
G. Dong et al. (Eds.): WAIM 2003, LNCS 2762, pp. 214–225, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A New Fast Clustering Algorithm Based on Reference

and Density∗

Shuai Ma1, TengJiao Wang1, ShiWei Tang1,2, DongQing Yang1, and Jun Gao1

1 Department of Computer Science, Peking University, Beijing 100871, China
{mashuai, tjwang, gaojun}@db.pku.edu.cn

http://www.pku.edu.cn
2 National Laboratory on Machine Perception, Peking University, Beijing 100871, China

{tsw,dqyang}@pku.edu.cn

Abstract. Density-based clustering is a sort of clustering analysis methods,
which can discover clusters with arbitrary shape and is insensitive to noise data.
The efficiency of data mining algorithms is strongly needed with data becoming
larger and larger. In this paper, we present a new fast clustering algorithm called
CURD, which means Clustering Using References and Density. Its creativity is
capturing the shape and extent of a cluster with references, and then it analyzes
the data based on the references. CURD preserves the ability of density based
clustering method’s good advantages, and it is much efficient because of its
nearly linear time complexity, so it can be used in mining very large databases.
Both our theoretic analysis and experimental results confirm that CURD can
discover clusters with arbitrary shape and is insensitive to noise data; In the
meanwhile, its executing efficiency is much higher than R*-tree based
DBSCAN algorithm.

1 Introduction and Related Work

Clustering analysis is the process of grouping a set of physical or abstract objects into
clusters of similar objects. A cluster is a collection of data objects that are similar to
one another within the same cluster and are dissimilar to the objects in other clusters
[1]. Clustering analysis can be used as a stand-alone tool to get insight into data distri-
bution or as a preprocessing step for other data mining algorithms. It is used in many
diversified applications such as image compression, market segmentation, and spatial
discovery. Clustering is also a challenging field of research where its potential appli-
cations pose their own special requirements. The following are typical requirements of
clustering in data mining: scalability, ability to deal with different types of attributes,
discovery of clusters with arbitrary shape, minimal requirement for domain knowledge

∗ Supported by the National High Technology Development 863 Program of China under Grant

No. 2002AA4Z3440� the Foundation of the innovation research institute of PKU-IBM; the
National Grand Fundamental Research 973 Program of China under Grant No.
G1999032705.

A New Fast Clustering Algorithm Based on Reference and Density 215

to determine input parameters, ability to deal with noisy data, insensitive to the order
of input data, high dimensionality, constraint-based clustering, interpretability and
usability [1]. A number of different algorithms have been proposed, such as K-
MEANS, DBSCAN, BIRCH, CURE, CLIQUE, MAFIA, OPTIGRID, ROCK,
CHAMELEON, AMOEBA and C2P [2-12]. All these algorithms attempt to overcome
one or some requirements mentioned above through different approaches, but most of
these algorithms cannot reach perfect results. Clustering large and high dimensional
data is still an open problem.

K-MEANS is a partitioning clustering algorithm, which takes the input parameter,
k, and partitions a set of n objects into k clusters so that the resulting intra-cluster
similarity is high but the inter-cluster similarity is low. The algorithm attempts to
determine k partitions that minimize a certain criterion function. Typically the square-
error criterion is used. The time complexity of K-MEANS is O(tkn), where n is the
number of objects, k is the number of clusters, and t is the number of iterations. Nor-
mally k, t<<n, so it is scalable and efficient in processing large data sets. However K-
MEANS have some disadvantages: the users need to specify k, the number of clusters,
which is hard to decide in advance; the selection of k initial objects has great effect on
the final clustering result and algorithm’s efficiency; the partition based clustering
algorithms could split large clusters to minimize the square-error [5].

CURE is a bottom-up hierarchical clustering algorithm, which starts by placing
each object in its own cluster and then merges similar atomic clusters into larger and
larger clusters, until the number of clusters is k. At each step, the pair of clusters
merged are the ones between which the distance is the minimum. CURE points out
that neither the centroid-based approach nor the all points approach works well for
non-spherical or arbitrary shaped clusters, so CURE adopts a middle-ground between
the centroid and the all points extremes. CURE chooses a constant number c of well-
scattered points in a cluster, which capture the shape and extent of the clusters, thus
the ability of processing arbitrary clusters is improved. The time complexity of CURE
is O(n2) for low dimensional data, and O(n2logn) for high dimensional data, so CURE
adopts random sampling and partitioning technologies in order to process large data
sets.

DBSCAN is a density based clustering algorithm, which grows regions with suffi-
ciently high density into clusters and defines a cluster as a maximal set of density-
connected points. DBSCAN discovers clusters with arbitrary shape with noise and is
insensitive to the order of input data. The time complexity of DBSCAN is O(n2); with
the support of spatial access methods such as R*-tree its time complexity reduces to
O(nlogn). We should point out that DBSCAN does not consider the time of establish-
ing R*-tree, which often consumes a lot of time.

CLIQUE is a grid and density based clustering algorithm, which has the fastness of
grid-based approaches and the ability to process high dimension data. CLIQUE con-
siders little about the distribution of data when partitioning data into grid cells and
uses the statistical information stored in the grid cells, so the clustering quality is low-
ered.

In this paper we propose a new fast clustering algorithm named CURD (Clustering
Using Reference and Density). The remainder of the paper is organized as follows. In

216 S. Ma et al.

section 2, we present CURD algorithm. In section 3, we analyze the performance from
different points of view. Discussion remarks and future work are made in section 4.

2 CURD Algorithm

CURD algorithm is first motivated by CURE algorithm, and it uses references to cor-
rectly represent the shape and extent of a cluster. References are not real input points,
but virtual points, which are different from the represents of CURE. In addition, the
number of references used to represent a cluster is not constant, which is more reason-
able than using fixed number as CURE. CURD algorithm takes the density approach,
similar to DBSCAN, to eliminate the effect of noise data. The time complexity of
CURD is approximately equal to K-MEANS’s, so its efficiency is very high. The
references of CURD consider much about the spatial geometric feature of data, thus
the clustering quality is higher than grid-based clustering algorithms. High dimen-
sional data can be transformed into one single dimension space based on distance
[13,14], so CURD can process high dimensional data from this point. The distance
computation of high dimensional data is the same as 2 dimensional data, so we use
Euclidean distance and 2 dimensional spaces to analyze CURD algorithm.

2.1 Definitions

Definition 1: (density of point) Given a point p and a distance dRadius, the number of
points in the circular region, where p is the center and dRadius is the radius, is called
the density of p based on distance dRadius, denoted by Density(p,dRadius).

Definition 2: (reference) Given a point p, a distance dRadius and a threshold t, if
Density(p,dRadius)�t, p is called a reference, and t is called the density threshold.

References are not real points in input data, but virtual points.
Definition 3: (representing region) Each reference p represents a circular region,

where p is the center and dRadius is the radius. The region is called p’s representing
region.

Definition 4: (neighboring references) Points p and q are references based on dis-
tance dRadius and density threshold t, if Dist(p,q)�2dRadius, which represents the
distance between p and q is equal to or less than 2 times of dRadius, p and q are called
neighboring references.

In fact if the representing circular regions of the two references are tangent, inter-
sectant or equal to each other, the two references are neighboring references.

2.2 Clustering Algorithm

Now we describe the details of our clustering algorithm. CURD first finds the refer-
ences which can correctly represents the shape and extent of input data; then it estab-
lishes the mapping between points and corresponding references; the references are
then classified, and the references in the same class contains the basic information of a

A New Fast Clustering Algorithm Based on Reference and Density 217

cluster; points are mapped to the corresponding clusters at last. Fig. 1. gives an over-
view of CURD algorithm.

Fig. 1. Overview of CURD

2.2.1 Data Structure
For the importance of references, we first describe the data structure of references.
Each reference record contains four kinds of data: Xm and Ym, which is the reference’s
X coordinate and Y coordinate; Xs and Ys, which is the sum of X coordinate and Y
coordinate of all the points within the reference’s representing region; Ns, which is the
density of the reference or the number of points in the reference’s representing region;
the point set Ps, which is the set of all the points within the reference’s representing
region.

2.2.2 Finding References Procedure
Finding references procedure is divided into two steps: candidate references are found
in the first step; the candidate references whose density is lower than the density
threshold are filtered in the second step, and the remaining candidate references are
real references. Filtering candidate references is very simple, so we mainly describe
the procedure of finding candidate references (Prog. 1.). The Prog. 1. shows us that
Finding_Candidate_References procedure iteratively calls Single_Scan procedure and
Regenerate_Candidate_References procedure, thus we will describe them firstly.

Prog. 1. Program of Finding_Candidate_References Procedure

Finding_Candidate_References(PointSet,dRadius,Iterate)
 {Input:data set:PointSet,distance:dRadius,number of
 iterative times:Iterate;
 Output:candidate reference set:CandidateReferenceSet};
 begin
 CandidateReferenceSet := Ø; I := 0;
 repeat
 I :=I + 1;
 Single_Scan(PointSet,dRadius,CandidateReference-
 Set);
 Regenerate_Candidate_References(CandidateRefere-
 nceSet);
 until I = Iterate;
 Single_Scan(PointSet,dRadius,CandidateReferenceSet);
end.

Data
Mapping Points to

Corresponding References

Classifying the Refernces

Finding References

Mapping Points to
Corresponding Clusters

Clustering
Result

218 S. Ma et al.

Each call of Single_Scan procedure produces new candidate reference set, and its
main operation is adding point p’s information to the corresponding candidate refer-
ence. If the distances between p and all candidate references are larger than the dis-
tance dRadius, a new candidate reference is generated and added into the candidate
references set; otherwise p’s information is added to all the candidate references,
whose distances with p are either equal to or less than the distance dRadius (Prog. 2.).

Prog. 2. Program of Single_Scan Procedure

Single_Scan(PointSet,dRadius,CandidateReferenceSet)
 {Input: data set: PointSet, distance: dRadius,
 candidate reference set: CandidateReferenceSet;
 OutPut:candidate reference set:CandidateReferenceSet};
 begin
 I := 0;
 repeat
 I := I + 1;
 For each candidate referenct R, whose distance
 with Pi is equal to or less than dRadius
 {Adding Pi’s information to every candidate re-
 ference R}
 R.Xs := R.Xs + Pi.X;
 R.Ys := R.Ys + Pi.Y; R.Ns := R.Ns + 1;
 If the distances between Pi and all candidate
 references are larger than dRadius then
 begin
 Generated a new candidate reference R;
 R.Xm := Pi.X; R.Ym := Pi.Y;
 R.Xs := Pi.X; R.Ys := Pi.Y; R.Ns := 1;
 CandidateReferenceSet := CandidateReference-
 Set + {R};
 end;
 until I = PointSet.Size;
 Single_Scan(PointSet,dRadius,CandidateReferenceSet);
end.

Each call of Regenerate_Candidate_References procedure produces new candidate
references. The mean of all the points in the representing region of a candidate refer-
ence replaces the candidate reference itself. Since the sum of X coordinate and Y
coordinate of all the points in the references’ representing region and the number of
points in the references’ representing region have been computed and stored in the
Single_Scan procedure, the computation of the new candidate reference R´ of each
candidate R is very simple, where R´.Xm=R.Xs/R.Ns, R´.Ym=R.Ys/R.Ns, R´.Xs=0,
R´.Ys=0, R´.Ns=0.

Finding_Candidate_References procedure iteratively calls Single_Scan procedure
and Regenerate_ Candidate_References procedure, and each call of them is prone to
generate candidate references that can better represent the shape and extent of input
data. Through a series of optimization the final candidate references can coarsely
represent the spatial geometric feature of input data. The candidate references are then

A New Fast Clustering Algorithm Based on Reference and Density 219

filtered, and the candidate references whose densities are lower than the density
threshold are removed. By this way the effect of noise data can be effectively elimi-
nated, thus the references can quite correctly represent the spatial geometric feature of
input data.

2.2.3 Mapping Points to Corresponging References
Lemma 1. In CURD, mapping point p to which reference has no effect on the final
clustering result, only if the distance between p and the reference is equal to or less
than dRadius.

Proof: Suppose there exist two references R1 and R2, and the distances between p and
them are either equal to or less than dRadius. From the famous theorem of triangles:
one side’s length is less than the sum of the other two sides’ length, it is easy to know
that the distance between R1 and R2 is less than 2 times of dRadius, so R1 and R2 are
neighboring references (left part of Fig. 2.). In high dimensional space, any three
points that are not in the same line form a plane, so the theorem of triangles still
works. In the special case, point p, references R1 and R2 are in the same line (right
part of Fig. 2.), it is easy to known that the distance between R1 and R2 is equal to or
less than two times of dRadius, so R1 and R2 are still neighboring references. In
CURD algorithm, neighboring references contain the basic information of a cluster,
and data belonging to the neighboring references are in the same cluster, thus either
mapping p to R1 or R2, p belongs to the same cluster.

Fig. 2. Relative positions of p and R1, R2

Mapping_References_and_Points procedure establishes the mapping between ref-
erences and the points within their corresponding representing regions. Theoretically,
mapping point p to the reference that is closest to it is more reasonable. From Lemma
1, we know that mapping point p to which reference has no effect on the final cluster-
ing result, only if the distance between p and the reference is equal to or less than
dRadius. Mapping_References_and_Points procedure orderly computes the distances
between point p and the references, and if there exists a reference whose distance with
p is equal to or less than dRadius, the mapping between p and the reference is estab-
lished. After that, Mapping_References_and_Points procedure continues to process the
next point. By that way, the algorithm’s efficiency is improved (Prog. 3.).

Prog. 3. Program of Mapping_References_and_Points Procedure

Mapping_References_and_Points(PointSet,ReferenceSet,t,
dRadius)

pR1 R2

R1p R2

p

R1 R2

220 S. Ma et al.

 {Input: data set: PointSet, reference set: Reference-
 Set, density threshold: t, distance: dRadius;
 OutPut: reference set: ReferenceSet};
 begin
 For each reference R in ReferenceSet
 R.Ps := Ø;
 I := 0;
 repeat
 I :=I + 1;
 If the distance between Pi and some reference R
 is equal to or less than dRadius then
 R.Ps := R.Ps + {Pi};
 else if the distances between Pi and all the ref-
 erences are larger than dRadius then
 Pi is considered as noise and is discarded
 until I = PointSet.Size;
end.

2.2.4 Classifying the References
Given a reference set based on distance dRadius and threshold t, and if the distance
between reference R1 and R2 is equal to or less than 2 times of dRadius, R1 and R2 are
neighboring references. We can describe the reference set with an undirected graph,
where the reference is vertex, and any two neighboring references form an edge. The
references that are in the same connected sub-graph form a class.

Fig. 3. Graph G

For example, {A, B, C, D, E, F, G} are the vertexes in the same connected sub-
graph of graph G, so they form a class C1={A, B, C, D, E, F, G}; {H, I, J} are also the
vertexes in the same connected sub graph, so they form another class C2={H, I, J}
(Fig. 3.). It is easy to find the vertexes that are in the same connected subgraph
through the graph’s broad first search algorithm (BFS), so we do not describe the
details of classifying the references. The references in a class contain the basic infor-
mation of a cluster, and they correctly represent the spatial geometric feature of the
clusters.

2.2.5 Mapping Points to Corresponding Clusters
The mapping fpoints2references between the points and the references has been established,
and the procedure of classifying the references has established the mapping freferences2classes

between the references and the classes. The data belonging to the references, which

F G

B

D

JI

H
EC

A

A New Fast Clustering Algorithm Based on Reference and Density 221

are in the same class, form a cluster, so the mapping fpoints2clusters between the points and
the clusters is very simple: fpoints2clusters= fpoints2references•freferences2classes.

2.2.6 Time and Space Complexity
Suppose the number of input data is n, the maximum number of candidate references
in the procedure of finding candidate references is k, the iterative number is i, the
number of references is m and the number of clusters is c.

It is easy to know that the time complexity of Single_Scan procedure is O(kn) and
the complexity of Regenerate_Candidate_References procedure is O(k), so the time
complexity of Finding_Candidate _References procedure is O(ikn+(i-1)k); Filtering
candidate references need O(k) time. Thus the time complexity of finding references
procedure is O(ikn+(i-1)k)+O(k). Every point could find its corresponding references
in time O(m), so mapping points to corresponging references procedure needs O(mn)
time. The classification of references needs O(m2) time using graph’s breadth first
search algorithm (BFS). In fact the mapping between data and corresponding clusters
has been established after the classification of references. From the above analysis, we
know the time complexity of CURD algorithm is O(ikn+(i-1)k)+O(k)+O(mn)+O(m2),
Normally k,i,m<<n, so the time complexity approximately equals to O(ikn+mn),
which has almost the same time complexity as K-MEANS.

The space complexity of CURD is O(n)+O(k)+O(c).

3 Performance Analysis

In this section, we evaluate the performance of CURD. We experimented three data
sets containing points in 2 dimensions (Fig. 4.). DS1 comes from the Data set 1 of
CURE; DS2 comes from database 3 of DBSCAN; we use the DBSCAN program that
Dr. Jörg Sander provides to generate DS3, which is similar to the database 2 of
DBSCAN. The data sizes are respectively 100000, 203 and 306.

All experiments are run on IBM Netfinity 5500: two X86 Family 6 Model 10 Step-
ping 1 GenuineIntel~700Mhz CPU, 512M main memory and 20G hard disk; the op-
eration system is Microsoft Windows 2000 Server.

Fig. 4. Data sets

222 S. Ma et al.

3.1 Comparison of Clustering Quality

Both CURD and DBSCAN are density based clustering algorithms; in the meanwhile
the input parameters dRadius and t of CURD are similar to the input parameters of
Eps and MinPts of DBSCAN, so we choose DBSCAN to compare the clustering qual-
ity with CURD.

Fig. 5. Clustering results of DBSCAN, with the corresponding parameter Eps and MinPts are
(0.5,6), (2,2), and (2,2) respectively

Fig. 6. Clustering results of CURD, with the corresponding parameter Radius and t are (0.5,60),
(2,2), and (2,2) respectively

Fig. 6. shows the clustering results of CURD, from which we can see that CURD
can effectively process clusters with arbitrary shape and is insensitive to noise data.
Fig. 5. shows the clustering results of DBSCAN, from which we can see that the clus-
tering results of DBSCAN and CURD are very similar to each other.

Fig. 7. Candidate references

A New Fast Clustering Algorithm Based on Reference and Density 223

3.2 Candidate References and References

Fig. 7. and Fig. 8. show the candidate references and references of DS1, DS2 and
DS3. Fig. 7. shows that candidate references coarsely represent the spatial geometric
feature of data set, but it is affected by the noise. In Fig. 8., the references correctly
represent the spatial geometric feature of data set by filtering interferential candidate
references whose density is lower than the density threshold.

Fig. 8. References

3.3 Sensitive to Parameters

CURD has three main parameters: distance dRadius, density threshold t, and iterative
times of Iterate. The values of the three parameters have effects on the clustering re-
sult and executing efficiency of CURD. In our experiments, we found that the
CURD’s clustering results are similar to DBSCAN’s if the values of dRadius and t are
the same as the values of Eps and MinPts respectively. In DBSCAN it is hard to de-
termine the values of Eps and MinPts, but in CURD, we can set the values of dRadius
and t easily. CURD generates better results if the value of dRadius equals to
1/50~1/100 of the whole data space. For example, DS1 is a 30X30 two dimensional
data space, so the value of dRadius is set to 0.5; DS2 and DS3 are 100X100 two di-
mensional data space, so the value of dRadius is set to 2. The density threshold t can
be set to the mean value of all candidate references’ density, which can be computed
automatically. As to the parameter Iterate, we should point out that all our experi-
mental results are generated with the value of Iterate equal to 4. The bigger the values
of Iterate, the better the clustering results, but longer the executing time.

3.4 Comparison of Executing Time with DBSCAN

There are mainly three reasons why we choose traditional R*-tree based DBSCAN
algorithm to compare with CURD, which are as follows:

The two algorithms are both density based clustering algorithms;
Their key input parameters are similar to each other;
The time complexity of R*-tree based DBSCAN algorithm is O(nlogn), so it is al-

ready a very fast clustering algorithms.
Fig. 9. shows that the CURD’s executing efficiency is much higher than

DBSCAN’s, so CURD is a very efficient clustering algorithm. In addition, R*-tree

224 S. Ma et al.

0
20
40
60
80

100
120
140

20000 40000 60000 80000 100000

Data Size

E
xe

cu
tin

g
T

im
e(

se
co

nd
s)

The rest
Mapping points to referenecs
Finding references
CURD

based DBSCAN algorithm need the support of R*-tree index, which needs much time
to be established, so if the time of establishing index is considered, CURD is much
more efficient than DBSCAN.

Fig. 10. shows that the executing details of CURD. Finding reference and mapping
points to the corresponding references take most part of the executing time, especially
finding references. Once mapping points to their corresponding references has been
finished, CURD only takes little time to process the rest work.

Fig. 9. Comparison of executing time

Fig. 10. Executing time details

4 Discussion and Future Work

In this paper, we propose a new method (using references) to represent the spatial
geometric feature of data space, and we present a new fast clustering algorithm based
on references and density. CURD not only preserves the advantages of density based
clustering algorithms, which can discover clusters with arbitrary shape and is insensi-
tive to noise data, but also it can reach high efficiency because of its approximately
linear time complexity, which is nearly the same as K-MEANS’. Both our theoretic
analysis and experimental results confirm the above conclusions.

0
50

100
150
200
250
300

20000 40000 60000 80000 100000

Data Size

E
xe

cu
tin

g
T

im
e(

Se
co

nd
s)

CURD

DBSCAN

A New Fast Clustering Algorithm Based on Reference and Density 225

High dimensional data can be transformed into one single dimension space based
on distance [13,14], so CURD can process high dimensional data from this point. One
of our future work is to experiment its performance in high dimensional space.

Last but not least, our algorithm finds references that can correctly represent the
spatial geometric feature of data space, so we are thinking of sampling methods using
this technology.

References

1. Jiawei Han, Micheline Kambr. Data mining concepts and techniques, Morgan Kaufmann
Publisher (2000) 145–176.

2. Anderberg, M. R. Cluster analysis for applications, Academic Press (1973).
3. M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density based algorithm for discovering

clusters in large spatial databases with noise. Proceedings of International Conference on
Knowledge Discovery and Data Mining (1996).

4. T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method
for very large databases. Proceedings of ACM SIGMOD International Conference on
Management of Data, Montreal, Canada (1996) 103–114.

5. S. Guha, R. Rastogi and K. Shim. CURE: An efficient clustering algorithm for large data-
bases. Proceedings of ACM SIGMOD International Conference on Management of Data,
New York (1998) 73–84.

6. R. Aggrawal, J. Gehrke, D. Gunopulos, P. Raghavan. Automatic Subspace Clustering of
High Dimensional Data for Data Mining Applications, Proceedings of ACM SIGMOD In-
ternational Conference on Management of Data, Seattle, Washington (1998) 94–105.

7. Goil, Saniay, Harasha Nagesh and Alok Choundhary. MAFIA: Efficient and scalable
Subspace Clustering for Very Large Data Sets. Technical Report Number CPDC-TR-9906-
019, Center for Parallel and Distributed Computing, Northwestern University (1999).

8. Hinneburg, Alexander and Daniel A.Keim. Optimal Grid-Clustering: Towards Breaking
the Curse of Dimensionality in High-Dimensional Clustering. Proceedings of the 25th
VLDB Conference, Edinburgh, Scotland (1999).

9. Guha, S., Rastogi. R. and Shim K. Rock: A Robust Clustering Algorithm for Categorical
Attributes, Proceedings of the International Conference on Data Engineering, Sydney,
Australia (1999) 512–521.

10. Karypis George, Eui-Hong Han, and Vipin Kumar. CHAMELEON: A Hierarchical Clus-
tering Algorithm Using Dynamic Modeling. IEEE Computer (1999) 68–75.

11. Estivill-Castro,Vladimir and Ickjai Lee. AMOEBA: Hierarchical Clustering Based on
Spatial Proximity Using Delaunay Diagram. Proceedings of the 9th International Sympo-
sium on Spatial Data Handling. Beijing, China (2000).

12. Alexandros Nanopoulos, Yannis Theodoridis,Yannis Manolopoulos. C2P: Clustering based
on Closest Pairs. Proceedings of the 27th VLDB Conference, Roma, Italy (2001).

13. S. Berchtold, C. Bohm, and H-P. Kriegel. The pyramid-technique: Towards breaking the
curse of dimensionality. Proceedings of ACM SIGMOD International Conference on Man-
agement of Data (1998) 142–53.

14. C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish. Indexing the Distance: An Efficient
Method to KNN Processing. Proceedings of 27th VLDB Conference, Roma, Italy (2001).

	1 Introduction and Related Work
	2 CURD Algorithm
	2.1 Definitions
	Clustering Algorithm
	2.2.1 Data Structure
	2.2.2 Finding References Procedure
	2.2.3 Mapping Points to Corresponging References
	Lemma 1. In CURD, mapping point p to which reference has no effect on the final clustering result, only if the distance between p and the reference is equal to or less than dRadius.
	Proof: Suppose there exist two references R1 and R2, and the distances between p and them are either equal to or less than dRadius. From the famous theorem of triangles: one side™s length is less than the sum of the other two sides™ length, it is easy to know that the distance between R1 and R2 is less than 2 times of dRadius, so R1 and R2 are neighboring references (left part of Fig. 2.). In high dimensional space, any three points that are not in the same line form a plane, so the theorem of triangles still works. In the special case, point p, references R1 and R2 are in the same line (right part of Fig. 2.), it is easy to known that the distance between R1 and R2 is equal to or less than two times of dRadius, so R1 and R2 are still neighboring references. In CURD algorithm, neighboring references contain the basic information of a cluster, and data belonging to the neighboring references are in the same cluster, thus either mapping p to R1 or R2, p belongs to the same cluster.
	2.2.4 Classifying the References
	2.2.5 Mapping Points to Corresponding Clusters
	2.2.6 Time and Space Complexity

	3 Performance Analysis
	3.1 Comparison of Clustering Quality
	3.2 Candidate References and References
	3.3 Sensitive to Parameters
	3.4 Comparison of Executing Time with DBSCAN

	4 Discussion and Future Work
	References

