
11

Error Bounded Line Simplification Algorithms for

Trajectory Compression: An Experimental Evaluation

XUELIAN LIN, SHUAI MA, JIAHAO JIANG, YANCHEN HOU, and TIANYU WO,

State Key Laboratory of Software Development Environment, Beihang University, China

Nowadays, various sensors are collecting, storing, and transmitting tremendous trajectory data, and it is

well known that the storage, network bandwidth, and computing resources could be heavily wasted if raw

trajectory data is directly adopted. Line simplification algorithms are effective approaches to attacking this

issue by compressing a trajectory to a set of continuous line segments, and are commonly used in practice.

In this article, we first classify the error bounded line simplification algorithms into different categories and

review each category of algorithms. We then study the data aging problem of line simplification algorithms

and distance metrics from the views of aging friendliness and aging errors. Finally, we present a systematic

experimental evaluation of representative error bounded line simplification algorithms, including both com-

pression optimal and sub-optimal methods, in terms of commonly adopted perpendicular Euclidean, synchro-

nous Euclidean, and direction-aware distances. Using real-life trajectory datasets, we systematically evaluate

and analyze the performance (compression ratio, average error, running time, aging friendliness, and query

friendliness) of error bounded line simplification algorithms with respect to distance metrics, trajectory sizes,

and error bounds. Our study provides a full picture of error bounded line simplification algorithms, which

leads to guidelines on how to choose appropriate algorithms and distance metrics for practical applications.

CCS Concepts: • Information systems→ Spatial-temporal systems; • Theory of computation→Data

compression;

Additional Key Words and Phrases: Trajectory compression, line simplification, batch algorithms, online al-

gorithms, one-pass algorithms

ACM Reference format:

Xuelian Lin, Shuai Ma, Jiahao Jiang, Yanchen Hou, and Tianyu Wo. 2021. Error Bounded Line Simplifica-

tion Algorithms for Trajectory Compression: An Experimental Evaluation. ACM Trans. Database Syst. 46, 3,

Article 11 (September 2021), 44 pages.

https://doi.org/10.1145/3474373

1 INTRODUCTION

With the increasing popularity of GPS sensors on various mobile devices, such as smartphones,
on-board diagnostics, personal navigation devices, and wearable smart devices, trajectory data

This work is supported in part by National Key Research and Development Program (2016YFB1000103), NSFC (61925203),

and SKLSDE (2020ZX-31).

Author’s address: X. Lin, S. Ma (corresponding author), J. Jiang, Y. Hou, and T. Wo, State Key Laboratory of Software De-

velopment Environment, Beihang University, 37 Xueyuan Rd, Haidian Dist., Beijing, China, 100191; emails: {linxl, mashuai,

jianjh, houyc, woty}@buaa.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0362-5915/2021/09-ART11 $15.00

https://doi.org/10.1145/3474373

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

https://doi.org/10.1145/3474373
mailto:permissions@acm.org
https://doi.org/10.1145/3474373

11:2 X. Lin et al.

has been continuously growing. Further, sampling rates are also improved for acquiring more
accurate position information, which leads to longer trajectories as well. Thus, transmitting and
storing raw trajectory data consume a large amount of network, storage, and computing resources
[3, 8, 9, 25, 31, 33, 39, 43, 44, 47, 52, 53], and trajectory compression techniques [3, 4, 7–9, 12, 16, 17,
20, 23, 25, 27, 29–33, 39, 42–44, 48, 52, 54, 56, 59] have been developed to alleviate this situation.

Due to the limitations (poor compression ratios and data reconstruction overheads) of lossless
compression, lossy compression techniques have become the mainstream of trajectory compres-
sion [30, 66]. Quite a few lossy trajectory compression techniques, most notably the piece-wise
line simplification [3, 4, 7–9, 16, 23, 25, 27, 29–33, 39, 42, 43, 54, 59], have been developed. The idea
of piece-wise line simplification (LS) comes from graphic and computational geometry, whose
target is to approximate a fine piece-wise linear curve with a coarse one. A planar curve is basically
defined with a sequence of data points in computer graphics [64]. If all data points of the coarse
curve are a subset of the original curve, then it is referred to as strong simplification; otherwise,
it is referred to as weak simplification [59]. LS has two optimization problems [5, 22, 46]: (1) the
min-# problem: given a curve and an error bound ϵ , to construct an approximate curve with er-
rors bounded in ϵ and having the minimum number of line segments [5, 22]—most LS algorithms
for trajectory compression [3, 4, 7–9, 12, 16, 20, 23, 25, 27, 29–33, 39, 43, 59] are for this problem,
and (2) the min-ϵ problem: given a curve and a positive integerm, construct an approximate curve
consisting of at mostm line segments with the minimum error [5, 22]. Trajectory compression algo-
rithms like SQUISH (λ) [42] and SQUISH-E (λ) [43] solve this problem and are the complementary
ones to those solving the min-# problem. Line simplification has a wide usage due to its beneficial
features: (1) simple and easy to implement, (2) light and applicable to resource-constrained devices,
and (3) bounded errors (algorithms for the min-# problem) with good compression ratios. It is a
great advantage that LS is suitable to run on resource-constrained end devices, such that the tra-
jectories could be simplified at the early time, to save not only the storage of data servers but also
the network bandwidth between the end devices and the data servers. LS could also be combined
with other techniques, such as dilution-matching-encoding [17], which maps the simplified trajec-
tories to road networks and discovers the high-frequency patterns of compressed trajectories to
further improve the effectiveness of trajectory compression. In this article, we focus on the error
bounded LS algorithms that solve the min-# problem and require no extra knowledge, together
with a brief discussion of semantic-based compression methods. Please also refer to [42, 43, 66] for
the algorithms that solve the min-ϵ problem, which are essentially not error bounded.

In this article, we interchangeably use the terms “compression” and “simplification” without
ambiguity as much existing literature [29, 31, 39, 42, 43, 66]. Indeed, simplification is quite older
than computational geometry and data compression because it traces its origins in cartography
[61, 62], a few centuries before the invention of computers. In its original sense, simplification
is but one aspect of the problem called “data generalization” [58, 61, 62] in cartography, where
in practice one would deliberately change the outcomes of a compression/simplification because
certain properties need to be preserved with appropriate visibility.

Algorithm taxonomy. LS algorithms fall into two categories: compression optimal and compres-

sion sub-optimal algorithms. Compression optimal methods [5, 22] are to find the minimum number
of points or segments to represent the original polygonal lines w.r.t. an error bound ϵ , by trans-
forming the problem to search for the shortest path of a graph built from the original trajectory.
The optimal LS algorithms have relatively high time/space complexities, which makes them im-
practical for large trajectory data. Hence, compression sub-optimal algorithms have been developed
and/or introduced for trajectory compression, and they achieve better efficiency at the expense of
outputting a little more data points. Following the taxonomy shown in [27, 29, 30], compression

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:3

sub-optimal algorithms can further be classified into batch, online, and one-pass algorithms, which
correspond to offline, online, and real-time algorithms, respectively, in [27].

(1) Batch algorithms are divided into top-down methods, e.g., Ramer [50] and Douglas-Peucker
(DP) [12, 39], and bottom-up methods, e.g., Theo-Pavlidis (TP) [46], and apply global distance
checking policies such that all trajectory points need to be loaded before starting compression
such that a point may be checked multiple times to compute its distance to the corresponding line
segments.

(2) Online algorithms, such as OPW [39], SQUISH-E [43], and BQS [31], apply local distance
checking policies and need not have the entire trajectory ready before compressing. They restrict
the checking within a window/buffer but may still check a point multiple times during the process.

(3) One-pass algorithms, such as OPERB [30], SIPED [13, 55, 63, 68], CISED [29], Intersect [33],
and Interval [23], apply better local distance checking policies, which do not even need a window
or buffer for the previously read points, and process each point in a trajectory once and only once.

Distance metrics. Trajectory simplification algorithms are closely coupled with distance metrics,
and different techniques are typically needed for different distance metrics. We consider three
widely adopted metrics: perpendicular Euclidean distances (PED), synchronous Euclidean

distances (SED), and direction-aware distances (DAD).
Originally, LS algorithms adopt PED, the shortest Euclidean distance from a point to a line

segment, as the distance metric, and ensure that the maximal distance from the output trajectory
to the input trajectory is bounded by a PED error bound. Here a trajectory is basically treated as a
sequence of spatial data points. LS algorithms using PED bring good compression ratios [3, 9, 12, 20,

31, 43, 54] at a cost of losing temporal information of trajectories. Hence, PED is not spatio-temporal

query friendly, i.e., a spatio-temporal query like where_at [3] on such a simplified trajectory may
return a point with a distance greatly larger than the PED error bound adopted in the simplification
algorithm. However, PED remains useful; e.g., trajectory simplification using PED can serve as
a pre-processing step of trajectory clustering that is the base of applications like traffic pattern
recognition and urban planning [37, 67], where the shapes of trajectories rather than the detailed
positions of individuals are concerned.

SED is then introduced to preserve the temporal information [3, 39]. The SED of a point to
a line segment is the Euclidean distance between the point and its synchronized point w.r.t. the
line segment, the expected position of the moving object on the line segment at the same time
with an assumption that the object moves straightly along the line segment at a uniform speed [3].
The algorithms ensure that the maximal SED from the output trajectory to the input trajectory
is bounded by an SED error bound. SED friendly supports applications such as spatio-temporal
queries; i.e., a spatio-temporal query like where_at [3] on such a simplified trajectory returns the
expected (synchronized) point that has an (SED) distance less than the error bound used in the
simplification algorithms. Obviously, given the same error bound, algorithms using SED typically
produce more points than PED as they further preserve the temporal information.

DAD is introduced to preserve the direction information of moving objects [33, 66] and is ini-
tially called the direction-based measurement in [33]. It is important for applications such as trajec-
tory clustering and direction-based query processing [33, 34]. Different from PED and SED, DAD

is the direction deviation of a moving object, measured by angles rather than Euclidean distances.
However, the temporal information is not preserved for DAD. Hence, it is not friendly for spatio-
temporal queries as well.

Quality criteria. Quality criteria are needed to evaluate LS algorithms from two levels. The
first level comes from LS itself, including compression ratios, efficiency, and simplification errors:

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:4 X. Lin et al.

Table 1. Error Bounded Trajectory Simplification Algorithms

Category Algorithms PED SED DAD Time Space Rep Key Ideas

optimal
Optimal [22] � � � O (n3) O (n2) � reachability graph
OptPED [5] � × × O (n2) O (n2) reachability graph & sector intersection
OptLISSED [8] × �∗ × O (n2) O (n2) reachability graph & LISSED
SP [33] × × � O (n2) O (n2) reachability graph & range intersection

su
b

-o
p

ti
m

a
l

b
a

tc
h Ramer [50] � � � O (n2) O (n) top-down

DP [12, 39] � � � O (n2) O (n) � top-down
TP [46] � � � O (n2/K) O (n) � bottom-up
MRPA [8] × �∗ × O (n) O (n) LISSED & bottom-up

o
n

li
n

e OPW [39] � � � O (n2) O (n) � top-down in opening window
BQS [31] � × × O (n2) O (|n |) � top-down, window, & convex hull
SWAB [25] � � � O (n ∗ |Q |) O (|Q |) bottom-up in sliding window
SQUISH-E [43] × � × O (n log |Q |) O (|Q |) � bottom-up & priority queue
DOTS [4] × �∗ × O (n2/K) O (|Q |2) � LISSED & incremental DAG

o
n

e
-p

a
ss

RW [51] � × × O (n) O (1) strip
LDR [27, 59] × � × O (n) O (1) linear dead reckoning
OPERB [30] � × × O (n) O (1) � fitting function
SIPED [13, 68] � × × O (n) O (1) � sector intersection
CISED [29] × � × O (n) O (1) � spatio-temporal cone intersection
Intersect [33] × × � O (n) O (1) � range intersection with ϵ

2 -range
Interval [23] × × � O (n) O (1) � range intersection with ϵ -range

Here (1) K is the number of the final segments of a trajectory, |Q | is the size of a buffer/window, and “Rep” means

“representative” (we comprehensively consider the performance of algorithms, the supporting of distance metrics, and

the novelty of their key ideas to choose the representatives); (2) algorithms OptLISSED, MRPA, and DOTS alternatively

use Local Integral Square SED (LISSED [8]) as the error measure instead of directly using SED, and among them, DOTS

is the representative; (3) algorithms Ramer [50] and Douglas-Peucker (DP) [12, 39] were independently developed with

an extremely similar idea. Thus, they are also jointly referred to as “Ramer-Douglas-Peucker”; (4) one-pass algorithms

OPERB and CISED both have strong and weak versions [29, 30], where the former only allow the data points belonging

to the original trajectory and the latter allows data interpolations in the simplified trajectories; and (5) batch and

top-down algorithms DP [12, 39] and Ramer [50] are aging friendly, while other algorithms are not.

(1) compression ratios are the ratios of the data sizes of the simplified trajectories to the original
trajectories, (2) efficiency is the time taken by LS algorithms to compress trajectories, and (3) sim-

plification errors are the maximal and average distances between the simplified trajectories and the
original trajectories. They are commonly used for quality evaluations, e.g., [29, 31, 33, 43, 66].

The second level comes from applications; e.g., a “where_at” query [3, 60] concerns the errors
of its answer, and a trajectory clustering method concerns the similarity between the clusters of
the original and simplified trajectories. Indeed, each application may have its own point of view
for evaluations. Here we choose spatio-temporal queries [3, 60] as the representatives of trajectory
applications because they are commonly used in the management of trajectories. We use query

errors to evaluate the qualities, which are the temporal differences (e.g., “when_at”) or spatial
distances (e.g., “where_at”) of the answers between the original and simplified trajectories.

Motivations. Empirical studies of trajectory compression algorithms have been conducted [41,
43]. However, they only discuss a small number of algorithms. The very recent study [66] does
evaluate a wide range of trajectory simplification algorithms. However, it provides an experimen-
tal study on compression errors and spatio-temporal query analyses only, and important aspects
of trajectory simplification (compression ratios, running time, aging friendliness) are not system-
atically studied. That is, the impacts of both error bounds and the sizes of trajectories on running
time and the impacts of error bounds on compression ratios are not fairly evaluated, and the data

aging problem is not investigated at all. The simplified trajectories are stored in data stores; as time
goes by, less precision may become acceptable for old trajectories [3], and they may need to be fur-
ther simplified to coarse trajectories to save storage. However, can these simplified trajectories be

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:5

further compressed by LS algorithms to coarse trajectories while still having bounded errors w.r.t.

the original trajectories? This is referred to as the data aging problem, which is initially introduced
and partially discussed for algorithms Optimal and DP only in [3].

Moreover, certain important algorithms are not evaluated in [66], e.g., optimal algorithms using
PED and SED, and one-pass algorithms SIPED and CISED. Indeed, algorithm SIPED is completely

overlooked by existing trajectory compression studies as it is originally developed in fields of com-
putational geometry and pattern recognition [13, 55, 63, 68], and we recently found it can be easily
adopted for trajectory compression with good performance. That is to say, a systematic experi-
mental evaluation of line simplification algorithms for trajectory compression remains necessary
for choosing the appropriate algorithms and distance metrics for practical applications.

Contributions. In this article, we conduct a systematic experimental evaluation and analysis of
the mainstream error bounded trajectory simplification algorithms for large-scale trajectory data.

(1) We classify the error bounded LS algorithms into different categories, review each category
of algorithms, and systematically evaluate the representative algorithms of each category. Table 1
summarizes the algorithms that consist of optimal and sub-optimal algorithms, and the latter are
further classified into batch, online, and one-pass algorithms. Note that online and one-pass algo-
rithms are typically designed for a specific distance metric (PED, SED, or DAD) only.

(2) We study the data aging problem of LS algorithms and distance metrics from the view of aging

friendliness, and prove that (a) only algorithms running in both batch and top-down manners and
using PED and/or SED are aging friendly, having an error bound of max {ϵ1, ϵ2} w.r.t. the original
trajectory, where ϵ1 and ϵ2 are the error bounds set in the first and second times of simplification,
respectively, and (b) other algorithms have an error bound of ϵ1 + ϵ2 for data aging. These together
provide a full picture of the data aging problem.

(3) Using real-life trajectory datasets, we systematically evaluate and analyze the performance
(compression ratio, average error, running time, aging friendliness, and query friendliness) of error
bounded line simplification algorithms with respect to distance metrics, trajectory sizes, and error
bounds. Our study reveals the characteristics of these algorithms, which lead to guidelines for
practitioners to choose appropriate algorithms and distance metrics for specific applications.

Essentially, this study is a necessary complement to existing studies by providing a systematic
evaluation and analysis of error bounded trajectory simplification algorithms. In comparison with
the recent study [66], (1) for a fair running time analysis, all algorithms are (re)-implemented in
Java, unlike [66], which reports running time of algorithms with different programming languages;
(2) compression ratio analyses are systematically considered; (3) variations of distance metrics are
studied; (4) optimal algorithms using PED and SED and one-pass algorithms SIPED and CISED are
investigated; (5) weak simplification algorithms OPERB-A and CISED-W are studied; and (6) data
aging of LS algorithms is studied. Some new findings are summarized in Section 6.3.6.

Organization. Section 2 introduces basic concepts of trajectory simplification; Section 3 and
Section 4 systematically review optimal and sub-optimal LS methods, respectively; Section 5 ana-
lyzes the data aging of LS algorithms; and Section 6 reports and analyzes the experimental results,
followed by conclusions in Section 7. Additional trajectory compression methods are discussed in
the appendix.

2 PRELIMINARY

In this section, we introduce some basic concepts for trajectory simplification. For convenience,
notations used are summarized in Table 2.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:6 X. Lin et al.

Table 2. Summary of Notations

Notations Semantics

P a data point
...
T a trajectory

...
T is a sequence of data points

T a piece-wise line representation of a trajectory
...
T

L a directed line segment

M a distance metric of PED, SED, or DAD

ped (P ,L) the perpendicular Euclidean distance of point P to line segment L
sed (P ,L) the synchronous Euclidean distance of point P to line segment L

dad (L1,L2) the direction-aware distance of line segment L1 to line segment L2

ϵ an error bound

A a line simplification algorithm

Point. A data point is defined as a triple P (x ,y, t) in a suitable coordinate system, representing
that a moving object is located at (x ,y) at time t . In practice, a raw data point collected from an end
device of some Global Navigation Satellite System is usually defined by geo-spatial data standards
(e.g., World Geodetic System 84 coordinates) with a format of (longitude, latitude, altitude, time). In
this article, these raw data points are projected to a x-y-t 3D Euclidean space (called map projection
[19]) during trajectory simplification.

Trajectory. A trajectory
...
T [P0, . . . , Pn] is a sequence of points in a monotonically increasing order

of their associated time values (i.e., Pi .t < Pj .t for any 0 ≤ i < j ≤ n). Intuitively, a trajectory is
the path (or track) that a moving object follows through space as a function of time [40].

Directed line segment. A directed line segment (or line segment for simplicity) L is defined as
»
PsPe , which represents the closed line segment that connects the start point Ps and the end point

Pe . Note that here Ps and Pe are different points that may not be in a trajectory
...
T .

For the projection of a directed line segment L on an x-y 2D space, where x and y are the
longitude and latitude, respectively, we also use |L| and L.θ ∈ [0, 2π) to denote the length of L in
the x-y 2D space, and its angle with thex-axis of the coordinate system (x ,y). That is, the projection

of a directed line segment L =
»
PsPe on an x-y 2D space is treated as a triple (Ps , |L|,L.θ).

Piece-wise line representation. A piece-wise line representation T [L0, . . . ,Lm] (0 < m ≤ n) of

a trajectory
...
T [P0, . . . , Pn] is a sequence of continuous directed line segmentsLi =

»
Psi

Pei
(i ∈ [0,m])

of
...
T such that L0.Ps0 = P0, Lm .Pem

= Pn , and Li .Pei
= Li+1.Psi+1 for all i ∈ [0,m − 1]. Note that

(1) each directed line segment in T essentially represents a continuous sequence of data points in

trajectory
...
T ; (2) a piece-wise line representation is a simplified trajectory, essentially the sequence

of end points of all line segments; and (3) a point (x , y, t) on a spherical surface is projected on a
2D flat plane in the piece-wise line representation.

For trajectory simplification, three distance metrics are commonly used, namely, the perpendicu-

lar Euclidean distance (PED), the synchronous Euclidean distance [39] (SED), and the direction-aware

distance [33, 66] (DAD). Consider a data point P and a directed line segment L =
»
PsPe .

Perpendicular Euclidean distance. The perpendicular Euclidean distance ped (P ,L) of point P

to line segment L is min{|PQ |} for any pointQ on
»
PsPe . This definition is also called the tolerance-

zone error measure [1, 6, 11, 22, 38]. Note that in the field of computational geometry, (1) there is a
slight variation of tolerance-zones, called the infinite beam or parallel-strip criterion [6, 11], which is
the perpendicular Euclidean distance of a point to a line, and (2) it is believed that tolerance-zones

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:7

could produce a compressed version that better captures the features of the original path/curve
[1, 6, 11]. If not otherwise specified, we use tolerance-zones to evaluate algorithms.

Synchronous Euclidean distance. The synchronous Euclidean distance sed (P ,L) of point P

to line segment L is | # »

PP ′ | that is the Euclidean distance from P to its synchronized data point P ′

w.r.t. L, where the synchronized data point P ′ w.r.t. L is defined as follows: (1) P ′.x = Ps .x + c ·
(Pe .x − Ps .x), (2) P ′.y = Ps .y + c · (Pe .y − Ps .y), and (3) P ′.t = P .t , where c = P .t−Ps .t

Pe .t−Ps .t
.

Synchronized points are essentially virtual points with the assumption that an object moves

along a straight line segment from Ps to Pe with a uniform speed, i.e., the average speed | # »
Ps Pe |

Pe .t−Ps .t

between points Ps and Pe [3, 29]. Then the synchronized point P ′ of a point P w.r.t. the line seg-

ment
»
PsPe is the expected position of the moving object on

»
PsPe at time P .t , obtained by a linear

interpolation [3]. More specifically, a synchronized point P ′i of Pi (s ≤ i < e) w.r.t. the line segment
»
PsPe is a point on

»
PsPe satisfying | # »

PsP
′
i | =

Pi .t−Ps .t
Pe .t−Ps .t

· | # »
PsPe |, which means that the object moves

from Ps to Pe at an average speed | # »
Ps Pe |

Pe .t−Ps .t
, and its position at time Pi .t is the point P ′i on

−−−→
PsPe

having a distance of Pi .t−Ps .t
Pe .t−Ps .t

· | # »
PsPe | to Ps [3, 8, 29, 39, 66].

Instead of directly using SED, [8] introduces Local Integral Square SED (LISSED, also called

LSSD in [4, 8]) with lissed (Ps , Ps+k) =
∑s+k−1

i=s sed2 (Pi ,
»
PsPs+k). The most important feature

of LISSED is that it can be computed in an incremental way; i.e., given information about
lissed (Ps , Ps+k), lissed (Ps , Ps+k+1) can be calculated in O (1) time, such that algorithms using it
(e.g., MRPA [8] and DOTS [4]) have lower time complexities compared with directly using SED. It
is worth pointing out that (1) LISSED is a special SED-based error measure rather than a new kind
of distance metric; (2) if the LISSED error bound of such an algorithm is set to ϵ2, then the maximal
SED error between the original and simplified trajectories is always not greater than ϵ ; and (3) the
most recent algorithm directly using SED, i.e., CISED, is very efficient and has O (n) time.

Direction-aware distance. The direction-aware distance dad (L1,L2) is the direction deviation
from L1 to L2, i.e., Δ (L1.θ ,L2.θ) = min{|L1.θ − L2.θ |, 2π − |L1.θ − L2.θ |}. Note DAD differs
from PED and SED in that it is a measure of angle differences, rather than Euclidean distances, and
the temporal information is also lost when using DAD.

We illustrate these notations with examples.

Example 1. Consider Figure 1, in which (1)
...
T [P0, . . . , P10] is a trajectory having 11 data points;

(2) the set of two continuous line segments { # »
P0P4,

»
P4P10}, the set of four continuous line segments

{ # »
P0P2,

»
P2P4,

»
P4P7,

»
P7P10}, and the set of three continuous line segments { # »

P0P4,
»
P4P5,

»
P5P10} are

three piece-wise line representations of trajectory
...
T ; (3) ped (P4,

»
P0P10) = | # »

P4P
∗
4 |, where P∗4 is the

perpendicular point of P4 w.r.t. line segment
»
P0P10; (4) for P4, its synchronized point P ′4 w.r.t.

»
P0P10

satisfies
| # »

P0P ′4 |
| # »
P0P10 |

=
P4 .t−P0 .t
P10 .t−P0 .t

= 4−0
10−0 =

2
5 ; (5) sed (P4,

»
P0P10) = | # »

P4P
′
4 |, sed (P2,

»
P0P4) = | # »

P2P
′
2 |, and

sed (P7,
»
P4P10) = | # »

P7P
′
7 |, where points P ′4, P ′2, and P ′7 are the synchronized points of P4, P2, and P7

w.r.t. line segments
»
P0P10,

»
P0P4, and

»
P4P10, respectively; and (6) dad (

»
P5P6,

»
P0P10) = θ56 is the DAD

of line segments
»
P5P6 to

»
P0P10.

Trajectory simplification algorithms. Given a trajectory
...
T [P0, . . . , Pn] and a pre-specified

bound ϵ , a trajectory simplification algorithmA using PED (respectively, SED and DAD) produces

a piece-wise line representation T [L0, . . . ,Lm] (0 < m ≤ n) by applying distance checking of
PED (respectively, SED and DAD) with respect to ϵ , such that for each i ∈ [0,m], line segment

Li =
»

P ′si
P ′ei

(si < ei) approximately represents the sub-trajectory
...
T i [Psi

, . . . , Pei
] of

...
T .

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:8 X. Lin et al.

Fig. 1. A trajectory
...
T [P0, . . . , P10] with 11 points is compressed by the Douglas–Peucker algorithm [12]

using distance metrics PED, SED, and DAD, respectively.

Error bounded algorithms. Given a trajectory
...
T [P0, . . . , Pn] and a pre-specified bound ϵ , tra-

jectory simplification algorithm A using PED (respectively, SED and DAD) is error bounded by ϵ

if for each point Pk (k ∈ [0,n]) in
...
T , there exists a line segment Li =

»

P ′si
P ′ei

in T with si ≤ k ≤ ei

(0 ≤ i ≤ m) such that the PED distance ped (Pk ,Li) (respectively, the SED distance sed (Pk ,Li)

and the DAD distance dad (
»
PkPk+1,Li)) is no more than ϵ .

Note that here there is no need to require that for all i ∈ [0,m], points P ′si
and P ′ei

of T belong

to the original trajectory
...
T . That is to say, data interpolations are allowed.

3 COMPRESSION OPTIMAL ALGORITHMS

This section reviews the compression optimal LS algorithms that find the minimum number of
points or segments to represent the original trajectory w.r.t. an error bound ϵ .

The naive optimal algorithm (Optimal) [22] first formulates the min-# problem as a graph reach-
ability problem and solves the problem inO (n3) time, where n is the number of the original points
of a trajectory. It is initially designed to support PED but can easily be modified to support SED

and DAD. By using convex hull [57] and sector intersection [38], faster optimal algorithms are pro-
posed with an improved time complexity toO (n2 logn). Further, [5] proves that the min-# problem
(using PED) for a general polygonal curve can be solved inO (n2) time by using the sector intersec-

tion mechanism, and for some special curves (e.g., a polygonal curve forming a part of a convex
polygon), either open or closed (if there is an edge joining the first and the last points, then it
is closed; otherwise, it is open), this problem can be solved in O (n) time. Note that, in general,
a trajectory is not necessarily a convex or closed polygonal curve; instead, it is often open and
concave. Thus, the best optimal algorithm for trajectory simplification using PED still has O (n2)
time. OptLISSED [8] using LISSED also has a time complexity of O (n2), and algorithm SP [33] is
essentially an optimization of the original optimal algorithm using DAD that achieves O (n2) time.
However, all the above optimization mechanisms do not support SED directly, and Optimal re-
mains the best optimal solution for SED. As all the optimized algorithms have the same effectiveness

when using the same distance metric and essentially work for small size trajectories only, we choose

algorithm Optimal that supports PED, SED, and DAD as the representative of optimal LS algorithms.

Given a trajectory
...
T [P0, . . . , Pn] and an error bound ϵ , algorithm Optimal [22] solves the opti-

mal trajectory simplification problem in two steps: (1) it first constructs a reachability graph G of...
T , and then (2) it searches a shortest path from point P0 to point Pn in graph G. The reachability

graph of a trajectory
...
T [P0, . . . , Pn] w.r.t. an error bound ϵ isG = (V , E), where (1)V = {P0, . . . , Pn },

and (2) for any nodes Ps and Ps+k ∈ V (s ≥ 0,k > 0, s + k ≤ n), edge (Ps , Ps+k) ∈ E if and only if

the distance of each point Ps+i (0 < i < k) to line segment
»
PsPs+k is not greater than ϵ . Observe

that in the graph G, (1) a path from nodes P0 to Pn is a representation of trajectory
...
T , and the

path also reveals the subset of points of
...
T used in the approximate trajectory; (2) the path length

corresponds to the number of line segments in the approximate trajectory; and (3) a shortest path

is an optimal representation of trajectory
...
T .

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:9

Fig. 2. Example of reachability graph of trajectory
...
T [P0, . . . , Pn] whose shortest path is (P0, P4, P10).

A straightforward way of constructing the reachability graph G needs to check for all pairs of

points Ps and Ps+k whether the distances of all points (Ps+i , 0 < i < k) to the line segment
»
PsPs+k

are less than ϵ . There are O (n2) pairs of points in the trajectory, and checking the errors of all

points Ps+i to a line segment
»
PsPs+k takesO (n) time. Thus, the construction step takesO (n3) time.

Finding a shortest path takes no more than O (n2) time. Hence, the straightforward algorithm,
i.e., Optimal, takes O (n3) time in total. For space complexity, it needs O (n2) space. Though the
algorithm is initially developed using PED, it is easy to see that it also supports SED and DAD.

Example 2. Figure 2 is an example of the Optimal algorithm using PED taking as input the

trajectory
...
T shown in Figure 1. The reachability graph of

...
T is constructed and a shortest path

with two edges is founded. At last, the algorithm outputs two line segments
»
P0P4 and

»
P4P10.

4 COMPRESSION SUB-OPTIMAL ALGORITHMS

This section reviews compression sub-optimal algorithms solving the min-# problem of trajectory
simplification, as shown in the taxonomy of Section 1.

4.1 Batch Algorithms

Batch algorithms essentially apply global distance checking policies for trajectory simplification,
and can be either top-down or bottom-up. Global checking policies enforce batch algorithms to
have an entire trajectory first [39].

(1) Top-down algorithms recursively divide a trajectory into sub-trajectories until the stopping
condition is met. Algorithms Ramer [50] and Douglas-Peucker (DP) [12] support all the three dis-
tances, PED, SED, and DAD. Note that Ramer came about the same time as DP, but the authors
of DP were not aware and independently developed an extremely similar idea that, although pub-
lished (officially) later, became more widely popular, and the DP using SED is also called TD-TR
[39]. An improved method of DP with a time complexity ofO (n logn), based on convex hulls, is pro-
posed in [20], which is the best DP-based algorithm in terms of time complexities, and is designed
for PED only, not for SED and DAD.

(2) Bottom-up algorithms are the natural complement of top-down ones, and they recursively
merge adjacent sub-trajectories with the smallest distance, initially n/2 sub-trajectories for a tra-
jectory with n points, until the stopping condition is met. In each iteration, the distances of newly
generated line segments are recalculated. To our knowledge, Theo-Pavlidis (TP) [46] is the only
bottom-up batch LS algorithm that supports PED, SED, and DAD. Besides, MRPA [8] using LISSED

is also a bottom-up algorithm.
Note that, compared with top-down algorithms, bottom-up algorithms fit better for trajectories

with lower sampling rates, as they typically need more rounds to merge smaller line segments into
larger line segments. Batch algorithms basically work for small and medium-size trajectories, and we

choose the famous top-down algorithm DP and the classic bottom-up algorithm TP that all support

PED, SED, and DAD as the representatives of batch LS algorithms.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:10 X. Lin et al.

Fig. 3. The trajectory
...
T [P0, . . . , P10] is compressed by the Theo-Pavlidis algorithm using PED to two line

segments. The triple (i, j, cost) is the cost of merging the line segments PiPt and PtPj .

4.1.1 Algorithm Douglas-Peucker (DP) [12]. It is invented for reducing the number of points
required to represent a digitized line or its caricature in the context of computer graphics and
image processing. Originally, it uses PED; however, it can be easily extended to support SED and
DAD.

Given a trajectory
...
T [P0, . . . , Pn] and an error bound ϵ , algorithm DP uses the first point P0

and the last point Pn of
...
T as the start point Ps and the end point Pe of the first line segment

L (P0, Pn), and then it calculates the distance ped (Pi ,L) for each point Pi (i ∈ [0,n]). If ped (Pk ,L)
= max{ped (P0,L), . . . ,ped (Pn ,L)} ≤ ϵ , then it returns {L (P0, Pn)}. Otherwise, it divides

...
T

into two sub-trajectories
...
T [P0, . . . , Pk] and

...
T [Pk , . . . , Pn] and recursively compresses these sub-

trajectories until the entire trajectory has been considered. The time complexity of DP is Ω(n) in
the best case, but is O (n2) in the worst case.

Example 3. Consider the trajectory
...
T [P0, . . . , P10] shown in Figure 1. The DP Algorithm first

creates
»
P0P10, and then it calculates the distance of each point in {P0, . . . , P10} to

»
P0P10. It finds

that P4 has the maximum distance to
»
P0P10, which is greater than ϵ . Then it goes to compress sub-

trajectories [P0, . . . , P4] and [P4, . . . , P10] separately. When using SED (right), the sub-trajectory
[P4, . . . , P10] is further split to [P4, . . ., P7] and [P7, P10]. Finally, the algorithm outputs two contin-

uous directed line segments
»
P0P4 and

»
P4P10 when using PED, and three continuous directed line

segments
»
P0P4,

»
P4P7, and

»
P7P10 when using SED.

4.1.2 Algorithm Theo-Pavlidis (TP) [46]. It originally employs the global checking policy to
output disjoint line segments, and we slightly modify it to have continuous line segments.

Given a trajectory
...
T [P0, . . . , Pn] and an error bound ϵ , algorithm TP begins by creating the

finest possible trajectory approximation: [P0, P1], [P1, P2], . . . , [Pn−1, Pn], so that n segments are
used to approximate the original trajectory. Next, for each pair of adjacent segments [Ps , Ps+j] and

[Ps+j , Ps+k] (0 ≤ s < s + j < s +k ≤ n), the distance ped (Ps+i ,
»
PsPs+k) of each point Ps+i (0 < i < k)

to the line segment
»
PsPs+k is calculated, and the max distance is saved and denoted as the cost

of merging them. Then TP begins to iteratively merge the adjacent segment pair with the lowest
cost until no cost is below ϵ . After the pair of adjacent segments [Ps , Ps+j] and [Ps+j , Ps+k] are
merged to a new segment [Ps , Ps+k], TP needs to recalculate the costs of the new segment with
its preceding and successive segments, respectively. Algorithm TP runs in O (n2/K) time, where
K is the number of the final segments. Similar to the DP algorithm, the TP algorithm originally
supports PED, and it can be easily extended to support SED and DAD as well.

Example 4. Figure 3 is an example of the TP algorithm.
(1) Initially, 10 line segments are created, and for each pair of adjacent segments, the costs

of merging them are calculated and saved. For example, the cost of merging
»
P0P1 and

»
P1P2 is

ped (P1,
»
P0P2) = 0.32ϵ . (2) The cost of merging

»
P6P7 and

»
P7P8 is 0.02ϵ , which is the minimal value

among all costs. Hence,
»
P6P7 and

»
P7P8 are merged to

»
P6P8. The cost of merging

»
P5P6 and

»
P6P8 and

the cost of merging
»
P6P8 and

»
P8P9 are further updated to 0.37ϵ and 0.11ϵ , respectively. (3)

»
P6P8

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:11

and
»
P8P9 are merged to

»
P6P9. The cost of merging

»
P5P6 and

»
P6P9 and the cost of merging

»
P6P9 and

»
P9P10 are also updated. (4) At last, the algorithm outputs two line segments

»
P0P4 and

»
P4P10.

4.2 Online Algorithms

Online LS algorithms adopt local checking policies by restricting the distance checking within a
sliding or opening window such that there is no need to have the entire trajectory ready before
compressing. That is, online algorithms essentially combine batch algorithms with sliding or open-

ing windows; e.g., OPW [39] is a combination of top-down algorithm DP and opening windows,
while SWAB [25] is a combination of bottom-up algorithm TP and sliding windows. Though these
algorithms support the three distance metrics PED, SED, and DAD, they still have high time and/or
space complexities [31]. Besides, in environments like wireless sensor networks, online algorithms
also need to address the problem of balancing the trade-off between the energy cost due to com-
munication and the accuracy of the trajectories’ detection and representation [16], and to control
the “freshness” (i.e., the latency) of the simplified data by careful management of the data buffer of
an online algorithm [16]. To design more efficient online algorithms, techniques typically need to
be designed closely coupled with distance metrics. Indeed, BQS [31] and SQUISH-E [43] propose
to utilize convex hulls and priority queues, respectively, and they speed up trajectory simplifica-
tion using PED and SED, respectively. DOTS [4] is an online method using LISSED that could be
computed in an incremental way. To our knowledge, no specific techniques have been developed
for DAD. Hence, we choose algorithms BQS (the performance optimized online algorithm, specific for

PED), SQUISH-E (the famous online algorithm, specific for SED), DOTS (using LISSED and recom-

mended in the recent evaluation work [66]), and OPW (a well-known online algorithm based on DP

that is compatible with DAD) as the representatives of online algorithms using PED, SED, LISSED,

and DAD, respectively.

4.2.1 Algorithm OPW [39]. It combines the top-down and opening window strategies and en-
forces the constrained global checking in the window. Like DP, it supports PED, SED, and DAD.

Given a trajectory
...
T [P0, . . . , Pn] and an error bound ϵ , algorithm OPW [39] maintains a win-

dow W [Ps , . . . , Pk], where Ps and Pk are the start and end points, respectively. Initially, Ps = P0

and Pk = P1, and the window W is gradually expanded by adding new points one by one. OPW

tries to compress all points in W [Ps , . . . , Pk] to a single line segment L (Ps , Pk). If the distances
ped (Pi ,L) ≤ ϵ for all points Pi (i ∈ [s,k]), it simply expandsW to [Ps , . . . , Pk , Pk+1] (k + 1 ≤ n) by
adding a new point Pk+1. Otherwise, it produces a new line segment L (Ps , Pk−1) and replacesW
with a new window [Pk−1, . . . , Pk+1]. The above process repeats until all points in

...
T have been con-

sidered. The process is similar for SED and DAD. The time complexity of algorithm OPW remains
in O (n2) time, the same as the DP algorithm.

4.2.2 Algorithm BQS Using PED [31]. It is essentially an efficiency-optimized OPW algorithm
[39] and reduces the running time by introducing convex hulls to pick out a certain number of
points, which makes it dedicated for PED.

For a bufferW with sub-trajectory [Ps , . . . , Pk], it splits the space into four quadrants. A buffer
here is similar to a window in OPW [39]. For each quadrant, a rectangular bounding box is first
created using the least and highest x and y values among points {Ps , . . . , Pk }, respectively. Then
another two bounding lines connecting points Ps and Ph and points Ps and Pl are created such

that lines
»
PsPh and

»
PsPl have the largest and smallest angles with the x-axis, respectively. Here

Ph , Pl ∈ {Ps , . . . , Pk }. The bounding box and the two lines together form a convex hull. Each
time a new point Pk is added to buffer W , BQS first picks out at most eight significant points
from the convex hull in a quadrant. It calculates the distances of the significant points to line

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:12 X. Lin et al.

Fig. 4. Examples for algorithm BQS.

»
PsPk , among which the largest distance du and the smallest distance dl are an upper bound and

a lower bound of the distances of all points in [Ps , . . . , Pk] to line
»
PsPk . (1) If dl ≥ ϵ , it produces

a new line segment L (Ps , Pk−1) and produces a new window [Pk−1, . . . , Pk] to replace W . (2) If
du < ϵ , it simply expands buffer W to [Ps , . . . , Pk , Pk+1] (k + 1 ≤ n) by adding a new point Pk+1.
(3) Otherwise, it computes all distances d (Pi ,L (Ps , Pk)) (i ∈ [s,k]) as algorithm DP does. The
time complexity of BQS remains O (n2). However, its simplified version FBQS has a linear time
complexity by essentially avoiding case (3) to speed up the process.

Example 5. Figure 4 is an example of BQS. The bounding box c1c2c3c4 and the two lines
»
PsPh =

»
P0P1 and

»
PsPl =

»
P0P2 form a convex hullu1u2c2l2l1c4. BQS computes the distances ofu1,u2, c2, l2, l1,

and c4 to line
»
P0P6 when k = 6 or to line

»
P0P7 when k = 7. When k = 6, all these distances to

»
P0P6 are less than ϵ ; hence, BQS goes on to the next point (case 2). When k = 7, the max and min

distances to
»
P0P7 are larger and less than ϵ , respectively, and BQS needs to compress sub-trajectory

[P0, . . . , P7] along the same line as DP (case 3).

4.2.3 Algorithm SQUISH-E Using SED [43]. It is an online bottom-up algorithm that is dedicated
for SED and has two forms: SQUISH-E (λ), ensuring the compression ratio λ, and SQUISH-E (ϵ),
ensuring the SED error bound ϵ . Here we adopt SQUISH-E (ϵ), as we focus on error bounded
trajectory simplification.

Algorithm SQUISH-E optimizes algorithm TP with a doubly linked listQ . Each node in the list is
a tuple P (pre, suc,mnprio,prio), where P is a trajectory data point;pre and suc are the predecessive
and successive points of P , respectively; prio is the priority of P defined as an upper bound of the
SED error that the removal of P introduces; andmnprio is the max priority of its predecessive and
successive points removed from the list. Initially, trajectory points are loaded to Q one by one. At
the same time,mnprio of each point is set to zero as no node has been removed from the list. More-
over, the priorities of points P0 and P |Q |−1 are set to∞, and the priority of point Pi (0 < i < |Q | −1)

is set to sed (Pi ,
»

pre (Pi)suc (Pi)). Then, SQUISH-E finds and removes a point Pj from Q that has
the lowest priority prio(Pj) < ϵ , and the properties mnprio of predecessor pre (Pj) and successor
suc (Pj) are updated to max(mnprio(pre (Pj)),prio(Pj)) and max(mnprio(suc (Pj)),prio(Pj)), respec-
tively. Next, the properties prio of pre (Pj) and suc (Pj) are further updated to mnprio(pre (Pj)) +

sed (pre (Pj),
»

pre (pre (Pj))suc (Pj)) andmnprio(suc (Pj)) + sed (suc (Pj),
»

pre (Pj)suc (suc (Pj))), respec-
tively. After that, a new point is read to the list and the information of its predecessor in the list is
updated. The above process is repeated until no points have a priority smaller than ϵ . SQUISH-E
finds and removes a point fromQ that has the lowest priority inO (log |Q |) time, where |Q | denotes
the number of points stored in Q . Thus, SQUISH-E runs in O (n log |Q |) time and O (|Q |) space.

Example 6. Figure 5 is an example of SQUISH-E. (1) Initially, |Q | = 6 points are read to
the list. The tuple (pre, suc,mmprio,prio) for each point is initialized. For example, the tuple of

P1 is set to (0, 2, 0, 0.42ϵ), where 0.42ϵ is the SED from P1 to
»
P0P2. (2) The priority of P1 has

the minimal value; thus, it is removed from the list. The mnprio properties of P0 and P2 are

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:13

Fig. 5. The trajectory
...
T [P0, . . . , P10] is compressed by the SQUISH-E algorithm using SED to five line seg-

ments. The size of Q is 6, and the data structure after point P is a tuple (pre, suc,mmprio,prio).

Fig. 6. Example of algorithm DOTS using LISSED with error bound of ϵ2, where (1) left is the supposed reach-

ability graph of trajectory
...
T [P0, . . . , P10], and (2) right is the incremental construction of the reachability

graph and online decoding of the shortest path. Finally, the trajectory is compressed to four line segments.

updated to max {mnprio(pre (P1)),prio(P1)} = max {mnprio(P0),prio(P1)} = max {0, 0.42ϵ } = 0.42ϵ ,
and max {mnprio(P2), prio(P1)} = 0.42ϵ , respectively. Furthermore, the prio property of P2 is

updated to mnprio(suc (Pj)) + sed (suc (Pj),
»

pre (Pj)suc (suc (Pj))) = mnprio(P2) + sed (P2,
»
P0P3) =

0.42ϵ + 0.71ϵ = 1.13ϵ , and the prio property of P0 is still ∞. Then, P6 is read, and the informa-
tion of P5 is updated. (3) P5 is removed and P7 is read to the list. (4) Finally, the algorithm outputs

five line segments
»
P0P2,

»
P2P4,

»
P4P7,

»
P7P9, and

»
P9P10.

4.2.4 Algorithm DOTS Using LISSED [4]. It is a directed acyclic graph-based online trajectory
simplification method that supports LISSED. Other than the optimal and near-optimal algorithms
[8, 11] that find a shortest path after completely constructing the reachability graph, DOTS incre-
mentally determines a shortest path when constructing the reachability graph [4].

Algorithm DOTS first shows that the reachability graph of an input trajectory retrogrades to a
tree structure. It also observes that the local approximation error lissed (Ps , Ps+k) is growing with
respect tok ; thus, it is reasonable to assume thatk should not be too large. By this assumption, each
layer of the tree could be added without feeding the entire trajectory, and the shortest path could
also be determined recursively, i.e., layer by layer. For each node (point) in each layer, DOTS marks
those having descendants as alive and others as dead. Initially, the first layer Q0 is {P0}, and it is
alive. Then, let Qc (c > 0) be the current layer under construction, DOTS in turn adds point
Ps+k , which has an LISSED distance to any point of Qc−1 less than the error bound, to Qc , until no
points can be added to Qc (recall that k should not be too large). After that, it updates the status
of each layer that has alive points: the parent of an alive point may be adjusted to minimize the
total integral square SED of the path, points without descendants are marked as dead, and those
one-alive-element layers are decoded and their alive points are output to the simplified trajectory.
The time complexity of DOTS is O (n2/K), where K is the number of output points, and the space
complexity of DOTS is O (|Q |2), where |Q | is the size of a layer.

Example 7. Figure 6 is an example of DOTS. The reachability graph is constructed layer by layer
incrementally, and a part of the shortest path is determined before the whole graph is completely

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:14 X. Lin et al.

constructed. (1) Initially, P0 is added to the first layer Q0, and it is the only element in the layer.
(2) Then, points P1, P2, and P3 are in turn added to the second layerQ1. Since P0 does not have any
new child point, DOTS updates the status of Q1 and outputs P2 as it is the only alive point in Q1.
(3) The process repeats. Point P4 is added to layer Q2; points P5, P6, and P7 are added to layer Q3;

and so on. (4) Finally, it outputs four line segments
»
P0P2,

»
P2P4,

»
P4P7, and

»
P7P10.

4.3 One-pass Algorithms

One-pass algorithms adopt local checking policies and run in O (n) time with an O (1) space com-
plexity. They are typically designed for specific distance metrics.

Reumann-Witkam (RW) [51] is a straightforward one-pass algorithm that builds a strip par-
allel to the line connecting the first two points, and then the points within this strip compose a
section of the line. RW is fast but has a poor compression ratio. Algorithm OPERB [30] recently im-
proves RW by allowing dynamically adjustable strips, together with several detailed optimization
techniques. There is also algorithm SIPED (sector intersection) that converts PED distance toler-
ances into angle tolerances to speed up the process, which is completely overlooked by existing
trajectory compression studies but can be easily adopted for trajectory compression, as it is origi-
nally developed in fields of computational geometry and pattern recognition [13, 55, 63, 68]. These
algorithms are dedicatedly designed for PED. Algorithms OPERB and SIPED have good compression

ratios, and, hence, we choose them as the representatives of one-pass algorithms using PED.
Algorithm Linear Dead Reckoning (LDR) for position tracking [59] follows the similar routine

as RW except that it uses SED and assumes a velocity #»v for each section. [59] proves that if LDR

uses ϵ/2 as the threshold in position tracking, then its output trajectory has a max error not greater
than ϵ to the original trajectory. Thus, it can be treated as a trajectory simplification algorithm as
well. It has poor compression ratios because both the value and the direction of velocity #»v are pre-
defined and fixed between two updates, and it indeed uses a half-ϵ . Recently algorithm CISED [29]
extends the sector intersection method SIPED from a 2D space to a spatio-temporal 3D space. These
one-pass algorithms are dedicatedly designed for SED. As algorithm CISED has a compression ratio

close to algorithm DP using SED, we choose it as the representative of one-pass algorithms using SED.
Direction range intersection approaches are similar to sector intersection methods except that

they are designed for DAD, and we choose Intersect [33] and Interval [23] as the representatives of

one-pass algorithms using DAD.
Algorithms SIPED, LDR, OPERB, CISED, and Intersect share a common idea, i.e., using a half-ϵ

to implement the strong simplification to ensure that the max error does not exceed ϵ . In the sequel,
we shall discuss that the half-ϵ of SIPED and CISED can be extended to the full-ϵ with some small
modifications, along the similar way that Interval extends Intersect.

4.3.1 Algorithm OPERB Using PED [30]. It designs a local distance checking method to dynam-
ically adjust the direction of line segments to achieve an effective one-pass process. It has strong
and weak versions, called OPERB and OPERB-A, respectively. OPERB-A shares the same routine
as OPERB except that it applies a lazy output policy and allows data interpolations.

Consider an error bound ϵ and a sub-trajectory
...
Ts [Ps , . . . , Ps+k]. OPERB dynamically maintains

a directed line segment Li (i ∈ [1,k]), whose start point is fixed with Ps and its end point is
identified (may not in {Ps , . . . , Ps+i }) to fit all the previously processed points {Ps , . . . , Ps+i }. The
directed line segment Li is built by a function named fitting function F, such that when a new
point Ps+i+1 is considered, only its distance to the directed line segment Li is checked, instead

of checking the distances of all or a subset of data points of {Ps , . . . , Ps+i } to Ri+1 =
»
PsPs+i+1 as

the global distance checking does. During processing, if the distance of point Ps+i to the directed
line segment Li−1 is larger than the threshold, then a directed line segment, starting from Ps , is

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:15

generated and output; otherwise, the directed line segment Li is updated by the fitting function
F, as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Li = Li−1

]
when (|Ri | − |Li−1 |) ≤

ϵ

4[|Li | = j ∗ ϵ/2
Li .θ = Ri .θ

]
when |Ri | >

ϵ

4
and |Li−1 | = 0

⎡⎢⎢⎢⎢⎢⎢⎣
|Li | = j ∗ ϵ/2

Li .θ = Li−1.θ + f (Ri ,Li−1) ∗ arcsin(
ped (Ps+i ,Li−1)

j ∗ ϵ/2)/j

⎤⎥⎥⎥⎥⎥⎥⎦
else,

where (a) 1 ≤ i ≤ k+1; (b) Ri−1 =
»
PsPs+i−1 is the directed line segment whose end point Ps+i−1 is in...

Ts [Ps , . . . , Ps+k]; (c) Li is the directed line segment built by fitting function F to fit sub-trajectory...
Ts [Ps , . . . , Ps+i] and L0 = R0; (d) j = 	(|Ri | ∗ 2/ϵ − 0.5)
; (e) f () is a sign function such that
f (Ri ,Li−1) = 1 if the included angle ∠(Ri−1,Ri) = (Ri .θ −Li−1.θ) falls in the range of (−2π ,− 3π

2],

[−π ,− π
2], [0, π

2], and [π , 3π
2), and f (Ri ,Li−1) = −1 otherwise; (f) ϵ/2 is a step length to control

the increment of |L|. Optimizations are developed to achieve better compression ratios.

Example 8. Figure 7 is a running example of the OPERB algorithm compressing the same tra-

jectory
...
T [P0, . . . , P10]. (1) It takes P0 as the start point, reads P1, and sets L1 =

»
P0P1. (2) It reads

P2. The distance from P2 to L1 is less than the threshold; thus, it updates L1 to L2 by the fitting
function F. (3) It reads P3 and P4 and updates L2 to L3 and L3 to L4, respectively. (4) It reads

P5. The distance from P5 to L4 is larger than the threshold; thus, it outputs
»
P0P4 and starts the

next section taking P4 as the new start point. (5) The process continues until all points have been

processed. At last, the algorithm outputs two continuous line segments
»
P0P4 and

»
P4P10.

4.3.2 Algorithm SIPED Using PED [13, 55, 63, 68]. It develops a concept of “Sector” [13, 55, 63,
68], which converts the distance tolerance into the angle change tolerance for checking points.

Given a sequence of points [Ps , Ps+1, . . . , Ps+k] and an error bound ϵ , for the start data point Ps ,

any point Ps+i , and | # »
PsPs+i | > ϵ (i ∈ [1,k]), there are two directed lines

»
PsP

u
s+i and

»

PsP
l
s+i such that

ped (Ps+i ,
»
PsP

u
s+i) = ped (Ps+i ,

»

PsP
l
s+i) = ϵ and either (

»

PsP
l
s+i .θ <

»
PsP

u
s+i .θ and

»
PsP

u
s+i .θ −

»

PsP
l
s+i .θ <

π) or (
»

PsP
l
s+i .θ >

»
PsP

u
s+i .θ and

»
PsP

u
s+i .θ −

»

PsP
l
s+i .θ < −π). Indeed, they form a sector S (Ps , Ps+i , ϵ)

that takes Ps as the center point and
»
PsP

u
s+i and

»

PsP
l
s+i as the borderlines. There exists a data point

Q such that for any data point Ps+i (i ∈ [1, . . .k]), its perpendicular Euclidean distance to directed

line PsQ is not greater than the error bound ϵ if and only if the k sectors S (Ps , Ps+i , ϵ) (i ∈ [1,k])

share common data points other than Ps , i.e.,
�k

i=1S (Ps , Ps+i , ϵ) � {Ps } [55, 63, 68]. Here, point Q
may not belong to {Ps , Ps+1, . . . , Ps+k }. However, if Q must be a point selected from the original
points, in other words, point Ps+i (1 ≤ i ≤ k) is chosen as Q , then for any point Ps+j (j ∈ [1, . . . i]),

its PED to line segment PsPs+i is not greater than the error bound ϵ if
�i

j=1S (Ps , Ps+j , ϵ/2) � {Ps },
as pointed out in [68]. That is, these sector intersection-based algorithms can be easily adopted for

trajectory compression. In practice, it is a good choice to set the point Q as the point among all
points in [Ps , Ps+1, . . . , Ps+k] that has the longest distance to Ps .

The original SIPED uses a half sector, ϵ
2 -S,which may limit its compression performance. How-

ever, it can further be extended to a full ϵ-S by adding a constraint. That is, for any point Ps+j

(j ∈ [1, . . . i]), its PED to line segment PsPs+i is not greater than the error bound ϵ if Ps+i � Ps and

Ps+i ∈
�i−1

j=1S (Ps , Ps+j , ϵ); i.e., Ps+i lives in the common intersection of the preview full sectors.

Example 9. Figure 8 is a running example of algorithm SIPED (ϵ
2) taking as input the same

trajectory
...
T [P0, . . . , P10]. At the beginning, P0 is the first start point, and points P1, P2, P3, etc., each

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:16 X. Lin et al.

Fig. 7. The trajectory
...
T [P0, . . . , P10] is compressed by the OPERB algorithm using PED to two line segments.

Fig. 8. The trajectory
...
T is compressed by the sector intersection algorithm using PED to two line segments.

have a narrow sector. For example, the narrow sector S(P0, P3, ϵ/2) takes P0 as the center point and
»
P0P

u
3 and

»

P0P
l
3 as the borderlines. Because

�4
i=1 S (P0, P0+i , ϵ/2) � {P0} and

�5
i=1 S (P0, P0+i , ϵ/2) =

{P0},
»
P0P4 is output and P4 becomes the start point of the next section. At last, the algorithm outputs

two continuous line segments
»
P0P4 and

»
P4P10.

4.3.3 Algorithm CISED Using SED [29]. It develops an idea of spatio-temporal cone that extends
the sector intersection method [13, 55, 63, 68] from an x-y 2D space to an x-y-t spatio-temporal 3D
space. Note that for computer graphics and cartography, there is another 3D space, i.e., x-y-z 3D
space, where z is the height. There are studies [1, 15] for solving the min-# and min-ϵ problems
in the x-y-z 3D space; e.g., [1] extends the sector intersection method to the off-line ball-inclusion

testing in the x-y-z 3D space so as to develop efficient near-quadratic time algorithms.
Given a sub-trajectory [Ps , . . . , Ps+k] and an error bound ϵ , any point P ′s+i (0 < i ≤ k) on the

plane P .t − Ps+i .t = 0 is a synchronized data point of Ps+i . For all P ′s+i in the plane satisfying
|Ps+iP

′
s+i | ≤ ϵ , they form a synchronous circle O (Ps+i , ϵ) of Ps+i with Ps+i as its center and ϵ as

its radius. A spatio-temporal cone (or simply cone) of a data point Ps+i (1 ≤ i ≤ k) in
...
T s w.r.t. a

point Ps and an error bound ϵ , denoted as C (Ps ,O (Ps+i , ϵ)), or Cs+i in short, is an oblique circular
cone such that point Ps is its apex and the synchronous circle O (Ps+i , ϵ) is its base. Then, there

exists a point Q such that Q .t = Ps+k .t and sed (Ps+i ,
»
PsQ) ≤ ϵ for each i ∈ [1,k] if and only

if
�k

i=1C (Ps ,O (Ps+i , ϵ)) � {Ps }. Like sector intersection methods, point Q may also not belong to
{Ps , Ps+1, . . . , Ps+k }. If point Q is not necessarily in {Ps , Ps+1, . . . , Ps+k }, then this algorithm is a
weak simplification, named CISED-W, that uses a full-ϵ cone. If point Q must be Ps+i (1 ≤ i ≤ k),

then for any point Ps+j (j ∈ [1, . . . i]), its SED to line segment PsPs+i is not greater than the

error bound ϵ if
�i

j=1C (Ps , Ps+j , ϵ/2) � {Ps } as pointed out in [29]. This algorithm, named CISED

(ϵ
2), which uses a half-ϵ cone, belongs to strong simplification. Moreover, CISED (ϵ

2) can also be
extended to CISED (ϵ), another strong version that uses a full-ϵ cone, by adding a constraint that
Ps+i lives in the common intersection of the preview full cones.

In addition, because these spatio-temporal cones have the same apex Ps , the checking of their
intersection can be computed in a much simpler way; i.e., the checking of the intersection of cone

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:17

Fig. 9. A running example of the CISED algorithm. The points and the oblique circular cones are projected

on an x-y space.

Fig. 10. The trajectory
...
T is compressed by the interval algorithm using DAD to two line segments.

projection circles on a plane, and a circle is further approximated with itsm-edge inscribed regular
polygon, whose intersection can be computed more efficiently.

Example 10. Figure 9 shows a running example of algorithm CISED (ϵ
2) for compressing the

trajectory
...
T in Figure 1. For convenience, we project the points and the oblique circular cones

on an x-y space. (1) After initialization, the CISED algorithm reads point P1 and builds a narrow
oblique circular cone C (P0,O (P1, ϵ/2)), taking P0 as its apex and O (P1, ϵ/2) as its base (green dash).
The circular cone is projected on the plane P .t − P1.t = 0, and the inscribe regular polygon R1 of
the projection circle is returned. As R∗ is empty, R∗ is set to R1. (2) The algorithm reads P2 and
builds C (P0,O (P2, ϵ/2)) (red dash). The circular cone is also projected on the plane P .t − P1.t = 0
and the inscribe regular polygon R2 of the projection circle is returned. As R∗ = R1 is not empty,
R∗ is set to the intersection of R2 and R∗, which is R1

�
R2 � ∅. (3) For point P3, the algorithm

runs the same routine as P2 until the intersection of R3 and R∗ is ∅. Thus, a line segment
»
P0P2 is

generated, and the process of a new line segment is started, taking P2 as the new start point and
P .t − P3.t = 0 as the new projection plane. (4) At last, the algorithm outputs four continuous line

segments, i.e., { # »
P0P2,

»
P2P4,

»
P4P7,

»
P7P10}.

4.3.4 Algorithms Intersect [33] and Interval [23] Using DAD. It designs a direction range for
each line segment connecting two neighboring points, then checks the common intersection of
those direction ranges as a way similar to the sector intersection approach [13, 55, 63, 68].

Given a direction line segment L and an angle ϵ , the direction range denoted by ranдe (L.θ , ϵ)
is [L.θ − ϵ,L.θ + ϵ], which denotes the varying range of a directed line segment originated
from the origin when it is rotated anti-clockwise from θ1 to θ2 [33]. The common intersec-

tion of direction ranges of directed line segments { # »
PsPs+1,

»
Ps+1Ps+2, . . . ,

»
Ps+k−1Ps+k } w.r.t. ϵ is

�k
i=1 Ranдe (

»
Ps+i−1Ps+i .θ , ϵ).

Algorithm Intersect [33] uses a half range and shows that if the common intersection
�k

i=1 ranдe (
»
Ps+i−1Ps+i .θ , ϵ/2) is not empty, then the angle between

»
Ps+i−1Ps+i and

»
PsPs+k for all

i ∈ [1,k] is not larger than ϵ . Recently, algorithm Interval [23] extends Intersect from half to full

ranges, by showing that if the common intersection
�k

i=1 ranдe (
»
Ps+i−1Ps+i .θ , ϵ) is not empty and

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:18 X. Lin et al.

Table 3. Aging Friendliness and Error Bounds of Line Simplification Algorithms for Data Aging

Algorithms Distance Metrics Aging Friendliness Error Bounds

Optimal algorithms
PED or SED × ([3]) ϵ1 + ϵ2 (Prop. 5.6)

DAD × (Prop. 5.1) ϵ1 + ϵ2 (Prop. 5.6)

Batch algorithm DP
PED or SED �([3]) max(ϵ1, ϵ2) (Prop. 5.5)

DAD × (Prop. 5.2) ϵ1 + ϵ2 (Prop. 5.6)

Batch algorithm TP PED, SED, or DAD × (Prop. 5.3) ϵ1 + ϵ2 (Prop. 5.6)

Online algorithms PED, SED, or DAD × (Prop. 5.4) ϵ1 + ϵ2 (Prop. 5.6)

One-pass algorithms PED, SED, or DAD × (Prop. 5.4) ϵ1 + ϵ2 (Prop. 5.6)

»
PsPs+k .θ falls in the common intersection, then the angle between

»
Ps+i−1Ps+i and

»
PsPs+k for all

i ∈ [1,k] is not larger than ϵ .

Example 11. Figure 10 is a running example of the interval method taking as input the same

trajectory
...
T [P0, . . . , P10]. At the beginning, P0 is the first start point, and points P1, P2, P3, and

so forth, each have a direction range Ranдe (
»
P0P1, ϵ), Ranдe (

»
P1P2, ϵ), Ranдe (

»
P2P3, ϵ), and so forth,

respectively. Because
�4

i=1 Ranдe (
»
P0+i−1P0+i , ϵ) � ϕ and

»
P0P4.θ falls in the common sub-interval,

and
�5

i=1 Ranдe (
»
P0+i−1P0+i , ϵ) = ϕ,

»
P0P4 is output and P4 becomes the start point of the next section.

At last, the algorithm outputs two continuous line segments
»
P0P4 and

»
P4P10.

5 TRAJECTORY AGING

Suppose that we have compressed a trajectory
...
T0 to T 1 using any LS algorithm A with an error

bound ϵ1. As time evolves, we may need to further compress T 1 to an even coarser trajectory T 2.

What are the relationships among T 2, T 1, and
...
T0? And what is the right way to get the coarser

trajectory T 2? What line simplification algorithms should we use in the first and second rounds
of simplifications? If the first round of simplification uses algorithmA1, can we use algorithmA2

in the second round? How to set the parameter of error bounds in these simplifications? And after
multiple rounds of simplifications, does the coarse trajectory still have bounded errors w.r.t. the
original trajectory? This section is to answer these questions from the views of friendliness [3]

(Section 5.1) and errors (Section 5.2). Note that (1) if we get T 1 and T 2 by optimal algorithms w.r.t.

error bounds ϵ1 and ϵ2, respectively, then T 2 may not be the optimal one of
...
T0 w.r.t. any error

bound [3], and (2) as LISSED is a special case of SED, we refer to the SED errors rather than the
LISSED errors when we talk about aging friendliness and errors of algorithms using LISSED (recall
that if the LISSED error bound of such an algorithm is set to ϵ2, then its maximal SED error is not

greater than ϵ). The major results are summarized in Table 3.

5.1 Friendliness of Data Aging

We first discuss the relationship between T 1 and T 2 from the view of friendliness, which was
defined in [3] but was seldom discussed later.

Aging friendly [3]. An LS algorithm A is aging friendly with respect to a distance metric M
if for every ϵ1 and every ϵ2 such that ϵ1 < ϵ2, and for every trajectory

...
T , A (

...
T , ϵ2,M) =

A (A (
...
T , ϵ1,M), ϵ2,M).

Cao and Li proved in [3] that “an optimal line simplification algorithm is not aging-friendly
w.r.t. the PED and SED,” and “the top-down algorithm DP is aging friendly w.r.t. PED and SED” on
the premise that the second run of DP takes as input the whole simplified trajectory produced by
the first run. However, algorithms other than the optimal algorithms and the top-down algorithm

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:19

Fig. 11. A counter-example of the aging friendliness of algorithm Optimal using DAD, where (1) the original

trajectory {P0, P1, P2, P3} is compressed using ϵ2 = 45◦ to three points {P0, P2, P3}, and (2) it is first com-

pressed using ϵ1 = 30◦ to three points {P0, P2, P3}, then compressed using ϵ2 = 45◦ to two points {P0, P3}.

Fig. 12. A counter-example of the aging friendliness of DP using DAD, where (1) the original trajectory is

compressed using ϵ2 = 45◦ to three points {P0, P2, P4}, and (2) the original trajectory is first compressed

using ϵ1 = 30◦ to three points {P0, P2, P4}, then compressed using ϵ2 = 45◦ to two points {P0, P4}.

DP with distance metrics other than PED and SED are not discussed in [3]; thus, their effectiveness
in data aging remains an open problem. In the rest, we present a full picture of this problem, starting
from the optimal algorithms coupling with DAD.

Proposition 5.1. An optimal algorithm is not aging friendly w.r.t. DAD too.

Proof. We shall prove this by constructing a counter-example shown in Figure 11, where error
bounds ϵ1 = 30◦ and ϵ2 = 45◦.

(1) Optimal(
...
T , 45◦,DAD). It first constructs the reachability graph of the trajectory that P0 has

arcs to P1 and P2, P1 has arcs to P2 and P3, and P2 has an arc to P3. At last, it outputs a shortest path
of three points {P0, P2, P3}.

(2) Optimal(Optimal(
...
T , 30◦,DAD), 45◦,DAD). In the first round (ϵ1 = 30◦), the original trajec-

tory is compressed to three points {P0, P2, P3}, and in the second round (ϵ2 = 45◦), because line

segments P0P2 and P2P3 both have angular deviations to line segment P0P3 less than 45◦, it is
finally compressed to two points {P0, P3}.

In this case, Optimal(
...
T , 45◦,DAD) � Optimal(Optimal(

...
T , 30◦,DAD), 45◦,DAD). Thus, algo-

rithm Optimal is not aging friendly w.r.t. DAD. �

Proposition 5.2. The top-down algorithm DP is not aging friendly w.r.t. DAD.

Proof. We shall prove this by constructing a counter-example shown in Figure 12, where error
bounds ϵ1 = 30◦ and ϵ2 = 45◦.

(1) DP(
...
T , 45◦,DAD). It finds that line segment P1P2 has the largest angular deviation to line

segment P0P4, which is also larger than the error bound 45◦; hence, it uses point P2 as the splitting
point and splits the original trajectory to {P0, P1, P2} and {P2, P3, P4}. At last, it outputs three points
{P0, P2, P4}.

(2) DP(DP(
...
T , 30◦,DAD), 45◦,DAD). In the first round (ϵ1 = 30◦), the original trajectory is com-

pressed to three points {P0, P2, P4}, and in the second round (ϵ2 = 45◦), because line segments P0P2

and P2P4 both have angular deviations to line segment P0P4 less than 45◦, it is finally compressed
to two points {P0, P4}.

In this case, DP(
...
T , 45◦,DAD) � DP(DP(

...
T , 30◦,DAD), 45◦,DAD). Thus, the DP algorithm is

not aging friendly w.r.t. DAD. �

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:20 X. Lin et al.

Fig. 13. A counter-example of the aging friendliness of algorithm TP, where (1) the original trajectory is

compressed using ϵ2 = 6 to three points {P0, P3, P4}, and (2) the original trajectory is first compressed using

ϵ1 = 3 to four points {P0, P1, P3, P4}, then compressed using ϵ2 = 6 to two points {P0, P4}.

The DP using DAD is different with PED and SED in that DAD is the deviation between two
line segments rather than the deviation between a point and a line segment. For example, in

Figure 12(2), the angular deviations of line segments P1P2 and P0P2 to line segment P0P4 are
certainly different, though they pass through the same point P2; thus, in the first round of run
(ϵ1 = 30◦), the point P2 serves as a splitting point, while in the second round of run (ϵ2 = 45◦), it is
no more a splitting point. This difference is the key that lets DP using DAD not be aging friendly.
We next discuss the aging friendliness of other algorithms.

Proposition 5.3. The bottom-up algorithm TP is not aging friendly w.r.t. PED, SED, or DAD.

Proof. We shall prove this by constructing a counter-example shown in Figure 13, where error
bounds ϵ1 = 3 and ϵ2 = 6, and without losing generality, we use PED as the distance metric.

(1) TP(
...
T , 6,PED). It first merges P1P2 and P2P3 to P1P3 as the merging of them has the lowest

cost of 2, the distance from point P2 to line segment P1P3; then it merges P0P1 and P1P3 to P0P3

with the lowest cost of 4.5, the distance from point P1 to line segment P0P3; at last, because the

merging of P0P3 and P3P4 has a cost of 7, the distance from point P2 to line segment P0P4, which is
larger than the error bound of 6, it outputs three points {P0, P3, P4}.

(2) TP(TP(
...
T , 3,PED), 6,PED). In the first round (ϵ1 = 3), the original trajectory is compressed

to four points {P0, P1, P3, P4}, and in the second round (ϵ2 = 6), because all points in the result

trajectory {P0, P1, P3, P4} have distances to line segment P0P4 less than 6, it is finally compressed
to two points {P0, P4}.

In this case, TP(
...
T , 6,PED) � TP(TP(

...
T , 3,PED), 6,PED). Thus, TP is not aging friendly

w.r.t. PED. Similarly, TP is not aging friendly w.r.t. SED or DAD. Hence, we have the
conclusion. �

Proposition 5.4. The online and one-pass algorithms are not aging friendly w.r.t.PED, SED, or

DAD.

Proof. For online algorithm SQUISH-E, it supports SED only and runs in a bottom-up manner
that is a slight variation of algorithm TP. As TP, it is not aging friendly w.r.t. SED. For other online
and one-pass algorithms, though they apply different distance checking approaches, they run in a
common incremental manner; i.e., they incrementally read data points until they cannot represent
those read points by one line segment, and then they output the simplified sub-trajectory and
continue to process the rest of the data points. We next construct counter-examples to show that
an incremental algorithm A is not aging friendly.

(1) A (
...
T , ϵ2,M). As shown in Figure 14(1)(3)(5), the algorithm A incrementally reads

{P0, P1, ..., P5} and finds they can be represented by line segment P0P4; thus, the process progresses.
Then, after point P6 is read, it finds that these points cannot be represented by any line segment,

and hence P0P5 is output. Finally, the algorithm outputs {P0, P5, P6}.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:21

Fig. 14. Counter-examples of the aging friendliness of incremental algorithms (either online or one-pass).

(2) A (A (
...
T , ϵ1,M), ϵ2,M). When using ϵ1 = 4 or ϵ1 = 30◦, the algorithm also outputs

{P0, P5, P6}. Then {P0, P5, P6} is compressed using ϵ2 = 6 or ϵ2 = 45◦ to {P0, P6}, as shown in
Figure 14(2)(4)(6).

Combining (1) with (2), it is clear that the incremental algorithms are not aging friendly w.r.t. dis-
tance metrics PED, SED, or DAD. �

Though DP (using either PED or SED) is the only algorithm with the aging-friendly feature,
it is not necessarily the only algorithm that we have to use for compressing trajectories. Indeed,
all the other algorithms are also applicable to compress trajectories in data aging, although these
algorithms may lead to (a bit) poorer compression ratios compared with DP. However, compression
ratios are only one aspect of qualities for line simplification algorithms. Further, to keep aging
friendliness, each run of algorithm DP must take as input the entire original or simplified trajectory
that has the same start and end data points, and is not aging friendly, otherwise.

5.2 Error of Data Aging

As most algorithms are not aging friendly, are they error bounded in data aging? If so, what are
the bounds? This section focuses on these problems and discusses the error between the simplified

trajectory T 2 and the original trajectory
...
T0.

Proposition 5.5. Given error bounds ϵ1 > 0 and ϵ2 > 0, for distance metric M of PED

and SED, the error bound between the original trajectory
...
T and simplified trajectory T =

DP (DP (
...
T , ϵ1,M), ϵ2,M) ismax (ϵ1, ϵ2).

Proof. We consider two cases: ϵ2 ≥ ϵ1 and ϵ2 < ϵ1.
(1) For ϵ2 ≥ ϵ1, as proved in [3], DP (DP (

...
T , ϵ1,M), ϵ2,M) = DP (

...
T , ϵ2,M), which has the max

error of ϵ2 to the original trajectory
...
T .

(2) For ϵ2 < ϵ1, we shall prove DP (DP (
...
T , ϵ1,M), ϵ2,M) = DP (

...
T , ϵ1,M) by induction on the

number of points of
...
T .

• For a trajectory
...
T with one or two points (n = 1 orn = 2), the simplified trajectories with any

ϵ are surely identical to the original trajectory. Consider a trajectory
...
T = [P0, P1, P2] (n = 3);

if the distance from P1 to P0P2 is less than ϵ1, then DP (
...
T , ϵ1,M) = [P0, P2]. Obviously

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:22 X. Lin et al.

Fig. 15. Examples of aging errors.

DP (DP (
...
T , ϵ1,M), ϵ2,M)) is [P0, P2] too; if the distance from P1 to P0P2 is larger than ϵ1,

then DP (
...
T , ϵ1,M) =

...
T , and DP (DP (

...
T , ϵ1,M), ϵ2,M) = DP (

...
T , ϵ2,M) =

...
T .

• Assume that it is true for every trajectory
...
T having n ≥ 3 points. Consider a trajectory with

n+1 points. Let dmax denote the maximum distance between point Pi , i ∈ [0,n], and the line

segment P0Pn . If dmax < ϵ1, then DP (
...
T , ϵ1,M) = [P0, Pn], and DP (DP (

...
T , ϵ1,M), ϵ2,M) =

DP ([P0, Pn], ϵ2,M) = [P0, Pn]. If dmax > ϵ1, then in DP (
...
T , ϵ1,M), point Pi will split

the trajectory
...
T into two sub-trajectories, i.e., [P0, . . . , Pi] and [Pi , . . . , Pn], and con-

tinue to simplify each sub-trajectory. Hence, the result of DP (
...
T , ϵ1,M) is the union of

DP ([P0, . . . , Pi], ϵ1,M) and DP ([Pi , . . . , Pn], ϵ1,M). Obviously, the points P0, Pi , and Pn are

in the simplified trajectory ofDP (
...
T , ϵ1,M), and Pi is still the first splitting point of the DP al-

gorithm taking the simplified trajectory and ϵ2 as input. Hence, DP (DP (
...
T , ϵ1,M), ϵ2,M) is

the union of DP (DP ([P0, . . . , Pi], ϵ1,M), ϵ2,M) and DP (DP ([Pi , . . . , Pn], ϵ1,M), ϵ2,M). By
the assumption, we have DP (DP ([P0, . . . , Pi], ϵ1,M), ϵ2,M) = DP ([P0, . . . , Pi], ϵ1,M) and

DP (DP ([Pi , . . . , Pn], ϵ1,M), ϵ2,M) = DP ([Pi , . . . , Pn], ϵ1,M). Thus, DP (DP (
...
T , ϵ1,M), ϵ2,

M) = DP (
...
T , ϵ1,M).

• Now we have DP (DP (
...
T , ϵ1,M), ϵ2,M) = DP (

...
T , ϵ1,M), whose max error to the original

trajectory
...
T is ϵ1.

Combining (1) with (2), we have the conclusion. �

Proposition 5.6. Given error bounds ϵ1 > 0 and ϵ2 > 0, for any LS algorithm A and distance

metricM of PED, SED, and DAD other than DP using PED and SED, the error bound between the

original trajectory
...
T and simplified trajectory T = A (A (

...
T , ϵ1,M), ϵ2,M) is ϵ1 + ϵ2.

Proof. We shall prove this by showing that the error bound is neither more than ϵ1+ϵ2 nor less
than ϵ1 + ϵ2, from which we have that the error bound is exactly ϵ1 + ϵ2.

(1) We first prove that the error bound is not more than ϵ1 + ϵ2. Suppose that a point Pk is

represented by line segment PiPj with error bound ϵ1, and points Pi and Pj are further represented

by line segment PsPt with error bound ϵ2 (Figure 15). If the distance metric is PED, then the distance

from P ′
k

to PsPt is less than ϵ2; hence, the distance from Pk to PsPt is less than ϵ1 + ϵ2. If it is SED,

then |PiP
′′
i | < ϵ2, |PjP

′′
j | < ϵ2, and

|Pi P ′
k
|

|P ′
k

Pj | =
|P ′′i P ′′

k
|

|P ′′
k

P ′′j |
; hence, |P ′

k
P ′′

k
| < ϵ2, and the distance from Pk

to PsPt , i.e., |PkP
′′
k
|, is less than ϵ1 + ϵ2. If it is DAD, then obviously the error between PkPk+1 and

PsPt is not more than ϵ1 + ϵ2.
(2) We then prove that the error bound is not less than ϵ1 + ϵ2. If A is a top-down algorithm

using DAD, then from Figure 12(2) we can find that the error from P3P4 to P0P4 is ∠P3P4P0 =

∠P3P4P2+∠P2P4P0, whose bound is not less than ϵ1+ϵ2; thus, the error bound between the original

trajectory
...
T and simplified trajectory T = A (A (

...
T , ϵ1,M), ϵ2,M) is not less than ϵ1+ϵ2. IfA is a

bottom-up or incremental algorithm, either online or one-pass, then from Figure 13(2) or Figure 14
we also have the conclusion.

Combining (1) with (2), we have the conclusion. �

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:23

Table 4. Real-Life Trajectory Datasets

Datasets Number of Trajectories Sampling Rates (s) Points per Trajectory Total Points
UCar [29] 1,000 3–5 ∼114.0K 114.0M
Geolife [69] 182 1–5 ∼131.4K 24.2M
Mopsi [36] 51 2 ∼153.9K 7.9M

By Propositions 5.5 and 5.6, it is obvious that all the above algorithms have bounded errors in
data aging, which make us freely re-compress trajectories by any of these algorithms as long as
we use the same distance metric.

6 EVALUATION

In this section, we present extensive and systematic experimental studies and analyses of 12 rep-
resentative LS algorithms. Using three real-life datasets, we conduct five sets of tests to evaluate
the effectiveness in terms of compression ratios and errors, efficiency (running time), aging friend-
liness, and query friendliness of these representative algorithms using distance metrics PED, SED,
and DAD, and the impacts of error bounds ϵ and trajectory sizes.

6.1 Experimental Setting

Real-life trajectory datasets. We use three real-life datasets shown in Table 4, namely, Service
car trajectory data (UCar) [29], Geolife trajectory data (Geolife) [69], and Mopsi trajectory data
(Mopsi) [36], to evaluate those LS algorithms. These datasets come from different sources, where
UCar is collected by cars in urban, and Geolife and Mopsi are a mixing of cars and individuals.
They also have typical sampling rates used in practice, ranging from one point per second to one
point per 5 seconds. The time interval between two neighboring data points is occasionally very
long, e.g., greater than 107 seconds. The data source and sampling rate also affect the performance
of LS algorithms using certain distance metrics.

(1) UCar (also called ServiceCar in [29]) is the GPS trajectories collected by a Chinese car rental
company during April 2015 to November 2015. Most routes are located in big cities. The sampling
rate is one point per 3–5 seconds, and each trajectory has around 114.1K points.

(2) Geolife is the GPS trajectories collected in the GeoLife project [69] by 182 users in a period
from April 2007 to October 2011. These trajectories have a variety of sampling rates, among which
91% are logged at one point per 1–5 seconds. The longest trajectory has 2,156,994 points.

(3) Mopsi is the GPS trajectories collected in the Mopsi project [36] by 51 users in a period from
2008 to 2014. Most routes are located in Joensuu region, Finland. The sampling rate is one point
per 2 seconds, and each trajectory has around 153.9K points.

Algorithms and implementation. We have implemented the representative algorithms shown
in Table 1. They are optimal algorithm Optimal; batch algorithms DP and TP; online algorithms
OPW, BQS, SQUISH-E, and DOTS; and one-pass algorithms OPERB, SIPED, CISED, Intersect, and
Interval. For one-pass algorithms SIPED and CISED, we implement two versions of them (half and
full ϵ), denoted as SIPED (ϵ), SIPED (ϵ

2), CISED (ϵ), and CISED (ϵ
2). Besides, algorithms OPERB

[30] and CISED [29] both have weak versions, named OPERB-A and CISED-W, respectively. For
algorithm CISED, we fixed parameter m = 16 as evaluated in [29], i.e., 16-edge inscribe regular
polygon. For algorithm OPERB, we remove its fifth optimization technique to make it fit for the
definition of the tolerance-zone error measure [1, 6, 11, 22, 38] (otherwise, it is the infinite beam

error measure [6, 11]). All algorithms are implemented with Java. All tests are run on an x64-based
PC with 4 Intel(R) Core(TM) i7-6700 CPU @3.40GHz and 8GB of memory, and the max heap size
of Java VM is 4GB.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:24 X. Lin et al.

Fig. 16. Evaluation of compression ratios (PED) on full datasets: varying the error bound ϵ .

Fig. 17. Evaluation of compression ratios (SED) on full datasets: varying the error bound ϵ .

We test these algorithms under varied error bounds ϵ and trajectory sizes, respectively. We first
vary ϵ from 10m to 100m in PED and SED (or from 15◦ to 90◦ in DAD) on the entire four datasets,

respectively. We then choose 10 trajectories from each dataset and vary the size
...
|T | of a trajectory

from 1, 000 points to 10, 000 points (i.e., from the first 1, 000 points to the first 10, 000 points of the
trajectory) while fixing the error bound ϵ = 40 meters or ϵ = 45 degrees.

6.2 Evaluation Metrics

Compression ratios and errors are the most popular metrics to evaluate the effectiveness of LS

algorithms, and they are also the measures to evaluate the aging friendliness of LS algorithms.
Besides, the running time is used to evaluate the efficiency of LS algorithms.

Compression ratios. For trajectories {
...
T1, . . . ,

...
TM } and their piece-wise line representations

{T1, . . . ,TM }, the compression ratio is (
∑M

j=1 |T j |)/(
∑M

j=1 |
...
T j |). By this definition, algorithms with

lower compression ratios are better.

Simplification errors. The max (respectively, average) simplification error is the max (respec-
tively, average) value of the distances from every point of the original trajectories to its represent-
ing line segment of the simplified trajectories.

Running time. It is the efficiency of algorithms.

6.3 Experimental Results and Analyses

We next present our findings.

6.3.1 Evaluation and Analysis of Compression Ratio. The compression ratios of these algorithms
under varied error bounds ϵ and trajectory sizes are reported in Figures 16, 17, 18, 19, 20, and 21.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:25

Fig. 18. Evaluation of compression ratios (DAD) on full datasets: varying the error bound ϵ .

Fig. 19. Evaluation of compression ratios (PED) on small datasets: varying the size of trajectories.

Fig. 20. Evaluation of compression ratios (SED) on small datasets: varying the size of trajectories.

Note that the optimal algorithm using SED and DAD is not reported in Figures 16, 17, and 18 as it
runs out of memory when compressing the full dataset. We first report our findings.

(1) Datasets may have impacts on the compression ratios of LS algorithms. Datasets with higher
sampling rates typically have better compression ratios for PED and SED, while it is opposite for
DAD. When using DAD, the dataset collected by cars (e.g., UCar) has better compression ratios
than the datasets partially collected by individuals (e.g., Geolife and Mopsi), as cars typically move
more regularly than individuals in directions.

(2) Compression ratios are insensitive to the sizes of trajectories. The reason lies in that once
the distance is greater than the error bound, a line segment is produced, and the compression
continues to repeat this process, which is essentially irrelevant to the sizes of trajectories. This
is also the key to preserve the error bound for any of the optimal, batch, online, and one-pass
algorithms.

(3) The compression ratios of algorithms using PED from the best to the worst are normally the
optimal algorithm Optimal, online algorithm BQS, one-pass algorithm SIPED (ϵ), batch algorithms

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:26 X. Lin et al.

Fig. 21. Evaluation of compression ratios (DAD) on small datasets: varying the size of trajectories.

TP and DP, one-pass algorithm OPERB-A, and one-pass algorithms SIPED (ϵ
2) and OPERB. The

output sizes of algorithms BQS and SIPED (ϵ) are on average (113.32%, 120.22%, 120.83%) and
(116.04%, 124.46%, 124.24%) of algorithm Optimal on datasets (UCar, Geolife, Mopsi), respectively.
Algorithms TP, DP, and OPERB-A are comparable, and their output sizes are on average (125.05%,
131.01%, 138.01%), (130.03%, 140.56%, 139.00%), and (134.16%, 137.73%, 144.31%) of Optimal on
datasets (UCar, Geolife, Mopsi), respectively. Algorithms SIPED (ϵ

2) and OPERB are comparable,
and they are on average (136.73%, 150.23%, 152.29%) and (143.14%, 147.80%, 152.37%) of Optimal

on datasets (UCar, Geolife, Mopsi), respectively. For example, in Mopsi, the compression ratios of
algorithms (Optimal, TP, DP, BQS, SIPED (ϵ), SIPED (ϵ

2), OPERB, OPERB-A) are (1.6%, 2.2%, 2.2%,
1.9%, 2.0%, 2.4%, 2.4%, 2.3%) when ϵ = 40m.

(4) The compression ratios of algorithms using SED from the best to the worst are nor-
mally the Optimal algorithm, one-pass algorithms CISED-W and CISED (ϵ), batch algorithms
TP and DP, one-pass algorithm CISED (ϵ

2), and online algorithm DOTS and SQUISH-E. Al-
gorithms TP and DP are comparable, and they are on average (125.23%, 143.92%, 128.63%)
and (123.93%, 141.46%, 121.14%) of algorithm Optimal on datasets (UCar, Geolife, Mopsi), re-
spectively. Algorithms CISED-W, CISED (ϵ), CISED (ϵ

2), SQUISH-E, and DOTS are on average
(100.98%, 108.16%, 110.15%), (109.27%, 110.13%, 115.90%,), (134.35%, 159.30%, 136.06%), (165.94%,
225.68%, 206.90%), and (140.98%, 200.36%, 198.73%) of Optimal on (UCar, Geolife, Mopsi), respec-
tively. For example, in Mopsi, the compression ratios of algorithms (TP, DP, SQUISH-E, DOTS,
CISED (ϵ), CISED (ϵ

2), CISED-W) are (3.45%, 3.41%, 5.75%, 5.34%, 3.02%, 3.86%, 2.96%), respectively,
when ϵ = 40m.

(5) The compression ratios of algorithms using DAD from the best to the worst are the Optimal

algorithm, batch algorithm TP and one-pass algorithm Interval, online algorithm OPW, one-pass
algorithm Intersect, and batch algorithm DP. Algorithms TP, OPW, and Interval are compara-
ble, and are on average (102.91%, 102.27%, 106.88%), (116.09%, 107.11%, 115.42%), and (101.98%,
103.52%, 103.43%) of algorithm Optimal on datasets (UCar, Geolife, Mopsi), respectively. Al-
gorithms Intersect and DP are on average (156.00%, 121.20%, 230.52%) and (283.93%, 143.79%,
278.89%) of algorithm Optimal on datasets (UCar, Geolife, Mopsi), respectively. For example, in
Mopsi, the compression ratios of algorithms (TP, DP, OPW, Interval, Intersect) are (13.3%, 23.1%,
14.12%, 13.7%, 18.96%), respectively, when ϵ = 45 degrees.

We then present analyses from the views of LS algorithms and distance metrics.

Analyses of LS algorithms. The Optimal algorithm is the best in terms of compression ra-
tios, followed by online algorithms OPW and BQS and one-pass algorithms using the full ϵ sec-

tor/cone/range. One-pass algorithms using a half-ϵ sector/cone/range and batch algorithms except
DP using DAD also have good compression ratios.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:27

For batch algorithms, bottom-up algorithm (TP) and top-down algorithm (DP) have similar
compression ratios when using PED and SED. However, when using DAD, bottom-up methods
have obviously better compression ratios than top-down methods. We know that top-down algo-
rithms split a long trajectory [Ps , . . . , Pe] into two sub-trajectories by finding out a splitting point

Pi (s < i < e) that has the max position deviation (or whose line segment
»
Pi−1Pi has the max direc-

tion deviation) to line segment
»
PsPe . Though this strategy works well with PED and SED, a point

with the max direction deviation may not be a reasonable splitting point in the direction-aware
scenario. Thus, it leads to a poorer compression ratio. However, bottom-up methods do not have
this weakness as they always merge neighboring points.

For online algorithms, BQS and OPW are comparable with the best sub-optimal algorithms.
This is because OPW is indeed a combination of DP and opening window, and BQS is mainly
an efficiency-optimized OPW. SQUISH-E has the poorest compression ratio among all algorithms
using SED. This is the result of its mechanism: SQUISH-E estimates the lowest SED error and
removes the point “predicted to introduce the lowest amount of error into the compression” [42].
Its “prediction” method is not accurate enough; thus, in order to ensure the error bound, it may
ignore too many potential points that could be represented by a line segment. DOTS also shows
poor compression ratios in these tests. This is related to LISSED, a cumulative error measure that
DOTS uses, in which each point contributes to the error, such that the LISSED error bound of ϵ2

may limit this algorithm to compress more points into a line segment, while those points may be
compressed w.r.t. the SED error bound of ϵ .

For one-pass algorithms, the full ϵ sector/cone/range combining with a position/direction con-
straint always has better compression ratios than the half-ϵ sector/cone/range versions in all
datasets, and they are comparable with the best sub-optimal algorithms. This may be related to
the moving habits or patterns of moving objects that are implied in trajectories. That is, a moving
object, like an individual or a car, usually keeps moving forward for quite a long time, engendering
a sequence of data points distributing in a narrow strip. Under such circumstance, a new data point
is quite possibly living in the common intersection of larger sectors/cones/ranges, which further
leads to a better compression ratio.

Moreover, weak algorithms OPERB-A and CISED-W typically have a few advantages in terms
of compression ratios compared with their strong simplification counterparts OPERB and CISED

for the cases with relatively small error bounds (e.g., ϵ < 40 meters in these tests).

Analyses of distance metrics. Though PED, SED, and DAD are different distances, the compar-
ison of their compression ratios is helpful to choose an effective distance metric. First, given the
same error bound ϵ , the compression ratios of algorithms using PED are obviously better than
using SED. This is because SED saves temporal information, while PED does not. More specifi-
cally, the output sizes of using SED are approximately twice of PED. As shown in Figures 16 and 17,
the output sizes of algorithms TP and DP using PED are on average (43.55%, 47.49%, 63.15%) and
(45.79%, 50.88%, 64.50%) of algorithms TP and DP using SED on datasets (UCar, Geolife, Mopsi),
respectively. This result shows SED saves temporal information at a price of twice more data
points. Although the loss of temporal information may lead to unexpected results, e.g., unbounded
answer-errors to spatio-temporal queries (see Section 6.3.5), this price is worthwhile for certain
applications.

Second, we find that SED has obviously better compression ratios than DAD on datasets Geolife

and Mopsi, and a bit poorer than DAD in UCar. This is because some Geolife and Mopsi trajectories
are collected by individuals that are in transportation modes of walking, running, and riding, and
moving objects in those modes may change their directions with a considerable range (e.g., large
than 60 degrees) more frequently than cars in urban. Moreover, Geolife and Mopsi have higher

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:28 X. Lin et al.

Fig. 22. Evaluation of average errors (PED) on full datasets: varying the error bound ϵ .

Fig. 23. Evaluation of average errors (SED) on full datasets: varying the error bound ϵ .

Fig. 24. Evaluation of average errors (DAD) on full datasets: varying the error bound ϵ .

sampling rates than UCar, which captures more direction changes, i.e., direction changes in a
small time interval. Indeed, it is hard to compare SED and DAD under absolutely fair conditions,
as SED is a Euclidean distance metric, having a value in [0,∞] meters, and DAD is a direction
metric, having a value in [0, 360) degrees. Hence, we choose to consider more practical scenarios;
i.e., one uses SED with ϵ ≤ 100 meters, and the other uses DAD with ϵ ≤ 60 degrees, and we
compare the performance of SED with ϵ = 100/k meters vs. DAD with ϵ = 60/k degrees with
k ≥ 1. We also follow this when comparing SED and DAD in the sequel.

6.3.2 Evaluation and Analysis of Average Simplification Error. The average simplification er-
rors of these algorithms, under varied error bounds ϵ and trajectory sizes, are reported in Fig-
ures 22, 23, 24, 25, 26, and 27. We first report our findings.

(1) Datasets and data sizes are insensitive to the errors of LS algorithms.
(2) When using PED, the average errors from the smallest to the largest are batch algorithms

TP and DP, one-pass algorithm OPERB-A, one-pass algorithms SIPED (ϵ
2) and OPERB, the op-

timal algorithm Optimal and one-pass algorithm SIPED (ϵ), and online algorithm BQS. For full

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:29

Fig. 25. Evaluation of average errors (PED) on small datasets: varying the size of trajectories.

Fig. 26. Evaluation of average errors (SED) on small datasets: varying the size of trajectories.

Fig. 27. Evaluation of average errors (DAD) on small datasets: varying the size of trajectories.

datasets, algorithms TP and DP are comparable, and they are on average (58.69%, 61.34%, 57.57%)
and (57.61%, 62.66%, 60.23%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algo-
rithms SIPED (ϵ

2) and OPERB are comparable, and they are on average (80.96%, 79.12%, 79.33%)
and (70.60%, 76.64%, 78.71%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algo-
rithms OPERB-A, SIPED (ϵ), and BQS are on average (71.17%, 80.10%, 69.82%), (100.05%, 101.01%,
102.69%), and (104.67%, 108.91%, 106.92%) of Optimal on datasets (UCar, Geolife, Mopsi), respec-
tively. For example, the average errors of algorithms (Optimal, TP, DP, BQS, SIPED (ϵ), SIPED (ϵ

2),
OPERB, OPERB-A) in the full Mopsi are (16.08, 9.19, 9.68, 17.4, 12.96, 16.83, 12.77, 12.45) meters
when ϵ = 40m.

(3) When using SED, the average errors from the smallest to the largest are online algorithm
DOTS, online algorithm SQUISH-E, batch algorithms TP and DP, one-pass algorithm CISED (ϵ

2),
the Optimal algorithm and one-pass algorithm CISED (ϵ), and one-pass algorithm CISED-W. Al-
gorithms TP and DP are comparable, and they are on average (60.36%, 66.11%, 62.43%) and (62.54%,
67.04%, 68.64%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algorithms CISED-W,

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:30 X. Lin et al.

Fig. 28. Evaluation of running time (PED) on full datasets: varying the error bound ϵ .

CISED (ϵ), CISED (ϵ
2), SQUISH-E, and DOTS are on average (115.24%, 120.34%, 123.40%), (97.32%,

106.74%, 108.16%), (75.29%, 76.03%, 81.44%), (40.61%, 38.15%, 34.22%), and (39.12%, 28.80%, 23.90%)
of Optimal on datasets (UCar, Geolife, Mopsi), respectively. For example, the average errors of al-
gorithms (Optimal, TP, DP, SQUISH-E, DOTS, CISED (ϵ), CISED (ϵ

2), CISED-W) in full Mopsi are
(19.39, 12.17, 12.20, 6.76, 4.67, 20.68, 14.71, 24.12) meters, respectively, when ϵ = 40m.

(4) When using DAD, the average errors from the smallest to the largest are one-pass algorithm
Intersect, batch algorithms DP and TP, one-pass algorithm Interval and online algorithm OPW,
and the optimal algorithm Optimal. Algorithms TP, OPW, and Interval are comparable, and they
are on average (91.35%, 61.45%, 73.71%), (91.95%, 61.37%, 76.17%), and (90.36%, 68.23%, 163.47%)
of Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algorithms Intersect and DP are on
average (62.03%, 76.54%, 110.69%) and (82.45%, 96.52%, 137.95%) of Optimal on datasets (UCar,
Geolife, Mopsi), respectively.

We then present analyses from the views of LS algorithms and distance metrics.

Analyses of LS algorithms. The average errors of these algorithms are generally on the contrary
of compression ratios. The optimal algorithm is usually the worst algorithm in terms of average
errors, followed by one-pass algorithms and then batch algorithms. Online algorithms have varied
average errors, ranging from the best to the worst. (1) For batch algorithms, both bottom-up algo-
rithm (TP) and top-down algorithm (DP) have similar average errors, and they are pretty good com-
pared with other algorithms. (2) Online algorithms BQS and OPW often have the largest average
errors in all sub-optimal algorithms, while DOTS and SQUISH-E have the smallest. This is also on
the contrary of their compression ratios. (3) For one-pass algorithms, the full ϵ sector/cone/range
combining with a position/direction constraint always has larger average errors than the half-ϵ
sector/cone/range. Local distance checking approaches try to include more points into a line seg-
ment; this greedy strategy is likely leading to larger average errors, considerably larger than batch
algorithms that have the similar compression ratios as one-pass and online algorithms.

Analyses of distance metrics. For the same error bound ϵ , the average errors of algorithms
using SED are a bit larger than using PED. As we know that PED error is originally caused by the
direction changes of a moving object, while SED error is caused by the changes of both the direction
and the speed of a moving object, the above phenomenon probably reveals that the changes of
speeds are more frequent than the changes of directions for moving objects. In practice (e.g., ϵ =
60 meters and ϵ = 45 degrees), the average errors of algorithms using DAD, when translated to
position errors like PED, are likely 10 times larger than algorithms directly using PED and SED.
This is obvious as a small direction deviation with a long trip may lead to a large position error.

6.3.3 Evaluation and Analysis of Efficiency. In this set of tests, we compare the efficiency of
these algorithms. The results are reported in Figures 28, 29, 30, 31, 32, and 33. Note that even on
the small datasets, the running time of algorithm Optimal is thousands of times slower than one-pass

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:31

Fig. 29. Evaluation of running time (SED) on full datasets: varying the error bound ϵ .

Fig. 30. Evaluation of running time (DAD) on full datasets: varying the error bound ϵ .

Fig. 31. Evaluation of running time (PED) on small datasets: varying the size of trajectories.

algorithms. As it is not clear to show all these algorithms in a single figure, only the results of
sub-optimal algorithms are shown in these figures. We first report our findings.

(1) Datasets do not have obvious impacts on the running time of LS algorithms except DOTS.
(2) When using PED, in most cases, the running time from the smallest to the largest is one-

pass algorithms SIPED, OPERB, and OPERB-A; batch algorithms TP and DP; and online algo-
rithm BQS. Algorithms SIPED (ϵ

2), OPERB, and OPERB-A are comparable; algorithm SIPED (ϵ) is
(0.92, 0.92, 0.91) times of SIPED (ϵ

2); and algorithms TP, DP, and BQS are on average (26.79, 28.25,
29.87), (16.32, 15.40, 11.02), and (37.73, 62.23, 61.29) times slower than one-pass algorithm SIPED

(ϵ
2) on datasets (UCar, Geolife, Mopsi), respectively. For example, in Mopsi, the running time of

algorithms (TP, DP, BQS, SIPED (ϵ), SIPED (ϵ
2), OPERB, OPERB-A) is (232.9, 124.2, 469.4, 6.89,

7.6, 8.6, 9.4) seconds when ϵ = 40m.
(3) When using SED, the running time of algorithms except DOTS from the smallest to the

largest is one-pass algorithms CISED and CISED-W, online algorithm SQUISH-E, and batch algo-
rithms TP and DP, while DOTS has varied running time. In full datasets, DOTS runs faster than,

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:32 X. Lin et al.

Fig. 32. Evaluation of running time (SED) on small datasets: varying the size of trajectories.

Fig. 33. Evaluation of running time (DAD) on small datasets: varying the size of trajectories.

comparable with, and slower than DP in datasets UCar, Geolife, and Mopsi, respectively, while
in small datasets, it often runs faster than DP. Algorithm CISED (ϵ) is (1.17, 1.17, 0.91) times of
CISED (ϵ

2), and algorithms TP, DP, and SQUISH-E are on average (13.33, 15.81, 13.09), (12.93, 10.64,
8.79), and (2.75, 2.78, 2.57) times slower than CISED (ϵ

2) on datasets (UCar, Geolife, Mopsi), respec-
tively. For example, in Mopsi, the running time of algorithms (TP, DP, DOTS, SQUISH-E, CISED

(ϵ), CISED (ϵ
2), CISED-W) is (156.6, 104.8, 361.1, 27.2, 11.6, 9.7, 9.7) seconds when ϵ = 40m.

(4) When using DAD, one-pass algorithms Intersect and Interval run much faster than batch
algorithms TP and DP and online algorithm OPW. Algorithm Interval is (1.80, 1.84, 1.81) times
slower than Intersect, and algorithms TP, DP, and OPW are on average (24.63, 23.53, 23.23),
(25.49, 30.11, 31.72), and (39.29, 147.85, 80.09) times slower than Intersect on datasets (UCar,
Geolife, Mopsi), respectively. For example, the running time of algorithms (TP, DP, OPW, Interval,
Intersect) is (105.57, 152.53, 240.40, 8.57, 4.69) seconds in Mopsi when ϵ = 45 degrees, respectively.

We then present analyses from the views of LS algorithms and distance metrics.

Analyses of LS algorithms. The running time from the fastest to the slowest is one-pass algo-
rithms, online and batch algorithms, and optimal algorithms.

For batch algorithms, the running time of DP and TP decreases or increases with the increase of
error bound ϵ , respectively, due to the top-down and bottom-up approaches that they apply. When
using PED or SED, the top-down algorithm usually runs faster than the bottom-up algorithm
when the error bound ϵ is large (e.g., in Geolife, ϵ > 10 meters when using PED and ϵ > 30
meters when using SED), which means that the top-down (bottom-up) algorithm needs to split
(merge) the original trajectory fewer (more) times in these cases, and vice versa. When using DAD,
top-down algorithms are normally a bit slower than bottom-up algorithms (recall that top-down
algorithms have poorer compression ratios compared with bottom-up algorithms, which means
that they need more time to split the raw trajectory into more sub-trajectories). In addition to
error bounds, sampling rates also have impacts on the efficiency of batch algorithms. A dataset

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:33

Table 5. The Max Errors of Algorithms in Data Aging That Set ϵ1 = 40m (or ϵ1 = 30◦ When Using DAD) in

the First Run and ϵ2 = 60m (or ϵ2 = 50◦ When Using DAD) in the Second Run

Alg. (PED) UCar Geolife Mopsi Alg. (SED) UCar Geolife Mopsi Alg. (DAD) UCar Geolife Mopsi
DP 59.99 59.99 59.99 DP 59.99 59.99 59.99 DP 79.90 79.93 78.96
TP 99.56 96.95 93.00 TP 97.55 96.70 90.53 TP 79.94 79.93 79.64
BQS 96.20 93.58 96.79 SQUISH-E 92.60 90.89 84.38 OPW 79.96 79.96 79.74
SIPED (ϵ) 97.34 95.21 98.86 CISED (ϵ) 97.75 97.51 96.65 Interval 79.96 79.93 79.74
SIPED (ϵ

2) 99.18 94.57 97.91 CISED (ϵ
2) 97.40 97.51 98.83 Intersect 70.26 77.78 72.87

OPERB 98.26 96.53 98.08 DOTS 98.47 95.92 96.7 / - - -
OPERB-A 99.99 99.99 99.99 CISED-W 99.21 99.34 98.81 / - - -

with high sampling rate likely needs more merging processes than splitting processes; thus, top-
down algorithms run faster than bottom-up algorithms in high sampling datasets when using PED

or SED.
For online algorithms, SQUISH-E is faster than BQS and OPW at a cost of poorer compres-

sion ratios, and it is still a few times slower than one-pass algorithms. BQS and OPW both have
poor efficiency as they finally need batch approaches to simplify buffered data, and batch ap-
proaches running in a buffer are still time consuming. DOTS runs very slow on the full datasets,
partially because its frequent copying of memory wastes a lot of time and becomes its bottleneck of
efficiency.

For one-pass algorithms, OPERB, SIPED, CISED, and Interval show a linear running time that
is consistent with their time complexity analyses. They are not very sensitive to error bound ϵ and
also scale well with the increase of trajectory size on all datasets as a data point is processed only
one time during the whole process. Algorithms SIPED, OPERB, and Interval have similar running
time, and algorithm CISED runs a bit slower than them, partially because finding the common
intersection of spatial-temporal cones is a heavier work than sectors or ranges.

As we analyzed above, different algorithms show different trends with error bounds because
they adopt different routines and principles for trajectory compression. Further, weak simplifica-
tion algorithms have similar running time to their corresponding strong simplification algorithms
as they share the same key routines for trajectory compression.

Analyses of distance metrics. The computation time of DAD is faster than PED and SED, and the
computation times of PED and SED are 2.3 and 1.7 times of DAD, respectively. It is also worth point-
ing out that algorithms DP using PED, SED, and DAD have similar running time in all datasets,
though the computation of PED is much heavier than SED and DAD. The reason is that DP using
PED has the best compression ratios, which instead leads to the least splitting processes in the top-
down manner. Combining these two factors, i.e., the computing of distance/direction deviation and
the processing of trajectory splitting, finally, algorithm DP using PED has similar running time as
DP using DAD or SED.

6.3.4 Evaluation and Analysis of Data Aging. In this set of tests, we compare the errors and
compression ratios of algorithms in data aging. We set ϵ1 = 40m (or ϵ1 = 30◦) in the first run
and ϵ2 = 60m (or ϵ2 = 50◦) in the second run. Besides, we also run these algorithms on the raw
trajectories, setting ϵ3 = ϵ1 + ϵ2 = 100m (or ϵ3 = 80◦). The max errors are reported in Table 5, and
the compression ratios are reported in Table 6 and Table 7, respectively.

(1) Algorithms DP using PED and SED both have max errors less than ϵ2 = 60m, confirming
that they are aging friendly and their max errors are consistent with Theorem 5.5, while algo-
rithms DP using DAD and other algorithms have max error larger than ϵ2 = 60m or ϵ2 = 50◦,

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:34 X. Lin et al.

Table 6. The Final Compression Ratios of Algorithms in Data Aging That Set ϵ1 = 40m (or ϵ1 = 30◦ When

Using DAD) in the First Run and ϵ2 = 60m (or ϵ2 = 50◦ When Using DAD) in the Second Run

Alg. (PED) UCar Geolife Mopsi Alg. (SED) UCar Geolife Mopsi Alg. (DAD) UCar Geolife Mopsi
DP 4.67 1.94 1.68 DP 10.03 3.83 2.78 DP 12.75 22.20 20.34
TP 4.66 2.07 1.74 TP 10.09 3.78 2.76 TP 3.80 13.28 11.30
BQS 4.13 1.67 1.43 SQUISH-E 11.38 4.55 3.47 OPW 4.09 13.88 11.92
SIPED (ϵ) 4.15 1.69 1.42 CISED (ϵ) 9.12 3.28 2.45 Interval 3.81 13.37 11.47
SIPED (ϵ

2) 4.65 1.94 1.68 CISED (ϵ
2) 10.66 3.94 2.99 Intersect 5.37 17.11 15.05

OPERB 5.03 2.03 1.97 DOTS 11.81 3.89 2.55 / - - -
OPERB-A 5.53 1.90 1.93 CISED-W 8.94 3.76 2.34 / - - -

Table 7. The Compression Ratios of Algorithms Running on the Raw Trajectories That Set

ϵ3 = ϵ1 + ϵ2 = 100m (or ϵ3 = 80◦ When Using DAD)

Alg. (PED) UCar Geolife Mopsi Alg. (SED) UCar Geolife Mopsi Alg. (DAD) UCar Geolife Mopsi
DP 3.64 1.17 1.39 DP 7.44 2.69 1.91 DP 8.25 15.17 17.04
TP 3.70 1.22 1.50 TP 7.56 2.70 1.73 TP 2.47 7.51 9.42
BQS 3.23 1.71 1.39 SQUISH-E 10.36 4.10 2.82 OPW 3.23 8.66 10.75
SIPED (ϵ) 3.25 1.04 1.28 CISED (ϵ) 6.68 2.35 1.49 Interval 2.79 8.01 9.95
SIPED (ϵ

2) 3.81 1.29 1.55 CISED (ϵ
2) 8.02 2.90 1.87 Intersect 4.32 11.75 13.61

OPERB 4.08 1.43 1.56 DOTS 10.91 4.33 3.43 / - - -
OPERB-A 4.06 1.31 1.20 CISED-W 6.92 2.98 1.77 / - - -

confirming that they are not aging friendly and their max errors are consistent with Theorems 5.2,
5.3, and 5.4.

(2) Algorithms DP using DAD and other algorithms have max error less than ϵ1 + ϵ2 = 100m or
ϵ1 + ϵ2 = 80◦, which is consistent with Theorem 5.6.

(3) Table 6 and Table 7 tell that, if algorithms compress data using ϵ1 and ϵ2 in turn, then they
have a bit poorer compression ratios than directly using ϵ3 = ϵ1 + ϵ2. Note that the causes of this
phenomenon are varied. For algorithm DP using PED or SED, it is caused by the shortening of the
final error bound, which ismax {ϵ1, ϵ2}, less than ϵ3 = ϵ1 + ϵ2, while for the other algorithms, they
lose some compression ratios because of data aging.

Analyses of LS algorithms. DP is the only algorithm that is aging friendly w.r.t. PED and SED,
and all algorithms have bounded errors. Indeed, aging friendliness is a result of the specific nature
of algorithm DP, i.e., batch and top-down, that always splits a trajectory into two sub-trajectories
by the same splitting point when it uses any PED or SED larger than the error bound.

Analyses of LS distance metrics. DAD is not aging friendly w.r.t. to any algorithm. It is different
with PED and SED in that the DAD of a point is closely related to its neighbor point, while PED

and SED are not; thus, once its neighbor point is removed, its DAD is also changed. This character
makes it not aging friendly w.r.t. the DP algorithm.

6.3.5 Evaluation and Analysis of Query Friendliness. We finally evaluate those compressed tra-
jectories from the viewpoint of trajectory application, i.e., spatio-temporal query. The well-known
spatio-temporal queries are where_at, when_at, range, nearest_neighbor, and spatial_join [3, 60].
Among them, where_at query, i.e., “the position P of a moving object at time t” [3], is the founda-
tion of range and nearest_neighbor queries, and when_at query, i.e., “the time t at which a moving

object on a trajectory is expected to be at position P” [3], is also a critical building block for many ap-
plications. Hence, we choose them to evaluate compressed trajectories simplified by LS algorithms
using PED, SED, and DAD. As mentioned in [3, 60], the answer to where_at query is the expected

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:35

Fig. 34. Evaluation of where_at queries (PED) on full datasets: varying error bound ϵ .

Fig. 35. Evaluation of where_at queries (SED) on full datasets: varying error bound ϵ .

Fig. 36. Evaluation of where_at queries (DAD) on full datasets: varying error bound ϵ .

position P ′ of the moving object at time t . Indeed, it is the synchronized point of P when the query
is performed on simplified trajectories.

Exp-1: where_at queries. We first compress these trajectories using PED, SED, and DAD, respec-

tively. Then, for each point P in an original trajectory
...
T , we perform a where_at query on each of

its compressed trajectories taking time P .t as input and calculate the distance between the actual
position P and the expected position P ′ to denote the error of queries. The max and average errors
of the queries are reported in Table 8 and Figures 34, 35, 36, 37, 38, and 39, respectively.

(1) When using PED, the max query errors of all algorithms are more than 106 meters in all
datasets, significantly larger than the error bound (40 meters in Table 8). The large max errors also
lead to larger average query errors; i.e., they are greater than error bounds in all datasets.

(2) When using SED, the max query errors of all algorithms are clearly not more than the er-
ror bounds, and the average query errors are consistent with those compression errors shown in
Section 6.3.2.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:36 X. Lin et al.

Fig. 37. Evaluation of where_at queries (PED) on small datasets: varying the size of trajectories.

Fig. 38. Evaluation of where_at queries (SED) on small datasets: varying the size of trajectories.

Fig. 39. Evaluation of where_at queries (DAD) on small datasets: varying the size of trajectories.

(3) When using DAD, the max query errors of all algorithms are more than 106 meters in dataset
UCar, and more than 105 meters in datasets Geolife and Mopsi, respectively, also significantly
larger than the error bound (40 meters in Table 8). Moreover, compared with using PED, it has few
points having query errors larger than error bounds; thus, it has the smallest average query errors
in all algorithms and all datasets.

Exp-2: when_at queries. For each point P in an original trajectory
...
T , we do a when_at query on

the simplified trajectory. Since quite a few original data points are not exactly on the line segments
of the simplified trajectory, we first map each original point P to its closest point P ′ having the
minimum Euclidean distance on the line segment representing this point along the same way as
[3]; then we get the expected time P ′.t ′ of P ′ w.r.t. this line segment in a way inverse to the finding
of a synchronized point; and we finally calculate the absolute time difference between the actual
time P .t and the expected time P ′.t ′ as the error of the query. The max and average errors of the
queries are reported in Table 9 and Figures 40, 41, 42, 43, 44, and 45, respectively.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:37

Table 8. The Max Errors of where_at Queries on the Compressed Trajectories: Fixed ϵ = 40m or 30◦

When Using DAD

Alg. (PED) UCar Geolife Mopsi Alg. (DAD) UCar Geolife Mopsi

DP 3.48 × 106 1.83 × 106 5.03 × 106 DP 2.76 × 106 7.91 × 105 4.87 × 105

TP 3.51 × 106 1.91 × 106 5.03 × 106 TP 2.76 × 106 7.91 × 105 5.01 × 105

BQS 3.51 × 106 1.94 × 106 1.40 × 106 OPW 2.76 × 106 7.91 × 105 5.01 × 105

SIPED (ϵ) 3.51 × 106 1.02 × 106 1.39 × 106 Interval 2.76 × 106 7.91 × 105 5.01 × 105

SIPED (ϵ/2) 3.50 × 106 1.02 × 106 1.39 × 106 Intersect 2.76 × 106 7.91 × 105 4.18 × 105

OPERB 3.50 × 106 1.56 × 106 1.39 × 106 / - - -
OPERB-A 7.50 × 106 1.84 × 106 5.03 × 106 / - - -

Note that all algorithms using SED have the max query errors not more than the error bound, i.e., ϵ = 40m here.

Table 9. The Max Errors (×106 s) of when_at Queries on Compressed Trajectories: Fixed ϵ = 40m or 30◦

When Using DAD

Alg. (PED) UCar Geolife Mopsi Alg. (SED) UCar Geolife Mopsi Alg. (DAD) UCar Geolife Mopsi
DP 11.2 126 6.59 DP 11.6 5.01 1.84 DP 17.6 5.88 3.99
TP 26.1 126 9.91 TP 11.6 5.01 5.18 TP 17.6 2.90 5.06
BQS 11.6 126 11.5 SQUISH-E 11.6 18.3 2.62 OPW 8.19 4.02 5.06
SIPED (ϵ) 11.5 73.7 6.65 CISED (ϵ) 11.6 39.7 5.48 Interval 8.19 4.02 5.06
SIPED (ϵ

2) 11.5 73.7 6.68 CISED (ϵ
2) 11.6 39.7 5.20 Intersect 8.19 2.63 5.06

OPERB 21.6 75.2 8.31 DOTS 11.6 18.3 2.91 / - - -
OPERB-A 22.1 126 11.5 CISED-W 11.6 47.7 5.50 / - - -

Fig. 40. Evaluation of when_at queries (PED) on full datasets: varying error bound ϵ .

(1) The max error of when_at queries on simplified trajectories is unbounded as proved in [3].
Indeed, the query error is related to the length of the time interval between two neighboring points
of a simplified trajectory. We explain this with an example. Suppose that one moves from the front
door, quickly passes through the living room, and goes to bed for a long sleep. Since the house
is not big, the trajectory is possibly simplified to two points, i.e., Ps in the front door and Pe on
the bed. In this case, a when_at query taking a point P in the living room as input may return the
excepted time t ′ with an error of several hours to the actual time P .t .

(2) The average error of when_at queries normally increases with the increment of error bounds.
This is obvious as the increment of error bounds enlarges the average length of the time interval
between two neighboring points in a simplified trajectory, which leads to the increase of the aver-
age error of when_at queries. Similarly, the algorithms having better compression ratios typically
have larger errors for when_at queries.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:38 X. Lin et al.

Fig. 41. Evaluation of when_at queries (SED) on full datasets: varying error bound ϵ .

Fig. 42. Evaluation of when_at queries (DAD) on full datasets: varying error bound ϵ .

Fig. 43. Evaluation of when_at queries (PED) on small datasets: varying the size of trajectories.

(3) SED algorithms have smaller average when_at query errors than PED algorithms, mainly
because SED introduces smaller distance errors and has relatively worse compression ratios com-
pared with PED. DAD algorithms also have smaller average when_at query errors than PED algo-
rithms, partially because of their relatively worse compression ratios compared with PED.

6.3.6 Summary. From these tests we find the following.

LS Algorithms. (1) The optimal algorithms have the best compression ratios, large average errors,
and the worst efficiencies. (2) Batch algorithms, except DP using DAD, have good compression ra-
tios, normal average errors, and poor efficiency. The bottom-up (TP) and top-down (DP) algorithms
have the similar compression ratios and average errors when using either PED or SED. The bottom-
up method has obviously better compression ratios than the top-down method when using DAD.
The running time of batch algorithms DP and TP decreases and increases with the increase of error
bound ϵ , respectively. When using PED or SED, top-down algorithm DP usually runs faster than
bottom-up algorithm TP when the error bound ϵ is large (e.g., in Geolife, ϵ > 10 meters when using

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:39

Fig. 44. Evaluation of when_at queries (SED) on small datasets: varying the size of trajectories.

Fig. 45. Evaluation of when_at queries (DAD) on small datasets: varying the size of trajectories.

PED and ϵ > 30 meters when using SED). When using DAD, the top-down algorithm is normally a
bit slower than the bottom-up algorithm. Top-down algorithms also run faster than bottom-up al-
gorithms in high sampling datasets when using PED or SED. (3) Online algorithms OPW and BQS

usually have better compression ratios than batch algorithms, the worst average errors, and poorer
efficiency than batch algorithms. Algorithm SQUISH-E is on the other side of OPW and BQS, and
algorithm DOTS has poor compression ratios, the best average errors, and varied efficiency. In our
tests (in Java), when DOTS is processing a long trajectory, the frequent copying of memory makes
it even slower than batch algorithms. (4) One-pass algorithms OPERB, SIPED, CISED, Intersect,
and Interval have good compression ratios (comparable with the best sub-optimal algorithms),
poor average errors, and the best efficiency. The full ϵ sector/cone/range combining with a posi-
tion/direction constraint always has better compression ratios and also larger average errors than
the half ϵ sector/cone/range. Weak simplifications show a bit better compression ratios compared
with strong simplifications when the SED/PED error bounds are relatively small, e.g., less than 40
meters in the tests. One-pass algorithms show a linear running time and they are not very sensi-
tive to error bound ϵ , and also scale well with the increase of trajectory sizes. (5) All the tested
algorithms have bounded errors in data aging, where the error bounds of DP using PED and SED

aremax {ϵ1, ϵ2} and the others are ϵ1 + ϵ2. Moreover, algorithms DP using PED and SED are aging

friendly, while others are not.

Distance metrics. (1) The output sizes of algorithms using SED are approximately twice of PED,
and in practice (e.g., ϵ < 100 meters and ϵ < 60 degrees), PED and SED usually bring obviously
better compression ratios than DAD, especially in high sampling datasets. (2) The average errors
of algorithms using SED are a bit larger than using PED. (3) Simplification using DAD is in general
faster than PED and SED, and, indeed, the computation time of PED and SED is 2.3 and 1.7 times
of DAD, respectively. (4) DAD is not aging friendly w.r.t. any tested algorithm. (5) SED is query
friendly w.r.t. where_at queries, while the others are not. Note that, though algorithms using PED

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:40 X. Lin et al.

and DAD are error bounded by PED and DAD, respectively, they are not able to guarantee the error

bounds of spatio-temporal queries. Actually, they might lead to very large query errors. That is, all
these algorithms and distance metrics become unbound for when_at queries.

Comparing with the recent experimental study [66], this work has the following new findings:
(1) the compression ratios and average errors of optimal, batch, online, and one-pass algorithms
w.r.t. distance metrics (PED, SED, and DAD), error bounds, and data sizes are systematically stud-
ied. (2) The efficiency of algorithms w.r.t. distance metrics, error bounds, and data sizes are studied
by implementing all algorithms in the same programming language. Our tests reveal that the run-
ning times from the fastest to the slowest are typically Intersect, Interval, OPERB, SQUISH-E, DP,
DOTS, and BQS, which is partially different from [66] that are Intersect, Interval, DP, OPERB,
DOTS, SQUISH-E, and BQS. (3) Aging friendliness and errors are investigated, which is indeed
new from all previous experimental studies. (4) One-pass algorithm SIPED (ϵ) is efficient and has
good compression ratios, and one-pass algorithm CISED, either CISED (ϵ) or CISED-W, is better
than batch and online algorithms in terms of compression ratios and efficiency.

7 CONCLUSIONS

Using three real-life trajectory datasets, we have systematically evaluated and analyzed error
bounded LS algorithms for trajectory compression, including both compression optimal and sub-

optimal methods that use PED, SED, and/or DAD, in terms of compression ratios, errors, efficiency,
aging friendliness, and query friendliness.

Our experimental studies and analyses show the following.

(1) Choice of LS algorithms. Optimal algorithms bring the best compression ratios; however,
their efficiency is obviously poorer than sub-optimal algorithms. The optimal simplified trajec-
tory algorithms are essentially impractical from the perspective of applications, especially in cases
when the input dataset is large or computing resources are limited.

For compression sub-optimal algorithms, the output sizes of algorithms BQS and SIPED (ϵ) us-
ing PED; CISED (ϵ) and CISED-W using SED; and TP and Interval using DAD are approximately
103%–124%, 101%–115%, and 102%–107% of the optimal algorithms, respectively. Batch algorithms
using PED and SED also have good compression ratios. Thus, they are the alternates of the opti-
mal algorithms. More specifically, in case compression ratios are the first consideration, then al-
gorithms BQS and SIPED (ϵ) using PED; CISED (ϵ) and CISED-W using SED; and TP and Interval

using DAD are good candidates. In case average errors are concerned, then online algorithm
DOTS and batch algorithms are good candidates as one-pass algorithms and online algorithms
OPW and BQS all have relatively large average errors. In case running time is the most impor-
tant factor or computing resources are limited, then one-pass algorithms are the best candidates.
Indeed, one-pass algorithms run fast and require fewer resources, and have better or comparable com-

pression ratios compared with batch and online algorithms. Hence, they are the prominent trajectory

compression algorithms when average errors are not the main concern.

Besides, algorithms DP using PED and SED are aging friendly, which makes them have a bit bet-
ter compression ratios in data aging given the same final error bound. Hence, DP is a good choice
in the scenario of data aging when compression ratios are the first consideration. Also, remember
that in data aging, each run of algorithm DP should take as input the whole raw/simplified tra-
jectory and these trajectories must have the same start and end data points; otherwise, the aging

friendliness of them would not be guaranteed.

(2) Choice of distance metrics. Users essentially choose a distance metric of PED, SED, and
DAD based on the needs of applications; e.g., SED is the only distance metric that is query friendly
w.r.t. the where_at, range, and nearest_neighbor queries. Hence, it is the best choice for such

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:41

applications, and all of them are not friendly w.r.t. the when_at query. Further, the choice of a
distance metric has impacts on the performance. For compression ratios, the use of synchronized
distance SED saves temporal information of trajectories with a cost of approximately double-sized
outputs compared with using PED in all datasets; PED has obviously better compression ratios than
DAD in all datasets, and SED is also better than DAD in high sampling datasets. For efficiency, the
computation time of PED and SED is 2.3 and 1.7 times of DAD, respectively.

APPENDIX

APPENDIX: SEMANTIC-BASED TRAJECTORY COMPRESSION ALGORITHMS

Apart from the techniques evaluated in this article, there exist other approaches for various re-
quirements of trajectory compression. We introduce the semantic-based methods, one of the most
important types of methods.

The trajectories of certain moving objects in urban areas, such as cars and trucks, are constrained
by road networks. Hence, there are trajectory compression methods based on road networks [2, 9,
10, 18, 21, 24, 28, 47, 56] that first project trajectory points onto roads (known as map-matching
[49]), then compress the matched data points by piece-wise linear approximation methods [14, 35,
45, 65]. Note that (1) map-matching is thought an effective way to improve the quality of a raw
uncertain trajectory [28], and (2) dilution-matching-encoding [17] is an exception of such methods
in that it first simplifies the original trajectory points by some line simplification method and then
projects the simplified points onto roads. Some methods [52, 53] compress trajectories making use
of other domain knowledge, such as places of interests (POI) along the trajectories [52], and the
high-frequency patterns of compressed trajectories instead of roads [17, 18, 26, 56], to improve the
compression effectiveness. The location information from sensors is usually imprecise, and may be
noisy and error prone [2], while map-matching is believed able to correct the error by “snapping”
data points onto the road network. Further, they are able to represent a trajectory based on long
paths (a path is a sequence of roads connected one by one) and to further mine the frequency
patterns, so as to improve the overall compression of trajectories. However, users should keep
in mind that the effectiveness of these semantic-based methods highly depends on the quality of
semantic information (e.g., road networks) and sequence labeling (e.g., map-matching) algorithms.
In some cases, e.g., when the road network is not up to date or there is no road nearby or moving
objects actually move along the parallel roads (but outside of the roads), these methods may result
in incorrect map-matching and introduce extra errors.

We believe that the semantic-based methods and the line simplification methods are orthogonal
and may be combined with each other to improve the effectiveness of trajectory compression [29],
like the way that dilution-matching-encoding [17] does.

REFERENCES

[1] Gill Barequet, Danny Z. Chen, Ovidiu Daescu, Michael T. Goodrich, and Jack Snoeyink. 2002. Efficiently approximating

polygonal paths in three and higher dimensions. Algorithmica 33, 2 (2002), 150–167.

[2] Hu Cao and Ouri Wolfson. 2005. Nonmaterialized motion information in transport networks. In Proceedings of the

10th international conference on Database Theory (ICDT’05).

[3] Hu Cao, Ouri Wolfson, and Goce Trajcevski. 2006. Spatio-temporal data reduction with deterministic error bounds.

VLDBJ 15, 3 (2006), 211–228.

[4] W. Cao and Y. Li. 2017. DOTS: An online and near-optimal trajectory simplification algorithm. Journal of Systems and

Software 126, Supplement C (2017), 34–44.

[5] W. Chan and F. Chin. 1996. Approximation of polygonal curves with minimum number of line segments. IJCGA 6, 1

(1996), 378–387.

[6] Danny Z. Chen and Ovidiu Daescu. 2002. Space-efficient algorithms for approximating polygonal curves in two di-

mensional space. IJCGA 13, 2 (2002), 95–111.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:42 X. Lin et al.

[7] Minjie Chen, Mantao Xu, and Pasi Fränti. 2012. Compression of GPS trajectories. In Proceedings of the 2012 Data

Compression Conference (DCC’12).

[8] Minjie Chen, Mantao Xu, and Pasi Fränti. 2012. A fast multiresolution polygonal approximation algorithm for GPS

trajectory simplification. TIP 21, 5 (2012), 2770–2785.

[9] Yukun Chen, Kai Jiang, Yu Zheng, Chunping Li, and Nenghai Yu. 2009. Trajectory simplification method for location-

based social networking services. In Proceedings of the 2009 International Workshop on Location Based Social Networks

(LBSN’09).

[10] Alminas Civilis, Christian S. Jensen, and Stardas Pakalnis. 2005. Techniques for efficient road-network-based tracking

of moving objects. TKDE 17, 5 (2005), 698–712.

[11] Ovidiu Daescu and Ningfang Mi. 2005. Polygonal chain approximation: A query based approach. Computational Ge-

ometry 30 (2005), 41–58.

[12] David H. Douglas and Thomas K. Peucker. 1973. Algorithms for the reduction of the number of points required to

represent a digitized line or its caricature. Canadian Cartographer 10, 2 (1973), 112–122.

[13] James George Dunham. 1986. Optimum uniform piecewise linear approximation of planar curves. TPAMI 8, 1 (1986),

67–75.

[14] Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel Cecchet, Walid G. Aref, and Willy Zwaenepoel. 2009. Online

piece-wise linear approximation of numerical streams with precision guarantees. PVLDB 2, 1 (2009), 145–156.

[15] D. Eu and G. T. Toussaint. 1994. On approximation polygonal curves in two and three dimensions. CVGIP: Graphical

Models and Image Processing 56, 3 (1994), 231–246.

[16] Oliviu Ghica, Goce Trajcevski, Ouri Wolfson, Ugo Buy, Peter Scheuermann, Fan Zhou, and Dennis Vaccaro. 2010.

Trajectory data reduction in wireless sensor networks. IJNGC 1, 1 (2010), 28–51.

[17] Ranit Gotsman and Yaron Kanza. 2015. A dilution-matching-encoding compaction of trajectories over road networks.

GeoInformatica 19, 2 (2015), 331–364.

[18] Yunheng Han, Weiwei Sun, and Baihua Zheng. 2017. COMPRESS: A comprehensive framework of trajectory com-

pression in road networks. TODS 42, 2 (2017), 11:1–11:49.

[19] Henrik Hargitai, Jue Wang, Philip J. Stooke, Irina Karachevtseva, Akos Kereszturi, and Mátyás Gede. 2017. Map projec-

tions in planetary cartography. In Lecture Notes in Geoinformation and Cartography. Springer International Publishing.

[20] John Hershberger and Jack Snoeyink. 1992. Speeding up the douglas-peucker line-simplification algorithm. Technical

Report, University of British Columbia (1992).

[21] Chih Chieh Hung, WenChih Peng, and WangChien Lee. 2015. Clustering and aggregating clues of trajectories for

mining trajectory patterns and routes. VLDBJ 24, 2 (2015), 169–192.

[22] Hiroshi Imai and Masao Iri. 1986. Computational-geometric methods for polygonal approximations of a curve. Com-

puter Vision, Graphics, and Image Processing 36 (1986), 31–41.

[23] Bingqing Ke, Jie Shao, and Dongxiang Zhang. 2017. An efficient online approach for direction-preserving trajectory

simplification with interval bounds. In Proceedings of the 18th IEEE International Conference on Mobile Data Manage-

ment (MDM’17).

[24] Georgios Kellaris, Nikos Pelekis, and Yannis Theodoridis. 2013. Map-matched trajectory compression. Journal of Sys-

tems and Software 86 (2013), 1566–1579.

[25] Eamonn J. Keogh, Selina Chu, David M. Hart, and Michael J. Pazzani. 2001. An online algorithm for segmenting time

series. In Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM’01).

[26] Satoshi Koide, Yukihiro Tadokoro, Chuan Xiao, and Yoshiharu Ishikawa. 2018. CiNCT: Compression and retrieval for

massive vehicular trajectories via relative movement labeling. In Proceedings of the 34th International Conference on

Data Engineering (ICDE’18).

[27] Ralph Lange, Frank Dürr, and Kurt Rothermel. 2011. Efficient real-time trajectory tracking. VLDBJ 20, 5 (2011),

671–694.

[28] Tianyi Li, Ruikai Huang, Lu Chen, Christian S. Jensen, and Torben Bach Pedersen. 2020. Compression of uncertain

trajectories in road networks. PVLDB 13, 7 (2020), 1050–1063.

[29] Xuelian Lin, Jiahao Jiang, Shuai Ma, Yimeng Zuo, and Chunming Hu. 2019. One-pass trajectory simplification using

the synchronous euclidean distance. VLDBJ 28, 6 (2019), 897–921.

[30] Xuelian Lin, Shuai Ma, Han Zhang, Tianyu Wo, and Jinpeng Huai. 2017. One-pass error bounded trajectory simplifi-

cation. PVLDB 10, 7 (2017), 841–852.

[31] Jiajun Liu, Kun Zhao, Philipp Sommer, Shuo Shang, Brano Kusy, and Raja Jurdak. 2015. Bounded quadrant system:

Error-bounded trajectory compression on the go. In Proceedings of the 31st International Conference on Data Engineer-

ing (ICDE’15).

[32] Jiajun Liu, Kun Zhao, Philipp Sommer, Shuo Shang, Brano Kusy, Jae-Gil Lee, and Raja Jurdak. 2016. A novel framework

for online amnesic trajectory compression in resource-constrained environments. TKDE 28, 11 (2016), 2827–2841.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

Error Bounded Line Simplification Algorithms for Trajectory Compression 11:43

[33] Cheng Long, Raymond Chi-Wing Wong, and H. V. Jagadish. 2013. Direction-preserving trajectory simplification.

PVLDB 6, 10 (2013), 949–960.

[34] Cheng Long, Raymond Chi-Wing Wong, and H. V. Jagadish. 2014. Trajectory simplification: On minimizing the

direction-based error. PVLDB 8, 1 (2014), 49–60.

[35] Ge Luo, Ke Yi, Siu-Wing Cheng, Zhenguo Li, Wei Fan, Cheng He, and Yadong Mu. 2015. Piecewise linear approximation

of streaming time series data with max-error guarantees. In Proceedings of the 31st International Conference on Data

Engineering (ICDE’15).

[36] R. Mariescu-Istodor and P. Fränti. 2017. Grid-based method for GPS route analysis for retrieval. ACM Transactions on

Spatial Algorithms and Systems 3, 3 (2017), 1–28.

[37] Jean Damascene Mazimpaka and Sabine Timpf. 2016. Trajectory data mining: A review of methods and applications.

Journal of Spatial Information Science 13 (2016), 61–99.

[38] Avraham Melkman and Joseph O’Rourke. 1988. On polygonal chain approximation. Machine Intelligence and Pattern

Recognition 6 (1988), 87–95.

[39] Nirvana Meratnia and Rolf A. de By. 2004. Spatiotemporal compression techniques for moving point objects. In Pro-

ceedings of the 9th International Conference on Extending Database Technology (EDBT’04).

[40] Rohit Metha and V. K. Mehta. 1999. The Principles of Physics. S Chand.

[41] Jonathan Muckell, Jeong-Hyon Hwang, Catherine T. Lawson, and S. S. Ravi. 2010. Algorithms for compressing GPS

trajectory data: An empirical evaluation. In Proceedings of the 18th SIGSPATIAL International Conference on Advances

in Geographic Information (GIS’10).

[42] Jonathan Muckell, Jeong-Hyon Hwang, Vikram Patil, Catherine T. Lawson, Fan Ping, and S. S. Ravi. 2011. SQUISH:

An online approach for GPS trajectory compression. In Proceedings of the 2nd International Conference on Computing

for Geospatial Research & Applications (COM.Geo’11).

[43] Jonathan Muckell, Paul W. Olsen, Jeong-Hyon Hwang, Catherine T. Lawson, and S. S. Ravi. 2014. Compression of

trajectory data: A comprehensive evaluation and new approach. GeoInformatica 18, 3 (2014), 435–460.

[44] Aiden Nibali and Zhen He. 2015. Trajic: An effective compression system for trajectory data. TKDE 27, 11 (2015),

3138–3151.

[45] Joseph O’Rourke. 1981. An on-line algorithm for fitting straight lines between data ranges. Communications of the

ACM 24, 9 (1981), 574–578.

[46] Theodosios Pavlidis and Steven L. Horowitz. 1974. Segmentation of plane curves. TOC 23, 8 (1974), 860–870.

[47] Iulian Sandu Popa, Karine Zeitouni, Vincent Oria, and Ahmed Kharrat. 2014. Spatio-temporal compression of trajec-

tories in road networks. GeoInformatica 19, 1 (2014), 117–145.

[48] Michalis Potamias, Kostas Patroumpas, and Timos K. Sellis. 2006. Sampling trajectory streams with spatiotemporal cri-

teria. In Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06).

[49] M. A. Quddus, W. Y. Ochieng, and R. B. Noland. 2007. Current map-matching algorithms for transport applications:

State-of-the art and future research directions. Transportation Research Part C: Emerging Technologies 15, 5 (2007),

312–328.

[50] U. Ramer. 1972. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image

Processing 1 (1972), 244–256.

[51] K. Reumann and A.P.M Witkam. 1974. Optimizing curve segmentation in computer graphics. In Proceedings of the

1973 International Computing Symposium.

[52] Kai-Florian Richter, Falko Schmid, and Patrick Laube. 2012. Semantic trajectory compression: Representing urban

movement in a nutshell. JOSIS 4, 1 (2012), 3–30.

[53] Falko Schmid, Kai-Florian Richter, and Patrick Laube. 2009. Semantic trajectory compression. In International Sympo-

sium on Spatial and Temporal Databases (SSTD’09).

[54] Wenzhong Shi and Chuikwan Cheung. 2006. Performance evaluation of line simplification algorithms for vector gen-

eralization. Cartographic Journal 43, 1 (2006), 27–44.

[55] J. Sklansky and V. Gonzalez. 1980. Fast polygonal approximation of digitized curves. Pattern Recognition 12 (1980),

327–331.

[56] Renchu Song, Weiwei Sun, Baihua Zheng, and Yu Zheng. 2014. PRESS: A novel framework of trajectory compression

in road networks. PVLDB 7, 9 (2014), 661–672.

[57] G. T. Toussaint. 1985. On the complexity of approximating polygonal curves in the plane. In International Symposium

on Robotics and Automation.

[58] Goce Trajcevski. 2016. Compression of spatio-temporal data – Advanced seminar. In Proceedings of the 17th IEEE

International Conference on Mobile Data Management (MDM’16).

[59] Goce Trajcevski, Hu Cao, Peter Scheuermanny, Ouri Wolfsonz, and Dennis Vaccaro. 2006. On-line data reduction

and the quality of history in moving objects databases. In Proceedings of the 5th Acm International Workshop on Data

Engineering for Wireless and Mobile Access (Mobide’06).

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

11:44 X. Lin et al.

[60] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. 2004. Managing uncertainty in moving objects databases.

ACM Transactions on Database Systems (TODS) 29, 3 (2004), 463–507.

[61] Robert Weibel. 1996. Generalization of spatial data: Principles and selected algorithms. Algorithmic Foundations of

Geographic Information Systems, this book originated from the CISM Advanced School on the Algorithmic Foundations

of Geographic Information Systems. 99–152.

[62] Robert Weibel and Genevieve Dutton. 1999. Generalising spatial data and dealing with multiple representations. In Ge-

ographical Information Systems: Principles, Techniques, Management And Applications (2nd edition), Cambridge, Geoin-

formation International, P. A. Longley, M. F. Goodchild, D. J. Maquire, and R. W. Rhind (Eds). 125–155.

[63] Charles M. Williams. 1978. An efficient algorithm for the piecewise linear approximation of planar curves. Computer

Graphics and Image Processing 8 (1978), 286–293.

[64] Charles M. Williams. 1981. Bounded straight-line approximation of digitized planar curves and lines. Computer Graph-

ics and Image Processing 16 (1981), 370–381.

[65] Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke Deng. 2014. Maximum error-bounded piecewise

linear representation for online stream approximation. VLDBJ 23, 6 (2014), 915–937.

[66] Dongxiang Zhang, Mengting Ding, Dingyu Yang, Yi Liu, Ju Fan, and Heng Tao Shen. 2018. Trajectory simplification:

An experimental study and quality analysis. PVLDB 9, 11 (2018), 934–946.

[67] Liangbin Zhao and Guoyou Shi. 2019. A trajectory clustering method based on Douglas-Peucker compression and

density for marine traffic pattern recognition. Ocean Engineering 172 (2019), 456–467.

[68] Zhiyuan Zhao and Alan Saalfeld. 1997. Linear-time sleeve-fitting polyline simplification algorithms. In Proceedings of

AutoCarto 13.

[69] Yu Zheng, Xing Xie, and Wei-Ying Ma. 2010. GeoLife: A collaborative social networking service among user, location

and trajectory. IEEE Data Engineering Bulletin 33, 2 (2010), 32–39.

Received April 2020; revised March 2021; accepted June 2021

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 11. Publication date: September 2021.

