cell. When the num-
ber of objects mapped to a cell is large, the space cost could
be extremely high. We will show in Section 7.2 that our pro-
posed solutions outperform the aG2 algorithm for the SURGE

problem. Hussain et al. [11] investigates theMaxRS problem
on the trajectories of moving objects. Given the trajectories of
a set of moving points, they aim to maintain the result of the
MaxRS problem at any time instant. Its problem setting is dif-
ferent from ours: it takes as input the trajectories of a set of
fixed number moving objects, while in SURGE, the number of
spatial objects in the sliding windows may vary with time
and the positions of the newly arrived objects are unknown a
priori.

This work is an extension of our previous work [8], where
we introduce the SURGE problem and present an exact solu-
tion. In this paper, we propose two approximation algo-
rithms to address the SURGE problem with an approximation
ratio of 1�a

4 , where a 2 ½0; 1Þ is a parameter used in the burst
score function. Second, as in certain applications users may be
interested in a list of bursty regions, we propose a top-k vari-
ant of the SURGE problem, and extend all the three algo-
rithms to keep track of top-k bursty regions efficiently.
Finally, we conduct extensive experiments to evaluate the
three algorithms and include a case study to evaluate the
quality of the exact solution.

Data Stream Management. Our work is also related to data
stream management. There has been a long stream of work
on various aspects of data streams since the last decade and
we only review the work that involves spatial information.
Given a stream of spatial-textual objects, [23] aims to estimate
the cardinality of a spatial keyword query on objects seen so
far. A host of work has also been done to study content-based
publish/subscribe systems [4], [5], [10], [15], [22], [24] over
spatial object streams. In these systems, streaming published
items are delivered to the userswithmatching interests. How-
ever, none of these studies consider the problem of detecting
bursty regions.

2256 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 08,2020 at 13:01:34 UTC from IEEE Xplore.  Restrictions apply. 



3 PROBLEM STATEMENT

3.1 Terminology

A spatial object is represented with a triple o ¼ hw; r; tci,
where w is the weight of o, r is a location point with latitude
and longitude, and tc is the creation time of object o. In this
paper, we consider a stream of spatial objects. For example,
geo-tagged tweets in Twitter can be viewed as a stream of
spatial objects arriving in the order of creation time. The
weight of a tweet could be the relevance of its textual content
to a set of query keywords. The car requests in Uber can also
be viewed as a stream of spatial objects arriving in the order
of calling time. In this case, theweight could be the passenger
number or travel fare.

We next introduce two consecutive time-based sliding
windows, namely current and past windows. Given a win-
dow size jW j, the current window, denoted by Wc is a time
period of length jW j that stretches back to a time t� jW j
from present time t. The past window, denoted by Wp is a
time period of length jW j that stretches back to a time
t� 2jW j from the t� jW j.

Given a region r and a sliding window W , let Oðr;WÞ be
the set of spatial objects which are created in W and located
in region r, i.e.,Oðr;WÞ ¼ fojo:r 2 r ^ o:tc 2Wg. Let fðr;WÞ
be the total weights of objects in Oðr;W Þ normalized byW ’s

length, i.e., fðr;W Þ ¼
P

o2Oðr;WÞ o:w
jW j , which is the score of a

region rw.r.t. the slidingwindowW .
Note that in this paper, for the sake of simplicity, we

assume the current and the past windows have the same
length jW j. However, our proposed solution is equally appli-
cable when the two slidingwindows have different lengths.

3.2 Burst Score

Intuitively, the burst score of a region r reflects the variation
of the spatial objects in r in a recent period. This motivates
us to design the burst score based on the current and past
windows.

We first discuss the intuition in designing the burst score
using Example 2. In this scenario, Uber drivers are interested
in regions inwhich they have a higher chance to pick up a pas-
senger. Obviously, a driver is more likely to find a passenger
in a region that contains a large number of requests in the cur-
rent window, which represents the significance of the region.
On the other hand, if a region suddenly experiences a surge of
requests, which represents the burstiness of the region, then it
is highly likely that existing drivers in that region may not be
able to fulfill this sudden increase in demand. Consequently,
a driver will have a higher chance to find a passenger there.

Thus, we consider the following two factors in our burst
score: (a) The score of the region w.r.t. the current window,
i.e., fðr;WcÞ, which measures the significance, and (b) the
increase in the score of the region between the current win-
dow and the past window, i.e., maxðfðr;WcÞ � fðr;WpÞ; 0Þ,
which measures the burstiness. Note that we use the max
function to guarantee that the increase in the score between
the current and past windows is always non-negative since
we are only interested in increase in the score.

We now formally define the burst score as follows.

Definition 1 (Burst Score). Given a region r, we define its
burst score SðrÞ as

SðrÞ ¼ a maxðfðr;WcÞ � fðr;WpÞ; 0Þ þ ð1� aÞfðr;WcÞ;
(1)

where a 2 ½0; 1Þ is a parameter that balances the significance
and the burstiness.

3.3 Continuous Bursty Region Detection (SURGE)
Problem

We are now ready to formally define the SURGE problem.

Definition 2 (Continuous Bursty Region Detection
(SURGE) Problem). Consider a stream of spatial objects O. Let
q ¼ hA; a� b; jW ji be a SURGE query where A is a preferred
area, a� b is the size of the query rectangle, and jW j is the length
of the current and past windows. Given such a query q, the aim of
the SURGE problem is to continuously detect the position of the
region r of size a� b in A with the maximum burst score. The
region r is referred to as the bursty region.

4 AN EXACT SOLUTION

The SURGE problem is challenging to address due to the fol-
lowing reasons. First, given a snapshot of the stream, we are
required to locate the bursty region in the preferred area A.
Intuitively, this bursty region can be located at any point and
it is prohibitively expensive to check the region located at
every point, which is infinite. Second, whenever a spatial
object enters or leaves the sliding windows, the burst score
of any region which encloses this object may change. This
implies that the location of the bursty region may change as
well and we need to recompute the new bursty region. With
the high arrival rate of the stream, it demands an efficient
strategy to update the bursty region.

In this section, we present a solution to address the SURGE

problem. We first introduce the continuous bursty point detec-
tion problem in Section 4.1. We show that by reducing the
SURGE problem to the CSPOT problem, for any snapshot of the
stream, we convert the challenge of selecting a point from
infinite points in the preferred area A to selecting a bursty
point fromOðn2Þ disjoint regions. To address the second chal-
lenge, we present a cell-based algorithm to continuously
update the bursty point in Section 4.3.

4.1 The cSPOT Problem

We next define the CSPOT problem and present how to
reduce the SURGE problem to the CSPOT problem. First, we
introduce some terminologies that will be used to define the
CSPOT problem.

Definition 3 (Rectangle Object). A rectangle object, denoted
with a triple g ¼ hw; r; tci, is a rectangle of size a� b, where
g:w is its weight, g:r is the location of its left-bottom corner,
and g:tc is the creation time of g.

Given the stream of spatial objectsO, each spatial object o
in O can be mapped to a rectangle object g by using o as the
left-bottom corner, i.e., g:w ¼ o:w, g:r ¼ o:r, and g:tc ¼ o:tc.
Let G denote the stream of rectangle objects that are mapped
fromO. LetGðp;WÞ be the set of rectangle objects which cov-
ers point p and is created in window W , i.e., Gðp;WÞ ¼
fgjg:tc 2W ^ p 2 g ^ g 2 Gg.

Next, we define the burst score of a point by following
the definition of burst score of a region in Section 3 . With a
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slight abuse of notation, we continue to use fðp;WÞ and
SðpÞ to denote the score of a point p w.r.t. the window W ,
and the burst score of p, respectively.

Definition 4 (Burst Score of a Points). Consider a stream of
rectangle objects G. The burst score SðpÞ of point p is

SðpÞ ¼ a maxðfðp;WcÞ � fðp;WpÞ; 0Þ þ ð1� aÞfðr;WcÞ;

where fðp;W Þ, the score of a point p w.r.t. W , is the total
weights of rectangle objects in Gðp;W Þ normalized by jW j,
i.e., fðp;WÞ ¼

P
g2Gðp;WÞ g:w
jW j .

We are now ready to formally define the CSPOT problem.

Definition 5 (cSPOT Problem). Consider a stream of rectan-
gle objects G, a parameter a, as well as the current window Wc

and past window Wp. The Continuous Bursty Point Detec-
tion problem aims to keep track of a point p in the space, such
that its burst score SðpÞ is maximized. A point p with the maxi-
mum score is referred to as bursty point.

In order to reduce the SURGE problem to the CSPOT problem,
for each spatial object o in the SURGE problem, if o is in the pre-
ferred areaA, i.e., o:r 2 A, we generate a rectangle object g of
size a� bwith o as the left-bottom corner such that o:tc ¼ g:tc
and g:r ¼ o:r. We illustrate this reduction with the example
in Fig. 2. Assume that o1; . . . ; o3 are all in A. For each spatial
object oi; i 2 ½1; 3�, a corresponding rectangle object gi is gen-
erated. We next show the relationship between the bursty
region and the bursty point of the corresponding SURGE and
CSPOT problem.

Theorem 1. Let pm be a bursty point for the reduced CSPOT prob-
lem given a snapshot. The rectangular region rm of size a� b
whose top-right corner is located at pm is a bursty region for
the original SURGE problem for the snapshot.

Note that the reduction is inspired by the idea of trans-
forming the max-enclosing rectangle problem to the rectangle
intersection problem [18]. The rectangle intersection problem aims
to find the most overlapped area given a set of rectangles.
Since our problem has a different burst score function, the
techniques designed for the rectangle intersection problem
cannot be utilized to search for the bursty point at a snapshot.

We address the SURGE problem by solving the correspond-
ing CSPOT problem. Observe that in the CSPOT problem, the
edges of the rectangle objects divide the space into many dis-
joint regions. Consider the example in Fig. 2. The shaded
area is one of the disjoint regionwhich is the overlap of g1, g2,
and g3. All points in a disjoint region are covered by the same
set of rectangles. Thus they have the same burst score. Next
we present a theorem which justifies the reason behind the
reduction.

Theorem 2. Given a snapshot of the stream of rectangle objects
in the CSPOT problem, there are at most Oðn2Þ disjoint regions,
where n is the number of rectangle objects in windows Wc and
Wp [18].

Since all points in a disjoint region have the same burst
score, Theorem 2 tells us that we only need to considerOðn2Þ
disjoint regions, which addresses the first challenge of the
SURGE problem, i.e., locating the bursty region from infinite
possible locations.

Example 3. Consider a snapshot of the stream shown in
Fig. 2. Assume that o1, o2 and o3 are three spatial objects in
the current windowWc in the SURGE problem, and oi:w ¼ 1
for i 2 ½1; 3�. According to the reduction process, g1, g2 and
g3 are three rectangle objects in the current window in the
CSPOT problem, and gi:w ¼ 1 for i 2 ½1; 3�. Assume that
jWcj ¼ 1. The shaded area is the intersection of g1, g2 and
g3. Thus, any point p in the shade area has the maximum
burst score, i.e., SðpÞ ¼ 3. The point p in the figure is a
bursty point at the given snapshot. The solid line rectangle,
whose top-right corner lies in p, is the bursty region as it
encloses three spatial objects and its burst score is 3.

In the rest of this section, we present an exact solution to
address the CSPOT problem efficiently. Specifically, we first
introduce a sweep-line based algorithm, which finds the
bursty point given a set of rectangle objects ( Section 4.2).
Then we present the cell-based lazy update strategy, which
determines whether we should invoke the sweep-line algo-
rithm to recompute the bursty point (Section 4.3).

4.2 Detecting Bursty Point on a Snapshot

To address the first challenge, i.e., detecting the bursty point
given a snapshot of the stream, we propose a sweep-line
based algorithm called SL-CSPOT in this subsection.

The high level idea of the SL-CSPOT algorithm is as follows.
We use a horizontal line, referred to as the sweep-line, to scan
the space top-down. The sweep-line is divided into 2nþ 1
intervals at most by the vertical edges of the n rectangle
objects. For instance, in Fig. 3, the vertical edges of the three
rectangles divide the sweep-line into 7 intervals, fI0; . . .; I6g.
For each interval I, we use I:fc and I:fp to denote the score w.
r.t. the current and past windows, respectively for the points
on the interval I. We use I:S to denote the burst score of such
points. For any interval Ii, the set of rectangles which can
cover interval Ii changes when the sweep line meets the top
or bottom edge of a rectangle which can cover Ii, and its burst
score Ii:S is updated accordingly. A point with themaximum
burst score during the sweeping process is returned as the
bursty point.

Fig. 2. Reduce to cSPOT problem.

Fig. 3. Illustration of bursty point detection.
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We next illustrate the algorithm with an example. Fig. 3
shows a snapshot of the stream. Rectangle g1 is in the past
window Wp (marked in blue), while g2 and g3 are in the cur-
rent window Wc (marked in red). As shown in Fig. 3, when
the sweep-line meets the top edge of g3, any point, such as p1,
which is beneath the overlapped intervals I3, I4 and I5 and
above the next horizontal line, will be covered by g3. Since g3
is in the current window, the score of p1 w.r.t. Wc will be
increased by g3:w

jWcj ¼ 2, resulting in an increase of its burst score.

We set Ii:fc ¼ 2 and Ii:fp ¼ 0 for i 2 ½3; 5�, and thus Ii:S ¼
0:5 �maxðIi:fc � Ii:fp; 0Þ þ 0:5 � Ii:fc ¼ 2 for i 2 ½3; 5�. We
select p1 as the current bursty point. Then the sweep-line
meets the top edge of g1 and g2, consecutively. The two edges
are processed similarly, and we have I4:S ¼ 3. Thus p3 is
selected as the new bursty point. When the sweep-line meets
the bottom edge of the rectangle g3, any point, such as p4,
which is beneath the overlapped intervals and above the next
horizontal line, will no longer be covered by g3. Thus, the
scores w.r.t. Wc of the overlapped intervals I3; . . .; I5 are
decreased.We have Ii:fc ¼ 1 for i 2 ½3; 4�, and I5:fc ¼ 0. Their
burst scores are updated as: I3:S ¼ 1� a, I4:S ¼ 1 and
I5:S ¼ 0. We repeat this process until the whole space is
scanned. Point p3 has the maximum burst score during the
sweeping process. Thus p3 is returned as the bursty point.

Algorithm 1 outlines this procedure. It takes as input a set
of rectangle objects G, and outputs a bursty point p with the
maximum burst score in the space. Result point p is initial-
ized as null. The algorithm uses a sweep-line to scan the
space (lines 2–7).When it meets a horizontal edge of a rectan-
gle r, it first locates the intervals that are covered by r (line 3).
Then it updates I:S for each interval I one by one (line 5).
The point p is updated if any interval has a larger burst score
(lines 6–7).

Algorithm 1. SL-CSPOT Algorithm

Input: A set of rectangle objects G
Output: A bursty point p

1: p ¼ null;
2: while sweep-line meets an horizontal edge of a rectangle g

do
3: Ii; . . .; Ij  the intervals covered by g;
4: for interval I 2 fIi; . . . ; Ijg do
5: Update I:fc, I:fp and I:S;
6: if I:S > SðpÞ then
7: p a point beneath I, and between the sweep-line

and next horizontal edge;
8: return p;

Time Complexity. Let n be the number of rectangles. The
sweep-line scans 2n edges (each rectangle has two horizon-
tal edges). When the sweep-line meets an horizontal edge,
Oð2nþ 1Þ intervals are affected. So the time complexity is
Oðn2Þ.

4.3 Handling the Stream

We have presented Algorithm SL-CSPOT to detect a bursty
point given a snapshot of the stream. But how to continu-
ously detect the bursty point? Recall that the burst score of a
point is determined by the set of rectangle objects that cover
it. The bursty point is likely to changewhen a rectangle object
enters or leaves the sliding windows. Specifically, any of the

following eventsmay change the bursty point: (1) a new rect-
angle object enters the current window, (2) an existing rect-
angle object leaves the current window and enters the past
window, and (3) an existing rectangle object leaves the past
window. We refer to these three events as a new event, a
grown event, and an expired event, respectively. We use a tuple
e ¼ hg; li to denote an event, where g is the rectangle object,
and l is one status from fNew;Grown;Expiredg to indicate
the type of the event.

Intuitively, a na€ıve idea is whenever an event happens,we
invoke Algorithm 1 to detect a bursty point on the snapshot
of the stream. However, this idea does not address the CSPOT

problem efficiently. First, it is not necessary to search the
whole space.When an event happens, it only affects the burst
score of the points inside the rectangle object of the event.
Second, frequent recomputation of the bursty point is com-
putationally expensive. To address the two issues, we next
present a cell-based algorithm calledCell-CSPOT.

Algorithm 2. Cell-CSPOT Algorithm

Input: An event e ¼ hg; li
Output: A bursty point

1: Cg  cells that are overlapped with g;
2: for c 2 Cg do
3: Update UðcÞ using Eqn (2), (3), and status of c:p using

Lemma 4;
4: c argmaxUðcÞ;
5: while c:p is invalid do
6: c:p SL-CSPOT(c);
7: UdðcÞ ¼ Sðc:pÞ;
8: c argmaxUðcÞ;
9: return c:p

4.3.1 Cell-Based Lazy Update

An event only affects the burst scores of the points inside
the rectangle of the event. This locality property motivates
us to divide the space into cells, and develop approaches to
handle the cells that are affected by an event. We first define
the grid that we use as follows.

Definition 6 (Grid and Cell). We consider a grid as a set of
vertical and horizontal lines defined by x ¼ i � b; y ¼ i � a for
all integers i 2 ½�1;þ1�. For each cell c, we maintain a list
of rectangle objects which overlap with the cell over the two
sliding time windowsWc andWp, denoted by c:G.

We have the following lemma based on obvious
observations.

Lemma 1. A rectangle object of size a� b overlaps with at most
four cells of the grid in Definition 6.

For each cell in the grid, we maintain a burst score upper
bound for the points inside the cell (to be discussed in
Section 4.3.2). When an event happens, the corresponding
rectangle can only affect at most four cells. Instead of search-
ing the affected cells immediately after an event happens, we
propose a lazy update strategy by utilizing the maintained
upper bounds: Whenever an event happens, we first update
the upper bounds of the affected cells. Then, we invoke
Algorithm 1 to search the cells iteratively in the descending
order of their upper bounds. In each iteration, we always
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search the cellwith themaximumupper bound.We terminate
the process when there is no upper bound larger than the cur-
rent maximum burst score. Hence, when an event happens, if
the upper bounds of the affected cells are less than the current
maximum burst score, these cells will not be searched. Thus
the lazy update strategy significantly reduces the number of
times that Algorithm 1 is invoked to search affected cells.

In addition, to reuse the result of Algorithm 1 from previ-
ous iterations, we record the point returned by Algorithm 1
for each cell which is called candidate point. The status of
each candidate point is either valid or invalid. If the candi-
date point of a cell is guaranteed to have the maximum
burst score in the cell, its status is valid. On the other hand,
the status is set to invalid if it is unknown whether the can-
didate point has the maximum burst score. We do not need
to invoke Algorithm 1 to search a cell if its candidate point
is valid. By exploiting the candidate points, we can further
avoid searching in some cells (discussed in Section 4.3.3).

Algorithm 2 presents an overview of our algorithm called
Cell-CSPOT (cell-based CSPOT). It takes as input an event
e ¼ hg; li, and reports a bursty point in the space. The algo-
rithm first locates the set Cg of cells that overlap with g (line
1). Then for each cell c inCg, it updates its upper bound based
on Equations (2), and (3) (to be introduced in Section 4.3.2),
and determine the status of the candidate point c:p based on
Lemma 4 (to be introduced in Section 4.3.3) (line 3). Then it
accesses the cells in descending order of their upper bounds
UðcÞ iteratively (lines 4–8). In each iteration, if the candidate
point c:p is invalid, we invoke Algorithm 1 to search the cell
and update c:p (line 6) and the upper bound (line 7). Other-
wise c:p is valid, and this indicates that c:p has the maximum
burst score in cell c and c has the maximum burst score as
there is no cell whose upper bound is larger than the current
maximum burst score. Therefore we terminate the process
and report point c:p as the result.

Time Complexity.According to Lemma 1, at most four cells
are affected by an event rectangle g. Thus, it takes Oð1Þ time
to update the upper bounds and candidate points. A cell will
not be searched unless it is overlapped with a rectangle
object. Thus,Oð1Þ cells are searched in processing a rectangle
object. In our implementation, we use a heap to maintain the
cells based on their upper bounds. Let jcmaxj be the maxi-
mum number of rectangle objects in a cell. Let n be the
number of rectangle objects created in Wc and Wp. It takes
OðlognÞ time to get the cell c andOðjcmaxj2Þ time to search the
cell. Putting these together, the complexity of Algorithm 2 is
Oðjcmaxj2 þ lognÞ.

Space Complexity. Each rectangle object is stored in at
most four cells. Thus, the space cost of Algorithm 2 is OðnÞ.

4.3.2 Upper Bound Estimation

Next, we present the details about estimating the upper
bound for a cell.

Static Upper Bound. We first consider a simple strategy to
estimate an upper bound for a cell. According to the definition
of the burst score, rectangle objects in the current window
have a positive impact on the burst score, while the rectangle
objects in the past window have a non-positive impact.
Hence, we can estimate an upper bound burst score for a cell
by only utilizing the objects in the current window. We refer
to this upper bound as static upper bound.

Definition 7 (Static Upper Bound). For a cell c, its static
upper bound is computed as follows:

UsðcÞ ¼
X

g2c:G^g:tc2Wc

g:w

jWcj ; (2)

where c:G is a set of rectangle objects overlapped with c.

Lemma 2. For any point p in a cell c, we have SðpÞ � UsðcÞ.
Example 4. Consider the example shown in Fig. 4. The solid-

line rectangle is a cell in the grid. After event e1 happens,
there are three new rectangle objects overlapped with the
cell c. The static upper bound of cell c isUsðcÞ ¼ 3:

DynamicUpper Bound.Next, instead of just using objects in
the current window, we introduce another way to estimate
the upper bound by using both the event and information
from the previous computation. Specifically, when an event
happens, we dynamically update the upper bound com-
puted from previous upper bound. We refer to such upper
bound as dynamic upper bound.

Let pm be the point with the maximum burst score in cell c
at a snapshot iwhen event ei arrives. Apparently SðpmÞ is an
upper bound burst score for cell c at snapshot i. Thus, when-
ever we search a cell c with Algorithm 1 on a snapshot i, the
dynamic upper boundUi

dðcÞ can be set asUi
dðcÞ ¼ SðpmÞ.

Let Ui
dðcÞ be the upper bound of cell c on snapshot iwhen

event ei arrives, and Uiþ1
d ðcÞ be the upper bound when eiþ1

arrives. Let g be the corresponding rectangle object of eiþ1,
i.e., eiþ1 ¼ hg; li. Then we have

Uiþ1
d ðcÞ ¼

Ui
dðcÞ þ g:w

jWcj eiþ1:l is New;

Ui
dðcÞ eiþ1:l is Grown;

Ui
dðcÞ þ a g:w

jWpj eiþ1:l is Expired:

8><
>:

(3)

We next show the correctness of the dynamic upper bound
with the following lemma.

Lemma 3. Consider a cell c. For any point p in c, we have SðpÞ �
UdðcÞ after e happens.

Example 5. Consider the example shown in Fig. 4. We first
consider an event e1 ¼ hg3; Newi, i.e., a new rectangle
object enters the current window. Assume before e1 hap-
pens, we have searched the cell and the point p1 has the
maximum burst score in c. The dynamic upper bound is
set as U0

d ðcÞ ¼ 1. After e1 happens, we update the dynamic

Fig. 4. Cell upper bound.
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upper bound as U1
d ðcÞ ¼ U0

d ðcÞ þ g3:w
jWcj ¼ 2. Then we con-

sider an event e2 ¼ hg1; Growni, i.e., and existing rectan-
gle object g1 exits the current window and enters the past
window. According to Eqn (3), the dynamic upper bound
remains the same, i.e., U2

d ðcÞ ¼ 2, since p2 remains to have
the maximum burst score in cell c.

We have presented the static upper bound and the
dynamic upper bound. We now combine them for a tighter
upper bound.

Definition 8 (Upper bound for cell). For a cell c, we define
its upper bound UðcÞ as UðcÞ ¼ minðUsðcÞ; UdðcÞÞ:

4.3.3 Candidate Point Maintenance

An expensive operation of Algorithm 2 is to invoke Algo-
rithm 1 to find a point with the maximum burst score for a
cell. To reuse the computation, for each cell c, we maintain a
candidate point, denoted by c:p, to record the point returned
by Algorithm 1. The candidate point has two possible status
as introduced in Section 4.3.1. We next present Lemma 4,
which is employed to determine the status of a candidate
point.

Lemma 4. Let c:p be a point with the maximum burst score in cell
c currently. Consider an event e ¼ hg; li. After e happens, if
either (1) e is either new or expired, g can cover c:p, and fðc:p;
WcÞ � fðc:p;WpÞ > 0, or (2) e is grown object and g cannot
cover c:p, then the point c:p still has the maximum burst score.

We determine the status of a candidate point based on
Lemma 4. Consider a cell c and an event ewhich can affect c.
If c:p is valid and the conditions in Lemma 4 hold, then c:p
remains to be valid. Otherwise, c:p is invalid after e happens.

Example 6. Reconsider the example shown in Fig. 4. We
consider the event e1 ¼ hg3; Newi, where a new rectangle
g3 arrives. Before e1 happens, assume that we have
invoked Algorithm 1 to search the cell and p1 is the point
with the maximum burst score. When e1 happens, since e1
is new and g3 cannot cover p1, p1 is invalid after e1 hap-
pens. In fact, points in the shaded area have the maximum
burst score after e1 happens.

5 APPROXIMATE SOLUTIONS

Although our exact solution can continuously detect the
bursty region efficiently in real time, we observe that its run-
time performance degrades when the number of spatial
objects created in time windowsWc andWp increases signifi-
cantly (e.g., the sliding windows get larger, the region size
gets larger, or the arrival rate of the spatial objects increases).
Since a slight imprecision is acceptable in most cases in real
life, to tackle this challenge, we propose two algorithms to
solve the SURGE problem approximately. We prove that the
burst score of the region returned by our proposed approxi-
mate algorithms is always bounded by a ratio 1�a

4 compared
to the exact result.

5.1 A Grid-Based Solution

The key idea behind our grid-based approximate solution is as
follows: We use a grid to divide the space into cells of size
a� b. Each cell is a candidate region. By maintaining the

burst score for each cell, we continuously report the cell
with the maximum burst score to users as an approximation
to the bursty region. A nice feature of this idea is that it is
intuitive while it has performance guarantees.

Algorithm 3 outlines our proposed algorithm called GAP-
SURGE (Grid-based APproximate SURGE). Here we abuse the
notation e ¼ ho; li to denote an event of spatial object o enters
or leaves the sliding windows. It first locates the cell that the
spatial object o lies in (line 1). The burst score of the cell c is
updated accordingly (lines 2–5). The cell with the maximum
burst score is returned as an approximate result (line 6).

Algorithm 3. GAP-SURGE Algorithm

Input: An event e ¼ ho; li
Output: A cell c

1: ci;j  the cell o lies in;
2: if e is new then ci;j:fcþ ¼ o:w

jWcj;
3: else if e is grown then ci;j:fc� ¼ o:w

jWc j ; ci;j:fpþ ¼ o:w
jWpj;

4: else ci;j:fp� ¼ o:w
jWcj;

5: ci;j:S ¼ maxðci;j:fc � ci;j:fp; 0Þ þ ci:j:fc;

6: c argmaxc:S;
7: return c

Before we show that the region returned by Algorithm 3
has a burst score with an approximation guarantee, we pres-
ent some interesting properties of the burst score function.

Lemma 5. For any two region r1 and r2, r1 � r2, we have
Sðr2Þ 	 ð1� aÞSðr1Þ.

Lemma 6. Let r1, r2 be two non-overlapping regions. We have
Sðr1Þ þ Sðr2Þ 	 Sðr1 [ r2Þ.
Now we are ready to prove the approximate ratio of

Algorithm 3.

Theorem 3. Given a snapshot of the stream, let r be the region
returned by Algorithm 3, and ropt be the bursty region returned
by our exact solution. We have SðrÞ 	 1�a

4 SðroptÞ.
Lemma 7. The approximation ratio is tight.

Complexity Analysis. In Algorithm 3, it takes constant time
to locate the cell and update the burst score. In our imple-
mentation, we use a heap to maintain all cells according to
their burst scores. Let n be the number of spatial objects cre-
ated in Wc and Wp. Since there are OðnÞ non-empty cells, it
takesOðlognÞ time to report the cell with themaximumburst
score.

5.2 A Multi-Grid-Based Solution

The burst score of the region returned by Algorithm 3 is
highly dependent on the position of the grid. Inspired by a
grid shifting technique [20], we propose to invokeAlgorithm 3
multiple times with different grids to further improve the
result quality.

Note that in the grid shifting [20], they have to carefully
choose four grids to guarantee the correctness of the algo-
rithm. However, this is not the case for our multi-grid-based
solution. Since Algorithm 3 using a single grid can return a
regionwith bounded quality, we can use any number of grids
to invoke Algorithm 3. In this subsection, we use the follow-
ing four grids as an example to illustrate the algorithm.
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Grid 1: x ¼ i � b; y ¼ i � a;
Grid 2: x ¼ 0:5bþ i � b; y ¼ i � a;
Grid 3: x ¼ bþ i � b; y ¼ 0:5aþ i � a;
Grid 4: x ¼ 0:5bþ i � b; y ¼ 0:5aþ i � a;

for all integers i 2 ½�1;þ1�.
The multi-grid-based solution (called the MGAP-SURGE

algorithm) invokes Algorithm 3 four times by using the four
different grids. Among the four returned regions, the one
with themaximumburst score is returned to users.

Theorem 4. The approximate ratio of the MGAP-SURGE algorithm
is 1�a

4 , i.e., SðrÞ 	 1�a
4 SðroptÞ.

Complexity Analysis. MGAP-SURGE invokes Algorithm 3 four
times, and its complexity is OðlognÞ, where n is the number
of spatial objects created inWc andWp.

6 TOP-K BURSTY REGION DETECTION

Recall that in Example 1, it is paramount to monitor regions
with outbreak of diseases. Intuitively, monitoring only the
most bursty region is not sufficient. In fact, it is reasonable to
be interested in a small list of such bursty regions. Specifi-
cally, given the size of a region, we need to continuously
monitor the top-k regions of the given size with highest burst
scores. In this section, we present how we can elegantly
extend our proposed solutions to continuously detect top-k
regions with highest burst scores. We begin by formally
defining the top-k bursty regions.

6.1 Definition

Although at first glance it may seem that it is easy to define
top-k bursty regions, in reality it is tricky. First of all, are the
top-k regions allowed to overlap? It may seem that detecting
k non-overlapping regions is a good choice. However, the
non-overlapping requirement may lead us to overlooking
some highly bursty regions. Hence, it is beneficial to allow
the top-k bursty regions to be overlapping instead of disjoint
in nature.

Next, how do we define the burst scores for two over-
lapped regions? For example, if a spatial object lies at the
intersection of two overlapping regions, which region’s burst
score should it contribute to? A na€ıve idea is to consider it in
both regions. However, this may result in k regions that are
highly similar to one another. To resolve this issue, we ensure
that a spatial object contributes only to the burst score of at
most one region.

The aforementioned considerations lead us to a greedy
strategy for defining the top-k bursty regions. Specifically,
given the first i bursty regions, the ðiþ 1Þth bursty region is
the regionwithmaximumburst score in the space but exclud-
ing all spatial objects that are already covered by the first i
bursty regions.

Definition 9 (Top-k Bursty Regions). Consider k rectangu-
lar regions r1; . . .; rk, each of which has a size of a� b. We say
they are the top-k bursty regions if ri has the maximum burst
score over Oi, where Oi is set of objects excluding the objects in
r1 [ . . . [ ri�1, i.e., Oi ¼ fojo 2 O ^ o 62 r1 [ . . . [ ri�1g.
In order to address the top-k bursty regions problem, we

reduce the top-k bursty regions problem to k CSPOT problems

following the reduction in Section 4.1. The ðiþ 1Þth CSPOT

problem aims to detect the ðiþ 1Þth bursty point from the
space that excludes the set of rectangles that cover the top-i
bursty points.

Observe that Definition 9 essentially paves the way to a
greedy approach for selecting top-k bursty regions.Whenever
an event happens, we can first detect a region with the maxi-
mum burst score by invoking Algorithm 1. Then we remove
the spatial objects covered by the region. After that, we detect
a region with the maximum burst score over the remaining
objects. We repeat this process until k regions are selected.

However, the na€ıve strategy is inefficient as there are too
many redundant computations, i.e., it is possible that we
search a cell in all the k reduced CSPOT problems. To address
the k CSPOT problems efficiently, we want to share the com-
mon computations among the k CSPOT problems.

6.2 Extension of the Exact Solution

In the extension of our exact solution, for each cell c, we
maintain k upper bounds and k candidate points in order to
solve the k CSPOT problems by following the idea of Algo-
rithm 2. For each CSPOT problem, we adopt the lazy update
strategy to access the cells in descending order of their upper
bounds. If the candidate point of the top cell is not valid, we
search the cell by invokingAlgorithm 1.

We develop two ideas of sharing the computations among
the k CSPOT problems. First, if a rectangle object can cover the
ith bursty point, it will not be considered in the CSPOT prob-
lemswith order higher than i. For the extension, wemaintain
a level, denoted by g:lvl, for each rectangle object g. To select
the ith bursty point in response to a new event, we consider
the set of rectangles G½i : k�whose levels are no smaller than
i, i.e., G½i : k� ¼ fgjg:lvl 	 ig. When the ith bursty point is
selected, the levels of all the rectangles that cover the ith
bursty point are set as i, and these rectangles will not be con-
sidered by the CSPOT problems with a higher order than i.
Meanwhile, if a rectangle covers the old ith bursty point, but
not the new ith point, its level is reset to k so that it will be
considered in all the k CSPOT problems.

Second, if no rectangle in a cell covers any of the k
detected bursty points, all the rectangles in the cell will be
considered in all k CSPOT problems. Thus, the upper bounds
and the candidate points w.r.t. the k CSPOT problems for the
cell are the same. That is, once the upper bound and the can-
didate point for the cell are computed for one CSPOT problem,
we do not need to recompute them again for other CSPOT

problems.
Algorithm 4 presents the detail of our extension. It takes

as input an event e ¼ hg; li, and outputs the top-k bursty
points, denoted by p½1 : k�. It uses V to denote the set of
objects that need to be handled subsequently, and is initial-
ized as fgg (line 1). It then solves the k CSPOT problem itera-
tively (lines 2–17). In each CSPOT problem, it first locates the
set of cells affected by the objects in V (line 4). For each cell
c 2 C, the upper bound UðcÞ½j� and candidate point c:p½j� w.
r.t. the jth CSPOT problem are updated for j 2 ½i; k� (lines 5–6).
Then it accesses the cells in descending order of their upper
bounds w.r.t. the ith CSPOT problem (lines 8–14). The upper
bound and candidate point are updated as in Algorithm 2
(lines 9–10). If no rectangle in cell c covers any of the k
detected bursty points, its k upper bounds and candidate
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points are set to the same (lines 11-12). When a new bursty
point is found, we reset the levels for the affected objects as
discussed earlier (lines 15–16): The rectangles that cover the
old bursty point pold but not the new bursty point p½i� are
newly visible to all the k CSPOT problems,while the rectangles
that cover the new bursty point p½i� are newly invisible to the
CSPOT problems with a higher order than i. The two types of
rectangle objects comprise V , which will be processed in the
next CSPOT problem (line 17). After k iterations, it returns the
top-k bursty points p½1 : k� as the result.

Algorithm 4. CCS-KSURGE Algorithm

Input: An event e ¼ hg; li
Output: A bursty point
1: g:lvl ¼ k, V ¼ fgg;
2: for i 2 ½1; k� do
3: pold ¼ p½i�;
4: C  cells that are overlapped with V ;
5: for c 2 C do
6: Update UðcÞ½j� and c:p½j� for j 2 ½i; k�;
7: c argmaxUðcÞ½i�;
8: while c:p½i� is invalid do
9: c:p½i�  SL-CSPOT(c) over G½i :�;
10: UdðcÞ½i� ¼ Sðc:p½i�Þ over G½i :�;
11: if no rectangle in c covers any of p½1 : k� then
12: c:p½1 : k� ¼ c:p½i�, UdðcÞ½1 : k� ¼ UdðcÞ½i�;
13: c argmaxUðcÞ½i�;
14: p½i�  c:p;
15: Mark o:lvl ¼ k for any o 2 GðpoldÞ½i� nGðp½i�Þ½i : k�;
16: Mark o:lvl ¼ i for any o 2 Gðp½i�Þ½i : k�;
17: V  Gðp½i�Þ½i : k� [GðpoldÞ½i�;
18: return p½1 : k�

Complexity Analysis.A cell is searched if its upper bound is
either changed by an event or by a detected bursty point.
Thus, the algorithm searches Oð1þ kÞ ¼ OðkÞ cells on aver-
age when processing a rectangle. The complexity of Algo-
rithm 4 isOðjcmaxj2 � kÞ, where jcmaxj is the maximumnumber
of objects that we search in a cell.

6.3 Extension of the Approximate Solutions

We also extend our approximate solutions in Section 5 to find
k regionswith relatively high burst score.

Extending the GAP-SURGE Algorithm. Consider the grid-
based solution. We use a heap to maintain all cells with their
burst scores. Thus, we can simply return top-k cells with
highest burst scores. In our implementation, we use a heap
tomaintain the cells. Thus, its complexity isOðlognÞ.

Extending the MGAP-SURGE Algorithm.We extend the multi-
grid-based solution similarly. Note that one cell in a grid
may overlap with at most four cells in another grid. Thus,
for each grid, we maintain the top-4k cells. Then we merge

the 16 � k cells and return the top-k non-overlapping cells.
Its time complexity is Oðlognþ kÞ.

7 EXPERIMENTAL STUDY

We investigate the performance of our proposed techniques.
All algorithms are implemented in C++ complied with GCC
4.8.2. The experiments are conducted on a machine with a
2.70 GHz CPU and 64 GB ofmemory runningUbuntu.

7.1 Experimental Setup

Datasets. We conduct experiments on three public real-life
datasets as reported in Table 1. UK consists of 1,000,000 geo-
tagged tweets posted in UK. US consists of 1,000,000 geo-
tagged tweets posted inUS and has a higher arrival rate.Taxi4

consists ofmobility traces of taxi cabs obtained from the GPS in
Roma, Italy. It contains 1,000,000 records over 5 days. For
each dataset, the weight of each spatial object is randomly
chosen from from [1, 100] with a uniform distribution.

Algorithms. We evaluate the performances of the three
proposed algorithms, namely the exact method Cell-CSPOT

(denoted by CCS), the grid-based approximation algorithm
GAP-SURGE (denoted by GAPS), and the multi-grid-based
technique MGAP-SURGE (denoted by MGAPS). We denote the
top-k extensions of these algorithms as kCCS, kGAPS, and
kMGAPS, respectively. To evaluate the usefulness of our
proposed method of upper bound estimation, we compare
CCS with an approach that only utilizes the static upper
bound. We denote this baseline method by B-CCS. We also
compare CCS with a baseline approach that does not use
any upper bound estimation technique, denoted by Base.
Specifically, in Base we divide the space into cells, and we
search all the cells that overlap with the rectangle object
when an event happens. To the best of our knowledge, there
is no existing technique that addresses the SURGE problem.
Hence we are confined to compare our proposed algorithms
with aG2 [1], which is designed for continuously monitoring
the MaxRS problem. Obviously, we cannot directly apply it
to solve the SURGE problem. In our experiments, we use a
modified version of aG2. Specifically, the modified algo-
rithm inherits the grid index structure and the branch-and-
bound strategy from the original algorithm. The main differ-
ence between the modified and the original algorithms is
how we search a rectangle object given a snapshot of the
stream. In the original algorithm, they invoke the sweep-line
algorithm [18] to search a rectangle object to find a region
with maximum sum score, while in the modified algorithm,
we use our proposed SL-CSPOT algorithm instead.

Parameters. By default, we set the size of the past window
Wp and the current windowWc as 1 hour forUS andUK, and
5 minutes for Taxi. We set the size of the query rectangle as
1=1000 of the range of each dataset by default, denoted by q.
We set the preferred area A as the whole space. For the aG2
algorithm, we set the size of a cell to 10q.

StreamWorkload.We start the simulation when the system
becomes stable, i.e., there exists an expired object from the
past sliding window. We continuously run each algorithm
for 1,000,000 new arriving spatial objects over the two sliding
windows. The average processing time per object is reported.

TABLE 1
Datasets

Datasets UK US Taxi

# of Spatial Objects 1,000,000 1,000,000 1,000,000
Arrival Rate(per hour) 5,747 16,802 18,145
Range of Latitude 139.0 150.9 100.1 150.4 41.6 42.2
Range of Longitude 171.1 181.9 40.2 118.8 12.0 12.9

4. crawdad.org/roma/taxi/20140717
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7.2 Evaluation of the Exact Solution

We first evaluate the runtime performance of CCS, B-CCS
and Base on each dataset. Then we study the usefulness of
the upper bound in CCS.

Runtime Performance. The aim of the first set of experiments
is to evaluate the efficiency of our exact solutionw.r.t. the slid-
ingwindow size and the query rectangle size. ForUS andUK,
we vary the sliding window with the following sizes: 30
minutes, 1 hour, 2 hours, 5 hours, and 12 hours. For Taxi, we use
the following five sizes for sliding windows: 1 minute, 5
minutes, 10 minutes, 20 minutes, and 30 minutes. We use the fol-
lowing four sizes for the query rectangle: 0:5q, q; 2q, and 3q.

Figs. 5a, 5b, and 5c report the average runtime of the
three methods for processing one spatial object as we vary
the size of sliding windows. Note that the y-axis is in loga-
rithmic scale. We find that CCS runs efficiently and outper-
forms aG2. For example, for Taxi, it takes about 3� 10�4

seconds to process an object when the current and past win-
dows are both set to 30 minutes, while aG2 takes 7� 10�3

seconds. In addition, we find that aG2 run out of the 64 GB
memory on US when the current window and past window
are both set as 12 hours, as there are too many spatial objects
in the two sliding windows.

Moreover, we observe that the processing time per object
of all algorithms increases as the size of window increases.
This is due to the need to consider a larger number of spatial
objects when we search for the bursty region with the
increase in size of the sliding window. Consequently, the
runtime per object increases.

Figs. 5d, 5e, and 5f report the average runtime for proc-
essing one spatial object as we vary the size of the query
rectangle. Similarly, the average runtime increases as size of
the rectangle increases.

Usefulness of Upper Bound. Next, we evaluate the useful-
ness of the method for upper bound estimation in CCS. In

this set of experiments, we process 1,000,000 new objects and
report how many rectangles trigger a search. The results are
reported in Table 2. Clearly, only a small portion of rectangle
messages (2-5 percent for Taxi, and less than 1 percent for US
andUK) trigger a search in CCS compared with B-CCS. This
is because CCS can estimate a much tighter upper bound for
cells. Thus, many cells are eliminated from further checking.
This also explains why CCS is much more efficient than
B-CCS. As shown in Fig. 5, we observe that CCS is more effi-
cient than the other two methods. The runtime of CCS is
more than one order of magnitude faster than B-CCS and
Base, respectively. Moreover, we observe that B-CCS is only
marginally better than BASE, which indicates that only using
the static upper bound cannot effectively avoid unnecessary
recomputation. This is because the static upper bound is too
loose, especially when the weights of the objects are ran-
domly chosen from 1 to 100.

7.3 Evaluation of the Approximate Solutions

Approximate Ratio. In this set of experiments, we vary the slid-
ingwindow to assess the approximate ratio of the burst scores
of region detected byGAPS andMGAPS. The detailed results
are reported in Table 3. Though the theoretical approximate
ratio is 1�a

4 , in practice it is much better, especially for
MGAPS. We observe that for UK, the burst score of the region
detected byGAPS is about 70–90 percent of the burst score of
the optimal region. The region detected by MGAPS is about
85–95 percent of the burst score of the optimal region. Since
GAPS andMGAPS are muchmore efficient than CCS (about
three orders of magnitude faster), they are good alternatives
toCCSwhen a slight imprecision is acceptable.

Runtime Performance. We evaluate the efficiency of our
approximate solutions w.r.t. the sliding window size and the
query rectangle size under the same setting as for the exact

Fig. 5. Runtime of CCS, B� CCS, Base, and aG2.

TABLE 2
Ratio of Rectangle Messages that Trigger a Search

versus Window Size for CCS and B-CCS

Taxi
Window (mins) 1 5 10 20 30

CCS 4.85% 3.20% 2.56% 2.13% 1.95%
B-CCS 92.63% 78.30% 70.00% 62.07% 57.90%

UK
Window (hours) 0.5 1 2 5 12

CCS 0.34% 0.27% 0.23% 0.37% 0.48%
B-CCS 37.79% 28.23% 22.76% 21.64% 14.57%

US
Window (hours) 0.5 1 2 5 12

CCS 0.60% 0.68% 0.70% 0.52% 0.60%
B-CCS 64.21% 52.29% 35.13% 9.0% 20.90%

TABLE 3
Approximate Ratio versus the Size of Window

Taxi
Window (mins) 1 5 10 20 30

GAPS 76.34% 73.90% 75.12% 75.70% 76.35%
MGAPS 85.98% 85.14% 87.35% 88.34% 87.85%

UK
Window (hours) 0.5 1 2 12 24

GAPS 90.22% 91.56% 91.98% 89.82% 92.44%
MGAPS 93.13% 94.34% 93.76% 90.50% 92.82%

US
Window (hours) 0.5 1 2 12 24

GAPS 84.23% 80.67% 89.70% 91.77% 80.10%
MGAPS 88.61% 88.07%b 91.44% 91.77% 84.34%
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solution. Figs. 6a, 6b, and 6c report the average runtime for
processing one spatial object usingGAPS andMGAPS as we
vary the sliding window. Figs. 6d, 6e, and 6f report the aver-
age runtime for processing one spatial object as we vary the
size of the query rectangle. We find that the runtime of
MGAPS is about 2-5 times of GAPS, which is expected as
MGAPS invokes GAPS four times. Moreover, GAPS and
MGAPS are about three orders of magnitude faster than
CCS by comparing Figs. 5 and 6.

7.4 Effect of a

In the definition of burst score, we use a parameter a to bal-
ance the significance and the burstiness. In this set of experi-
ments, we evaluate the impact of the parameter a on the
efficiency and approximation ratio of our proposed algo-
rithms on the US dataset. We use 1 hour for the sliding win-
dows and q for the size of the query rectangle.

Impact on Runtime Performance. We evaluate the efficiency
of our exact and approximate solutions w.r.t. the balance
parameter a. Fig. 7 reports the average runtime for process-
ing one spatial object aswe vary a from 0.1 to 0.9.We observe
that the efficiency is hardly affected by the parameter a for
both our exact solution and approximate solutions.

Impact onApproximation Ratio. In this set of experiments,we
evaluate the approximate ratio of the burst scores of regions
detected by GAPS and MGAPS by varying a. The results are
reported in Table 4.We find that the approximate ratios of the
two algorithms decrease as a increases. This is because their
theoretical approximate ratio 1�a

4 decreases as a increases.

7.5 Scalability

We now investigate the scalability of our proposed techni-
ques by varying the arrival rate of the spatial objects. Specifi-
cally, we use 1 hour for both the current window and past
window, and q for the size of the query rectangle on all three
datasets. We stretch the stream to change its arrival rate from
2 million per day to 10 million per day. For example, in UK, 1
million spatial objects arrived in 174 hours. Hence, we shrink
the arrival time of each object to make all objects arrive in 24
hours. Then the arrival rate of the stream is 1 millions per
day.We only report the average time for processing the objects
arrived in one hour (denoted by th) of CCS and GAPS in
Fig. 8. Formally, th ¼ runtime

jOjtime
, where runtime is the runtime of

the algorithm, and jOjtime is the total timespan of the stream.
We observe that it takes several hours for CCS to process

the objects arrived in an hour for the Taxi dataset, which
means that it does not scale well and cannot handle streams
with high arriving rate. On the other hand, our approximate
solutions,GAPS andMGAPS, scale well with the increase in
arrival rate. They can process the objects arrived in an hour
within seconds.

Note that the complexity of CCS is determined by the
maximum number of objects in a cell, while the GAPS is
determined by the number of non-empty cells. In Taxi, the
objects in Wc and Wp are likely to be located close to each
other. Thus, there are fewer non-empty cells and each cell is
likely to have many objects . As a result, we can observe that
CCS has the worst efficiency in Taxi datasets, while GAPS
has the best efficiency in Taxi datasets in Fig. 8.

7.6 Finding Top-k Bursty Regions

We next evaluate the performance of the extensions of our
three algorithms for continuously detecting top-k bursty
regions. We study the effect of k and the size of sliding
windows.

Runtime Performance. This set of experiments aims to evalu-
ate the efficiency of these algorithmsw.r.t. the slidingwindow
size. We adopt the same setting as in Section 7.2. Figs. 9a, 9b,
and 9c report the average runtime per object of kCCS,
kGAPS, and kMGAPS for different sliding windows. We
observe that as the slidingwindowgets larger, kCCS does not
scale well and cannot process the top-k queries efficiently.
Meanwhile, kGAPS and kMGAPS can find top-k bursty
regions efficiently.

Fig. 6. Runtime performance of GAPS and MGAPS.

Fig. 7. Runtime performance w.r.t. a on US.

TABLE 4
Approximate Ratio versus a

US
a 0.1 0.3 0.5 0.7 0.9

GAPS 82.57% 81.76% 80.67% 77.23% 78.58%
MGAPS 90.50% 89.44%b 88.07% 87.80% 86.67%

Fig. 8. Scalability study.
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We also compare the na€ıve solution for finding top-k
bursty regions with these algorithms. Recall from Section 6,
in the na€ıve solution, we detect the top-k bursty regions for
each newly-arrived object. Clearly, the na€ıve solution is pro-
hibitively expensive. Hence, we only run it with a small slid-
ing window on US, and its runtime per object is about 100X
more than kCCS.

Effect of k.Next, we study how the value of k affect the run-
time performance of the three extensions. We use the follow-
ing 4 values for k: 3, 5, 7 and 9. The runtime performance is
depicted in Figs. 9d, 9e, and 9f. We observe the runtime per
object of kCCS increases as k increases. This is because we
divide the top-k bursty region detection problem into k
instances of bursty region detection problems. Each bursty
region detection problem takes Oðn2

cÞ time to find a bursty
region, where nc is the number of spatial objects in the cells
that we actually searched. We also observe that kGAPS and
kMGAPS are less affected by k.

7.7 Case Study

Example of Bursty Region. We first conduct a case study to
show the region monitored by cell-CSPOT. We run the cell-
CSPOT algorithm on the tweets containing keyword “concert”
posted in United States from 2012 April to 2012 October.
Note that since the algorithm continuously reports the loca-
tion of bursty regions, we only present one example of the
detected bursty region and explain the connection between
the region and the real life event.

On July 8, 2012, our algorithm detected a region as shown
in Fig. 10. The frequent keywords in this region during this
time are “Walt” and “Concert”. This is because a concert was
performed by Ketherine Eason with Inner City Youth
Orchestra of Los Angeles in Walt Disney Concert Hall in the
detected region on that day.

Effect of Window Size. We next conduct a case study to
shed some light on the selection of jW j. Specifically, we con-
sider a fixed region which can cover the U.S., and report
how the burst score of the region changes along with time.
We use the following three sliding windows: 1 day, 10 days
and 15 days. We consider the tweets containing keyword
“Paris” posted in 2015. The result is reported in Fig. 11.

We observe that when we vary the size of the sliding win-
dows, we can capture bursts in different granularities. Spe-
cifically, we notice that when the sliding window is large,
only big bursts (e.g., the terrorist attacks in Paris.) can be cap-
tured. Moreover, we notice that the burst score using a small
sliding window is capable to capture a small surge in tweets
when less significant events happen (e.g., famous actors
made appearance in a fashion show, or a video about Paris
became a trend topic.).

In summary, the size of the sliding window determines
the granularity of the detected bursts. A small sliding win-
dow is capable to detect a small burst. However, due to the
large number of small bursts in real life, the location of the
bursty region could be updated frequently, leading to a
less meaningful bursty region occasionally. User should
select the proper sliding window based on the application.
In most cases, 1 hour or 1 day are good enough to provide
meaningful results.

8 CONCLUSIONS

The work reported in this paper is motivated by new oppor-
tunities brought by the massive volumes of streaming geo-
tagged data (i.e., spatial objects) generated by location-
enabled mobile devices. Specifically, we have studied a new
problem called the SURGE problem to continuously detect the
bursty region in a given area in real time. The SURGE problem
is important as it can underpin various applications such as
disease outbreak detection. We have proposed an exact
solution and two approximate solutions for SURGE. We have
also extended these solutions to find top-k bursty regions.
Finally, our experiment study with real-world datasets has
demonstrated the efficiency of our framework. As part of
future work, we intend to explore the SURGE problem in the
context of road network.

Fig. 9. Top-k bursty regions detection.

Fig. 10. Bursty region about “concert”.

Fig. 11. Burst score of the U.S. in 2015.
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APPENDIX

PROOFS

Proof for Theorem 1. Let p be any point in the CSPOT problem,
and r be the rectangular region of size a� b whose top-right
corner is located at p. A spatial object o is in r iff the corre-
sponding rectangle object g can cover p. Since the correspond-
ing o and g have the same creation time and weight, we can
derive that fðr;WcÞ ¼ fðp;WcÞ, fðr;WpÞ ¼ fðp;WpÞ, and thus
r and p have the same burst score. As a result, if the point pm
has the maximum burst score in the CSPOT problem, then rm
also has themaximumburst score in the SURGE problem.

Proof for Lemma 2.We have

SðpÞ ¼ a maxðfðp;WcÞ � fðp;WpÞ; 0Þ þ ð1� aÞfðp;WcÞ
� afðp;WcÞ þ ð1� aÞfðp;WcÞ ¼ fðp;WcÞ ¼ UsðcÞ:

Proof for Lemma 3. Let DSðpÞ, Dfðp;WÞ be the increase of
SðpÞ and fðp;W Þ after e happens, respectively. We assume
that no two events arrive at the same time. We discuss the
following three cases.

Case 1: e is New. For any point p that is covered by g, its
current score is increased by Dfðp;WcÞ ¼ g:w

jWcj. We
have DSðpÞ � Dfðp;WcÞ ¼ g:w

jWcj.
Case 2: e is Grown. For any point p that is covered by g, its

current score is decreased, i.e., Dfðp;WcÞ ¼ � g:w
jWcj,

and its past score is increased, i.e., Dfðp;WpÞ ¼ g:w
jWpj.

Thus, we can easily get DSðpÞ � 0.
Case 3: e is Expired. For any point p covered by g, its current

score is not affected, and its past score is decreased,
i.e., Dfðp;WpÞ ¼ � g:w

jWpj. Thus, we have DSðpÞ � að�
Dfðp;WpÞÞ ¼ a g:w

jWpj .

Since DSðpÞ � DUdðcÞ, we still have SðpÞ � UdðcÞ.
Proof for Lemma 4. We use D to denote the increase of the

score. We consider the following three cases.
Case 1: e:l is New. We have DSðc:pÞ ¼ g:w

jWcj if and only if g
can cover c:p and fðc:p;WcÞ � fðc:p;WpÞ > 0. In this case,
c:p still has the maximum burst score as DSðpÞ � g:w

jWcj for any
p in g (Lemma 3). Otherwise, it is possible that there exists a
point p0 in g with a larger increase such that p0 has a larger
burst score than c:p after g arrives.

Case 2: e:l is Grown. For any point p in g, the increase
DSðpÞ < 0. If g does not cover c:p, c:p’s burst score does not
change and it still has the maximum burst score. Otherwise,
c:p’s burst score is decreased and could be exceeded by a point
outside g.

Case 3:e:l is Expired. As shown in the proof for Lemma 3,
DSðpÞ � a g:w

jWcj for any p in g. We have DSðc:pÞ ¼ a g:w
jWcj if and

only if g can cover c:p and fðc:p;WcÞ � fðc:p;WpÞ > 0. In
this case, c:p still has the maximum burst score. Otherwise,
similar to Case 1, it is possible that there exists a point p0 in g
with a larger increase of burst score.

Putting these together, the lemma is proved.
Proof for Lemma 5. According to the definition of the burst

score, we have

Sðr2Þ ¼ a maxðfðr2;WcÞ � fðr2;WpÞ; 0Þ þ ð1� aÞfðr2;WcÞ
	ð1� aÞfðr2;WcÞ 	 ð1� aÞfðr1;WcÞ 	 ð1� aÞSðr1Þ:

Proof for Lemma 6. Since r1 and r2 are non-overlapping,
according to the definition of burst score, we have fðr1;W Þþ
fðr2;WÞ ¼ fðr1 [ r2;WÞ for either W 2 fWc;Wpg Then we
can easily get

maxðfðr1 [ r2;WcÞ � fðr1 [ r2;WpÞ; 0Þ
� maxðfðr1;WcÞ � fðr1;WpÞ; 0Þ
þmaxðfðr2;WcÞ � fðr2;WpÞ; 0Þ:

Thus, we have Sðr1 [ r2Þ � Sðr1Þ þ Sðr2Þ.
Proof for Theorem 3. Since the sizes of ropt and any cell are

both a� b, then ropt either overlaps with a cell or intersects
with four cells. We consider the following two cases.

Case 1: ropt Overlaps One Cell. Since we return the candi-
date with maximum burst score, we will return the bursty
region to users. The approximate ratio is 1.

Case 2: ropt Intersects with 4 Cells. Consider the example
shown in Fig. 12. Let the solid line rectangle be ropt. The four
dashed line rectangles are four cells which intersect with ropt.
According to Lemma 5, we have ð1� aÞSðroptÞ � Sðc1 [ . . .
[c4Þ. According to Lemma 6, we can derive that Sðc1 [ . . .
[c4Þ �

P
i2½1;4� SðciÞ. Since we report the cell with the maxi-

mum burst score, i.e., SðrÞ 	 SðciÞ for any i 2 ½1; 4�. Thus, we
have 1�a

4 SðroptÞ � SðrÞ.
Proof for Lemma 7. We show the approximation ratio is

tight by giving an example. Consider an instance in Fig. 13,
where c1; c2; c3 and c4 are cells in the grid, and the solid-line
rectangle ropt is the bursty region with the maximum burst
score. The white nodes are the spatial objects in window Wc

and the black nodes are inWp. We assume that o:w
jWcj ¼ o:w

jWpj ¼ 1

for each object o. The burst score for the region ropt is SðroptÞ ¼
a maxð4� 0; 0Þ þ ð1� aÞ4 ¼ 4. The burst score of cell ci is
SðciÞ ¼ amaxð1� 1; 0Þ þ ð1� aÞ ¼ 1� a, for any i 2 ½1; 4�.
Thus, the approximation ratio is tight.

Proof for Theorem 4. Since the MGAP-SURGE returns the best
result of found byAlgorithm 3, its approximation ratio is 1�a

4 .

Fig. 12. Proof for Theorem 3.
Fig. 13. A tight example.
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