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NCF: A Neural Context Fusion Approach to
Raw Mobility Annotation

Renjun Hu, Jingbo Zhou, Xinjiang Lu, Hengshu Zhu, Shuai Ma, and Hui Xiong

Abstract—Understanding human mobility patterns at the point-of-interest (POI) scale plays an important role in enhancing business
intelligence in mobile environments. While large efforts have been made in this direction, most studies simply utilize POI check-ins to
mine the concerned mobility patterns, the effectiveness of which is usually hindered due to data sparsity. To obtain better POI-based
human mobility for mining, in this paper, we strive to directly annotate the POIs associated with raw user-generated mobility records.
We propose a neural context fusion approach which integrates various context factors in people’s POI-visiting behaviors. Our approach
evaluates the preference and transition factors via representation learning. Notably, we incorporate an attention mechanism to deal
with the randomized transitions in raw mobility. The domain knowledge factors, i.e., distance, time and popularity, remain effective and
our approach further includes them from a data-driven perspective. Factors are automatically fused with a feed-forward neural network.
Furthermore, we exploit a multi-head architecture to enhance the model expressiveness. Using two real-life data sets, we conduct our
experimental study and find that our approach consistently outperforms the state-of-the-art baselines by at least 32% in accuracy.
Besides, we demonstrate the utility of the obtained POI-based human mobility with a POI recommendation example.

Index Terms—Raw mobility annotation; Point-of-Interest; neural network; business intelligence
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1 INTRODUCTION

HUMAN mobility is the movements of human beings
in space and time [1]. Based on people’s diverse em-

phases of movements, human mobility can be roughly clas-
sified into three categories: location-based, activity-based
and point-of-interest (POI) based. The location-based fo-
cuses on the space and time aspects [1], [2], [3], [4], and
the activity-based essentially explains the purposes behind
people’s moves [5], [6], [7], [8], both of them have greatly
enhanced our understanding of urban dynamics. Besides
the above two, effort has also been paid to the acquisition
of POI-based human mobility [9], [10], [11], i.e., people’s
movements between POIs. Intuitively, POIs contain rich
semantics and play an important role in mobile services
and business intelligence. Thus, POI-based human mobil-
ity not only is essential for mobility-related applications,
e.g., weekly mobility pattern identification [12], city plan-
ning [13], epidemic diffusion analysis [14] and resource
allocation [15] but also remains fundamental in POI-centric
tasks, such as POI and trajectory recommendations [16], [17]
and POI demand forecasting [18].

Check-in records are a good and off-the-shelf source of
POI-based human mobility [19], [20], [21], [17]. However,
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they are sparse by nature, from which the downstream
applications may suffer. For instance, the Foursquare data
set collected by [22] contains 227,428 check-ins of 1,083 users
in a span of ten months in New York City. Note that inactive
users who have less than 3 check-ins per week have already
been filtered out. Even though, each user still only has 0.675
check-in per day on average, which is far from enough for
recording our daily movements. Worse still, Wu and Li [10]
experimentally verifies that temporally sparse mobility may
not exhibit any significant transitional relationships. These
results affect the basis of sequential modeling for human
mobility recorded by check-ins.

To obtain better POI-based human mobility, in this paper
we study raw mobility annotation, aiming to directly anno-
tate the raw mobility records (i.e., user-generated timestamped
locations) with associated POIs. Observe that: (i) raw mobility
data can be collected with reasonable user participation by
various devices running some mobile services, e.g., Google
Maps or Yelp, and (ii) for any POI check-in, a raw mobility
record can be collected by simply ignoring the POI. In
this sense, raw mobility data is much easier to collect and
can track more time-resolved individual locations compared
with check-ins. Moreover, direct annotation could help to
alleviate the noise introduced by fake check-ins [23]. There-
fore, proactive acquisition of POI-based human mobility
from user-generated timestamped locations can provide
both densely-sampled trajectories and reliable semantics to
support numerous potential applications.

This task also remains challenging since individuals’
POI-visiting behaviors are influenced by various complex
contexts and turn out to be more stochastic. More specifi-
cally, raw mobility records are usually more adequate than
check-ins. This enables and requires a better exploitation of
personal preferences for visiting POIs. The work in [9] sim-
ply counts the number of previous visits from a user at a POI
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to model preference, which might suffer greatly from data
sparsity. While [10] proposes to enforce category-level con-
sistency in spatially- and temporally-close mobility records,
which is a very strong assumption. Thus, these strategies
are insufficient to support raw mobility annotation. Also
observe that preferences for POIs are mutually influenced
between people, which has been largely ignored in earlier
work. Second, transitional patterns, i.e., sequential patterns
of movements, are very likely to exhibit certain randomness
in raw human mobility, instead of being strictly sequential.
For instance, people might visit other POIs within their rou-
tine transitional patterns. Such randomized effect should be
considered. Last but not the least, the influence of distance,
time and POI popularity ought to be properly incorporated.
These basic factors play a decisive role in our daily POI-
visiting behaviors.

However, none of existing solutions [9], [10], [11] inte-
grate all the above visiting contexts. Worse still, they model
the complex contexts in simple ways, ignore the randomized
effect of raw mobility, and combine contexts in pre-defined
manners. To this end, we propose a Neural Context Fusion
approach, namely NCF, to tackling raw mobility annotation.
It enables to capture the complex preference and transition
structures at the fine-grained user, POI, and region levels.
Moreover, it learns to fuse various key context factors in
POI-visiting behaviors in an end-to-end data-driven man-
ner. To the best of our knowledge, NCF is the first neural
model for mobility annotation.

To be specific, NCF first derives the preference factor via
representation learning (RL). RL refers to the technique of
embedding data points into low-dimensional hidden spaces.
It can effectively reveal the hidden structures in original
data, e.g., the preference relationships between user and
POI, and has already been exploited for human mobility
analysis [17], [19], [24]. For each user or POI, NCF learns
a vector in a hidden space such that a pair of user and
POI vectors are placed close if the user has preference for
the POI. By this, user vectors can encode people’s distinct
preferences for POIs. As a side effect, RL also provides a
natural way for mutual preference influence through vector
manipulations in the hidden space.

From a transitional point of view, we notice that the
previous mobility records also offer clues for mobility anno-
tation, i.e., how likely someone visits a POI given the places
she/he stays earlier. Since raw mobility data only track
locations, we assign locations to road-segmented regions
for learning transitional patterns. The reasons are two-fold.
First, regions can be easily incorporated in the RL frame-
work. Second, the functionality of regions can well encode
transitional patterns, e.g., residence-to-work. Regions are also
embedded in the same hidden space as users and POIs.
Based on region vectors, NCF derives two transition factors
from the POI and user perspectives, respectively. Also recall
that transitions in raw mobility are randomized. In other
words, each of the previous regions may have a direct
impact on the current visited POI. We adopt an attention
mechanism [25] to capture such randomness. It automati-
cally determines an importance weight of each region and
computes a weighted sum of region representations, which
ensures the direct impact of each region.

The remaining distance, time and popularity factors are

Table 1
Descriptions of mathematical notations

Notation Description
x = (l, t) Mobility record of location l and time stamp t
Tu Trajectory of user u, Tu = [x1, x2, . . . , xL]
Tu[i, j] Sub-trajectory [xi, . . . , xj ] of Tu

ξD , ξT , ξS Distance, temporal closeness and spanning thresholds
Ru

t Set of regions user u visits before time stamp t
H , h Total number of heads and a specific head
u, u(h) User and user embedding in the h-th head
p, p(h) POI and POI embedding in the h-th head
r, r(h) Region and region embedding in the h-th head

MLP(h)(·) Multilayer perceptron function in the h-th head
a(h)(·, ·) Attention mechanism in the h-th head

inspired by domain knowledge, i.e., people tend to visit
POIs that are close to their locations, active at the visit time
and popular among people. These three factors are data-
driven in our approach. Inspired by data statistics, we adopt
an exponentially-decayed function to evaluate the distance
factor. While the time and popularity factors are estimated
from map search query data, i.e., timestamped search logs
from users to POIs on map services, due to the better POI
coverage compared with POI visit data.

All the above factors are fed into a feed-forward fusion
neural network to compute the visit probabilities of candi-
date POIs. Moreover, NCF exploits a multi-head architecture
such that each head evaluates an independent set of RL
factors. Such an architecture is believed to enhance the
expressive power of NCF, as it can learn a distinct POI-
visiting pattern in each head.

To sum up, our main contributions are as follows:
(1) We investigate the raw mobility annotation problem to

overcome the limitation of POI check-in data.
(2) We propose a neural context fusion (NCF) approach. It

integrates various key context factors in people’s POI-
visiting behaviors and is equipped with a context fusion
neural network and a multi-head architecture.

(3) We evaluate NCF using two real-life data sets. We
find that NCF significantly outperforms the state-of-the-
art baselines by at least 32% in accuracy and remains
efficient. Moreover, both the context factors and the
multi-head architecture enhance the effectiveness.

(4) We demonstrate the utility of POI-based human mobil-
ity with a POI recommendation example. We show that,
even using a very simple recommendation strategy, the
annotated POIs by NCF can substantially promote the
recommendation accuracy by at least 11.2%.

The rest of the paper is organized as follows. Section 2
introduces raw mobility preprocessing and formalizes the
problem. Our NCF approach is described in Section 3. We
present the experimental study in Section 4, followed by re-
lated work in Section 5 and concluding remarks in Section 6.

2 RAW MOBILITY PREPROCESSING

Raw human mobility cannot be directly annotated as a
fraction of records are produced when people are in moving
status. In this section, we introduce how to preprocess raw
human mobility for annotation and formalize our problem.
The notations used in this paper are listed in Table 1.
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Figure 1. An example of raw mobility annotation, where points in green
and red denote staying and moving mobility records, respectively, and
each dashed circle represents a stay.

Let a mobility record x = (l, t) be a pair of location l
(latitude and longitude) and time stamp t. Let U and P be
the sets of users and POIs, respectively.
Definition 1 (Trajectory). A trajectory Tu of user u ∈ U is a

sequence of ordered mobility records generated by user
u, i.e., Tu = [x1, x2, . . . , xL], where L is the length of Tu
and the time stamps satisfy t1 < t2 < · · · < tL.

We introduce a notion of stay to distinguish between
mobility records that can or cannot be annotated with POIs.
Let Tu[i, j] = [xi, . . . , xj ] (1 ≤ i < j ≤ L) denote a sub-
trajectory of Tu. And we say a sub-trajectory is a stay if
all mobility records included are spatially and temporally
close and last long enough. In this case, the corresponding
mobility records are very likely to be associated with a POI
where the user visits when generating these records.
Definition 2 (Stay). Given distance, temporal closeness and

spanning thresholds ξD , ξT and ξS , sub-trajectory Tu[i, j]
is a stay if (a) dist(lk, lij) ≤ ξD holds for all i ≤ k ≤ j,
where lij is the mean of {li, . . . , lj}, (b) tk+1 − tk ≤ ξT
holds for all i ≤ k ≤ j − 1, and (c) tj − ti ≥ ξS .

Intuitively, distance threshold ξD provides tolerance for
positioning errors of daily use devices, temporal closeness
threshold ξT is the typical amount of time within which
people can complete a visit to a POI, and, finally, spanning
threshold ξS is the amount of time that we can assure a POI
visit by someone with high confidence. We next illustrate
these concepts with an example.
Example 1. Figure 1 gives a trajectory Tu of user u collected

in one day. Assume the diameter of circles in Fig. 1 is
200 meters, ξD = 200 meters, ξT = 2 hours and ξS = 10
minutes. We have the following.
• Sub-trajectories Tu[1, 2] and Tu[11, 12] are stays since

the included mobility records are spatially and tempo-
rally close and span longer than the spanning threshold.

• Despite the distance and spanning time, x6–x9 belong
to two stays Tu[6, 7] and Tu[8, 9] since x7 and x8 are not
temporally close (i.e., t8 − t7 > ξT ). Note that user u
might visit other POIs during 10:00 AM and 2:30 PM.

• Spatiotemporal points x3, x4, x5 and x10 are moving
mobility records. They do not belong to any stays due
to the distance constraint.

Similar to the stay point detection algorithm in [26], we
can identify a set of non-overlapping stays from each Tu in
O(L) time. The main idea is to enumerate a mobility record
(say xi) and find the longest sub-trajectory Tu[i, j] satisfying
the conditions of a stay. If that sub-trajectory does not exist,

turn to xi+1. Otherwise, identify Tu[i, j] as a stay and start
with xj+1. It is easy to verify that the above process only
needs to scan through the trajectory once.

In most cases, the identified stays are associated with
POIs. For instance, Tu[1, 2] in Fig. 1 is generated when u is at
home, Tu[6, 7] and Tu[8, 9] are annotated with the company,
and Tu[11, 12] corresponds to a bar. We thus (i) estimate
various context of stays and further (ii) fuse these context
factors to (iii) guide stay annotation with the corresponding
POIs (the details will be described in Section 3). We then
obtain the POI-based human mobility, which can facilitate
a broad range of applications. It is noteworthy that, for a
specific setting of the thresholds, the POIs that are annotated
to mobility records might have some bias, e.g., convenience
stores are probably excluded if ξS is set to 10 minutes.
Formally, our problem is as below.
Problem 1 (Raw Mobility Annotation). Given a trajec-

tory Tu, raw mobility annotation is to identify a set
S = {Tu[i, j]} of stays from Tu and annotate a POI
p ∈ P to each Tu[i, j] such that user u visits POI p when
generating the mobility records included in Tu[i, j].

3 A NEURAL CONTEXT FUSION APPROACH

In this section, we introduce our neural context fusion (NCF)
approach to tacking the problem. We first present the frame-
work overview, then illustrate the exploited context factors
and, finally, specify the training and inference procedures.

3.1 Framework Overview
Our NCF attacks the annotation problem by evaluating the
visit probability of each POI near the stay location. Once
all nearby POIs are processed, the POI with the highest
visit probability is then annotated to the stay. Unlike crowd-
level human mobility that has universal governing rules [3],
individuals’ mobile behaviors are influenced by various
complex contexts and turn out to be more stochastic. Ac-
cordingly, NCF integrates various context factors to estimate
visit probabilities. The framework overview of NCF is illus-
trated in Fig. 2. It takes as input (a) a user u ∈ U , (b) the
location l and time stamp t of a stay Tu[i, j] (where l is the
mean of {li, . . . , lj} and t = (ti + tj)/2), (c) a set Rt

u of
regions where user u stays before time stamp t, and (d) a
candidate POI p ∈ P , and outputs the probability that u is
visiting p when staying at location l and time stamp t.

Our NCF first looks up the embeddings of user u, can-
didate POI p and regions r ∈ Rt

u. Based on the candidate
POI p, the region embeddings are aggregated together with
an attention network. It then derives three representation
learning (RL) factors via evaluating the pairwise inner prod-
ucts of the user, POI and aggregated region embeddings.
To obtain better expressive power, a multi-head architec-
ture [27] is further exploited in NCF. Each head computes
an independent set of RL factors. Such process is repeated
for H times, resulting in a total of 3H RL factors. By doing
so, NCF can learn a distinct visiting pattern in each head.
In addition, NCF incorporates another three data-driven do-
main knowledge factors. Finally, with a feed-forward fusion
network, NCF learns to automatically fuse these factors to
compute the visit probability of a POI given the stay.
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Figure 2. Framework overview of NCF

3.2 Representation Learning Factors

We next explain the details of deriving RL factors in the h-
th (1 ≤ h ≤ H) head. Note that all operations are the same
across different heads except that each head learns its own
embedding and model parameters.

The first RL factor evaluates the preference between
users and POIs. Assume the dimensionality of NCF is d.
Basically, NCF embeds all users and POIs in a hidden
space Rd and computes the preference of a user to a POI
as the inner product of the corresponding user and POI
embeddings. Formally, the preference factor F (h)

pref (u, p) of
user u and candidate POI p in the h-head is as follows:

F
(h)
pref (u, p) = MLP(h)(u(h))TMLP(h)(p(h)), (1)

where u(h) and p(h) are the embeddings of u and p in the h-
th head of NCF, respectively, and MLP(h) is a head-specific
multilayer perceptron (MLP) that performs a non-linear
transformation. The MLP is introduced for two reasons:
(a) to distinguish between embeddings used for evaluating
context factors here and evaluating attention weights later,
and (b) to prevent our model from overfitting via leveraging
an MLP in conjunction with dropout [28]. We adopt an MLP
with two layers of adaptive weights:

MLP(h)(x) = tanh(W
(h)
2 tanh(W

(h)
1 x + b

(h)
1 ) + b

(h)
2 ). (2)

MLP(h) learns two adaptive weight matrices W(h)
1 ,W

(h)
2 ∈

Rd×d and two bias vectors b
(h)
1 ,b

(h)
2 ∈ Rd. That is, the

transformation is shared for all users and POIs in the same
heads, while different heads exploit different transformation
parameterized by their own matrices and biases.

In addition to users and POIs, NCF also embeds regions
in the hidden representation space. Regions, especially those
road-segmented ones, usually exhibit certain functionalities
that meet people’s different needs of socioeconomic activ-
ities [29]. In this sense, they also provide clues from the
transitional perspective for raw mobility annotation. For
instance, a person is in general more likely to visit an office
building than a hotel if she/he was found in a residential
area earlier. By further learning region representations, NCF
incorporates the user- and POI-based transitional relation-
ships that evaluate how likely user u transfers from previous
regions to the candidate POI.

Recall that Rt
u is the set of regions visited by user u

before time stamp t. From the transitional perspective, a can-
didate POI p is likely to be visited if the transition rates from
regions r ∈ Rt

u to p are high. The simplest way to achieve
this is to evaluate the average inner product between region
embeddings r of r ∈ Rt

u and POI embedding p. In this way,
each region is assigned an equal weight for POI p, which
is usually not the true case in practice. Alternatively, we
can derive a sequence of regions based on the stay time
at regions r ∈ Ru. This can lead to a sequential model
assuming that user u visits these regions sequentially and,
because of that, finally visits POI p. However, sequential
modeling is too restrict for raw mobility analysis, both due
to the incompleteness of the recorded raw mobility data and
the randomized effect in human mobility.

To address the above two issues, our NCF approach
adopts an attention mechanism, as shown in the lower right
of Fig. 2. An attention function takes a query and a set of
values as input and outputs a query-aware weighted sum
of the values [27]. By treating candidate POI p as the query
and regions in Rt

u as values, the attention function lets
POI p decide the regions from which the transition starts.
Formally, we assign each region r ∈ Rt

u a distinct weight
automatically determined by candidate POI p and region r
themselves. Afterward, we compute an aggregated region
embedding r̂tu as the attention output:

r̂t(h)u =
∑

r∈Rt
u

a(h)(p(h), r(h))∑
r′∈Rt

u
a(h)(p(h), r′(h))

r(h). (3)

Here a(h)(, ) is the attention mechanism in the h-th head
which determines the weights of r(h). These weights indi-
cate the importance of regions to POI p. In other words,
the attention mechanism decides to which regions POI p
should pay attention. In this study, we adopt the simple
dot-product attention mechanism [27]. It first performs a
shared transformation on POI and region embeddings and
then computes their dot-product as the attention weight:

a(h)(p(h), r(h)) = MLP
(h)
attn(p

(h))TMLP
(h)
attn(r

(h)). (4)

Note that MLP
(h)
attn is another head-specific 2-layer MLP,

which is the same to MLP(h) in Eq. (2) except for adopting
a ReLU (Rectified Linear Unit) nonlinearity and learning its
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Figure 3. Distribution of distance between stay locations and POIs

own parameters. ReLU(x) = max(0, x) is defined as the
positive part of its argument and has been demonstrated to
enable better training of deep networks. In this way, MLP(h)

and MLP
(h)
attn can distinguish between embeddings used for

evaluating context factors and attention weights.
We then derive the POI-based transition context factor

F
(h)
pbtr(Rt

u, p) as the inner product between the aggregated
region embedding and the POI embedding:

F
(h)
pbtr(Rt

u, p) = MLP(h)(r̂t(h)u )TMLP(h)(p(h)). (5)

This can be interpreted in a way that each region performs
a direct transition to POI p and the overall region-POI
transition is a weighted sum of these direct transitions.

Similarly, we further derive the user-based transition con-
text factor F

(h)
ubtr(Rt

u, u) based on the aggregated region
embedding and user embedding:

F
(h)
ubtr(Rt

u, u) = MLP(h)(r̂t(h)u )TMLP(h)(u(h)). (6)

Note that “attentioned” by candidate POI p, the aggregated
region embedding is mainly contributed by regions that
have high transition rates to POI p. Here the user-based
transition factor verifies the weighted transition from user
perspective, i.e., whether user u is highly-related to these
contributing regions of POI p.

Remarks. (1) We have tried sequential modeling for NCF
by equipping a positional encoder in the attention [27],
and found it rarely leaded to improvement. This indicates
that strictly sequential modeling is not necessary for raw
mobility and, hence, verifies the randomized effect for raw
human mobility. For the sake of simplicity, we only consider
the direct transitions from earlier regions. (2) Technically,
NCF can take any number of regions around the annotated
one as input. However, many real-life applications (e.g.,
recommendation) require to annotate mobility records once
they are generated, which means there only exist previous
regions. Besides, it is desired to keep the inference compo-
nent light-weight and avoid introducing noises by unrelated
regions. Hence, we finally choose to use a small number,
e.g., 10, of the most recent previous regions as Rt

u.

3.3 Domain Knowledge Factors
The remaining three context factors in NCF are inspired by
domain knowledge. Essentially, these factors give biases to
POIs that are close to location l, active at time stamp t and
popular among people in general. We exploit a data-driven
strategy to estimate these factors.

First, the distance context factor Fdist(p, l) captures the
spatial preference that people are more likely to visit POIs
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Figure 4. The number of hourly map queries for POI activeness

nearby. It is usually achieved by an exponentially decayed
function w.r.t. distance. However, the decay rate varies in
different formulas, e.g., linear in [10] and squared in RBF
kernel [30]. To determine an appropriate formula, we collect
the statistics of distance between people’s stay locations
and visited POIs on our BEIJING and NYC data (refer to
Section 4 for data set details). The density distribution is
reported in Fig. 3. Note that the y-axis is log-scaled and
there is an obvious linear correlation between the distance
and the density on both data sets. We hence adopt an
exponential function with a negative exponent weight for
linear distance, the same to the node potential in [10]:

Fdist(p, l) = exp(−φ · dist(l, p)), (7)

where dist(l, p) is the distance (in meter) between stay
location l and POI p and φ > 0 is a decaying parameter.
A relatively low φ is preferred if the positioning accuracy
is low and vice versa. In practice it suffices to choose a φ
within [0.001, 0.05]: Fdist(p, l) halves every (693, 14) meters
with φ = (0.001, 0.05), respectively.

Similarly, the time factor captures the temporal prefer-
ence that users are more likely to visit POIs that are active
at the stay time. This calls for a metric to evaluate the
activeness of POIs at different time. Basically, we can use
the number of visits. However, large-scale visit record data
is usually hard to obtain, and check-ins are highly biased
to certain types of POIs such as scenic spots. On the other
hand, obtaining map search query data is much easier, and
there is a strong correlation between map queries and POI
visits [31]. To further verify this, we collect and report the
map search query statistics of four typical POIs in Fig. 4. As
shown, such map search query statistics are a good proxy
of POI activeness. Notably, the selected restaurant is famous
for its supper, and its highest activeness in the evening is
also well reflected by the map search query data in Fig. 4(a).
The peak time of the hospital, SOHO and shopping mall
occurs at 7 AM, 9 AM and 10 AM, respectively, which also
conforms to real-life cases. Hence, we use the number of
map search queries to evaluate the POI activeness. More
specifically, let Qp,k denote the number of map queries of
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POI p in time slot k ∈ {1, . . . , T} of a day. The correspond-
ing activeness Ap,k is then estimated by smoothing Qp,k

with a log operator and a constant bias and normalizing:

Ap,k =

{
0, if maxk′ Qp,k′ = 0;

log(Qp,k+1)
log(maxk′ Qp,k′+1) , otherwise.

(8)

The time context factor Ftime(p, t) = exp(Ap,k(t)) favors
those active POIs, where k(t) is the corresponding time slot
of time stamp t.

The selection of time slot duration involves a tradeoff be-
tween accuracy of POI activeness and sparsity of map search
queries. Time slots of shorter duration, e.g., in minutes, can
record finer-grained POI activeness, but require more map
search query data. In this study, we consider two-hour time
slots, i.e., T = 12. Note that two hours is a reasonable length
of time for most POI visit purposes.

Finally, the popularity context factor Fpopu(p) captures
people’s visiting preference for popular POIs. It is also eval-
uated from map search query data as popular POIs usually
have more map queries: Fpopu(p) = log

(∑
kQp,k + 1

)
.

Once the distance, time and popularity factors are eval-
uated for all stays and their candidate POIs (the top-100
nearest POIs around the stay location), we perform a Z-
score normalization on each of the three factors. This is
to alleviate the possible influence of different scales of the
domain knowledge context factors.

3.4 Training and Inference with Context Fusion
We finally present the training and inference procedures
with context fusion. For each candidate POI p of a stay of
user u at location l and time stamp t, NCF evaluates the
context factors as stated in above and concatenates these
factors into a factor vector f in a pre-defined order:

f = [F
(1)
pref (u, p), F

(1)
pbtr(Rt

u, p), F
(1)
ubtr(Rt

u, u),

. . . ,

F
(H)
pref (u, p), F

(H)
pbtr(Rt

u, p), F
(H)
ubtr(Rt

u, u),

Fdist(p, l), Ftime(p, t), Fpopu(p)].

(9)

The factor vector is then fed into a feed-forward fusion
network to derive the un-normalized visit probability. We
adopt an MLP with three layers of adaptive weights and
applying the ReLU nonlinearity for context fusion:

Pr(u, l, t, p) = W3ReLU(W2ReLU(W1f +b1) +b2), (10)

where W1 ∈ Rd×(3H+3), W2 ∈ Rd×d, W3 ∈ R1×d and
b1,b2 ∈ Rd are the learnable parameters.

We train our NCF with all stays whose ground-truth vis-
ited POIs are included in the top-100 most nearest candidate
POIs. For each training stay, let ŷ be the vector consisting of
the visit probabilities of all candidate POIs and y be the
corresponding one-hot vector of the index of the ground-
truth POI. We then minimize the cross-entropy loss between
y and softmax(ŷ). For inference, we compute the visit prob-
abilities with our NCF for all candidate POIs. Afterward,
a stay is assigned the POI p whose visit probability is the
highest among all candidates.

Remarks. In this work, we choose a supervised setting
for raw mobility annotation. The advantages are as follows.

Table 2
Data set statistics

Description # of stays # of users # of POIs # of regions
BEIJING 436,728 26,917 1,341,663 62,534

NYC 146,325 1,083 318,162 45,935

First, we can better exploit the the preference context be-
tween users and POIs, which plays a very important role in
raw mobility annotation. Second, we can develop an expres-
sive neural model and train it in an end-to-end manner. As a
result, our NCF is very suitable for dealing with annotation
scenarios when mobility records are generated within areas
with extremely dense POI layout. In practice, there exist
a number of ways to collect labels to ensure supervised
learning. For instance, we can collect users’ check-ins to
POIs as labels or we can exploit an easy-first strategy such
that we derive some seed labels by annotating the easy
stays, e.g., those having very few candidate POIs.

4 EXPERIMENTS

In this section, we present an experimental study of our NCF
approach. Using two real-life data sets, we conduct six sets
of experiments to evaluate: (a) the overall effectiveness for
raw mobility annotation, (b) the effectiveness of the different
components in NCF, (c) the efficiency, (d) the parameter
sensitivity, (e) the utility of the obtained POI-based human
mobility, and (f) the effectiveness for unseen users.

4.1 Experimental Setups
We first introduce the settings of the experimental study.

Data sets. We chose two data sets to test our model.
(1) BEIJING was obtained from a third-party map service

platform and was produced based on the POI data, road-
segmented region data, and anonymous map search query
and raw mobility records during July, 2018 in Beijing. Stays
were identified from raw mobility records with ξD , ξT and
ξS set to 200 meters, 2 hours and 10 minutes, respectively
(Section 2). Ground-truth visited POIs were determined (i)
with an empirical rule combining both mobility and map
search query data and (ii) by human experts. We finally
removed stays without annotated POIs.

(2) NYC was produced based on a public Foursquare
check-in data set collected from April 12, 2012 to February
16, 2013 [22]. Since the check-in locations were very close to
the visited POIs, following [10], we injected noises drawn
from a uniform distribution (µ = 0, δ = 0.0002) to the
check-in locations. We also collected the basic POI infor-
mation and the numbers of likes to POIs with Foursquare
developers APIs.1 Note that the latter was used to estimate
the popularity context factor. Due to the quota limitations
of APIs, we were unable to obtain the POI activeness data.
Hence, we did not use the time factor on NYC. Regions
were derived based on the road network downloaded from
NYC Open Data.2 We finally filtered out the check-ins not
within any regions and treated each remaining as a stay. We
will release our NYC data in the future.

1. https://developer.foursquare.com/
2. https://data.cityofnewyork.us/City-Government/NYC-Street-

Centerline-CSCL-/exjm-f27b
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Table 3
Accuracy (Acc) comparison with different fraction f of training data

Data set Method 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg.

BEIJING

Dist 0.0678 0.0678 0.0678 0.0678 0.0681 0.0675 0.0675 0.0676 0.0673 0.0677
HMM 0.1287 0.1603 0.1820 0.1967 0.2094 0.2187 0.2270 0.2354 0.2434 0.2002
LTR 0.2760 0.3294 0.3554 0.3675 0.3790 0.3899 0.3934 0.3961 0.4065 0.3659
MRF 0.2142 0.2819 0.3245 0.3571 0.3804 0.3985 0.4149 0.4286 0.4414 0.3602
GE 0.2212 0.3072 0.3411 0.3583 0.3662 0.3720 0.3770 0.3797 0.3817 0.3450

NCF(3) 0.3853 0.4229 0.4491 0.4829 0.4984 0.5053 0.5284 0.5343 0.5452 0.4835

NYC

Dist 0.2683 0.2681 0.2678 0.2687 0.2683 0.2680 0.2671 0.2709 0.2666 0.2682
HMM 0.2811 0.2966 0.3132 0.3307 0.3465 0.3589 0.3708 0.3823 0.3914 0.3413
LTR 0.3939 0.4194 0.4252 0.4484 0.4580 0.4522 0.4712 0.4764 0.4896 0.4483
MRF 0.2984 0.3681 0.4188 0.4620 0.4927 0.5230 0.5429 0.5652 0.5810 0.4725
GE 0.3677 0.3387 0.3394 0.3377 0.3421 0.3414 0.3368 0.3414 0.3398 0.3428

NCF(3) 0.6120 0.6728 0.7192 0.7520 0.7664 0.7797 0.7981 0.8061 0.8133 0.7466
The standard deviations of all reported Acc are less than 0.03, and NCF(3) significantly outperforms other baselines at the 0.01 level, paired t-test.

For both data sets, we randomly split f of stays for train-
ing and used the rest stays for testing, i.e., stay-level split.
If validation was required, 10% of the training data was left
out and used for validation. Table 2 lists the statistics of
our BEIJING and NYC data. It is noteworthy that both our
data sets are essentially based on map and trip services,
and the results of our experimental study should be better
interpreted under this specific situation.

Metric. We adopted the accuracy (Acc) metric to evaluate
the effectiveness, which is the ratio of the number Nca of
correctly annotated test stays to the number Nall of all test
stays: Acc = Nca/Nall.

Algorithms. We compared our NCF approach with the
following baselines and variants of NCF.

• Dist utilizes spatial information only and annotates
each stay to the nearest POI around the stay location.

• HMM trains a hidden Markov model to learn transition
relationships between POI categories [11]. After deriv-
ing the most likely category, it then annotates a stay to
the nearest POI of that category.

• LTR is a learning to rank model, which trains a Lamb-
daMART model to rank POIs near a location [9]. It
then uses the top-1 ranked POIs for annotation. We
re-implemented six of the nine features originally de-
veloped in [9], excluding Creator, Mayor and Friends-
Here-Now since they are not available in our data.

• MRF constructs a Markov random field and annotates
each stay with a POI via minimizing the energy [10]. It
captures personal preferences by enforcing consistency
in spatially- or temporally-close stays. For fairness, we
used the supervised version provided by the authors.

• GE is a classic non-sequential approach to location rec-
ommendation [17]. It constructs four graphs and learns
POI, region and time embeddings via preserving graph
structures. It finally evaluates the inner product of the
corresponding embeddings for annotation.

• DKF is a simplified version of NCF, which only fuses
the domain knowledge factors with the fusion network.

• NCF(H) the H-head version of NCF.

Implementations. We implemented the variants of NCF
in Python and used the Adam optimizer with a batch size
of 256. The learning rate γ increased in the first warmup
steps and then decreased [27], i.e., γ = 3 · d−0.5 ·min{step ·
warmup−1.5, step−0.5}, where step denoted the step num-
ber and warmup was fixed to 1000. We employed three

types of regularization to prevent overfitting: (a) an L2

regularization with λ = 5×10−4 on all trainable embedding
and model parameters, (b) a dropout after each dense layer
of MLPs (except for the last layer of the fusion network),
and (c) an early stopping if the Acc on validation set did
not increase in successive 5 epochs. The dropout probability
Pdrop was chosen based on the fraction f of training stays,
i.e., a high Pdrop = 0.6 for f ≤ 30%, a low Pdrop = 0.2 for
f ≥ 70%, and a median Pdrop = 0.4 otherwise. Parameter φ
was fixed to a moderate 0.005. Finally, we set the number H
of heads, the number Nr of regions in Rt

u and the number
d of dimensions to 3, 10 and 64 by default, respectively. We
will test the parameter sensitivity in our experiments.

The LTR approach was implemented with the Java
RankLib3 library. We trained 2,000 trees, used the Z-score
normalization on features, applied an early stop after 20
rounds without performance gain on validation set, and
fixed the shrinkage parameter to 0.3 if f ≤ 60% and 0.2
otherwise. The rest algorithms were implemented in C++
following their recommended settings.

All experiments were conducted on a workstation with
Intel Xeon 2.0GHz CPUs, 200 GB of main memory and Tesla
P40 GPUs. When quantity measures were evaluated, the test
was repeated over 5 times using different train-test splits
and the average result was reported.

4.2 Experimental Results
We next present our experimental results.

Exp-1: Effectiveness comparison. In the first set of ex-
periments, we evaluate the overall effectiveness of NCF and
the five baselines for raw mobility annotation. We consid-
ered the multi-head version of our approach, i.e., NCF(3). To
ensure a comprehensive comparison, we varied the fraction
f of training stays from 10% to 90%. The resulting Acc of
all tested approaches are reported in Table 3. Note that each
Acc is the average result of five tests.

Overall, considering more visiting context information
can generally promote the effectiveness of raw mobility an-
notation. Observe that the transition relationships between
POI categories has already substantially improved the Acc
of HMM compared with the spatial-only Dist approach.
Moreover, the more complex contexts considered by LTR,
MRF, and GE make the three approaches further better than
both Dist and HMM.

3. https://sourceforge.net/p/lemur/wiki/RankLib/
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Figure 5. Ablation study (a)–(f) and efficiency evaluation (g)–(h)

The average effectiveness of LTR and MRF are compara-
ble on BEIJING and NYC. However, their performance gap
varies with f : LTR works better than MRF given limited
training data, e.g., f ≤ 30% while MRF outperforms LTR
when f ≥ 50%. This is because LTR trains a unified
model for all users together while MRF learns to capture
the distinct POI-visiting pattern of each individual. The
personalized pattern learning mechanism of MRF becomes
more effective with the increment of f .

Raw mobility annotation bears some similarity to lo-
cation recommendation and the location recommendation
approach GE can also annotate mobility records after some
minor revision. However, GE only considers the complex
co-occurrence-based contexts between POI, region and time
while ignores other basic contexts such as distance and POI
popularity. As a result, GE has an inherent limitation, es-
pecially on NYC, compared with other annotation methods
such as LTR and MRF.

Finally, our NCF approach which fuses various contexts
significantly outperforms all baselines at the 0.01 p-value
level (paired t-test) on both BEIJING and NYC. Indeed
the Acc of NCF(3) is on average (614%, 142%, 32%, 34%,
40%) and (178%, 119%, 67%, 58%, 118%) higher than (Dist,
HMM, LTR, MRF, GE) on BEIJING and NYC, respectively.
Such improvement demonstrates that context fusion is an
effective tool for raw mobility annotation.

Exp-2: Ablation study. In the second set of experiments,
we present an ablation study to evaluate the effectiveness of
the domain knowledge factors, the representation learning
factors and the multi-head architecture of NCF. Again, the
fraction f was varied from 10% to 90%.

Exp-2.1: Domain knowledge factors. To evaluate the effec-
tiveness of domain knowledge factors, we tested and com-
pared the Acc of DKF with LTR, MRF and GE. The results
are reported in Figs. 5(a) & 5(b). We omitted Dist and HMM
due to their low Acc reported in Table 3.

When varying f , the Acc of LTR, MRF and GE increase
with the increment of f , except for GE on NYC. Note that

GE simply uses the visited POIs to represent users, which
might be inaccurate given the long spanning time of NYC.
Differently, DKF can learn to effectively fuse the domain
knowledge factors for raw mobility annotation given very
limited data. This property makes DKF better than other
tested methods when f ≤ 40% on both data sets. In
summary, the domain knowledge factors can successfully
identify some general patterns for raw mobility annotation.

Exp-2.2: Representation learning factors. To evaluate the ef-
fectiveness of representation learning factors, we tested and
compared the Acc of DKF and NCF(1). The results are
reported in Figs. 5(c) & 5(d).

When varying f , the Acc of NCF(1) is consistently higher
than DKF on both data sets. The gap of Acc also increases
with the increment of f . Overall, compared with DKF, our
representation learning factors increase the Acc by 27.5%
and 44.7% on average on BEIJING and NYC, respectively.

Exp-2.3: Multi-head architecture. To evaluate the effective-
ness of the multi-head architecture, we tested and compared
the Acc of NCF(1) and NCF(3) reported in Figs. 5(e) & 5(f).

When varying f , the multi-head architecture promotes
the effectiveness of our NCF approach in almost all cases in
our tests, except for f = 20% on BEIJING. The improvement
is more significant on NYC (4.12% on average) than BEIJING
(1.47% on average). Recall that the NYC data spans for a
longer time than BEIJING and the POI-visiting patterns on
NYC are very likely to be more complex accordingly. As
a consequence, the multi-head architecture introduces more
performance gain on NYC.

Exp-3: Efficiency comparison. In the third set of tests, we
evaluate the overall efficiency of NCF. We tested the running
time of DKF, NCF(1) and NCF(3) as well as baselines LTR,
MRF and GE, with f varied from 10% to 90%. Similar to
Exp-2.1, Dist and HMM are omitted due to their effective-
ness. The results are reported in Figs. 5(g) & 5(h).

When varying f , the running time of GE decreases while
the ones of other approaches increase with the increment of
f . Note that the number of samples trained by GE is fixed
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Figure 6. Parameter sensitivity (the left and right y-axes of Figs. 6(a)–6(c) correspond to the Acc on BEIJING and NYC, respectively)

and it costs less time on inference with larger f . Except for
GE, DKF runs the fastest, followed by NCF(1), NCF(3), LTR
and MRF, respectively. Our compete NCF(3) is still faster
than the rest two mobility annotation approaches LTR and
MRF. Indeed, the running time of (DKF, GE, NCF(1), LTR,
MRF) is on average (0.15, 0.33, 0.52, 2.28, 5.57) and (0.10,
0.46, 0.51, 1.60, 21.03) times of the running time of NCF(3)
on BEIJING and NYC, respectively.

Exp-4: Parameter sensitivity. In the fourth set of experi-
ments, we evaluate the parameter sensitivity of NCF. Fixing
f to 50%, we tested the impacts of the number H of heads,
the number Nr of regions and the number d of dimensions.
In each experiment, we varied the tested parameter while
fixed others to their default values.

Exp-4.1: Impacts of H . To evaluate the impacts of the
number H of heads, we varied H from 1 to 6 and tested
the Acc and running time reported in Figs. 6(a) & 6(d).

When varying H , the Acc of NCF(H) first increases with
the increment of H when H ≤ 4, due to the enlarged model
expressiveness. Further increasing H , the Acc might slightly
decrease. In these cases, our NCF(H) tends to be overfit with
superabundant parameters. It turns out that a moderate H ,
e.g., 3 or 4, is reliable for enhancing the expressive power.
With larger H , the model has a potential to learn more, but
there is also a risk of overfitting.

When varying H , the running time increases with the
increment of H reasonably. Indeed, the running time with
H = (2, 3, 4, 5, 6) is on average (1.5, 2.0, 2.6, 3.3, 4.1) and
(1.6, 2.2, 3.3, 3.4, 3.4) times of the one of H = 1 on BEIJING
and NYC, respectively.

Exp-4.2: Impacts of Nr . To evaluate the impacts of the
number Nr of regions in Rt

u, we varied Nr from 0 to 10
and tested the Acc and running time reported in Figs. 6(b)
& 6(e). Note the for Nr = 0 we removed the two transition
factors and we also considered another variant NCF′ which
used Nr/2 previous and Nr/2 subsequent regions as Rt

u.
Incorporating transition context factors via regions has a

positive impact on the effectiveness of NCF. However, the
best improvement is obtained with different Nr on BEIJING
and NYC. For BEIJING, a relatively small Nr is preferred
while considering more regions is better for NYC. Recall
that BEIJING records dense raw human mobility and a small
number of previously stayed regions can provide the most
meaningful transitional clues. On the other hand, the NYC
data is obtained from the sparse check-in data and collecting
clues from more regions is generally more effective. Finally,
the effectiveness of NCF and NCF′ are close in general.

The running time of NCF increases with the increment of
Nr reasonably. Since NCF′ requires less epoches for training,
it runs (1.3, 1.5) times faster than NCF on (BEIJING, NYC).
Overall, NCF is more general, e.g., annotating new mobility
records, at the expense of more training computation.

Exp-4.3: Impacts of d. To evaluate the impacts of the num-
ber d of dimensions, we varied d from 32 to 128 and tested
the Acc and running time reported in Figs. 6(c) & 6(f).

When varying d, the Acc generally increases with the
increment of d. From our tests, we recommend to choose d
within [64, 128] for NCF. The running time also generally
increases with the increment of d, except for the drop at
d = 80. It turns out that NCF with d ≥ 80 can stop after less
epoches compared with d < 80. As a result, the running
time with different d is overall comparable: the relative
proportion in Fig. 6(f) is bounded by 1.3.

Exp-5: Utility of POI-based human mobility. In the
fifth set of experiments, we illustrate the utility of the
obtained POI-based human mobility with a POI recom-
mendation example. To avoid introducing model biases, we
developed a simple recommendation strategy. Specifically,
given a user u and a time t of a day (e.g., 5:00 P.M.), we
retrieved the historical POI visit records Vt

u = {(pi, ti)}
of user u such that the time ti of a day was temporally-
close to t (within 1 hour). We then recommended the
POIs in Vt

u according to the sum of temporal closeness
C(p) =

∑
(pi,ti)∈Vt

u,pi=p exp(∆(t, ti)/3600), where ∆(t, ti)
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Figure 7. Utility of raw mobility annotation

was the time span between t and ti in second.
We used the latest 20% of POI visit records of each

user for testing. For the remaining 80% of visit records
of each user, we randomly selected 40% as observed POI
visits and the rest 40% were regarded as unannotated stays.
We obtained three recommendation models: (a) using the
observed POI visits only (b) using both observed POI visits
and the annotation results by NCF(3) on unannotated stays,
and (c) using both observed POI visits and the ground-truth
POIs associated with unannotated stays. Note that the last
represented the best performance that could be achieved by
our recommendation strategy. We adopted Recall@k with
1 ≤ k ≤ 10 to evaluate the recommendation performance.
The results are reported in Fig. 7.

On both BEIJING and NYC, the obtained POI-based
human mobility consistently improves the effectiveness of
POI recommendation for all tested k. Indeed, the Recall@k
is increased by 34.6% and 11.2% on BEIJING and NYC on av-
erage, respectively. Furthermore, with the exploited strategy,
the performance based on the POI-based human mobility by
NCF already approaches the best, which is 93.6% and 97.7%
of the best on BEIJING and NYC on average, respectively.

Exp-6: Effectiveness comparison with user-level split.
In the last set of experiments, we evaluate the annotation
effectiveness of all approaches with user-level split. Note
that it is usually more difficult to deal with the new setting
compared with stay-level since we have no direct clues to
model preference and transition patterns of users in test
data. We trained models with data from half of users and
annotated the stays of the rest users, i.e., f = 50%. Note that
HMM learns transition relationships between POI categories
from the training users and applies the knowledge to the
testing users. Besides, MRF degenerates to the unsupervised
version as no labels are available for testing users. The
results are reported in Table 4.

On both data sets, the Acc of all approaches decreases
with user-level split, except for Dist. The reason of degrada-
tion for HMM is that HMM does not have a precise starting
point to maximize the posterior probability of a Markov
chain. While for LTR, this is because a useful feature, i.e., the
number of previous visits from the user at the POI, becomes
meaningless. On the other hand, both MRF and GE perform
poorly since errors propagate through the spatial and tem-
poral constraints of MRF and GE models a user with the
visited POIs. Finally, owing to our context fusion strategy,
NCF(3) is at least (26%, 95%) better than all competitors on
(BEIJING, NYC) in the new setting.

Summary. From our tests, we find the following.

Table 4
Accuracy (Acc) comparison with Stay- and User-level splits (f = 50%)

Data set Dist HMM LTR MRF GE NCF(3)
BEIJING(S) 0.0681 0.2094 0.3790 0.3804 0.3662 0.4984
BEIJING(U) 0.0679 0.1486 0.2774 0.0685 0.1046 0.3495

NYC(S) 0.2683 0.3465 0.4580 0.4927 0.3421 0.7664
NYC(U) 0.2669 0.2787 0.2361 0.0988 0.0686 0.5440
NCF(3) significantly outperforms other baselines at the 0.01 level,

paired t-test, with both stay- and user-level splits.

(1) Our NCF approach which fuses various context factors
consistently outperforms other raw mobility annotation
approaches. The Acc of our complete NCF(3) is on
average (614%, 142%, 32%, 34%, 40%) and (178%, 119%,
67%, 58%, 118%) higher than (Dist, HMM, LTR, MRF,
GE) on BEIJING and NYC, respectively.

(2) Both the domain knowledge factors and the represen-
tation learning factors are effective for raw mobility an-
notation. Besides, the adopted multi-head architecture
also improves the accuracy of annotation.

(3) Our NCF is also efficient for raw mobility annotation. It
runs faster than LTR and MRF. Compared with GE, the
extra time used by NCF is affordable for achieving the
much better effectiveness.

(4) We verify the utility of the obtained POI-based human
mobility in a POI recommendation example.

5 RELATED WORK

Location-based human mobility. From a purely spatiotem-
poral perspective, the location-based human mobility fo-
cuses on movements from one location to another. Basic
rules that govern our daily movements are identified [3],
[1], as well as the individual or group mobility patterns
regarding the locations people tend to visit sequentially [2]
or periodically [32]. At aggregated level, Gonzalez et al. find
that human trajectories show a high degree of temporal and
spatial regularity, i.e., humans follow simple reproducible
mobility patterns [3]. Along this, Song et al. find a 93%
potential predictability in user mobility, by measuring the
entropy of trajectories [4]. On the other hand, McInerney
et al. analyze an individual’s mobility patterns and identify
temporary departures from routine [33]. Oliveira et al. un-
cover people’s tendency to revisit few favorite venues using
the shortest-path available [34]. For location-level mobility
prediction, Feng et al. propose an attentional recurrent net-
work [35] and Baumann et al. study selecting individual and
population models [36]. Besides, Li et al. consider location
inference on social media[37].

Activity-based human mobility. Studies in this cate-
gory essentially try to explain the reasons behind people’s
moves [5], [6], [7], [8]. From a computational point of view,
Alvares et al. identify the needs of enriching trajectories
with semantics to simplify queries, analysis, and mining of
moving objects [5]. They then propose a data pre-processing
model that associates sample points in trajectories with
geographic data points. Jiang et al. extract activity-based hu-
man mobility patterns, e.g., Home–Work–Home, from mobile
phone call detail record data [6]. These patterns can assist
transportation and planning agencies to understand the
human activity patterns in cities. Geo-tagged social media
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are another source to mine activity-based mobility [7], [8].
Specifically, Zhang et al. obtain mobility models by alternat-
ing between user grouping and mobility modeling [7]. Zhu
et al. learn a multi-modal spherical hidden Markov model
for semantics-rich human mobility [8].

POI-based human mobility. Mobility is also analyzed
together with POIs. Annotation is a typical example,
e.g., [11], [9], [10] and ours. The existing annotation meth-
ods are mainly designed for sparse mobility and usually
exploit limited types of contexts. For instance, Shaw et al.
formalize the annotation problem in a learning to rank
framework, considering basic POI attributes and users’ POI-
visit histories [9]. Historical POI visits are further exploited
in the Markov random field for annotation [10]. It captures
personal preferences by enforcing consistency in spatially-
or temporally-close mobility records. While [11] is designed
for the dense raw mobility, it only learns the transition
relationships between POI categories with a hidden Markov
model. Domain knowledge contexts are effective for anno-
tation and have already been explored. The distance context
is exploited in [11], [10] and all the three contexts are used
by [9] as learning to rank features.

Our work is different from these studies in two aspects.
First, we fuse various context factors in people’s dense
POI-visiting behaviors. Second, we adopt a neural network
which captures the hidden preference and transition struc-
tures via representation learning and fuses context factors in
a feed-forward network.

POI recommendation. Another line of related work is
POI recommendation. There have been extensive studies
for the task, exploiting different strategies like temporal
effects [20], graph embedding [17], sequential modeling [38]
and preference context modeling [19], to name a few. To
some extent, human mobility annotation and POI recom-
mendation are similar, in the sense that we can recommend
the nearby POIs as annotation. Indeed, some approaches
to location recommendation can be applied for annotation
after necessary adaptation. Our work also differs from those
for POI recommendation such that we know the stay lo-
cation and time information in advance and we delicately
recognize and model the various contexts of a visit from
different perspectives, e.g., preference, transition, distance,
time, and popularity, for annotation.

6 CONCLUDING REMARKS

In this paper we studied raw mobility annotation to obtain
high-quality POI-based human mobility. The dense trajecto-
ries as well as the semantics embedded in POIs can better
support many mobile analytic tasks. We proposed the first
neural model which fused various key context factors in
people’s POI-visiting behaviors for the task. These factors
were either derived via representation learning or inspired
by domain knowledge. Notably, we utilized an attention
mechanism to deal with the randomized effect in transi-
tions of raw human mobility and adopted a multi-head
architecture to enhance model expressiveness. Finally, our
experimental study on two real-life data sets demonstrated
the effectiveness and efficiency of our approach as well as
the utility of the obtained POI-based human mobility.
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