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Abstract
Various mobile devices have been used to collect, store and transmit tremendous trajectory data, and it is known that raw
trajectory data seriously wastes the storage, network bandwidth and computing resource. To attack this issue, one-pass line
simplification (LS) algorithms have been developed, by compressing data points in a trajectory to a set of continuous line
segments. However, these algorithms adopt the perpendicular Euclidean distance, and none of them uses the synchronous
Euclidean distance (SED), and cannot support spatiotemporal queries. To do this, we develop two one-pass error bounded
trajectory simplification algorithms (CISED-S and CISED-W) using SED, based on a novel spatiotemporal cone intersection
technique. Using four real-life trajectory datasets, we experimentally show that our approaches are both efficient and effective.
In terms of running time, algorithms CISED-S and CISED-W are on average 3 times faster than SQUISH-E (the fastest existing
LS algorithm using SED). In terms of compression ratios, CISED-S is close to and CISED-W is on average 19.6% better than
DPSED (the existing sub-optimal LS algorithm using SED and having the best compression ratios), and they are 21.1% and
42.4% better than SQUISH-E on average, respectively.

Keywords Trajectory simplification · Synchronous Euclidean distance · One-pass line simplification

1 Introduction

Various mobile devices, such as smart-phones, on-board
diagnostics, personal navigation devices and wearable smart
devices, use their sensors to collect massive trajectory data of
moving objects at a certain sampling rate (e.g., a data point
every 5 s), which is then transmitted to cloud servers for
various applications such as location based services and tra-
jectory mining. Transmitting and storing raw trajectory data
consumes too much network bandwidth and storage capac-

B Shuai Ma
mashuai@buaa.edu.cn

B Chunming Hu
hucm@buaa.edu.cn

Xuelian Lin
linxl@buaa.edu.cn

Jiahao Jiang
jiangjh@buaa.edu.cn

Yimeng Zuo
zuoym@buaa.edu.cn

1 Beijing Advanced Innovation Center for Big Data and Brain
Computing (BDBC), Beihang University, Beijing, China

ity [1,3,14–16,19,22–24,28,35]. These issues are commonly
resolved or greatly alleviated by trajectory compression
techniques [1,3,4,6,9,11,14–17,19,23,24,28], among which
the piecewise line simplification technique is widely used
[1,3,4,6,14–16,19,23], due to its distinct advantages: (a) sim-
ple and easy to implement, (b) no need of extra knowledge
and suitable for freely moving objects and (c) bounded errors
with good compression ratios [14,28].

Originally, line simplification (LS) algorithms adopt the
perpendicular Euclidean distance (PED) as a metric to com-
pute the errors. Suppose that a sub-trajectory [Ps, ..., Pe] is
represented by a line segment

−−→
Ps Pe produced by an error

bounded LS algorithm using PED. Then for any point P ∈
{Ps, ..., Pe}, its perpendicular Euclidean distance to the line
segment

−−→
Ps Pe is the shortest distance from P to

−−→
Ps Pe. Indeed,

line segment
−−→
Ps Pe represents all points that fall into an effec-

tive zone consisting of a rectangle and two half-circles, such
that each point in the zone has a PED to

−−→
Ps Pe not more than

a predefined error bound ε, as shown in Fig. 1a. A typical
issue of using PED is that the exact location of a point is hard
to tell when the zone is large (we just know it is located in
the zone). That leads to that the answer to a spatiotemporal
query “the position P of a moving object at time t [1]” on
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Fig. 1 A sub-trajectory [Ps , . . . , Pe] is simplified using PED and SED,
respectively. A spatiotemporal query “the position P of the moving
object at time t” on the simplified trajectory returns a point a in a large
zone consisting of a rectangle and two half-circles, or b inside a small
circle

the compressed trajectories is not bounded. That is, there is
no way to find an approximate point P ′ of P at t such that
their distance is bounded within ε. This shows that trajectory
simplification using PED is not suitable for spatiotemporal
queries that are necessary for location based services.

The synchronousEuclideandistance (SED)was then intro-
duced for trajectory compression [1,4,19,23,29] to address
the above issue for supporting bounded spatiotemporal
queries. The use of SED highly depends on a notion named
synchronized point [1,19] that could be computed conve-
niently. As shown in Fig. 1b, the synchronized point P ′ of a
point P at time t w.r.t. a line segment

−−→
Ps Pe is the expected

position of the moving object on
−−→
Ps Pe at time t with the

assumption that the object moves along a straight line from
points Ps to Pe at a uniform speed [1], i.e., the average speed
from points Ps to Pe. The SED of point P to line segment−−→
Ps Pe is the Euclidean distance between P and its synchro-
nized point P ′ w.r.t. the line segment

−−→
Ps Pe. When an error

bounded LS algorithm using SED is adopted, it requires that
a point P is located within a circle with its synchronized
point P ′ as its center and ε as its radius, as shown in Fig. 1b.
Hence, the above spatiotemporal query over the trajectories
compressed by SED can return the synchronized point P ′ as
the approximate point of P at time t such that their distance
is bounded within ε. Note that the SED of a point to a line
segment is equal to or less than the PED of the point to the line
segment as illustrated in Fig. 1b, and, hence, LS algorithms
using SED typically generate more line segments.

The problem of finding the minimal number of line seg-
ments to represent the original polygonal lines w.r.t. an error
bound ε is known as the “min-#” problem [2,13], and there
exists an optimal LS algorithm, in terms of compression,
using SED that runs in O(n3) [13] (originally designed for
PED), where n is the number of the original points. Due
to this high time complexity, sub-optimal LS algorithms

using SED have been developed for trajectory compression,
including batch algorithms (e.g., Douglas–Peucker-based
algorithm DPSED [19]) and online algorithms (e.g., SQUISH-
E [23]). However, these methods still have high time and/or
space complexities, which hinders their utilities in resource-
constrained devices.

Observe that one-pass LS algorithms using PED [7,14,36,
40,42] have been developed, and they are more efficient for
resource-constrained devices. The key idea to achieve one-
pass processing is by local distance checking for a single data
point in constant time, e.g., the sector intersection mecha-
nism used in [7,36,40,42] and the fitting function approach
used in our preview work [14]. Unfortunately, these tech-
niques are designed specifically for PED, and work in a
2D space, not in a spatiotemporal 3D space that SED needs.
Hence, they can hardly be applied for SED.

Indeed, it is even more challenging to design one-pass LS
algorithms using SED than using PED. As SED introduces the
temporal information besides the spatial information, a new
local distance checkingmethod in a spatiotemporal 3D space
is needed.Toour knowledge, noone-passLS algorithmsusing
SED have been developed in the community yet.

Contributions. To this end, we propose two fast one-pass
error bounded LS algorithms using SED for compressing tra-
jectories with good compression ratios.

(1) We first substantially extend the one-pass local distance
checking approach from a 2D space to a spatiotemporal 3D
space and develop a novel local synchronous distance check-
ing approach, i.e., spatiotemporal Cone Intersection using the
Synchronous Euclidean Distance (CISED), such that each
data point in a trajectory is checked in O(1) time during the
entire process of trajectory simplification. It is the first local
distance checking method for trajectory compression using
SED, and it is also the key to develop one-pass trajectory
simplification algorithms using SED.

(2)We develop a method that finds the approximate common
intersection of n circles in a linear time and a constant space,
whose key idea is to approximate circles by a special class
of regular polygons and compute their intersection with a
fast regular polygon intersection algorithm. This also has
a potential usage as a basic approximate function though
we develop the method for the local synchronous distance
checking.

(3) We design two one-pass trajectory simplification algo-
rithms CISED-S and CISED-W, achieving O(n) time com-
plexity and O(1) space complexity, based on our local
synchronous distance checking technique. AlgorithmCISED-
S belongs to strong simplification that only has original points
in its outputs, while algorithmCISED-W belongs toweak sim-
plification that allows interpolated data points in its outputs.

(4) Using four real-life trajectory datasets (ServiceCar,
GeoLife, Mopsi, PrivateCar), we finally conduct an exten-
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sive experimental study, by comparing our methods CISED-S
and CISED-W with the compression optimal LS algorithm
using SED(C-Optimal in short) [13], batch algorithm DPSED
[19] (the existing sub-optimal LS algorithm using SED having
the best compression ratios) and online algorithm SQUISH-E
[23] (the fastest existing LS algorithm using SED). For run-
ning time, algorithms CISED-S and CISED-W are on average
15.0, 3.2 and 14345.0 times faster than DPSED, SQUISH-E
and C-Optimal on the test datasets, respectively. For com-
pression ratios, algorithm CISED-S is better than SQUISH-E
and close toDPSED. The output sizes of CISED-S are on aver-
age 74.4%, 110.4% and 137.9% of SQUISH-E, DPSED and
C-Optimal on the test datasets, respectively.Moreover, algo-
rithm CISED-W is on average 54.9% and 81.6% better than
SQUISH-E and DPSED on the test datasets, respectively.

It is worth pointing out that trajectory data is collected by
mobile devices from GPS sensors, and these devices have
range errors, which leads to data quality issues of trajectory
data [27,44]. However, the problem is beyond the scope of
this study, and we focus on lossy simplification of trajectory
data only.

Organization. The remainder of the article is organized as
follows. Section 2 introduces the basic concepts and tech-
niques. Section 3 presents our local synchronous distance
checking method. Section 4 presents our one-pass trajectory
simplification algorithms. Section 5 reports the experimental
results, followed by related work in Sect. 6 and conclusion
in Sect. 7. All proofs are provided in the Appendix.

2 Preliminaries

In this section, we first introduce basic concepts for piece-
wise line-based trajectory compression.We then describe the
compression optimal LS algorithm and the sector intersection
mechanism, and show how this mechanism can be used to
speed up the LS algorithms using PED andwhy it cannot work
with SED. Finally, we illustrate a convex polygon intersection
algorithm, which serves as one of the fundamental compo-
nents of our local synchronous distance checking method.
For convenience, notations used are summarized in Table 1.

2.1 Basic notations

Points (P). A data point is defined as a triple P(x, y, t),
which represents that a moving object is located at longitude
x and latitude y at time t . Note that data points can be viewed
as points in the x-y-t 3D Euclidean space.

Trajectories (
...
T ). A trajectory

...
T [P0, . . . , Pn] is a sequence

of data points in a monotonically increasing order of their
associated time values (i.e., Pi .t < Pj .t for any 0 ≤ i <

j ≤ n). Intuitively, a trajectory is the path (or track) that a

moving object follows through space as a function of time
[20].

Directed line segments (L). A directed line segment (or line
segment for simplicity) L is defined as

−−→
Ps Pe, which repre-

sents the closed line segment that connects the start point Ps
and the end point Pe. Note that here Ps or Pe may not be a
point in a trajectory

...
T .

For the projection of a directed line segment L on an x-
y 2D space, where x and y are the longitude and latitude,
respectively, we also use |L| andL.θ ∈ [0, 2π) to denote the
length of L in the x-y 2D space, and its angle with the x-axis
of the coordinate system (x, y). That is, the projection of a
directed line segment L =

−−→
Ps Pe on an x-y 2D space is treated

as a triple (Ps, |L|,L.θ).

Piecewise line representation (T ). A piecewise line rep-
resentation T [L0, . . . ,Lm] (0 < m ≤ n) of a trajectory...
T [P0, . . . , Pn] is a sequence of continuous directed line seg-
ments Li =

−−−→
Psi Pei (i ∈ [0,m]) of ...T such that L0.Ps0 = P0,

Lm .Pem = Pn and Li .Pei = Li+1.Psi+1 for all i ∈ [0,m−1].
Note that each directed line segment in T essentially repre-
sents a continuous sequence of data points in

...
T .

Perpendicular Euclidean Distance (PED). Given a data
point P and a directed line segment L =

−−→
Ps Pe, the perpen-

dicularEuclideandistance (or simplyperpendicular distance)
ped(P,L) of point P to line segment L is min{|−→

PQ|} for
any point Q on

−−→
Ps Pe.

Synchronized points [19]. Given a sub-trajectory
...
T s[Ps ,

. . . , Pe], the synchronized point P ′ of a data point P ∈
...
T s , w.r.t. line segment

−−→
Ps Pe is defined as follows: (1) P ′.x =

Ps .x+w · (Pe.x− Ps .x), (2) P ′.y = Ps .y+w · (Pe.y− Ps .y)
and (3) P ′.t = P.t , where w = P.t−Ps .t

Pe.t−Ps .t
.

Synchronized points are essentially virtual points with the
assumption that an objectmoved along a straight line from Ps

to Pe with a uniform speed, i.e., the average speed |−−→
Ps Pe|

Pe.t−Ps .t
between points Ps and Pe [1]. Then, the synchronized point

P ′ of a point P w.r.t. the line segment
−−→
Ps Pe is the expected

position of the moving object on
−−→
Ps Pe at time P.t , obtained

by a linear interpolation [1]. More specifically, a synchro-
nized point P ′

i of Pi (s ≤ i < e) is a point on
−−→
Ps Pe satisfying

|−−→Ps P ′
i | = Pi .t−Ps .t

Pe.t−Ps .t
· |−−→Ps Pe|, which means that the object

moves from Ps to Pe at an average speed |−−→
Ps Pe|

Pe.t−Ps .t
, and its

position at time Pi .t is the point P ′
i on

−−→
Ps Pe having a distance

of Pi .t−Ps .t
Pe.t−Ps .t

· |−−→Ps Pe| to Ps [1,4,19,41].

Synchronous Euclidean Distance (SED) [19]. Given a
data point P and a directed line segment L =

−−→
Ps Pe, the

synchronous Euclidean distance (or simply synchronous dis-

tance) sed(P,L) of P to L is |−−→PP ′| that is the Euclidean
distance from P to its synchronized point P ′ w.r.t. L.
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Fig. 2 A trajectory
...
T [P0, . . . , P10] with eleven points is represented

by two (left) and four (right) continuous line segments (solid blue),
compressed by the Douglas–Peucker algorithm [6] using PED and SED,
respectively. The Douglas–Peucker algorithm firstly creates line seg-

ment
−−−→
P0P10; then, it calculates the distance of each point in the trajectory

to
−−−→
P0P10. It finds that point P4 has the maximum distance to

−−−→
P0P10, and

is greater than the user-defined threshold ε. Then, it goes to compress
sub-trajectories [P0, . . . , P4] and [P4, . . . , P10], separately

Table 1 Summary of notations Notations Semantics

P A data point
...
T A trajectory

...
T is a sequence of data points

T A piecewise line representation of a trajectory
...
T

L A directed line segment
−−→
Ps Pe A directed line segment with the start point Ps and the end point Pe
|L| The length of L in the x-y 2D space

ped(P,L) The perpendicular Euclidean distance of point P to line segment L
sed(P,L) The synchronous Euclidean distance of point P to line segment L
ε The error bound

S A sector
−→
A × −→

B The cross product of (vectors)
−→
A and

−→
B

H(L) The open half-plane to the left of L
R A convex polygon

R∗ The intersection of convex polygons

m The maximum number of edges of a polygon

E j A group of edges labeled with j

g(e) The label of an edge e of polygons

O A synchronous circle

C A spatiotemporal cone

Oc A cone projection circle
�

Intersection of geometries

G The reachability graph of a trajectory

The use of PED brings better compression ratios, but the
temporal information of data points is not available [19],
which makes PED not suitable for spatiotemporal queries.
In contrast, SED takes both spatial and temporal information
of data points into consideration [19]. Hence, SED is more
suitable for spatiotemporal queries.

We illustrate these notations with examples.

Example 1 Consider Fig. 2, in which

(1)
...
T [P0, . . . , P10] is a trajectory having 11 data points,

(2) the set of two continuous line segments {−−→
P0P4,

−−−→
P4P10}

(Left) and the set of four continuous line segments {−−→
P0P2,−−→

P2P4,
−−→
P4P7,

−−−→
P7P10} (Right) are two piecewise line repre-

sentations of trajectory
...
T ,

(3) ped(P4,
−−−→
P0P10) = |−−−→

P4P∗
4 |, where P∗

4 is the perpendicu-

lar point of P4 w.r.t. line segment
−−−→
P0P10,

(4) P ′
4 is the synchronized point of P4 w.r.t. line segment

−−−→
P0P10, satisfying

|−−→
P0P ′

4|
|−−−→
P0P10|

= P4.t−P0.t
P10.t−P0.t

= 4−0
10−0 = 2

5 , and

123

Author's personal copy
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(5) sed(P4,
−−−→
P0P10) = |−−→

P4P ′
4|, sed(P2,

−−→
P0P4) = |−−→

P2P ′
2| and

sed(P7,
−−−→
P4P10) = |−−→

P7P ′
7|, where points P ′

4, P
′
2 and P ′

7 are
the synchronized points of P4, P2 and P7 w.r.t. line segments−−−→
P0P10,

−−→
P0P4 and

−−−→
P4P10, respectively. ��

Error bounded algorithms. Given a trajectory
...
T and its

compression algorithm A using SED (respectively, PED)
that produces another trajectory

...
T ′, we say that algo-

rithm A is error bounded by ε if for each point P in
...
T ,

there exist points Pj and Pj+1 in
...
T ′ such that Pj .t ≤

P.t ≤ Pj+1.t and sed(P,L(Pj , Pj+1)) ≤ ε (respectively,
ped(P,L(Pj , Pj+1)) ≤ ε).

2.2 The compression optimal LS algorithm

Given a trajectory
...
T [P0, . . . , Pn] and an error bound ε, the

compression optimal trajectory simplification problem, as
formulated by Imai and Iri in [13], can be solved in two steps:
(1) construct a reachability graph G of

...
T , and (2) search a

shortest path from P0 to Pn in G.
The reachability graph of a trajectory

...
T [P0, . . . , Pn]w.r.t.

a bound ε is an unweighted graph G(V , E), where (1) V =
{P0, . . . , Pn}, and (2) for any nodes Ps and Ps+k ∈ V (s ≥
0, k > 0, s + k ≤ n), edge (Ps, Ps+k) ∈ E if and only if
the distance of each point Ps+i (i ∈ [0, k]) to line segment−−−−→
Ps Ps+k is not greater than ε.

Observe that in the reachability graph G, (1) a path from
nodes P0 to Pn is a representation of trajectory

...
T . The path

also reveals the subset of points of
...
T used in the approximate

trajectory, (2) the path length corresponds to the number of
line segments in the approximate trajectory, and (3) a shortest
path is a compression optimal representation of trajectory

...
T .

Constructing the reachability graph G needs to check for
all pairs of points Ps and Ps+k whether the distances of all
points Ps+i (0 < i < k) to the line segment

−−−−→
Ps Ps+k are

less than ε. There are O(n2) pairs of points in the trajectory
and checking the error of all points Ps+i to a line segment−−−−→
Ps Ps+k takes O(n) time. Thus, the construction step takes
O(n3) time. Finding shortest paths on unweighted graphs
can be done in linear time. Hence, the brute-force algorithm
takes O(n3) time in total.

Though the brute-force algorithm was initially developed
using PED, it can be used for SED. As pointed out in [2],
the construction of the reachability graph G using PED can
be implemented in O(n2) time using the sector intersection
mechanism (see Sect. 2.3). However, the sector intersection
mechanism cannot work with SED. Hence, the construction
of the reachability graphG using SED remains in O(n3) time,
and the brute-force algorithm using SED remains in O(n3)
time.

2.3 Sector intersection-based algorithms using PED

The sector intersection (SI) algorithm [36,40] was developed
for graphic and pattern recognition in the late 1970s, for the
approximation of arbitrary planar curves by linear segments
or finding a polygonal approximation of a set of input data
points in a 2DCartesian coordinate system. The Sleeve algo-
rithm [42] in the cartographic discipline essentially applies
the same idea as the SI algorithm. Further, [7] optimized
algorithm SI by considering the distance between a poten-
tial end point and the initial point of a line segment. It is
worth pointing out that all these SI-based algorithms use the
perpendicular Euclidean distance.

Given a sequence of data points [Ps, Ps+1, . . . , Ps+k] and
an error bound ε, the SI-based algorithms process the input
points one by one in order and produce a simplified polyline.
Instead of using the distance threshold ε directly, the SI-based
algorithms convert the distance tolerance into a variable angle
tolerance for testing the successive data points.

For the start data point Ps , any point Ps+i and |−−−−→
Ps Ps+i | >

ε (i ∈ [1, k]), there are two directed lines−−−−→
Ps Pu

s+i and
−−−−→
Ps Pl

s+i

such that ped(Ps+i ,
−−−−→
Ps Pu

s+i ) = ped(Ps+i ,
−−−−→
Ps Pl

s+i ) = ε and

either (
−−−−→
Ps Pl

s+i .θ <
−−−−→
Ps Pu

s+i .θ and
−−−−→
Ps Pu

s+i .θ − −−−−→
Ps Pl

s+i .θ <

π ) or (
−−−−→
Ps Pl

s+i .θ >
−−−−→
Ps Pu

s+i .θ and
−−−−→
Ps Pu

s+i .θ − −−−−→
Ps Pl

s+i .θ <

−π). Indeed, they form a sector S(Ps, Ps+i , ε) that takes Ps

as the center point and
−−−−→
Ps Pu

s+i and
−−−−→
Ps Pl

s+i as the border lines.
Then, there exists a data point Q such that for any data point
Ps+i (i ∈ [1, ...k]), its perpendicular Euclidean distance to
directed line

−−→
PsQ is not greater than the error bound ε if

and only if the k sectors S(Ps, Ps+i , ε) (i ∈ [1, k]) share
common data points other than Ps , i.e.,

�k
i=1S(Ps, Ps+i , ε)


= {Ps} [36,40,42].
The point Q may not belong to {Ps, Ps+1, . . . , Ps+k}.

However, if Ps+i (1 ≤ i ≤ k) is chosen as Q, then for any
data point Ps+ j ( j ∈ [1, ...i]), its perpendicular Euclidean
distance to line segment

−−−−→
Ps Ps+i is not greater than the error

bound ε if and only if
�i

j=1S(Ps, Ps+ j , ε/2) 
= {Ps}, as
pointed out in [42].

That is, these SI -based algorithms can be easily adopted
for trajectory compression using PEDalthough they have
been overlooked by existing trajectory simplification studies.
The SI-based algorithms run in O(n) time and O(1) space
and are one-pass algorithms.

We next illustrate how the SI-based algorithms can be used
for trajectory compression with an example.

Example 2 Consider Fig. 3. An SI-based simplification algo-
rithm takes as input a trajectory

...
T [P0, . . . , P10], and returns

a simplified polyline consisting of two line segments
−−→
P0P4

and
−−−→
P4P10. Initially, point P0 is the start point.
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902 X. Lin et al.

Fig. 3 Trajectory
...
T [P0, . . . , P10] in Fig. 2 is compressed into two line segments by the sector intersection algorithm [36,40]. Each circle in the

figure has a radius of ε/2, which is used to define the sector

(1) Point P1 is firstly read, and the sector S(P0, P1, ε/2) of
P1 is created as shown in Fig. 3(1).

(2) Then, P2 is read, and the sector S(P0, P2, ε/2) is cre-
ated for P2. The intersection of sectors S(P0, P1, ε/2) and
S(P0, P2, ε/2) contains data points other than P0, which has

an up border line
−−−→
P0Pu

2 and a low border line
−−→
P0Pl

1, as shown
in Fig. 3(2).

Similarly, points P3 and P4 are processed, as shown in
Fig. 3(3), (4), respectively.

(3)Whenpoint P5 is read, line segment
−−→
P0P4 is produced, and

point P4 becomes the start point, as
�4

i=1S(P0, Ps+i , ε/2)

= {P0} and

�5
i=1S(P0, Ps+i , ε/2) = {P0} as shown in

Fig. 3(5).

(4) Points P5, . . . , P10 are processed similarly one by one in
order, and finally, the algorithm outputs another line segment−−−→
P4P10 as shown in Fig. 3(5). ��

However, if we use SED instead of PED, then “the k sectors
S(Ps, Ps+i , ε) (i ∈ [1, k]) sharing common data points other
than Ps” cannot ensure “there exists a data point Q such
that for any data point Ps+i (i ∈ [1, ...k]), its synchronous
Euclidean distance to directed line PsQ is not greater than
the error bound ε.” Hence, the SImechanism is PED specific,
and not applicable for SED.

2.4 Intersection computation of convex polygons

We also employ and revise a convex polygon intersection
algorithm developed in [25], whose basic idea is straight-
forward. Assume w.l.o.g. that the edges of polygonsR1 and
R2 are oriented counterclockwise, and

−→
A = (PsA , PeA ) and−→

B = (PsB , PeB ) are two (directed) edges on R2 and R1,
respectively.

The algorithm has
−→
A and

−→
B “chasing” one another, i.e.,

moves
−→
A on R2 and

−→
B on R1 counterclockwise step by

step under certain rules, so that they meet at every crossing
ofR1 andR2. The rules, called advance rules, are carefully
designed depending on geometric conditions of

−→
A and

−→
B .

Let
−→
A ×−→

B be the cross product of (vectors)
−→
A and

−→
B , and

Fig. 4 A running example of convex polygon intersection

H(
−→
A ) be the open half-plane to the left of

−→
A , the rules are

as follows:

Rule (1): If
−→
A × −→

B < 0 and PeA /∈ H(
−→
B ), or

−→
A × −→

B ≥ 0

and PeB ∈ H(
−→
A ), then

−→
A is advanced a step.

For example, in Fig. 4(1), (2),
−→
A moves forward a step as−→

A × −→
B > 0 and PeB ∈ H(

−→
A ).

Rule (2): If
−→
A × −→

B ≥ 0 and PeB /∈ H(
−→
A ), or

−→
A × −→

B < 0

and PeA ∈ H(
−→
B ), then

−→
B is advanced a step.

For example, in Fig. 4(6), (7),
−→
B moves forward a step as−→

A × −→
B < 0 and PeA ∈ H(

−→
B ).

Algorithm CPolyInter. The complete algorithm is shown in
Fig. 5. Given two convex polygons R1 and R2, algorithm
CPolyInter first arbitrarily sets directed edge

−→
A on R2 and

directed edge
−→
B onR1, respectively (line 1). It then checks

the intersection of edges
−→
A and

−→
B . If

−→
A intersects

−→
B (line

3), then the algorithm checks for some special termination
conditions (e.g., if

−→
A and

−→
B are overlapped and, at the same

time, polygons R1 and R2 are on the opposite sides of the
overlapped edges, then the process is terminated) (line 4),
and records the inner edge, which is a boundary segment of
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Fig. 5 Algorithm for convex polygon intersection [25]

the intersection polygon (line 5). After that, the algorithm
moves on

−→
A or

−→
B one step under the advance rules (lines

6–11). The above processes repeated, until both
−→
A and

−→
B

completely cycle their polygons (line 12).Next, the algorithm
handles three special cases of the polygons R1 and R2, i.e.,
R1 is inside of R2, R2 is inside of R1, and R1

�
R2 = ∅

(line 13). At last, it returns the intersection polygon (line 14).

Example 3 Figure 4 shows a running example of the convex
polygon intersection algorithm CPolyInter.

(1) Initially, directed edges
−→
A and

−→
B are on polygons R2

andR1, respectively, such that
−→
A

� −→
B = {P1}, i.e., −→A and−→

B intersect on point P1, as shown in Fig. 4(1).

(2) Then, because
−→
A × −→

B > 0 and PeB ∈ H(
−→
A ), by

the advance rule (1), edge
−→
A moves on a step and makes−→

A
� −→

B = ∅ as shown in Fig. 4(2). After 7 steps of mov-

ing of edge
−→
A or

−→
B , each by an advance rule,

−→
A and

−→
B

intersect on P2, as shown in Fig. 4(6).

(3) Next, because
−→
A × −→

B < 0 and PeA ∈ H(
−→
B ), by

the advance rule (2), edge
−→
B moves on a step, and makes−→

A
� −→

B = ∅, as shown in Fig. 4(7).

(4) After 6 steps of moving of edge
−→
B or

−→
A one by one,

both edges
−→
A and

−→
B have finished their cycles as shown in

Fig. 4(8).

(5) The algorithm finally returns the intersection polygon as
shown in Fig. 4(9). ��

Algorithm CPolyInter has a time complexity of O(|R1|+
|R2|), where |R| is the number of edges of polygon R. It is
also worth pointing out that |R1

�
R2| ≤ (|R1| + |R2|).

3 Local synchronous distance checking

In this section, we develop a local synchronous distance
checking approach, laying down the key for the one-pass tra-
jectory simplification algorithms using SED (Sect. 4), such
that each point in a trajectory is checked only once in O(1)
time during the entire process of trajectory simplification.
The local synchronous distance checking method is based
on a new concept of spatiotemporal cones that converts the
SED distance tolerance into the intersection of spatiotemporal
cones for testing the successivedata points.More specifically,
we first substantially extend the sectors in Sect. 2.3 from a 2D
space to a spatiotemporal 3D space,which leads to spatiotem-
poral cones. Then, we prove that the SED distance checking
can be achieved by the intersection of spatiotemporal cones.
Finally, we simplify the spatiotemporal cone intersection into
the circle intersection and approximate circles with a special
class of (fixed rotation and edge number) polygons.

We consider a sub-trajectory
...
T s[Ps, . . . , Ps+k], an error

bound ε, and a 3DCartesian coordinate systemwhose origin,
x-axis, y-axis and t-axis are Ps , longitude, latitude and time,
respectively.

3.1 Spatiotemporal cone intersection

Wefirst present the spatiotemporal cone intersectionmethod
in a 3D Cartesian coordinate system.

Synchronous circles (O). The synchronous circle of a data
point Ps+i (1 ≤ i ≤ k) in

...
T s w.r.t. an error bound ε, denoted

asO(Ps+i , ε), orOs+i in short, is a circle on the plane P.t−
Ps+i .t = 0 such that Ps+i is its center and ε is its radius.

Spatiotemporal cones (C). Given a start point Ps of
...
Ts and

an error bound ε, the spatiotemporal cone (or simply cone)
of a data point Ps+i (1 ≤ i ≤ k) in

...
Ts w.r.t. Ps and ε, denoted

as C(Ps,O(Ps+i , ε)), or Cs+i in short, is an oblique circular
cone such that point Ps is its apex and the synchronous circle
O(Ps+i , ε) of point Ps+i is its base.

Example 4 (1) Figure 6 shows two synchronous circles,
O(Ps+i , ε) of point Ps+i andO(Ps+k, ε) of point Ps+k . It is
easy to see that for any point in the area of a circleO(Ps+i , ε),
its distance to Ps+i is not greater than ε.

(2) Figure 6 also illustrates two example spatiotemporal
cones: C(Ps,O(Ps+i , ε)) (purple) and C(Ps,O(Ps+k, ε))

(red), with the same apex Ps and error bound ε. ��
Indeed, the SED distance tolerance can be checked by

finding the common intersection of spatiotemporal cones,
as shown below.

Proposition 1 Given a sub-trajectory [Ps, ..., Ps+k] and an
error bound ε, there exists a point Q such that Q.t = Ps+k .t

and sed(Ps+i ,
−−→
PsQ) ≤ ε for each i ∈ [1, k] if and only if

�k
i=1C(Ps,O(Ps+i , ε)) 
= {Ps}.
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904 X. Lin et al.

Fig. 6 Examples of spatiotemporal cones in a 3D Cartesian coordinate
system,where (1) Ps , Ps+i and Ps+k are three points, (2)Os+i andOs+k
are two synchronous circles, (3) Cs+i and Cs+k are two spatiotemporal
cones, (4) Q is a point in synchronous circle Os+k , and (5) P ′

s+i is the

intersection point of line
−−→
PsQ and synchronous circle Os+i

By Proposition 1, we now have a spatiotemporal cone
intersection method in a 3D Cartesian coordinate system,
which significantly extends the sector intersection method
[36,40,42] from a 2D space to a spatiotemporal 3D space.

3.2 Circle intersection

For spatiotemporal cones with the same apex Ps , we then
show that the checking of their intersection can be computed
by a much simpler way, i.e., the checking of intersection of
cone projection circles on a plane.

Cone projection circles. The projection of a cone
C(Ps,O(Ps+i , ε)) on a plane P.t − tc = 0 (tc > Ps .t)
is a circle Oc(Pc

s+i , r
c
s+i ), or Oc

s+i in short, such that (1)
Pc
s+i .x = Ps .x + w · (Ps+i .x − Ps .x), (2) Pc

s+i .y = Ps .y +
w · (Ps+i .y − Ps .y), (3) Pc

s+i .t = tc, and (4) rcs+i = w · ε,

where w = tc−Ps .t
Ps+i .t−Ps .t

.

Recall that the base of a cone C(Ps,O(Ps+i , ε)) is a circle
on plane P.t − Ps+i .t = 0, and plane P.t − tc = 0 is parallel
to plane P.t − Ps+i .t = 0. These ensure that the projection
of a cone on plane P.t − tc = 0 is a circle.

Example 5 In Fig. 7, the green dashed circlesOc(Pc
s+i , r

c
s+i )

and Oc(Pc
s+k, r

c
s+k) on plane “P.t − tc = 0” are the projec-

tion circles of conesC(Ps,O(Ps+i , ε)) andC(Ps,O(Ps+k, ε))

on the plane. ��

Proposition 2 Given a sub-trajectory [Ps, . . . , Ps+k], an
error bound ε, and any tc > Ps .t , there exists a point Q

such that Q.t = Ps+k .t and sed(Ps+i ,
−−→
PsQ) ≤ ε for all

points Ps+i (i ∈ [1, k]) if and only if
�k

i=1Oc(Pc
s+i , r

c
s+i )
= ∅.

Fig. 7 Cone projection circles

Proposition 2 tells us that the intersection checking of
spatiotemporal cones can be reduced to simply check the
intersection of cone projection circles on a plane.

3.3 Inscribed regular polygon intersection

Finding the common intersection of n circles on a plane has
a time complexity of O(n log n) [34], which cannot be used
for designing one-pass trajectory simplification algorithms
using SED. Intuitively, we can approximate a circle with its
m-edges inscribed polygon whose intersection can be com-
puted much faster. However, the intersection of two general
m-edges polygons may produce a polygon with more than
m edges; thus, the time complexity of finding the common
intersection of n polygons on a plane is not linear. To solve
this problem, we approximate a circle with a fixed rotation
and m-edges inscribed regular polygon.

Inscribed regular polygons (R). Given a cone projection
circle Oc(P, r), its inscribed m-edges regular polygon is
denoted as R(V , E), where (1) V = {v1, . . . , vm} is the
set of vertexes that are defined by a polar coordinate system,
whose origin is the center P of Oc, as follows:

v j = (r ,
( j − 1)

m
2π), j ∈ [1,m],

and (2) E = {−−→vmv1} ⋃{−−−−→v jv j+1 | j ∈ [1,m − 1]} is the set of
edges that are labeled with the subscripts of their start points.
Figure 8(1) illustrates the inscribed regular octagon (m = 8)
of a cone projection circle Oc(P, r).

LetRs+i (1 ≤ i ≤ k) be the inscribed regular polygon of
the cone projection circle Oc(Pc

s+i , r
c
s+i ), R∗

l (1 ≤ l ≤ k)

be the intersection
�l

i=1Rs+i , and E j (1 ≤ j ≤ m) be the
group of k edges labeled with j in all Rs+i (i ∈ [1, k]).
It is easy to verify that all edges in the same edge group
E j (1 ≤ j ≤ m) are in parallel (or overlapping) with each
other by the above definition of inscribed regular polygons,
as illustrated in Fig. 8(2).
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Fig. 8 Regular octagons and their intersections (m = 8)

The intersection of inscribed regular polygons holds a nice
property, as shown below.

Proposition 3 The intersection R∗
l

�
Rs+l+1 (1 ≤ l < k)

has at most m edges, i.e., at most one edge from each edge
group.

Figure 8(2) shows the intersection polygon (red lines) of
R1,R2 andR3 with 7 edges, and here edges labeled with 7
have no contributions to the resulting intersection polygon.

Based on Proposition 3, we also have the following.

Proposition 4 The intersection of R∗
l and Rs+l+1 (1 ≤ l <

k) can be done in O(1) time.

By Proposition 4, we have a local synchronous distance
checking method.

3.4 Speedup inscribed regular polygon intersection

Recall that the intersection of inscribed regular polygons
can be computed by the convex polygon intersection algo-
rithm CPolyInter [25] in Fig. 5. However, observe that
algorithm CPolyInter is for general convex polygons, while
the inscribed regular polygons Rs+i (i ∈ [1, k]) of the cone
projection circles are constructed in a unified way, i.e., fixed
rotation and edge number, which allows us to develop a faster
method to speed up the computation of their intersection.

We next explain the key idea for speeding up the compu-
tation. Observe that when the edges

−→
A = (PsA , PeA ) and−→

B = (PsB , PeB ) on polygons R2 and R1 (both R2 and
R1 can be either inscribed regular polygons or the common
intersection of inscribed regular polygons) are “chasing” one
another as theway the convex polygon intersection algorithm
CPolyInter does, every segment in the two polygons being
intersected has to originate from one of the m edges of the
regular polygons, and consider the geometric similarity of
the regular polygons, we may advance edge

−→
A or

−→
B mul-

tiple steps at a time, instead of a single step at a time as the
convex polygon intersection algorithm CPolyInter does. For
example, in Fig. 4(1)–(5), edge

−→
A successively moves four

steps, each under the advance rule (1) “(
−→
A × −→

B < 0 and
PeA /∈ H(

−→
B )) or (

−→
A × −→

B ≥ 0 and PeB ∈ H(
−→
A ))” of

algorithm CPolyInter. Alternatively, we can directly move
A from Fig. 4(1) to (5), by reducing four steps to one step
only. To achieve this, we first develop two extra advance
rules (Propositions 5 and 6 ) for the intersection of inscribed
regular polygons.

Proposition 5 If either (
−→
A

� −→
B 
= ∅ and

−→
A ×−→

B < 0 and
PeA /∈ H(

−→
B )) or (

−→
A

� −→
B 
= ∅ and

−→
A × −→

B ≥ 0 and

PeB ∈ H(
−→
A )) holds, then

−→
A advances s steps such that

s =

⎧
⎪⎪⎨

⎪⎪⎩

2 × (g(
−→
B ) − g(

−→
A )) i f g(

−→
B ) > g(

−→
A )

1 i f g(
−→
A ) = g(

−→
B )

2 × (m + g(
−→
B ) − g(

−→
A )) i f g(

−→
B ) < g(

−→
A ),

in which g(e) denotes the label of edge e.

We next explain how the edge
−→
A advances based on

Proposition 5. Indeed,
−→
A moves from its original position

to its symmetric edge on Rs+l+1 w.r.t. the symmetric line
that is perpendicular to

−→
B onR∗

l . For example, in Fig. 9(1),

there is
−→
A

� −→
B 
= ∅ and

−→
A × −→

B ≥ 0 and PeB ∈ H(
−→
A );

hence,
−→
A moves on. As g(

−→
B ) = 3 > 1 = g(

−→
A ),

−→
A moves

forward 2× (g(
−→
B ) − g(

−→
A )) = 2× (3− 1) = 4 steps. Here,

the label of edge
−→
A is changed to 5, its symmetric edge 1 on

Rs+l+1 w.r.t. the symmetric line that is perpendicular to
−→
B

labeled with 3 onR∗
l .

Proposition 6 If either (
−→
A

� −→
B 
= ∅ and

−→
A × −→

B ≥ 0 and
PeB /∈ H(

−→
A )) or (

−→
A

� −→
B 
= ∅ and

−→
A × −→

B < 0 and

PeA ∈ H(
−→
B )) holds, then edge

−→
B is directly moved to the

edge after the one having the same edge group as edge
−→
A .

We next explain how the edge
−→
B advances based on

Proposition 6. For example, in Fig. 9(2),
−→
A

� −→
B 
= ∅ and−→

A ×−→
B < 0 and PeA ∈ H(

−→
B ), hence

−→
B moves forward. As

the edge
−→
A is labeled with 7,

−→
B moves to the edge labeled

with 8 onR∗
l , which is the next of the edge labeled with 7 on

R∗
l . Note that if the edge labeled with 8 did not actually exist

in the intersection polygon R∗
l , then

−→
B should repeatedly

move on until it reaches the first “real” edge on R∗
l .

We then present our faster algorithm for computing the
intersection of inscribed regular polygons that uses the
advance rules in terms of Propositions 5 and 6 .

Algorithm FastRPolyInter. The regular polygon intersection
algorithm, i.e., FastRPolyInter, is the optimized version of the
convex polygon intersection algorithm CPolyInter, based on
Propositions 5 and 6 .We also save vertexes of a polygon in a
fixed size array, which is different from CPolyInter that saves
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Fig. 9 Examples of fast advancing rules

polygons in linked lists. Considering the regular polygons
each having a fixed number of vertexes/edges, marked from
1 to m, this policy allows us to quickly address an edge or a
vertex with its label.

Given intersection polygon R∗
l of the preview l poly-

gons and the next approximate polygon Rs+l+1, algorithm
FastRPolyInter returns R∗

l+1 = R∗
l

�
Rs+l+1. It runs the

similar routine as the CPolyInter algorithm, except that (1)
it saves polygons in arrays, and (2) the advance strate-
gies are partitioned into two parts, i.e.,

−→
A

� −→
B 
= ∅ and−→

A
� −→

B = ∅, where the former applies Propositions 5 and
6 , and the latter remains the same as algorithm CPolyInter.

Correctness and complexity analyses. Observe that algo-
rithm FastRPolyInter basically has the same routine as
algorithm CPolyInter, except that it speeds up the advance

of directed edges
−→
A and

−→
B under certain circumstances

as shown by Propositions 5 and 6 , which together ensure
the correctness of FastRPolyInter. Moreover, algorithm
FastRPolyInter runs in O(1) time by Proposition 4.

4 One-pass trajectory simplification

A naive algorithm that directly outputs all the data points in
the given trajectory is one-pass, however, it is hardly to be
an effective trajectory simplification algorithm. Does there
exist an effective, one-pass and error bounded line simplifi-
cation algorithm using SED? This remains an open question
in the community. We next present a positive answer to this
question. The main result here is stated as follows.

Theorem 7 There exist effective one-pass error bounded and
strong and weak trajectory simplification algorithms using
the synchronous Euclidean distance (SED).

We shall prove this by providing such algorithms employ-
ing the synchronous distance checking technique developed
in Sect. 3. More specifically, following [14,39], we consider
two classes of trajectory simplification. The first one, referred
to as strong simplification, that takes as input a trajectory

...
T ,

an error bound ε and the number m of edges for inscribed

regular polygons, and produces a simplified trajectory
...
T ′

such that all data points in
...
T ′ belong to

...
T . The second one,

Fig. 10 One-pass strong trajectory simplification algorithm

referred to as weak simplification, that takes as input a tra-
jectory

...
T , an error bound ε and the number m of edges for

inscribed regular polygons, and produces a simplified trajec-

tory
...
T ′ such that some data points in

...
T ′ may not belong to...

T . That is, weak simplification allows data interpolation.

4.1 Strong trajectory simplification

Recall that in Propositions 1 and 2 , the point Q may not be
in the input sub-trajectory [Ps, ..., Ps+k]. If we restrict Q =
Ps+k , the end point of the sub-trajectory, then the narrow
cones whose base circles with a radius of ε/2 suffice, as
shown below.

Proposition 8 Given a sub-trajectory [Ps, ..., Ps+k] and an

error bound ε, sed(Ps+i ,
−−−−→
Ps Ps+k) ≤ ε for each i ∈ [1, k] if�k

i=1C(Ps,O(Ps+i , ε/2)) 
= {Ps}.
We now present the one-pass error bounded strong tra-

jectory simplification algorithm using SED based on Propo-
sition 8, as shown in Fig. 10.

Procedure getRegularPolygon. We first present procedure
getRegularPolygon that, given a cone projection circle, gen-
erates its inscribed m-edges regular polygon, following the
definition in Sect. 3.3.

The parameters Ps , Pi , r and tc together form the
projection circle Oc(Pc

i , rci ) of the spatiotemporal cone
C(Ps,O(Pi , r))of point Pi w.r.t.point Ps on the plane P.t−tc
= 0. Firstly, Pc

i .x and Pc
i .y are computed (lines 1–3), and

rci = w · r . Then, it builds and returns an m-edges inscribed
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Fig. 11 A running example of the CISED-S algorithm. The points and
the oblique circular cones are projected on an x-y space. The trajectory...
T [P0, . . . , P10] is compressed into four line segments. The solid line

circles are synchronous circles, each has a radius of ε/2, and the dash
line circles are cone projection circles whose inscribe regular polygons
are computed

regular polygon R of Oc(Pc
i , rci ) (lines 4–8), by transform-

ing a polar coordinate system into a Cartesian one. Note here
θ , r ·sin θ and r ·cos θ only need to be computed once during
the entire processing of a trajectory.

Algorithm CISED-S. It takes as input a trajectory
...
T

[P0, . . . , Pn], an error bound ε and the number m of edges
for inscribed regular polygons, and returns a simplified tra-
jectory T of

...
T .

The algorithm first initializes the start point Ps to P0, the
index i of the current data point to 1, the intersection poly-
gon R∗ to ∅, the output T to ∅, and tc to P1.t , respectively
(line 1). The algorithm sequentially processes the data points
of the trajectory one by one (lines 2–10). It gets the m-edge
inscribed regular polygon w.r.t. the current point Pi (line 3)
by calling procedure getRegularPolygon. When R∗ = ∅,
the intersection polygonR∗ is simply initialized asR (lines
4, 5). Otherwise,R∗ is the intersection of the current regular
polygon R with R∗ by calling procedure FastRPolyInter()
introduced in Sect. 3.4 (line 7). If the resulting intersection
R∗ is empty, then a new line segment

−−−−→
Ps Pi−1 is generated

(lines 8–10). The process repeats until all points have been
processed (line 11). After the final line segment

−−→
Ps Pn is

generated (line 12), it returns the simplified piecewise line
representation T (line 13).

Example 6 Figure 11 shows a running example of CISED-S
for compressing the trajectory

...
T in Fig. 2.

(1) After initialization, the CISED-S algorithm reads point P1
and builds a narrow cone C(P0,O(P1, ε/2)), taking P0 as its
apex andO(P1, ε/2) as its base (green). The cone is projected
on the plane P.t−P1.t = 0, and the inscribe regular polygon
R1 of the projection circle is returned. As R∗ is empty, R∗
is set toR1.

(2) The algorithm reads P2 and builds C(P0,O(P2, ε/2))
(red). The cone is also projected on the plane P.t − P1.t = 0
and the inscribe regular polygon R2 of the projection circle
(red) is returned. AsR∗ = R1 is not empty, R∗ is set to the
intersection of R2 and R∗, which isR1

�
R2 
= ∅.

(3) For point P3, the algorithm runs the same routine as P2
until the intersection ofR3 andR∗ is ∅. Thus, a line segment−−→
P0P2 is generated, and the process of a new line segment is
started, taking P2 as the new start point and P.t − P3.t = 0
as the new projection plane.

(4) At last, the algorithm outputs four continuous line seg-
ments, i.e., {−−→

P0P2,
−−→
P2P4,

−−→
P4P7,

−−−→
P7P10} (Fig. 10). ��

4.2 Weak trajectory simplification

We then present the one-pass error bounded weak simplifica-
tion algorithm using SED. By allowing data interpolations, it
extends the radii of the base circles of spatiotemporal cones
in CISED-S from ε/2 to ε, which leads to better compression
ratios than CISED-S. Recall that in Proposition 2, the point Q
may not be in the input sub-trajectory [Ps, ..., Ps+k], which
can be treated as an interpolated data point.

Algorithm CISED-W. Given a trajectory
...
T [P0, . . . , Pn], an

error bound ε and the number m of edges for inscribed
regular polygons, it returns a simplified trajectory, which
may contain interpolated points. By Proposition 2, algorithm
CISED-W generates spatiotemporal cones whose bases are
circles with a radius of ε, and, hence, it replaces ε/2 with
ε (line 3 of CISED-S). It also generates new line segments
with data points Q (may be interpolated points), and, hence,
it replaces point Pi and line segment

−−→
Ps Pi (lines 9 and 10 of

algorithm CISED-S) with Q and
−−→
PsQ, respectively, such that

Q is generated as follows.

Proposition 9 Given a sub-trajectory
...
T [Ps, . . . , Ps+k] and

an error bound ε, tc = Ps+k .t andR∗
k be the intersection of

all polygons Rs+i (i ∈ [1, k]) on the plane P.t − tc = 0. If
R∗

k is not empty, then any point in the area ofR∗
k is feasible

for Q.

The choice of a point Q from R∗
k may slightly affect the

compression ratios and average errors. However, the choice
of an optimal Q is non-trivial. For the benefit of running time,
we apply the following strategies.
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Fig. 12 A running example of the CISED-W algorithm. The points and
the oblique circular cones are projected on an x-y space. The trajectory...
T [P0, . . . , P10] is compressed into three line segments. The solid line

circles are synchronous circles, each has a radius of ε, and the dash line
circles are cone projection circles. Note in (5) a point, P ′

4, is Interpolated

(1) If Ps+k is in the area of R∗
k w.r.t. tc = Ps+k .t , then Q is

simply set to Ps+k .

(2) If R∗
k 
= ∅ and Ps+k is not in the area of R∗

k w.r.t.
tc=Ps+k .t , then the central point of R∗

k is chosen as Q.

(3) If tc 
= Ps+k .t , which is the general case, then we project
the intersection polygon R∗

k w.r.t. tc 
= Ps+k .t on the plane
P.t − Ps+k .t = 0, and apply strategies (1) and (2) above.
That is, the projection has no affects on the choice of Q.

Example 7 Figure 12 shows a running example of algorithm
CISED-W for compressing the trajectory

...
T in Fig. 2 again.

(1) After initialization, algorithm CISED-W reads point P1
and builds an oblique circular cone C(P0,O(P1, ε)), and
projects it on the plane P.t − P1.t = 0. The inscribed reg-
ular polygon R1 of the projection circle is returned, and the
intersection R∗ is set toR1.

(2) P2, P3 and P4 are processed in turn. The intersection
polygons R∗ are not empty.

(3) For point P5, the intersection of polygons R5 and R∗ is

∅. Thus, line segment
−−→
P0Q = −−→

P0P ′
4 is output, and a new line

segment is started such that point Q = P ′
4 is the new start

point and plane P.t − P5.t = 0 is the new projection plane.

(4) At last, the algorithm outputs 3 continuous line segments,

i.e.,
−−→
P0P ′

4,
−−→
P ′
4P8 and

−−−→
P8P10, in which P ′

4 is an interpolated
data point not in

...
T . ��

Correctness and complexity analyses. The correctness of
algorithms CISED-S and CISED-W follows from Proposi-
tions 2 and 8 , and Propositions 2 and 9 , respectively.
It is easy to verify that each data point in a trajectory is
only processed once, and each can be done in O(1) time,
as both procedures getRegularPolygon and FastRPolyInter
can be done in O(1) time. Hence, these algorithms are
both one-pass error bounded trajectory simplification algo-
rithms. It is also easy to see that these algorithms take O(1)
space.

5 Experimental study

In this section, we present an extensive experimental study
of our one-pass trajectory simplification algorithms (CISED-
S and CISED-W) compared with the compression optimal
algorithm using SED (C-Optimal) and existing algorithms
of DPSED and SQUISH-E on trajectory datasets. Using four
real-life trajectory datasets, we conducted sets of experi-
ments to evaluate: (1) the compression ratios of algorithms
CISED-S and CISED-W vs.DPSED, SQUISH-E and C-Optimal,
(2) the average errors of algorithms CISED-S and CISED-W
vs. DPSED, SQUISH-E and C-Optimal, (3) the running time
of algorithms CISED-S and CISED-W vs. DPSED, SQUISH-E
and C-Optimal, (4) the impacts of polygon intersection algo-
rithms FastRPolyInter and CPolyInter and the edge number
m of inscribed regular polygons to the compression ratios,
errors and running time of algorithms CISED-S and CISED-
W, (5) the impacts of the distance metrics PED and SED on
the compression ratios, errors and running time of trajectory
simplification algorithms and (6) the impacts of the distance
metrics PED and SED on spatiotemporal queries.

5.1 Experimental setting

Real-life Trajectory Datasets.We use four real-life datasets
ServiceCar,GeoLife,Mopsi and PrivateCar shown in Table 2
to test our solutions.
(1) Service car trajectory data (ServiceCar) is theGPS trajec-
tories collected by aChinese car rental company duringApril
2015 to November 2015. The sampling rate was one point
per 3–5 s, and each trajectory has around 114.1K points.
(2) GeoLife trajectory data (GeoLife) is the GPS trajectories
collected in GeoLife project [43] by 182 users in a period
fromApr. 2007 toOct. 2011. These trajectories have a variety
of sampling rates, among which 91% are logged with one
point per 1–5 s.
(3) Mopsi trajectory data (Mopsi) is the GPS trajectories
collected in Mopsi project [21] by 51 users in a period from
2008 to 2014. Most routes are in Joensuu region, Finland.

123

Author's personal copy



One-pass trajectory simplification using the synchronous Euclidean distance 909

Table 2 Real-life trajectory datasets

Data sets Number of trajectories Sampling rates (s) Points per trajectory (K) Total points

ServiceCar 1,000 3–5 ∼ 114.0 114M

GeoLife 182 1–5 ∼ 131.4 24.2M

Mopsi 51 2 ∼ 153.9 7.9M

PrivateCar 10 1 ∼ 11.8 112.8K

The sampling rate was one point per 2 s, and each trajectory
has around 153.9K points.
(4) Private car trajectory data (PrivateCar) is a small set
GPS trajectories collected with a high sampling rate of one
point per second by our team members in 2017. There are 10
trajectories and each trajectory has around 11.8K points.

As the compression optimal algorithm C-Optimal[13] has
both high time and space complexities, i.e., O(n3) time and
O(n2) space, it is impossible to compress the entire datasets
(slow and out of memory). Hence, we further build four
small datasets such that each includes 10 middle-size (10K
points per trajectory) trajectories selected from ServiceCar,
GeoLife, Mopsi and PrivateCar, respectively.

Algorithms and implementation. We implement seven LS
algorithms, i.e., our CISED-S and CISED-W, sector intersec-
tion algorithm using PED (SIPED) [7,42], DPPED and DPSED
(DP using PED [6] and DP using SED [19], the existing sub-
optimal LS algorithms having the best compression ratios),
SQUISH-E [23] (the fastest existing LS algorithm using SED)
and C-Optimal (the compression optimal LS algorithm using
SED, see Sect. 2.2). We also implement the polygon intersec-
tion algorithms, CPolyInter and our FastRPolyInter.

All algorithmswere implementedwith Java.All testswere
run on an x64-based PC with 8 Intel(R) Core(TM) i7-6700
CPU @ 3.40GHz and 8GB of memory, and each test was
repeated over 3 times and the average is reported here.

5.2 Experimental results

We next present our findings.

5.2.1 Evaluation of compression ratios

In the first set of tests, we evaluate the impacts of parame-
ter m on the compression ratios of our algorithms CISED-S
and CISED-W, and compare the compression ratios of CISED-
S and CISED-W with DPSED, SQUISH-E and C-Optimal.
The compression ratio is defined as follows: Given a set of
trajectories { ...T1, . . . ,

...
TM } and their piecewise line represen-

tations {T1, . . . , TM }, the compression ratio of an algorithm
is (

∑M
j=1 |T j |)/(∑M

j=1 | ...T j |). By the definition, algorithms
with lower compression ratios are better.

Exp-1.1: Impacts of parameter m on compression ratios.
To evaluate the impacts of the number m of edges of poly-
gons on the compression ratios of algorithms CISED-S and
CISED-W, and also to confirm that our fast regular polygon
intersection algorithm FastRPolyInter has the same com-
pression ratios as the convex polygon intersection algorithm
CPolyInter, we fixed the error bound ε = 60 m, and varied
m from 4 to 40. The results are reported in Fig. 13.
(1) Algorithms CISED-S and CISED-W using FastRPolyInter
have the same compression ratios as their counterparts using
CPolyInter for all cases.
(2) When varying m, the compression ratios of algorithms
CISED-S and CISED-W decrease with the increase ofm on all
datasets. The increase of edge number m of a regular poly-
gon makes the polygon better approximate its corresponding
circle, which leads to a higher potential to have common
intersections, and has a better compression ratio.
(3) When varying m, the compression ratios of algorithms
CISED-S and CISED-W decrease (a) fast when m < 12, (b)
slowlywhenm ∈ [12, 20], and (c) very slowlywhenm > 20.
Hence, the region of [12, 20] is a good candidate region for
m in terms of compression ratios.Here, the compression ratio
of m=12 is only on average 100.95% of m=20.

Exp-1.2: Impacts of the error bound ε on compression

ratios (vs. algorithms DPSED and SQUISH-E). To evalu-

ate the impacts of error bound ε on compression ratios, we
fixed m=16, the middle of [12, 20], and varied ε from 10 to
200 m on the entire four datasets, respectively. The results
are reported in Fig. 14 .
(1) When increasing ε, the compression ratios of all these
algorithms decrease on all datasets, as it is clear that a larger ε
makes more points represented by a line segment, and brings
a better compression ratio.
(2) Dataset PrivateCar has the lowest compression ratios,
compared with datasetsMopsi, ServiceCar and GeoLife, due
to its highest sampling rate, ServiceCar has the highest com-
pression ratios due to its lowest sampling rate, and GeoLife
andMopsi have the compression ratios in the middle accord-
ingly.
(3) Algorithm CISED-S is better than SQUISH-E and close
to DPSED on all datasets and for all ε. The compres-
sion ratios of CISED-S are on average (79.3%, 71.9%,
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910 X. Lin et al.

Fig. 13 Evaluation of compression ratios: fixed error bound with ε = 60 m and varying m. Here, “R” denotes our fast regular polygon intersection
algorithm FastRPolyInter, and “C” denotes the convex polygon intersection algorithm CPolyInter, respectively

Fig. 14 Evaluation of compression ratios: fixed with m = 16 and varying error bound ε

Fig. 15 Evaluation of compression ratios: fixed with m = 16 and varying error bound ε (on small datasets)

Fig. 16 Evaluation of compression ratios: fixed with m = 16 and ε = 60 m, and varying the size of trajectories

67.3%, 72.7%) and (109.2%, 108.0%, 111.7%, 109.1%)
of SQUISH-E and DPSED on datasets (ServiceCar, GeoLife,
Mopsi, PrivateCar), respectively. For example, when ε

= 40 m, the compression ratios of algorithms SQUISH-

E, CISED-S and DPSED are (20.0%, 8.0%, 5.7%, 4.9%),
(16.1%, 5.8%, 3.9%, 3.6%) and (14.8%, 5.4%, 3.4%,
3.4%) on datasets (ServiceCar, GeoLife,Mopsi, PrivateCar),
respectively. CISED-S shows better compression ratios than
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SQUISH-E because CISED-S applies an approximate policy
that includes as many points as possible into a line segment
during the process, while SQUISH-E applies a loose error pre-
diction policy, which may ignore too many potential points
that could be represented by a line segment in order to assure
the error bound.
(4) Algorithm CISED-W has better compression ratios than
DPSED, SQUISH-E and CISED-S on all datasets and for
all ε. The compression ratios of CISED-W are on average
(57.7%, 53.8%, 50.0%, 54.6%), (79.5%, 81.0%, 83.0%,
82.0%) and (72.9%, 75.0%, 74.3%, 75.1%) of algorithms
SQUISH-E, DPSED and CISED-S on datasets (ServiceCar,
GeoLife, Mopsi, PrivateCar), respectively. For example,
when ε = 40 m, the compression ratios of algorithm CISED-
W are (11.5%, 4.3%, 2.8%, 2.7%) on datasets (ServiceCar,
GeoLife,Mopsi,PrivateCar), respectively.AlgorithmCISED-
W extends the radii of base circles of spatiotemporal cones
from ε/2 in CISED-S to ε, thus, it has better compression
ratios than CISED-S.

Exp-1.3: Impacts of the error bound ε on compression

ratios (vs. the compression optimal algorithm). To evalu-
ate the impacts of error bound ε on compression ratios, we
again fixed m=16, the middle of [12, 20], and varied ε from
10 to 200 m on the first 1K points of each trajectory of the
selected small datasets, respectively. The results are reported
in Fig. 15 .
(1) Algorithm CISED-S is worse than the compression opti-
mal algorithm C-Optimal on all datasets and for all ε. More
specifically, the compression ratios of CISED-S are on aver-
age (134.6%, 150.7%, 155.5%, 138.5%) of C-Optimal on
datasets (ServiceCar, GeoLife, Mopsi, PrivateCar), respec-
tively. For example, when ε = 40 m, the compression ratios
of CISED-S and C-Optimal are (22.0%, 5.9%, 1.9%, 3.3%)
and (16.4%, 4.2%, 0.9%, 2.4%) on datasets (ServiceCar,
GeoLife, Mopsi, PrivateCar), respectively.
(2) Algorithm CISED-W has the closest compression ratios to
the compression optimal algorithm C-Optimal on all datasets
and for all ε. The compression ratios of CISED-W are on
average (94.8%, 115.5%, 119.7%, 107.5%) of C-Optimal on
datasets (ServiceCar, GeoLife, Mopsi, PrivateCar), respec-
tively. For example, when ε = 40 m, the compression ratios
of algorithm CISED-W are (14.6%, 4.6%, 1.2%, 2.5%) on
datasets (ServiceCar, GeoLife, Mopsi, PrivateCar), respec-
tively. This is because algorithm CISED-W allows data
interpolations, by Proposition 2, it extends the radii of the
base circles of the spatiotemporal cones from ε/2 in CISED-
S to ε in CISED-W to contain more points.

Exp-1.4: Impacts of trajectory sizes on compression
ratios. To evaluate the impacts of trajectory size, i.e., the
number of data points in a trajectory, on compression ratios,
we chose the same 10 trajectories from datasets ServiceCar,
GeoLife,Mopsi and PrivateCar, respectively, fixedm=16 and

ε=60m, and varied the size
...|T | of trajectories from1K points

to 10K points. The results are reported in Fig. 16.
(1) The compression ratios of these algorithms ordered from
the best to the worst are CISED-W, DPSED, CISED-S and
SQUISH-E, on all datasets with all sizes of trajectories, which
is consistent with the previous tests.
(2) The sizes of input trajectories have few impacts on the
compression ratios of LS algorithms on all datasets.

5.2.2 Evaluation of average errors

In the second set of tests, we first evaluate the impacts of
parameter m on the average errors of algorithms CISED-S
and CISED-W, then compare the average errors of our algo-
rithmsCISED-S andCISED-WwithDPSED, SQUISH-E and the
compression optimal algorithm C-Optimal.

Given a set of trajectories { ...T1, . . . , ...T M } and their piece-
wise line representations {T1, . . . , T M }, and point Pj,i

denoting a point in trajectory
...
T j contained in a line seg-

ment Ll,i ∈ Tl (l ∈ [1, M]), then the average error is
∑M

j=1
∑M

i=0 d(Pj,i ,Ll,i )/
∑M

j=1 | ...T j |.
Exp-2.1: Impacts of parameter m on average errors. To

evaluate the impacts of parameter m on average errors of
algorithmsCISED-S andCISED-W, and to confirm that our fast
regular polygon intersection algorithm FastRPolyInter has
the same average errors as the convex polygon intersection
algorithm CPolyInter, we fixed the error bound ε = 60 m,
and variedm from 4 to 40. The results are reported in Fig. 17.
(1) Algorithms CISED-S and CISED-W using FastRPolyInter
have the same average errors as their counterparts using
CPolyInter, respectively, on all datasets and for all m.
(2)When varyingm, the average errors of algorithms CISED-
S andCISED-W increasewith the increase ofm on all datasets.
The increase of edge number m of a regular polygon makes
the polygon more closely approximate its corresponding cir-
cle, which means that some points having larger SED, i.e.,
closer to half-ε in CISED-S or ε in CISED-W, are also included
to a line segment,which further leads to a larger average error.
(3) When varying m, similar to compression ratios, the aver-
age errors of algorithms CISED-S and CISED-W increase (a)
fast when m < 12, (b) slowly when m ∈ [12, 20], and (c)
very slowly when m > 20. The range of [12, 20] is also
the good candidate region for m in terms of errors. Here,
the average error of m = 12 is only on average 98.49% of
m = 20.

Exp-2.2: Impacts of the error bound ε on average errors

(vs. algorithmsDPSED and SQUISH-E). To evaluate the aver-

age errors of these algorithms, we fixed m=16, and varied ε

from 10 to 200 m on the entire datasets ServiceCar, GeoLife,
Mopsi and PrivateCar, respectively. The results are reported
in Fig. 18.
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912 X. Lin et al.

Fig. 17 Evaluation of average errors: fixed error bound with ε = 60 m and varying m. Here, “R” denotes our fast regular polygon intersection
algorithm FastRPolyInter, and “C” denotes CPolyInter, respectively

Fig. 18 Evaluation of average errors: fixed with m = 16 and varying error bound ε

Fig. 19 Evaluation of average errors: fixed with m = 16 and varying error bound ε (on small datasets)

Fig. 20 Evaluation of average errors: fixed with m = 16 and ε = 60 m, and varying the size of trajectories

(1) Average errors increase with the increase of ε. More
specifically, the average error of each algorithm has approxi-
mately a linear relation to ε. It is clear that a larger ε includes
more points into a line segment, including points with larger

SED, which brings a better compression ratio as well as a
larger average error.
(2) The average errors of these algorithms from the largest
to the smallest are CISED-W, CISED-S, DPSED and SQUISH-
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E, on all datasets and for all ε. The average errors of
algorithms CISED-S and CISED-W are on average (119.3%,
127.7%, 119.9%, 138.0%) and (210.1%, 207.5%, 200.9%,
217.5%) of DPSED and (188.2%, 215.2%, 212.8%, 180.3%)
and (331.1%, 349.7%, 356.7%, 284.2%) of SQUISH-E on
datasets (ServiceCar, GeoLife, Mopsi, PrivateCar), respec-
tively. Algorithms CISED-W and CISED-S apply an approx-
imate policy, i.e., they include as many points as possible
into a line segment, and this policy usually leads to a larger
average error.
(3) When the error bound of algorithm CISED-W is set as
the half of CISED-S, the average errors of CISED-W are
on average (93.8%, 86.0%, 81.4%, 79.4%) of CISED-S on
datasets (ServiceCar, GeoLife,Mopsi, PrivateCar), respec-
tively, meaning that the large average errors of algorithm
CISED-W are caused by its cone w.r.t. ε compared with the
narrow cone w.r.t. ε/2 of CISED-S.

Exp-2.3: Impacts of the error bound ε on average errors

(vs. the compression optimal algorithm). To evaluate the
average errors of these algorithms,wefixedm=16, and varied
ε from 10 to 200 m on the first 1K points of each trajectory
of the small datasets, respectively. The results are reported
in Fig. 19.

The average errors of these algorithms from the largest
to the smallest are CISED-W, the compression optimal algo-
rithm C-Optimal and CISED-S, on all datasets and for all ε.
The average errors of CISED-S and CISED-W are on aver-
age (73.6%, 80.7%, 85.1%, 81.0%) and (133.3%, 130.7%,
131.0%, 126.3%) of C-Optimal on datasets (ServiceCar,
GeoLife, Mopsi, PrivateCar), respectively. Note that here
algorithm C-Optimal has the worst average error among
all strong line simplification algorithms, as algorithm C-
Optimal is optimal in terms of compression ratio, and
algorithms with better compression ratios generate less line
segments, which usually leads to larger errors.

Exp-2.4: Impacts of trajectory sizes on average errors.
To evaluate the impacts of trajectory sizes on average errors,
we chose the same 10 trajectories from datasets ServiceCar,
GeoLife,Mopsi and PrivateCar, respectively.We fixedm=16
and ε = 60 m, and varied the size

...|T | of trajectories from
1K points to 10K points. The results are reported in Fig. 20.
(1) The average errors of these algorithms ordered from the
smallest to the largest are SQUISH-E, DPSED, CISED-S and
CISED-W, on all datasets and for all trajectory sizes, which
is consistent with the above tests.
(2) The sizes of input trajectories have few impacts on the
average errors of LS algorithms on all datasets.

5.2.3 Evaluation of running time

In the third set of tests, we evaluate the impacts of parameter
m on the running time of algorithms CISED-S and CISED-W,

and compare the running time of our approachesCISED-S and
CISED-Wwith algorithms C-Optimal,DPSED and SQUISH-E.

Exp-3.1: Impacts of algorithm FastRPolyInter and param-

eterm on running time. To evaluate the impacts of parame-

term on the running time of algorithmCISED-S andCISED-W,
and also to confirm that our fast regular polygon intersection
algorithm FastRPolyInter runs faster than the convex polygon
intersection algorithm CPolyInter, we equipped CISED-S and
CISED-W with FastRPolyInter and CPolyInter, respectively,
fixed ε = 60 m, and varied m from 4 to 40. The results are
reported in Figs. 21 and 22 .
(1) Algorithms CISED-S and CISED-W spend most their time
on executing the polygon intersections. For all m, the execu-
tion time of algorithms CPolyInter and FastRPolyInter is on
average (93.5%, 96.0%, 94.5%, 92.0%) and (90.5%, 92.5%,
91.0%, 90.5%) of the entire compression time on datasets
(ServiceCar, GeoLife, Mopsi, PrivateCar), respectively.
(2) FastRPolyInter runs faster than CPolyInter on all datasets
and for all m due to the techniques that it applies to speed
up the computation of polygon intersection. The execution
time of algorithms CISED-S-FastRPolyInter and CISED-W-
FastRPolyInter is one average 83.74% their counterpartswith
CPolyInter.
(3) When varying m, the execution time of algorithms
CISED-S-FastRPolyInter, CISED-S-CPolyInter, CISED-W-
FastRPolyInter and CISED-W-CPolyInter increases approxi-
mately linearly with the increase ofm on all the datasets, e.g.,
the running time ofm = 12 is on average 69.92% ofm = 20
for CISED-S and CISED-W on all datasets. This is because the
time complexities of FastRPolyInter and CPolyInter are both
O(m), and a larger m leads to more comparisons of edges
during the computation of polygon intersection.

Exp-3.2: Impacts of the error bound ε on running time

(VS. algorithms DPSED and SQUISH-E). To evaluate the

impacts of ε on running time, we fixed m = 16, and varied
ε from 10 to 200 m on the entire datasets, respectively. The
results are reported in Fig. 23.
(1) All algorithms are not very sensitive to ε on any datasets,
and algorithm DPSED is more sensitive to ε than the other
three algorithms. The running time of DPSED decreases a
little bit with the increase of ε, as the increment of ε decreases
the number of partitions of the input trajectory.
(2) Algorithms CISED-S and CISED-W are obviously faster
than DPSED and SQUISH-E for all cases. They are on aver-
age (14.21, 18.19, 17.06, 9.98) times faster than DPSED,
and (2.84, 3.45, 3.69, 2.86) times faster than SQUISH-E on
datasets (ServiceCar, GeoLife, Mopsi, PrivateCar), respec-
tively. This is consistent with their time complexity analyses.

Exp-3.3: Impacts of the error bound ε on running time

(VS. the compression optimal algorithm). To evaluate the
impacts of ε on running time, we fixed m = 16, and varied
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Fig. 21 Evaluation of running time of polygon intersection algorithms: fixed error bound with ε = 60 m, and varying m. Here, “R” denotes our
fast regular polygon intersection algorithm FastRPolyInter, and “C” denotes CPolyInter, respectively

Fig. 22 Evaluation of running time: fixed error bound with ε = 60 m, and varying m

Fig. 23 Evaluation of running time: fixed with m = 16 and varying error bounds ε

Fig. 24 Evaluation of running time: fixed with m = 16 and varying error bounds ε (on small datasets)

ε from 10 to 200 m on the first 1K points of each trajectory
of the selected small datasets, respectively. The results are
reported in Fig. 24.

(1) Algorithms CISED-S and CISED-W are obviously faster
than C-Optimal for all cases. They are on average (925.25,
7888.26, 40041.59, 8528.76) times faster than C-Optimal on
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Fig. 25 Evaluation of running time: fixed with m = 16 and ε = 60 m, and varying the size of trajectories

datasets (ServiceCar, GeoLife, Mopsi, PrivateCar), respec-
tively.

Exp-3.4: Impacts of trajectory sizes on running time. To
evaluate the impacts of trajectory sizes on running time, we
chose the same 10 trajectories, from datasets (ServiceCar,
GeoLife, Mopsi, PrivateCar), respectively, fixed m = 16 and
ε = 60 m, and varied the size

...|T | of trajectories from 1K
points to 10K points. The results are reported in Fig. 25.
(1) Algorithms CISED-S and CISED-W are both the fastest LS
algorithms using SED, and are (8.00–10.00, 5.83–8.11, 4.00–
9.50, 5.00–8.09) times faster than DPSED, and (2.53–3.00,
2.62–3.12, 2.50–3.33, 2.89–3.40) times faster than SQUISH-
E on the selected 1K to 10K points datasets (ServiceCar,
GeoLife, Mopsi, PrivateCar), respectively.
(2) Algorithms CISED-S and CISED-W scale well with the
increase of the size of trajectories on all datasets, and both
have a linear running time, while algorithm DPSED does not.
This is consistent with their time complexity analyses.
(3) The advantage of running time of algorithms CISED-S
and CISED-W increases with the increase of trajectory sizes
compared with DPSED and SQUISH-E.

5.2.4 Evaluation of distance metrics PED versus SED

In this set of tests, we compare the performance of algo-
rithms using PED vs. SED. Two pairs of algorithms are
tested, namely, (1) the algorithm DP using PED and SED,
respectively, and (2) the sector intersection algorithm [36,40]
using PED and our spatiotemporal cone intersection algo-
rithm using SED.

Exp-4.1: Impacts of distance metrics on compression
ratios. To evaluate the impacts of distance metrics, i.e.,PED
and SED, on compression ratios, we fixed m=16 and varied
ε from 10 to 200 m on the entire four datasets, respectively.
The results are reported in Fig. 26.

Given the same error bound ε, the compression ratios
using PED are obviously better than using SED. More specif-
ically, the compression ratios of algorithm DP using PED are
on average (47.1%, 55.5%, 60.7%, 44.7%) of algorithm DP
using SED and the compression ratios of algorithm CISED-S

are on average (45.4%, 54.5%, 60.1%, 43.0%) of algorithm
SIPED on datasets (ServiceCar, GeoLife,Mopsi, PrivateCar),
respectively. The reason behind this is that a PED of a point is
the shortest distance from the point to a line segment, while
a SED of a point is the distance between the point and its syn-
chronized data point w.r.t. the line segment. Thus, the SED
of a point to a line segment is always not less than the PED
of the point to the line segment. Hence, given the same error
bound ε, LS algorithms using SED usually include less points
into a line segment. In other words, they generate more line
segments.

Exp-4.2: Impacts of distance metrics on average errors.
To evaluate the impacts of distancemetrics on average errors,
we fixed m=16 and varied ε from 10 to 200 m on the entire
four datasets, respectively. The results are reported in Fig. 27.

Given the same error bound ε, the average errors of algo-
rithms using SED are a bit larger than using PED. The average
errors of algorithm DP using PED are on average (76.7%,
77.6%, 79.7%, 63.0%) of algorithm DP using SED, and the
average errors of algorithm SIPED are on average (97.5%,
78.1%, 92.4%, 74.2%) of algorithm CISED-S on (ServiceCar,
GeoLife, Mopsi, PrivateCar), respectively. As we know, the
PED error is originally caused by the direction changes of a
moving object, while the SED error is caused by the changes
of both the direction and the speed of a moving object. It
seems that the speed factor introduces an extra error, and
leads to a larger average error.

Exp-4.3: Impacts of distance metrics on running time. To
evaluate the impacts of distance metrics on running time, we
also fixed m=16 and varied ε from 10 to 200 m on the entire
four datasets, respectively. The results are reported in Fig. 28.

Given the same error bound ε, the running time of DP
using PED is on average (24.3%, 119.9%, 23.4%, 91.3%)
of DP using SED. Algorithm DP using PED runs faster than
using SED because DP using PED has a better compres-
sion ratio than SED, which is the result of less trajectory
splitting and distance computing operations during the com-
pression. The running time of algorithm SIPED is on average
(7.0%, 36.3%, 19.9%, 69.2%) of algorithm CISED-S on
datasets (ServiceCar, GeoLife, Mopsi, PrivateCar), respec-
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Fig. 26 Evaluation of compression ratios (PED vs. SED): fixed with m = 16 and varying error bound ε

Fig. 27 Evaluation of average errors (PED vs. SED): fixed with m = 16 and varying error bound ε

Fig. 28 Evaluation of running time (PED vs. SED): fixed with m = 16 and varying error bounds ε

tively. Algorithm CISED-S runs slower than SIPED sometimes
because finding the common intersection of spatiotemporal
cones is a heavier computation than sectors.

5.2.5 Evaluation of spatiotemporal queries on compressed
trajectories

In the last set of tests, we evaluate compressed trajecto-
ries from the viewpoint of trajectory application, i.e., spa-
tiotemporal query. The well-known spatiotemporal queries
are where_at, when_at, range, nearest_neighbor and spa-
tial_join [1]. Among them,where_at query, i.e., “the position
P of a moving object at time t ,” is the foundation of range
and nearest_neighbor queries. Hence, we choose it to evalu-
ate compressed trajectories simplified by LS algorithms using
PED and/or SED. Asmentioned in [1], the answer towhere_at
query is the expected position P ′ of themoving object at time

t . Indeed, it is the synchronized point of P when the query is
performed on simplified trajectories.

We first compress these trajectories using PED and SED,
respectively. When compressing, we also fixed m=16 for
algorithms CISED-S and CISED-W, and varied ε from 10 to
200 m for all algorithms on the entire four datasets, respec-
tively. Then, for each point P in an original trajectory

...
T , we

perform a query on each of its compressed trajectories tak-
ing time P.t as input, and calculate the distance between the
actual position P and the expected position P ′ to denote the
error of queries. The max and average errors of the queries
are reported in Table 3 and Fig. 29, respectively.
(1)Whenusing SED, themax errors of spatiotemporal queries
on compressed trajectories are always not larger than error
bounds. However, when using PED, they are more than 106

meters in datasets ServiceCar, GeoLife andMopsi, and more
than 103 meters in dataset PrivateCar, significantly larger
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Table 3 The max errors of spatiotemporal queries on compressed tra-
jectories: fixed with m = 16 and ε = 60 meters

Alg. ServiceCar GeoLife Mopsi PrivateCar

SIPED 4.81 × 106 1.91 × 106 1.40 × 106 9.45 × 103

DPPED 4.27 × 106 1.03 × 106 4.21 × 106 2.24 × 103

DPSED 59.99 59.99 59.99 59.99

CISED-S 59.99 59.99 59.99 59.99

CISED-W 59.98 59.99 59.99 59.95

SQUISH-E 59.99 59.98 59.99 59.99

than error bounds. This large error phenomenon is actually
possible. For example, if someone travels from Beijing of
China to Sydney of Australia. During the trip, he first closes
hismobilewhen the air plane is ready to take off, then he turns
on his mobile after he arrives at Sydney. Because the sub-
trajectory includes data points located in two small regions,
i.e., the Beijing and Sydney airports, it is possible that the
sub-trajectory is compressedby someLS algorithmusingPED
into a single line segment, even the error bound ε is set to just
60 meters. When a where_at is performed on the long line
segment, it may return an approximate point having a large
error to the actual position. Besides, we also find that the data
quality problem of the original given trajectories, such as an
abnormal change of GPS location or time, e.g., the latitude
and longitude of a moving object suddenly change from one
country to another country, or even somewhere in the ocean,
can aggravate the large error phenomenon of spatiotemporal
queries on compressed trajectories that are simplified using
PED. These confirm that SED is more suitable than PED for
spatiotemporal queries.
(2) Given the same error bound, the average errors of these
queries on compressed trajectories using PED are obvious
larger than those using SED, and they are typically larger than
error bounds. Moreover, algorithm SI using PED has larger
spatiotemporal query errors than DP using PED because SI
applies a greedy policy that tries to include as many points
into a line segment, and some of these “extra-points” lead to
large errors.

5.2.6 Summary and discussion

Summary. From these tests we find the following.

(1) Datasets. The behaviors of all algorithms across all
datasets are quite similar.

(2) Polygon intersection algorithms. Algorithm
FastRPolyInter runs faster than algorithm CPolyInter and
has the same compression ratios and average errors as
CPolyInter.

(3) Parameter m. The compression ratio decreases with the
increase of m, and the running time increases nearly linearly
with the increase of m. In practice, the range of [12, 20] is a
good candidate region for m.

(4) Compression ratios. The compression optimal LS algo-
rithm C-Optimal has the best compression ratios among all
strong simplification algorithms. Algorithm CISED-S is close
to DPSED and algorithm CISED-W is better than all the sub-
optimal LS algorithms. The compression ratios of algorithms
CISED-S, C-Optimal and CISED-W are on average (79.3%,
71.9%, 67.3%, 72.7%), (58.1%, 45.1%, 39.2%, 52.8%) and
(57.7%, 53.8%, 50.0%, 54.6%) of SQUISH-E and (109.2%,
108.0%, 111.7%, 109.1%), (81.3%, 75.5%, 72.5%, 78.1%)
and (79.5%, 81.0%, 83.0%, 82.0%) of DPSED on datasets
(ServiceCar, GeoLife, Mopsi, PrivateCar), respectively.

(5) Average errors. The average errors of these algorithms
from the smallest to the largest are SQUISH-E,DPSED,CISED-
S,C-Optimal andCISED-W. AlgorithmCISED-W has obvious
higher average errors than CISED-S as the former essentially
forms spatiotemporal cones with a radius of ε.

(6) Running time. Algorithms CISED-S and CISED-W are the
fastest. They are on average (14.21, 18.19, 17.06, 9.98),
(2.84, 3.45, 3.69, 2.86) and (925.25, 7888.26, 40041.59,
8528.76) times faster thanDPSED,SQUISH-E andC-Optimalon
datasets (ServiceCar, GeoLife, Mopsi, PrivateCar), respec-
tively. The advantage of running time of algorithms CISED-S
andCISED-W also increaseswith the increase of the trajectory
size.

(7) Distance metrics. Compared with PED, SED supports
spatiotemporal queries. However, it comes a price, e.g., the

Fig. 29 Average errors of spatiotemporal queries: fixed with m = 16 and varying error bound ε
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compression ratios of algorithms using PED are better than
those using SED.

(8) Spatiotemporal Queries. SED is more suitable than PED
for applications like spatiotemporal queries.

Discussion. We next briefly discuss the choice of algorithms
to compress trajectories. As different applications may have
different requirements to reach a balance among multiple
metrics, we only provide a brief guideline from the views of
running time, compression ratio and average error, respec-
tively.

(1) When the running time is the first-level consideration or
algorithms are run in resource-constrained devices, the one-
pass algorithms, i.e., CISED-S and CISED-W, are surely the
best choices, and they have pretty good compression ratios
at the same time.

(2) When the compression ratio is the priority, algorithm
CISED-W and the compressionoptimal algorithmC-Optimal are
the selections, followed by algorithms DPSED and CISED-S.

(3) When considering errors, SQUISH-E is a good choice
because it has a relative small average error. Alternatively,
we can also use DPSED or CISED-S by setting a smaller error
bound ε compared with SQUISH-E.

6 Related work

Trajectory compression algorithms are normally classified
into two categories, namely lossless compression and lossy
compression [23]. (1) Lossless compression methods enable
exact reconstruction of the original data from the compressed
data without information loss. (2) In contrast, lossy com-
pression methods allow errors or deviations, compared with
the original trajectories. These techniques typically identify
important data points and remove statistical redundant data
points from a trajectory, or replace original data points in
a trajectory with other places of interests, such as roads
and shops. They focus on good compression ratios with
acceptable errors. In this work, we focus on lossy compres-
sion of trajectory data, and we next introduce the related
work on lossy trajectory compression from two aspects: line
simplification-based methods and semantics-based methods.

6.1 Line simplification-basedmethods

The idea of piecewise line simplification comes from com-
putational geometry. Its target is to approximate a given finer
piecewise linear curve by another coarser piecewise linear
curve, which is typically a subset of the former, such that
the maximum distance of the former to the later is bounded
by a user specified bound ε. Initially, line simplification (LS)
algorithms use perpendicular Euclidean distances (PED) as
the distance metric. Then, a new distance metric, the syn-

chronous Euclidean distances (SED), was developed after the
LS algorithms were introduced to compress trajectories. SED
wasfirst introduced in the nameof time-ratio distance in [19],
and formally presented in [29] as the synchronous Euclidean
distance. PED and SED are two common metrics adopted in
trajectory simplification. The former usually brings better
compression ratios, while the latter reserves temporal infor-
mation in the result trajectories. Besides, there is direction
basedmetric [17] that preserves the directions of trajectories.

Line simplification algorithms can be classified into two
classes: compression optimal and sub-optimal methods.

6.1.1 Compression optimal algorithms

For the “min-#” problem that finds out the minimal number
of points or segments to represent the original polygonal lines
w.r.t. an error bound ε, Imai and Iri [13] first formulated it as
a graph problem, and showed that it could be solved in O(n3)
time, where n is the number of the original points. Toussaint
of [38] and Melkman and O’Rourke of [18] improved the
time complexity to O(n2 log n) by using either convex hull or
sector intersectionmethods.The authors of [2] further proved
that the compression optimal algorithm using PED could be
implemented in O(n2) time by using the sector intersection
mechanism. Because the sector intersection and the convex
hull mechanisms cannot work with SED, hence, currently
the time complexity of the compression optimal algorithm
usingSED remainsO(n3). That is, these compression optimal
algorithms are time-consuming and impracticalwhendealing
with large trajectory data [10].

6.1.2 Compression sub-optimal algorithms

Many studies have been targeting at finding the sub-optimal
results. In particular, the state-of-the-art of sub-optimal LS
approaches fall into three categories, i.e., batch, online and
one-pass algorithms. We next introduce these LS-based tra-
jectory compression algorithms from three categories.

Batch algorithms. The batch algorithms adopt a global dis-
tance checking policy that requires all trajectory points are
loaded before compressing starts. These batch algorithms can
be either top-down or bottom-up.

Top-down algorithms, e.g., Ramer [30] and Douglas–
Peucker [6], recursively divide a trajectory into sub-trajectories
until the stopping condition is met. Bottom-up algorithms,
e.g., Theo Pavlidis’ algorithm [26], is the natural comple-
ment of the top-down ones, which recursivelymerge adjacent
sub-trajectories with the smallest distance, initially n/2 sub-
trajectories for a trajectory with n points, until the stopping
condition is met. The distances of newly generated line seg-
ments are recalculated during the process. These algorithms
originally only support PED, but are easy to be extended to
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support SED [19]. The batch nature and high time complex-
ities make batch algorithms impractical for online and/or
resource-constrained scenarios [14].

Online algorithms. The online algorithms adopt a con-
strained global distance checking policy that restricts the
checking within a sliding or opening window. Constrained
global checking algorithms do not need to have the entire
trajectory ready before they start compressing, and are more
appropriate than batch algorithm for compressing trajectories
for online scenarios.

Several LS algorithms have been developed, e.g., by com-
biningDP or Theo Pavlidis’with sliding or opening windows
for online processing [19]. These methods still have a high
time and/or space complexity, which significantly hinders
their utility in resource-constrainedmobile devices [15]. BQS
[15,16] and SQUISH-E [23] further optimize the openingwin-
dow algorithms. BQS [15,16] speeds up the processing by
picking out at most eight special points from an open win-
dow based on a convex hull, which, however, hardly supports
SED. The SQUISH-E [23] algorithm is a combination of open-
ing window and bottom-up online algorithm. It uses a doubly
linked list Q to achieve a better efficiency.Although SQUISH-
E supports SED, it is not one-pass, and has a relatively poor
compression ratio.

One-pass algorithms.The one-pass algorithms adopt a local
distance checking policy. They do not need a window to
buffer the previously read points as they process each point
in a trajectory once and only once. Obviously, the one-pass
algorithms run in linear time and constant space.

The n–th point routine and the routine of random-
selection of points [35] are two naive one-pass algorithms. In
these routines, for every fixed number of consecutive points
along the line, the n–th point and one random point among
them are retained, respectively. They are fast, but are obvi-
ously not error bounded. In Reumann–Witkam routine [31],
it builds a strip paralleling to the line connecting the first two
points; then, the points within this strip compose one section
of the line. The Reumann–Witkam routine also runs fast,
but has limited compression ratios. The sector intersection
(SI) algorithm [36,40] was developed for graphic and pattern
recognition in the late 1970s, for the approximation of arbi-
trary planar curves by linear segments or finding a polygonal
approximation of a set of input data points in a 2D Cartesian
coordinate system. [7] optimized algorithm SI by considering
the distance between a potential end point and the initial point
of a line segment, and the Sleeve algorithm [42] in the carto-
graphic discipline essentially applies the same idea as the SI
algorithm. The authors of this article also developed a one-
pass error bounded (OPERB) algorithm [14]. However, all
existing one-pass algorithms use PED [7,14,36,40,42], while
this study focuses on SED.

6.2 Semantics-basedmethods

The trajectories of certain moving objects such as cars and
trucks are constrained by road networks. These moving
objects typically travel along road networks, instead of the
line segment between two points. Trajectory compression
methods based on road networks [3,5,8,9,12,28,37] project
trajectory points onto roads (also known as Map-Matching).
Moreover, [8,9,37] mine and use high frequency patterns of
compressed trajectories, instead of roads, to further improve
compression effectiveness. Some methods [32,33] compress
trajectories beyond the use of road networks and furthermake
use of other user specified domain knowledge, such as places
of interests along the trajectories [32].

These semantics-based approaches are orthogonal to line
simplification-based methods and may be combined with
each other to improve the effectiveness of trajectory com-
pression.

7 Conclusions

We have proposed CISED-S and CISED-W, two one-pass
error bounded strong and weak trajectory simplification
algorithms using the synchronous distance. We have also
experimentally verified that algorithms CISED-S and CISED-
W are fast and have good compression ratios. They are three
times faster than SQUISH-E, the fastest existing LS algorithm
using SED. In terms of compression ratio, algorithm CISED-S
is close to DPSED, the existing LS algorithm with the best
compression ratio, and is 21.1% better than SQUISH-E on
average; and algorithm CISED-W is better than all the sub-
optimal algorithm and is on average 19.6% and 42.4% better
than DPSED and SQUISH-E, respectively.
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Appendix: Proofs

Proof of Proposition 1 Let P ′
s+i (i ∈ [1, k]) be the intersec-

tion point of line segment
−−→
PsQ and the plane P.t − Ps+i .t =

0. It suffices to show that the intersection point P ′
s+i satisfies

that (1) P ′
s+i .t = Ps+i .t , (2) P ′

s+i .x = Ps .x+w·(Q.x−Ps .x),
and (3) P ′

s+i .y = Ps .y + w · (Q.y − Ps .y), where w =
P ′
s+i .t−Ps .t
Q.t−Ps .t

= Ps+i .t−Ps .t
Q.t−Ps .t

. Hence, P ′
s+i is indeed a synchro-

nized point of Ps+i w.r.t.
−−→
PsQ, and the distance |−−−−−→

Ps+i P ′
s+i |
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from Ps+i to P ′
s+i is the synchronous distance of Ps+i to−−→

PsQ.
We assume first that

�k
i=1C(Ps,O(Ps+i , ε)) 
= {Ps}.

Then, there must exist a point Q in the area of the syn-
chronous circle O(Ps+k, ε) such that

−−→
PsQ passes through

all the cones C(Ps,O(Ps+i , ε)) i ∈ [1, k]. Hence, Q.t =
Ps+k .t . We also have sed(Ps+i ,

−−→
PsQ) = |−−−−−→

P ′
s+i Ps+i | ≤ ε for

each i ∈ [1, k] since P ′
s+i is in the area of circleO(Ps+i , ε).

Conversely, assume that there exists a point Q such that
Q.t = Ps+k .t and sed(Ps+i ,

−−→
PsQ) ≤ ε for all Ps+i (i ∈

[1, k]). Then, |−−−−−→
P ′
s+i Ps+i | ≤ ε for all i ∈ [1, k]. Hence, we

have
�k

i=1C(Ps,O(Ps+i , ε)) 
= {Ps}. ��
Proof of Proposition 2 By Proposition 1, it suffices to show
that

�k
i=1 Oc(Pc

s+i , r
c
s+i ) 
= ∅ if and only if

�k
i=1

C(Ps,O(Ps+i , ε)) 
= {Ps}, which is obvious. Hence, we have
the conclusion. ��
Proof of Proposition 3 We shall prove this by contradiction.
Assumefirst thatR∗

l

�
Rs+l+1 hasmore thanm edges. Then,

it must have two distinct edges
−→
Ai and

−→
Ai ′ with the same

label j (1 ≤ j ≤ m), originally from Rs+i and Rs+i ′
(1 ≤ i < i ′ ≤ l+1). Note that hereRs+i

�
Rs+i ′ 
= ∅ since

R∗
l

�
Rs+l+1 
= ∅. However, when Rs+i

�
Rs+i ′ 
= ∅, the

intersection Rs+i
�
Rs+i ′ cannot have both edge

−→
Ai and

edge
−→
Ai ′ , as all edges with the same label are in parallel

(or overlapping) with each other by the above definition of
inscribed regular polygons.This contradictswith the assump-
tion. ��
Proof of Proposition 4 The inscribed regular polygonRs+l+1

has m edges, and intersection polygon R∗
l has at most m

edges by Proposition 3. As the intersection of two m-edges
convex polygons can be computed in O(m) time [25], the
intersection of polygonsR∗

l andRs+l+1 can be done in O(1)
time for a fixed m. ��
Proof of Proposition 5 If (

−→
A

� −→
B 
= ∅ and

−→
A × −→

B < 0

and PeA /∈ H(
−→
B )) or (

−→
A

� −→
B 
= ∅ and

−→
A × −→

B ≥ 0

and PeB ∈ H(
−→
A )), then as all edges in the same edge group

E j (1 ≤ j ≤ m) are in parallel with each other and by the
geometric properties of regular polygon Rs+k+1, it is easy
to find that, for each position of

−→
A between its original to its

opposite positions, we have (1)
−→
A

� −→
B = ∅, and (2) either

PeA /∈ H(
−→
B ) or PeB ∈ H(

−→
A ). Hence, by the advance rule

(1) of algorithm CPolyInter in Sect. 2.4, edge
−→
A is always

moved forward until it reaches the opposite position of its
original one. From this, we have the conclusion. ��
Proof of Proposition 6 If (

−→
A

� −→
B 
= ∅ and

−→
A × −→

B ≥ 0

and PeB /∈ H(
−→
A )) or (

−→
A

� −→
B 
= ∅ and

−→
A × −→

B < 0

and PeA ∈ H(
−→
B )), then it is also easy to find that, for each

position of
−→
B between its original to its target positions (i.e.,

the edge after the one having the same edge group as
−→
A ),

we have (1)
−→
A

� −→
B = ∅, and (2) either PeB /∈ H(

−→
A ) or

PeA ∈ H(
−→
B ). Hence, by the advance rule (2) of algorithm

CPolyInter in Sect. 2.4, edge
−→
B is always moved forward

until it reaches the target position. From this, we have the
conclusion. ��
Proof of Proposition 8 If

�e
i=s+1 C(Ps, Ps+i , ε/2) 
= {Ps},

then by Proposition 1, there exists a point Q, Q.t = Ps+k .t ,
such that sed(Ps+i ,

−−→
PsQ) ≤ ε/2 for all i ∈ [1, k]. By

the triangle inequality essentially, sed(Ps+i ,
−−−−→
Ps Ps+k) ≤

sed(Ps+i ,
−−→
PsQ) + |−−−−→

QPs+k | ≤ ε/2 + ε/2 = ε. ��
Proof of Proposition 9 By Proposition 2 and the nature of
inscribed regular polygon, it is easy to find that for any point
Q ∈ R∗

k w.r.t. plane tc = Ps+k .t , there is sed(Ps+i ,
−−→
PsQ) ≤

ε for all points Ps+i (i ∈ [1, k]). From this, we have the
conclusion. ��
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