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ABSTRACT
This paper describes our solution for WSDM Cup 2016. Ranking
the query independent importance of scholarly articles is a critical
and challenging task, due to the heterogeneity and dynamism of en-
tities involved. Our approach is called Ensemble enabled Weighted
PageRank (EWPR). To do this, we first propose Time-Weighted
PageRank that extends PageRank by introducing a time decaying
factor. We then develop an ensemble method to assemble the au-
thorities of the heterogeneous entities involved in scholarly arti-
cles. We finally propose to use external data sources to further
improve the ranking accuracy. Our experimental study shows that
our EWPR is a good choice for ranking scholarly articles.
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1. INTRODUCTION
Ranking scholarly articles is a critical and challenging task, due

to the heterogeneity and dynamism of entities involved [5]. Gen-
erally speaking, a ranking is a function that assigns each entity a
numerical score. Such a ranking plays a key role in literature rec-
ommendation systems, especially in the cold start scenarios.

This paper focuses on ranking the importance of scholarly ar-
ticles in a query independent way. As scholarly articles involve
with authors, venues, affiliations and references, they indeed form
a complex heterogeneous graph. Hence, this is essentially a prob-
lem of assessing the importance of nodes in a heterogeneous graph.

Comparing with homogeneous rankings such as of Web pages,
ranking scholarly articles in a complex heterogeneous graph is much
more challenging from two aspects. Firstly, even if we are only to
rank one type of entities, i.e., scholarly articles, other types of en-
tities such as venues and authors are typically involved. Moreover,
the impacts of different types of entities on the ranking of schol-
arly articles differ from each other. Secondly, entities are evolving,
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Figure 1: Citations w.r.t. the number of published years

and the importance of an article varies with time [4]. Recently
published articles are more likely to have increasing impacts in the
next few years, and those published many years ago tend to have
decreasing impacts since people potentially care more about the
latest results. For instance, the citations of articles typically in-
crease in the first two years after publication, and then decrease af-
ter that, as shown by the statistics of the Microsoft Academic Graph
(MAG) [8] in Figure 1. Indeed, how to accurately rank nodes in
heterogeneous graphs remains a challenging task.

Currently, structure based methods, such as PageRank [1] and
its variant Weighted PageRank [10], are among the most effective
ones for ranking scholarly articles. However, as pointed out in [4],
these previous methods favour older articles that have accumulated
a large number of links (e.g., citations). However, recently pub-
lished articles are often underestimated, and they potentially have
an increasing impact. These motivate us to develop a new approach
to ranking the importance of scholarly articles.
Contributions. To this end, we propose Ensemble enabled Weighted
PageRank (EWPR) for ranking the importance of scholarly arti-
cles, which is among the first to address those challenges above.
(1) Firstly, we propose Time-Weighted PageRank that extends PageR-
ank [1] by introducing a time decaying factor, inspired by Weighted
PageRank [10], and the authorities of individual articles are dis-
criminately propagated in terms of their own citation information
with time, rather than equally propagated like PageRank.
(2) Secondly, we develop an ensemble method to assemble the au-
thorities of the heterogeneous entities involved in scholarly articles,
which is much more flexible than the mixed model [3] that simul-
taneously exploits entities and directly produces the ranking.
(3) Finally, we propose to use external data sources to enrich data
and further improve the ranking accuracy.
Organization. The rest of our paper is organized as follows. Sec-
tion 2 introduces the ranking model. Section 3 discusses how to
deal with missing data using external sources. Experimental results
are reported in Section 4, followed by conclusions in Section 5.

2. RANKING MODEL



We first introduce our model for ranking scholarly articles.

2.1 Time-Weighted PageRank
PageRank [1] has been extensively applied to the ranking of

scholarly articles [4, 6, 7, 11], as hyperlinks among Web pages can
be easily replaced with citation relationships among articles, and
citation analysis plays a key role to evaluate the importance of
scholarly articles. However, the direct use of PageRank for ranking
scholarly articles is problematic in terms of the following:
(1) First, each article equally distributes its authority to its reference
articles in the iteration of PageRank [1], which essentially assumes
that each article is equally influenced by its references. However,
scholarly articles typically have different impacts in practice, and
there is a need to differentiate the impacts of reference articles.
(2) Second, citation relationships are significantly different from
hyperlinks, as the former are time-evolving, and have been success-
fully exploited in scholarly article ranking [4, 7, 9]. Such temporal
information is supplementary to purely structure based PageRank.
Time-Weighted PageRank. We incorporate time information into
our ranking model. While in most previous work, time information
is simply exploited in the form of exponential decay [4, 7, 9]. We
rethink the usage of time information in terms of the impacts of
scholarly articles. Recall that Figure 1 illustrates the total number
of citations w.r.t. the number of years after the publication of arti-
cles. Here we use the number of citations to evaluate the impacts of
articles. As we can see, the number of citations reaches a peak in
two years, and gradually decreases after that. This statistical result
conforms to our perception of the impacts of articles.

According to Figure 1, the impacts of articles do depend on time,
but not simply in the form of exponential decay. Specifically, if an
article is cited after the citation peak, its impact should decay with
time. Otherwise, its impact is fixed as a constant number, since we
argue that the increment of its citations during this period is mainly
due to the increase of its popularity. Moreover, considering that
different articles may reach their citation peaks in different ways,
we compute the peak time for each individual article, rather than
using the same citation peak for all articles.

Inspired by these properties of scholarly article citations, we
present Time-Weighted PageRank that evaluates the authorities of
nodes in a directed graph, in which each node is attached with time
information. It differs from PageRank by weighting the influence
propagation using the impact weights on edges, which represent the
relative amounts of authorities that should be propagated from the
edge sources to targets, and which also depend on the time informa-
tion on nodes, following the same temporal tendency as scholarly
article citations discussed above.

Formally, the impact weight on directed edge (u, v), i.e., edge
from u to v, is defined as:

w(u, v) =

{
1 Tu < Peakv

1/(ln(e+ Tu − Peakv))t Tu ≥ Peakv ,
(1)

where Tu is the time information on node u, Peakv is the peak
time of node v using the time information of all nodes connecting
to v, and t is the decaying factor. By default, Eq. (1) uses years as
its time granularity. For the sake of completeness, we further set
w(u, v) to 0 if these does not exist an edge from u to v.

The authority update rule in Time-Weighted PageRank is:

PR(v) = (1− d) + d ·
∑

u∈IN(v)

w(u, v) · PR(u)

W (u)
, (2)

where PR(u) and PR(v) are the authorities of u and v, respec-
tively, IN(v) is the set of nodes having edges to v, W (u) =

Σvw(u, v) is the sum of impact weights on all edges from u, and
d is a damping parameter in [0, 1]. From Eq. (2) we can see that
authorities are based on the impact weights, not equally distributed.
Remarks. Note that here Eq. (2) is indeed a more general update
rule than Weighted PageRank [10], and the name of Time-Weighted
PageRank comes from the use of time information in the initial
impact weight w(u, v) of Eq. (1).

2.2 Ensembles
We start this part by thinking about how people evaluate the im-

portance of scholarly articles. In practice, the importance of an ar-
ticle can be evaluated according to many factors such as citations,
venues and authors. Only focusing on the citation information lim-
its the accuracy of the results. Consider the case when we are to
evaluate a newly published article whose citations are not currently
available. In this case citation information fails to give a reason-
able rank, but other information such as venues and authors could
be used instead to refine the rank. Hence, we propose the use of an
ensemble model, in which each ensemble is essentially a ranking
based on the authorities of one type of heterogeneous entities, and
these ensembles are assembled to produce the final ranking.
Citation ensemble. The first ensemble is based on the authorities
of articles and it is called citation ensemble since we use citation
information to evaluate these authorities. Specifically, it first uses
citation information to construct a directed graph, where a node
represents an article and an edge (u, v) denotes that u cites v as
its reference. The graph is further associated with time information
such that (1) the publication years of articles are attached to corre-
sponding nodes, and (2) the peak time of each node is the year with
the largest number of citations, in which ties are broken randomly if
existing. After that, Time-Weighted PageRank is run on the graph
and each node is assigned its authority. Finally, the ensemble maps
each article to the authority of its corresponding node as its rank.
Venue ensemble. The second ensemble is based on the authorities
of venues. It first evaluates the authority of each venue, and then
maps each article to the authority of the venue where it is published
as its rank. To do this, we also construct a directed graph, in which
a node represents a venue and an edge (s, t) means that there is at
least one article published in s citing at least one article published
in t. We also use impact weights to denote the weights among
venues. And the impact weights are defined as sums of impact
weights between articles published in the corresponding venues:

wv(s, t) =
∑

u∈C(s),v∈C(t)

w(u, v). (3)

Here, C(s) and C(t) are the collections of articles published in
venues s and t, respectively, and w(u, v) is the impact weight of
articles u and v produced in the citation ensemble. It then itera-
tively computes the authorities of venues using the impact weights
of venues and the update rule in Eq. (2).
Author ensemble. The third ensemble is based on the authorities
of authors. Similar to the venue ensemble, we could first evaluate
the authority of each author and then map each article to the average
authority of the author(s) associated with the article as its rank.
However, the resulting graph is too large to handle. Hence, we
adopt another way to evaluate the authority of an author, by using
the average authority of all articles published by the author, which
are produced by the citation ensemble.
Affiliation ensemble. Recall that articles in our data are also asso-
ciated with affiliation information. Following the way of the venue
or author ensemble, we can derive another ensemble, i.e., affiliation
ensemble. However, we argue that the use of affiliation ensemble



Figure 2: Architecture of our ranking model EWPR

may have negative effects since the correlation between the impor-
tance of an article and the average authority of its affiliation(s) is
not as strong as others such like authors and venues. As shown by
the experimental study in Section 4, the incorporation of the affilia-
tion ensemble impairs the ranking accuracy. Hence, we choose not
to use the affiliation ensemble in our model.
Remarks. Traditional PageRank equally distributes the authori-
ties of nodes, and PageRank based models suffer from the problem
that older articles are preferred since they have accumulated a large
number of citations [4], and Time-Weighted PageRank based mod-
els alleviate the problem to a certain degree by lowering the impact
weights of articles when they are cited after their peak time, i.e.,
Tu ≥ Peakv . We further propose the venue and author ensembles
to improve the ranking accuracy.

2.3 Ensemble Enabled Ranking
The aforementioned ensembles (except the affiliation one) are fi-

nally assembled to produce the final ranking, referred to as Ensemble
enabled Weig-hted PageRank (EWPR). Before assembling, each
ranking is properly scaled such that the average scores of different
rankings are the same. Suppose that the scaled ranking scores of
articles u are Rc(u), Rv(u), and Ra(u) from the citation ensem-
ble, venue ensemble and author ensemble, respectively. The final
ranking score of u is aggregated as follows:

R(u) =
Rc(u) + α ·Rv(u) + β ·Ra(u)

1 + α+ β
. (4)

Here parameters α and β as well as the value 1 are used to regular-
ize the contributions of the citation, venue and author information.
Intuitively, these values indicate the intensity of the correlation be-
tween the importance of articles and the specific information.

We close this section by presenting the architecture of our rank-
ing model EWPR, illustrated in Figure 2. Our model EWPR con-
tains three distinct ensembles, i.e., the citation ensemble, venue en-
semble and author ensemble. The citation ensemble directly uses
Time-Weighted PageRank, while the other two are partially based
on Time-Weighted PageRank. These ensembles are further assem-
bled to produce the final ranking. As illustrated in Figure 2, exter-
nal data is also exploited in EWPR. How to collect and use external
data will be introduced in the coming section.

3. DEALING WITH MISSING DATA
Data quality is one of the most challenging issues in large scale

data management, especially for data from open domains and mul-
tiple sources, e.g., the Microsoft Academic Graph (MAG) [8]. The
early version of MAG has 120 million scholarly articles, among
which we find that there are about 73 million articles without refer-
ences and about 77 million ones without venues. The ranks of those
articles with missing information are underestimated by our model
EWPR, since ensembles assign the minimum scores to articles. As
a result, data missing seriously impairs the ranking accuracy.

As for references and venues, the later are easier to obtain, and
each filled venue can have a direct and substantial impact on the
article ranking, i.e., Rv(u) of Eq. (4). In contrast, a filled reference
only has an indirect and slight impact. Hence, we decide to use

external data to fill in missing venues.
Data collecting. The raw external data is collected from publicly
available Digital Libraries, such as IEEE Xplore (http://ieeexplo-
re.ieee.org/gateway/), PubMed (http://www.ncbi.nlm.nih.gov/pub-
med/) and DBLP (http://dblp.uni-trier.de/db/). In total, we collect
2.8 million articles with venue information as our external data, in
which there are 57, 000 different venues.
Data preprocessing. The venues in MAG are well processed, and
are replaced by their series names. For example, “9th International
Conference on Web Search and Data Mining, 2016” is replaced
with “Web Search and Data Mining”. This makes it hard to directly
link with the collected raw venue names. Hence, we preprocess raw
venue names for the simplification of subsequent venue linking.
We first remove stop words such as “on” and common words like
“Conference”, as well as years and some special characters from
collected raw venue names. Then the same venues are merged, and
the number of different venue names is reduced to 42, 000.
Data linking. The final and also the most important step of filling
missing venue information is to link each collected venue name to
an existing one in MAG. Intuitively, linking based on name similar-
ity is the most effective way such that two venues are linked if their
names bear high similarity. We exploit the Jaro metric to evaluate
the name similarity, which is based on the number and order of the
common characters between two strings, and obtains good results
in tasks such as record linkage and name matching [2]. Formally, a
collected venue name is linked to an existing one in MAG if their
Jaro similarity exceeds a pre-define threshold.

However, such a threshold is nontrivial to determine in practice.
A high threshold can guarantee the accuracy of linked pairs, while
only a tiny proportion of collected venue names are linked. On the
other hand, a low threshold increases the number of linked pairs,
which, in the same time, also introduces many errors. In order
to reach a good balance between the number of linked pairs and
the accuracy, we propose to combine another constraint on topic
similarity of venues for linking, and only weaker filter conditions
need be used in both constraints.

In MAG, fields of study (FOS) represent research topics of arti-
cles, such as Web pages, and language technology. Hence, we use
FOS to evaluate the topic similarity of two venues. There are about
54, 000 FOS in MAG and most articles are assigned with two or
three FOS. Let the set of FOS of each venue be the union of the
sets of FOS of articles published in that venue. And the topic simi-
larity of two venues based on FOS is defined as:

TS(s, t) = (|Fs

⋂
Ft|)/

√
|Fs| · |Ft|, (5)

in which s and t are two venues, and Fs and Ft are the sets of FOS
of s and t, respectively.

When we link a collected venue name, it is directly linked to the
most similar one in terms of name similarity, if their Jaro similarity
exceeds a high threshold λ. Otherwise, we first use the topic sim-
ilarity constraint to select several candidates in MAG, i.e., venues
whose topic similarities with the collected venue exceed a thresh-
old θ. Intuitively, these candidates are in the similar fields of the
collected one. We then select the most similar candidate in terms
of name similarity as its linked venue, if their Jaro similarity ex-
ceeds another threshold φ. Hence, the collected venue is linked to
the one to which it is similar in terms of both topics and names.

In our model EWPR, threshold λ is set to 0.95, while thresholds
θ and φ need not be very high, which are 0.5 and 0.7, respectively.
Finally, 6, 000 among the 42, 000 collected venues are linked, re-
sulting in 340, 000 (about 12%) articles with enriched venue in-
formation. Note that a majority of the collected venue names are



not valid venues, such as booktitles and names of workshops, and
cannot be linked to any one in MAG.

4. EXPERIMENTAL STUDY
In this section, we use the Microsoft Academic Graph [8] to eval-

uate the effectiveness of our ranking model EWPR in terms of four
aspects: (1) Time-Weighted PageRank vs. PageRank, (2) single
ensembles vs. multiple ensembles, (3) ensemble models vs. mixed
models and (4) ensemble models with affiliations.

4.1 Experimental Settings
We first present our settings.

(1) Dataset. The Microsoft Academic Graph (MAG) dataset is a
heterogeneous graph containing different types of literature entities
and relationships. Please refer to [8] for more details about MAG.
(2) Metric. We adopt pairwise accuracy [6] to evaluate the ranking
quality, which is the fraction of times that a ranking agrees with the
correct importance orders of scholarly article pairs:

PairAcc =
# of agreed pairs
# of all pairs

. (6)

The ground truth is generated by human experts, who are asked
to give the orders of importance of article pairs (https://wsdmcupchall-
enge.azurewebsites.net/Home/Rules).
(3) Baselines. We compare our method EWPR, with four baseline
methods: PR, WPR, EWPR∗, a variant of EWPR that further uses
the affiliation ensemble, and MulRank [3].

PR simply runs PageRank on the citation network, and uses the
authority scores as the importance of articles, WPR is only based
on the results of the citation ensemble, MulRank uses the mixed
model, where entities are exploited simultaneously, and EWPR∗

further uses the affiliation ensemble on the basis of EWPR.
(4) Implementation. For all algorithms: (1) the number of itera-
tions is set to 30, and (2) the damping parameter d and decaying
factor t are fixed to 0.15 and 2.5, respectively. MulRank uses the
default parameters recommended in [3]. We further fix α = 1.2
and β = 0.3 for EWPR and EWPR∗. And the weight of affiliation
ensemble for EWPR∗is also set to 0.3.

All experiments were run on a PC with 2 Intel Xeon E5–2630
2.4GHz CPUs and 64 GB of memory.

4.2 Experimental Results
We next present the experimental results, which were mainly

tested using the training data of WSDM Cup Phase 1. And all
experiments were tested without using the external data, which is
for Phase 2. The results are reported in Table 1.
(1) Time-Weighted PageRank vs. PageRank. We first compare
the effectiveness of Time-Weighted PageRank with PageRank. The
pairwise accuracy of PR and WPR is 0.687 and 0.701, respec-
tively. And our model WPR outperforms PR by 1.4%, which is
achieved by introducing a time decaying factor. The results show
that Time-Weighted PageRank combining both time and structural
information is a better choice for ranking scholarly articles.
(2) Single ensembles vs. multiple ensembles. We then compare
the effectiveness of using single ensemble, i.e., the citation ensem-
ble, with multiple diverse ensembles. The pairwise accuracy of
WPR and EWPR is 0.701 and 0.733, respectively. EWPR out-
performs WPR by 3.2% since it combines the citation, venue and
author ensembles to evaluate importance of articles. Hence, multi-
ple ensembles are typically more effective than single ensembles.
(3) Ensemble models vs. mixed models. We also compare the ef-
fectiveness of the ensemble model with the mixed model. The pair-

Methods PR WPR MulRank EWPR EWPR∗

PairAcc 0.687 0.701 0.699 0.733 0.711

Table 1: Results of pairwise accuracy

wise accuracy of MulRank and EWPR is 0.699 and 0.733, respec-
tively. And EWPR is better than MulRank by 3.4%. Moreover,
MulRank is even worse than the single ensemble method WPR.
We believe that the effectiveness of the mixed model is impaired by
error propagation in a noisy dataset, whereas the ensemble model
controls the impacts of error propagation to some extent. Combin-
ing with the previous one, we claim that in noisy heterogeneous
graphs, models assembling multiple ensembles are the best choice.
(4) Ensemble models with affiliations. In the last set of tests, we
compare EWPR with EWPR∗to evaluate the effectiveness of en-
semble models with affiliations. The pairwise accuracy of EWPR
and EWPR∗is 0.733 and 0.711, respectively. And the incorpo-
ration of the affiliation ensemble decreases the pairwise accuracy
by 2.2%. The results verify our early claim that the correlation
between the importance of articles and authorities of affiliations is
not as strong as the other three. Moreover, different types of entities
may have different contributions to the ranking of articles. Simply
combining all information may not be the best way.

Finally, the accuracy of EWPR in the Leaderboard of Phase 1 is
0.656 (https://wsdmcupchallenge.azurewebsites.net/Home).

5. CONCLUSIONS
We have proposed a novel model for scholarly article ranking,

which combines Time-Weighted PageRank and ensembles. The au-
thority propagation of scholarly articles are weighted based on each
article’s individual citation information with time, and the ranking
of articles is given by assembling the results of citation, venue and
author ensembles. We have also proposed to use external data to
enhance the quality of data for improving the ranking accuracy.
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